ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Роль и значение двигателя в народном хозяйстве. Водяной двигатель значение


Роль и значение двигателя в народном хозяйстве. Густав Лаваль

Роль и значение двигателя в народном хозяйстве

В развитии производительных сил человечества реконструкция энергетического хозяйства и, в частности, основы всякого производства — двигателя — являлась всегда одним из важнейших технических и экономических факторов.

Известно, что на самых ранних ступенях хозяйства, вплоть до появления развитого ремесла, роль двигателя исполнял сначала человек, а затем рядом с ним — животное. Но уже в период развития ремесленной системы производства началось внедрение примитивных двигателей, использующих силу воды и ветра для обслуживания отдельных производств в тогдашнем хозяйстве. Развитие этих механических двигателей, в особенности водяного колеса, являлось в то время экономическим, техническим и даже научным фактором первостепенного значения.

«Почти все великие математики, начиная с середины XVII столетия, исходят, поскольку они занимаются практической механикой и пытаются ее теоретизировать, из простой водяной мельницы для зерна»[4].

С водяным колесом как техническим фактором был связан и новый этап в развитии производительных сил, известный как век мануфактуры. Водяное колесо, будучи господствующим типом двигателя в век мануфактуры, являлось и основным условием размещения промышленных центров. Местонахождение производства всецело зависело от существования потока воды, который был нужен для приведения в движение водяного колеса.

Но с развитием мануфактурной системы производства и капиталистических фабрик начало сказываться несоответствие этого рода двигателя с общим процессом развития производительных сил: водяное колесо сковывало их развитие и по пространственному размещению и по линии их концентрации. Из революционного фактора, каким оно было в начале своего применения, водяное колесо превратилось в реакционную силу, тормозившую переключение производительных сил на более высокую техническую основу. Еще в большей мере органическими недостатками страдали ветряные установки, зависевшие от наличия в данный момент ветра нужной силы и направления. Да и по своей незначительной мощности ветряные мельницы никак не могли удовлетворять размерам капиталистического производства.

Начавшийся в Англии в средине XVIII века промышленный переворот, созданный появлением ткацких и прядильных машин, сопровождался дальнейшим развитием рабочих машин. Потребление, росшее быстрее производства, вызвало изобретение множества рабочих машин: хлопкоочистительных, лесопильных, металлообрабатывающих и т. п. Всем этим машинам нужен был новый, более совершенный, независимый ни от воды, ни от ветра двигатель, каким и явился паровой двигатель Уатта.

В своем примитивном виде паровая машина появилась много раньше Уатта.

«Паровую машину изобрел француз Папин, но в Германии. Немец Лейбниц, рассыпая вокруг себя, как всегда, гениальные идеи, без заботы о том, припишут ли заслугу этого ему или другим, — Лейбниц, как мы знаем теперь из переписки Папина (изд. Герляндтом), подсказал ему основную идею этой машины — применение цилиндра и поршня. Вскоре после этого англичане Сэвери и Ньюкомен придумали подобные же машины; наконец, их земляк Уатт, введя отдельный конденсатор, придал паровой машине в принципе ее современный вид»[5].

Однако «только с изобретением второй машины Уатта, — напохминает Маркс, — так называемой паровой машины двойного действия, был найден первый мотор, который, потребляя уголь и воду, сам производит двигательную силу и действия которого находятся всецело под контролем человека. Двигатель и сам средство передвижения: он позволяет концентрировать производство в городах, вместо того, чтобы рассеивать его в деревне. Наконец, он универсален по своему техническому применению и сравнительно мало зависит в своем местопребывании от тех или иных локальных условий. Великий гений Уатта обнаруживается в том, что патент, взятый им в апреле 1784 года, давая описание паровой машины, изображает ее не как изобретение лишь для особых целей, но как универсальный двигатель крупной промышленности»[6].

Действительно, весь дальнейший путь промышленного капитализма был уже связан с развитием паровой машины в качестве двигателя, как стационарного, так и транспортного.

Но уже во вторую половину XIX века, среди основных противоречий капиталистического общества выступило на сцену и техническое противоречие между темпами развития производительных сил капиталистического хозяйства и ограниченностью его энергетического базиса. Это противоречие в последнюю четверть XIX века обострилось до крайности. Концентрация производства потребовала реконструкции двигателя предшествующего периода промышленного капиталистического развития.

