ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Способ запуска турбореактивного двигателя самолета. Турбореактивный двигатель самолета


Принцип работы турбореактивного двигателя самолёта

Совершая полет в самолете в большинстве случаев люди никогда не задумываются о том, как работает его двигатель. Но на самом деле о работе двигателя и реактивной тяги с помощью, которой работает сам двигатель, знали ее в Античное время. Но применить эти знания на практике смогли не так давно, так как раньше не технологии не позволяли никому достичь его исправной работы. Гонка вооружения между Англией и Германией стала толчком к созданию ТРД (турбореактивного двигателя).

В работе ТРД самолета нет никаких сложностей, принцип его работы может понять почти каждый человек. Но данный двигатель имеет несколько нюансов, их соблюдение контролируется под строгим присмотром руководства. Для того чтобы авиалайнер смог держаться в небе, необходима идеальная работа двигателя. Так как от работы двигателя напрямую зависят жизни пассажиров находящихся на борту авиатранспорта.

Принцип работы реактивного двигателя

Реактивный двигатель

За работу двигателя отвечает реактивная тяга. Для создания реактивной тяги необходима определенная жидкость, которая подается из задней части двигателя и по ходу ее продвижения увеличивается ее скорость движения вперед. Работу тяги отлично объясняет один из законов Ньютона, звучит он так «Любое действия вызывает равное противодействие».

Вместо жидкости в ТРД используется горючая смесь (газы и воздух со сгоревшими частичками топлива). Благодаря этой смеси самолет толкает вперед и позволяет ему лететь дальше.

Разработки таких двигателей начались в тридцатых годах. Первыми кто начал разрабатывать двигатели такого типа стали немцы и англичане. Но в гонке вооружений одержали победу ученные из Германии, так как они выпустили самый первый в мире самолет с ТРД под названием «Ласточка», данный самолет впервые взлетел в небеса над Люфтваффом. Спустя некоторое время появился и Английский самолет «Глостерский метеор»

Также сверхзвуковые двигатели принято считать турбореактивными, но они отличаются более совершенными модификациями, в отличие от ТРД.

Устройство двигателя имеет четыре главные детали, а именно:

Компрессор

Компрессор

В компрессоре находиться несколько турбин, с помощью которых происходит засасывание и сжатие воздуха. Во время сжатия воздуха, его давление и температура начинает нагнетаться и расти.

Камера горения

Камера горения

После того как воздух проходит турбину и его сжимает до необходимых размеров. Часть сжатого воздуха поступает в камеру горения, где воздух начинает смешиваться с топливом, после чего его поджигают. Благодаря этому увеличивается тепловая энергия воздуха. После смесь выходит из камеры с большой скорости и расширяется.

Турбина

Турбина

После выхода эта смесь снова попадает в турбину, с помощью высокой энергии газа лопасти в турбине начинают свое вращение. Турбина тесно связанна с компрессором, который находиться в начале двигателя. Благодаря этому турбина начинает свою работу. Остатки воздуха выходят в выхлоп. В момент выхода смеси температура достигает рекордных размеров. Но она продолжает повышать свою температуру с помощью эффекта Дросселирования. После того как температура воздуха доходит до своего пика, она начинает идти на спад и выходит из турбины.

Принцип работы турбореактивного двигателя

Турбореактивный двигатель

В отличие от реактивного двигателя, который пользуется спросом почти у всех самолетов, турбореактивный двигатель больше подходит для пассажирских авиалайнеров. Так как для работы реактивного двигателя необходимо не только топливо, но и окислитель.

Благодаря своему строению окислитель поступает вместе с топливом из бака. А в случаи с ТРД окислитесь, поступает напрямую из атмосферы. А в остальном их работа совершенно идентична и не отличается друг от друга.

У турбореактивного двигателя главной деталью является лопасть турбины, так как от ее исправной работы напрямую зависит мощность двигателя. Благодаря этим лопастям и образуется тяга, которая необходима для поддержания скорости самолета. Если сравнить одну лопасть с автомобильным двигателем, то она сможет обеспечить мощностью целых десять машин.