Паровая машина, громоздкая и трудно переносимая, соединенная механическим приводом с рабочими машинами, ограничивала пространственное размещение промышленности и масштаб концентрации благодаря незначительной мощности агрегатов. Одновременно и ограниченность запасов высокосортного минерального топлива, беспощадно пожираемого паровым двигателем, с его чрезвычайно низким коэффициентом полезного действия, выдвинула в отдельных странах и районах перед техникой капиталистического хозяйства задачу вовлечения в производство новых энергетических источников, и прежде всего задачу использования топлива на новой, более совершенной технической основе, с высоким коэффициентом полезного действия.

Запрос капиталистической промышленности на новый двигатель был также удовлетворен.

Для удовлетворения этого запроса изобретательская мысль неизбежно должна была обратиться в сторону постройки принципиально новых двигателей. Такими двигателями явились двигатели внутреннего сгорания и турбины.

Следует заметить, что с точки зрения экономичности использования топлива паровые двигатели имеют огромный недостаток: коэффициент полезного действия у паровых двигателей чрезвычайно низок: машины мощностью до 200 лошадиных сил претворяют в полезную работу не более 8 процентов теплотворной способности топлива, а самые мощные двигатели — не более 15–17 процентов. Паровоз, где установка конденсатора, повышающего коэффициент полезного действия, невозможна, превращает в механическую работу только 5 процентов сожженного в топке угля или нефти. Остальные 95 процентов, таким образом, в буквальном смысле слова вылетают в трубу.

Многие изобретатели, при решении поставленной перед ними задачи, задачи создания двигателя с более высоким коэффициентом полезного действия, пошли по пути, указанному основоположником термодинамики, гениальным французом Сади Карно, который теоретическими рассуждениями доказывал, что создание совершенного двигателя возможно лишь при замене водяного пара в качестве рабочего тела — газом.

Следует заметить, что опыты подобного рода делались еще задолго до создания парового двигателя. Тот же Дени Папин в лаборатории голландского физика Христиана Гюйгенса еще в 1678 году производил опыты с машиной, в которой поршень в цилиндре поднимался кверху при помощи взрыва порохового заряда, наполнявшего цилиндр горячими газами. По охлаждении этих газов атмосферное давление гнало поршень обратно, и хотя заряжение было сопряжено с большой возней, так как надо было отнимать дно цилиндра, все же машина Папина представляла собой так называемый двигатель внутреннего сгорания, в отличие от парового двигателя, являющегося двигателем внешнего сгорания.

Впрочем, по старому остроумному замечанию, пушка является также двигателем внутреннего сгорания, с той разницей, что при каждом ходе поршень здесь совсем вылетает из цилиндра.

Целью опытов Папина были поиски способа получать безвоздушное пространство. Сознательные же попытки создания газового двигателя начались значительно позднее, именно после того, как французский инженер Филипп Лебон открыл способ получения светильного газа. Попыток этих было очень много, но создать газовый двигатель внутреннего сгорания, нашедший себе практическое применение, удалось лишь в 1860 году французскому механику Жану-Этьену Ленуару. Конструктивно этот двигатель копировал паровой, в нем смесь светильного газа и воздуха засасывалась ходом поршня в цилиндр, как вода в шприц, после чего взрывалась электрической искрой. Однако широкая возможность использования газовых двигателей в промышленности явилась лишь после того, как немецкий техник Николай Отто создал газовый двигатель, применив предложенный французом Бо де Роша новый способ сжигания горючего, получивший известность как цикл Отто. Способ этот заключается в том, что газ или жидкое топливо, приведенное в газообразное состояние, смешанное в нужной пропорции с воздухом, засасывается при первом ходе поршня в цилиндр, затем подвергается сжатию вторым ходом поршня, после чего взрывается электрической искрой или иным способом. Давление образующихся при взрыве газов гонит поршень с силой, которая передается на вал двигателя при помощи шатуна и кривошипа. Этот третий ход поршня и является рабочим ходом. Четвертый ход поршня выбрасывает отработавшие газы из цилиндра. Так как на четыре хода поршня имеется только один рабочий ход, то весь цикл и получил название четырехтактного цикла.

Коэффициент полезного действия двигателей Отто доходил до 18 процентов, но они не достигали больших мощностей и, кроме того, нуждались в дорогом светильном газе, для получения которого нужны были громоздкие газогенераторные установки.

Несколько позднее бывшему руководителю заводов Отто, Готлибу Даймлеру, удалось построить бензиновый двигатель, работавший по циклу Отто, который нашел себе широчайшее применение в автотранспорте.

Идя по пути Отто, техники всех стран стремились к использованию других видов топлива в двигателях, работающих по циклу Отто: керосина, нефти, мазута. Керосиновые двигатели были построены одновременно немцем Шпилем и англичанином Пристманом. Вскоре в Англии Аккройду Стюарту удалось построить двигатель незначительной мощности, потреблявший в качестве горючего нефть. Но окончательно разрешил задачу использования тяжелого топлива в двигателях внутреннего сгорания только Рудольф Дизель, построивший в 1897 году свой знаменитый дизельмотор. Этот двигатель, коэффициент полезного действия которого достигал уже 34 процентов и мощности которого могли быть очень значительными, работал по циклу, предложенному Дизелем и получившему его имя. При первом ходе поршня дизельмотор засасывал чистый воздух, который вторым обратным ходом поршня подвергался сильному сжатию, до 40 атмосфер, вследствие чего нагревался до такой высокой температуры, что при третьем ходе поршня вспрыскивавшаяся в цилиндр нефть воспламенялась без зажигания. Дизельмоторы не только могли конкурировать по своей экономичности, легкости, простоте и удобству с паровыми двигателями, но и стали заменять их буквально во всех областях промышленности и транспорта с огромным успехом, чрезвычайно обострив при этом, конечно, борьбу между углем и нефтью, между промышленными группами, интересы которых были связаны с ними.

Любопытно отметить, что как паровые двигатели, так и двигатели внутреннего сгорания, при всем своем принципиальном отличии друг от друга, имеют одну и ту же конструктивную форму в виде цилиндра и поршня, при помощи которых можно получить только прямолинейно-возвратное движение. Это движение посредством кривошипного механизма превращается во вращательное движение вала двигателя. Цилиндр и поршень являются древнейшей технической формой, но вовсе не наиболее удобной и выгодной. Впервые она была применена в незапамятные времена в водяном насосе, и, исходя из этой готовой технической формы, изобретатели превратили ее из формы, потребляющей механическую энергию, в форму, совершающую механическую работу.

Поделитесь на страничке

Следующая глава >

biography.wikireading.ru

История изобретения мельниц. Водяные мельницы

МельницаПрошло немало времени, пока человек научился получать муку из выращенного им зерна. Самыми первыми приспособлениями для измельчения зерна были каменная ступка и пестик. Позже зерно стали перетирать, благодаря такому методу мука была лучше. От движения терки вперед-назад перешли к вращению. Плоский камень, перетирая зерно, вращался по плоскому блюду из камня. Заставив один камень в процессе вращения скользить по другому, человек изобрел жернов. В середине верхнего камня имелось отверстие, куда подсыпалось зерно. Попадая между верхним и нижним камнем, зерно при вращении перетиралось в муку. Так была изобретена ручная мельница, широко распространенная в Риме и Древней Греции. Мельницы были разных размеров, большие мельницы вращались с помощью рабов или ослов.

Со временем возникла необходимость в изобретении такой машины, которая бы работала без использования силы животного или человека.История изобретения водяной мельницы

Такой машиной стала водяная мельница, но ее изобретению и использованию предшествовало изобретение водяного двигателя. Уже в глубокой древности человек изобрел машину, с помощью которой он черпал воду из реки и поливал свои земли. Такая поливальная машина (чадуфон) состояла из ряда черпаков, закрепленных на ободе большого колеса, имевшего горизонтальную ось. При вращении колеса нижние черпаки опускались в реку и, наполненные водой, поднимались вверх, где опрокидывались в желоб в самой верхней точке колеса.

В местах, где вода течет быстро, стали устанавливать колеса со специальными лопатками, которые под напором воды начинали вращать колесо, а то, в свою очередь, черпало воду уже без усилий человека. Изобретение простого и надежного водяного двигателя имело огромное значение для дальнейшего развития техники. Люди быстро поняли, что вращение водяного колеса можно использовать не только для черпания воды, но и для других целей, например, перемалывать зерна. В местах, где скорость течения невелика, реку стали запруживать, поднимая уровень воды и направляя струю по специальному желобу на лопатки колеса.

Теперь, когда был изобретен водяной двигатель, необходим был передаточный механизм, который бы не только передавал, но и преобразовывал вращательное движение. Водяная мельница И здесь была использована идея колеса. Если взять два колеса, плотно соприкасающихся ободьями, с параллельными осями вращения, и одно из них (ведущее) начать вращать, то из-за трения между ободьями начнет вращаться и второе колесо (ведомое). Расстояние, которое пройдет каждая из точек, лежащих на ободьях этих колес, будет одинаковым. Из двух связанных между собой колес большое колесо будет делать во столько раз меньше оборотов, во сколько его диаметр больше, чем диаметр меньшего колеса. Это означает, что при использовании системы из двух колес разного диаметра, мы не только передаем, но и преобразовываем движение. Использование гладких колес было неудобно, так как сцепление между ними было не очень жестким и колеса проскальзывали. Со временем гладкие колеса заменили на зубчатые. Изобретение водяного двигателя, создание передаточного механизма, преобразовывающее вращательное движение, способствовали появлению водяной мельницы.

Известный механик и архитектор Древнего Рима Витрувий первым детально описал устройство водяной мельницы, состоящей из трех основных составных частей: двигательного, передаточного и исполнительного механизмов. Водяная мельница была первой машиной, которая нашла широкое применение в производстве, стала первым шагом на пути к машинному производству.

mirnovogo.ru

Основные двигатели водного тока

Поглощение воды корневой системой идет благодаря работе двух концевых двигателей водного тока: верхнего концевого двигателя, или присасывающей силы испарения (транспирации), и нижнего концевого двигателя, или корневого давления. Основной силой, вы­зывающей поступление и передвижение воды в растении, является присасывающая сила транспирации в результате которой возникает градиент водного потенциала. Водный потенциал — это мера энергии, используемой водой для передвижения. Водный потенциал и сосущая сила одинаковы по абсолютному значению, но противопо­ложны по знаку. Чем меньше насыщенность водой данной системы, тем меньше (более отрицателен) ее водный потенциал. При потере воды растением в процессе транспирации создается ненасыщенность клеток листа водой, как следствие, возникает сосущая сила (водный потенциал падает). Поступление воды идет в сторону большей сосу­щей силы, или меньшего водного потенциала.

Таким образом, верхний концевой двигатель водного тока в рас­тении — это присасывающая сила транспирации листьев, и его рабо­та мало связана с жизнедеятельностью корневой системы. Действи­тельно, опыты показали, что вода может поступать в побеги и через мертвую корневую систему, причем в этом случае поглощение воды даже ускоряется. Кроме верхнего концевого двигателя водного тока, в растениях существует нижний концевой двигатель. Это хорошо доказывается на примере таких явлений, как гуттация.

Листья растений, клетки которых насыщены водой, в условиях высокой влажности воздуха, препятствующей испарению, выделяют капельно-жидкую воду с небольшим количеством растворенных ве­ществ — гуттация. Выделение жидкости идет через специальные вод­ные устьица — гидатоды. Выделяющаяся жидкость — гутта. Таким образом, процесс гуттации является результатом одностороннего то­ка воды, происходящего в отсутствие транспирации, и, следовательно, вызывается какой-то иной причиной. К такому же выводу можно прийти и при рассмотрении явления плач растений. Если срезать побеги растения и к срезанному концу присоединить стеклянную трубку, то по ней будет подниматься жид­кость. Анализ показывает, что это вода с растворенными вещества­ми — пасока. В некоторых случаях, особенно в весенний период, плач наблюдается и при надрезе веток растений. Определения пока­зали, что объем выделяющейся жидкости (пасоки) во много раз пре­вышает объем корневой системы. Таким образом, плач — это не просто вытекание жидкости в результате пореза. Все сказанное при­водит к выводу, что плач, как и гуттация, связан с наличием одно­стороннего тока воды через корневые системы, не зависящего от транспирации. Силу, вызывающую односторонний ток воды по со­судам с растворенными веществами, не зависящую от процесса транс­пирации, называют корневым давлением. Наличие корневого давле­ния позволяет говорить о нижнем концевом двигателе водного тока. Корневое давление можно измерить, присоединив манометр к концу, оставшемуся после срезания надземных органов растения, или по­местив корневую систему в серию растворов различной концентрации и подобрав такую, при которой плач прекращается. Оказалось, что величина корневого давления равна примерно 0,1—0,15 МПа. Концентра­ция наружного раствора, останавливающего плач, значительно выше концентрации пасоки. Это позволило высказать мнение, что плач может идти против градиента концентрации. Было показано также, что плач осуществляется только в тех условиях, в которых нормаль­но протекают все процессы жизнедеятельности клеток. Не только умерщвление клеток корня, но и снижение интенсивности их жизне­деятельности, в первую очередь интенсивности дыхания, прекращает плач. В отсутствие кислорода, под влиянием дыхательных ядов, при пониженной температуре плач приостанавливается. Таким образом - плач расте­ний — это прижизненный односторонний ток воды и питательных веществ, зависящий от аэробной переработки ассимилятов. Односторонний ток воды в корне. Объясняется тем, что клетки корня поляризо­ваны в определенном направлении. Это проявляется в том, что в разных отсеках одной и той же клетки процессы обмена веществ различны. В одной части клетки идут усиленные процессы распада, в частности, крахмала на сахара, вследствие чего концентрация кле­точного сока возрастает. Следо­вательно, если со стороны, где клетка обращена к внешней среде, она насыщена водой, то, с другой стороны, наблюдается секреция воды, тургорное давление, которое превышает осмотическое, и клетка будет вы­делять воду. Надо учитывать, что весь этот механизм будет работать только при достаточном количестве воды в среде и при ненарушен­ном обмене веществ.

Согласно другой гипотезе, зависимость плача растений от интен­сивности дыхания является косвенной. Энергия дыхания использует­ся для поступления ионов в клетки коры, откуда они десорбируются в сосуды ксилемы. В результате концентрация солей в сосудах кси­лемы повышается, что и вызывает поступление воды

studfiles.net

Значение словосочетания ГИДРАВЛИЧЕСКИЙ ДВИГАТЕЛЬ. Что такое ГИДРАВЛИЧЕСКИЙ ДВИГАТЕЛЬ?

Источник: Википедия

Делаем Карту слов лучше вместе

Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я стал чуточку лучше понимать мир эмоций.

Вопрос: обратимость — это что-то положительное, отрицательное или нейтральное?

Положительное

Отрицательное

Предложения со словом «гидравлический двигатель»:

Оставить комментарий

Текст комментария:

kartaslov.ru

ВОДЯНОЕ КОЛЕСО - это... Что такое ВОДЯНОЕ КОЛЕСО?

 ВОДЯНОЕ КОЛЕСО механическое устройство для преобразования энергии падающей воды в энергию вращательного движения с тем, чтобы на оси колеса можно было совершать работу. При подъеме воды на некоторый уровень в ней запасается соответствующая этому уровню потенциальная энергия, поэтому падающая вода может совершать работу. Различают три основных вида водяного колеса - подливное (нижнебойное), наливное (верхнебойное) и среднебойное; их схемы приведены на рисунке. Подливное колесо - самое древнее, им с незапамятных времен пользовались древние египтяне и персы в своих черпаковых подъемниках воды, которые известны теперь под названием норий. В простейшем водяном колесе на ободе установлены прямые лопатки; нижние лопатки погружаются в водный поток. Течение давит на лопатки, и колесо вращается. Для увеличения отбора энергии из водного источника лопатки колеса стали делать в виде ковшей. В потоке с некоторым перепадом уровня воды используют среднебойное или подливное колесо вместе с направляющим аппаратом (желобом с затвором, которыми регулируется набегающий водный поток). Когда высота перепада достигает диаметра колеса или больше него, устанавливают наливное колесо. До эпохи Возрождения применялось множество типов только подливных колес; остальные виды водяных колес привлекли в себе внимание позже. Первые водяные колеса делались из дерева, железные детали в них стали широко использоваться в период Возрождения. С появлением в начале 19 в. гидравлических турбин водяные колеса утратили свое былое значение. Теперь они используются лишь в малых энергетических установках. Коэффициент полезного действия современных наливных колес доходит до 85% (или чуть больше), среднебойных - до 75%, подливных - до 35%. Самым большим водяным колесом наливного вида является, вероятно, колесо Лэкси (диаметром 22 м), установленное на о.Мэн в Англии.См. также ГИДРОЭНЕРГЕТИКА.ВОДЯНЫЕ КОЛЕСА - три основных вида. а - подливное колесо; б - среднебойное колесо; в - наливное колесо. 1 - вал; 2 - уровень воды в верхнем бьефе; 3 - уровень воды в нижнем бьефе.ВОДЯНЫЕ КОЛЕСА - три основных вида. а - подливное колесо; б - среднебойное колесо; в - наливное колесо. 1 - вал; 2 - уровень воды в верхнем бьефе; 3 - уровень воды в нижнем бьефе.

Энциклопедия Кольера. — Открытое общество. 2000.

Смотреть что такое "ВОДЯНОЕ КОЛЕСО" в других словарях:

dic.academic.ru


Смотрите также