Лопасти устанавливаются за камерой сгорания, так как там нагнетается самое высокое давления, также температура воздуха в данной части двигателя может доходить до 1400 градусов Цельсия.

В целях улучшения прочности и устойчивости лопасти перед различными факторами их монокристаллизируют, благодаря этому они могут держать высокую температуру и давление. Прежде чем установить такой двигатель на самолет его тестируют на полном тяговом усилителе. Также двигатель должен получить сертификат от Европейского совета по безопасности.

Атомный двигатель

Атомный двигатель

В период холодной войны в мире были попытки создания атомного двигателя, за основу был взят турбореактивный двигатель. Главной задумкой ученых было создание двигателя, основанного не на химической реакции радиоактивных веществ, а на вырабатываемом тепле от ядерного реактора. Он должен был находиться на месте камеры сгорания.

В теории воздух должен был проходить через работающую зону реактора, благодаря этому реактор должен был остужаться, а температура воздуха наоборот возрастать. После чело воздух должен был расширяться и выходить через сопла (выхлоп) на этот момент скорость воздуха должна была превышать скорость полета самолета.

В Советском союзе были попытки проведения испытаний подобного двигателя, также ученные в соединенных штатах Америки, вели разработку данного двигателя, и их работа почти подходила к тестам двигателя на настоящем самолете.

Но по ряду причин разработки этого двигателя было решено закрыть. Так как у двигателя было множество недостатков, а именно:

vpolete.online

7. Самолеты с турбореактивными двигателями. Реактивная авиация Второй мировой войны

7. Самолеты с турбореактивными двигателями

Турбореактивный двигатель (ТРД), хотя конструктивно и является наиболее сложным из рассмотренных выше типов реактивных двигателей (РДТТ, ЖРД, ПВРД, ПуВРД, ВРДК), но он имеет огромные преимущества по сравнению с ними в плане экономичности расхода топлива и управляемости режимами работы двигателя.

ТРД состоит из следующих основных частей: входного устройства (диффузора), компрессора, камеры сгорания, газовой турбины и выходного устройства (реактивного сопла). По типу компрессора ТРД делятся на двигатели с центробежным компрессором и на двигатели с осевым компрессором. Осевой компрессор, в отличие от центробежного компрессора, позволяет получить большую степень повышения давления воздуха и обеспечивает получение больших секундных расходов воздуха, что в итоге увеличивает реактивную тягу двигателя. Кроме того, применение осевого компрессора позволяет минимизировать диаметр ТРД, что приводит к снижению аэродинамического сопротивления самолета как в случае размещения двигателя в фюзеляже, так и в мотогондолах под крылом. Но преимуществом центробежных компрессоров является то, что они более просты в конструктивном отношении и менее трудоемки в изготовлении, чем осевые.

Как уже говорилось выше, в 1929 г. советский ученый Б.С. Стечкин опубликовал теорию ВРД, в которой впервые были даны уравнения для расчета тяги и кпд двигателя, а уже с 1930 г. под руководством В.В. Уварова начались практические работы по созданию таких двигателей. В результате в 1934 г. была построена и прошла длительные испытания первая высокотемпературная газотурбинная установка ГТУ-1, ставшая прообразом будущих турбореактивных и турбовинтовых двигателей. Установка состояла из одноступенчатого центробежного компрессора, кольцевой камеры сгорания и одноступенчатой газовой турбины. В 1936 г. в ХАИ разработали первый проект самолета с турбореактивным двигателем, спроектированным инженером А.М. Люлькой.

К началу 1940 г. двигатель A.M. Люльки, получивший обозначение РТД-1, был готов на 70 %. Но начало войны заставило временно прекратить работу по РТД-1, а группу двигателистов, работавших над его созданием на территории Кировского завода в Ленинграде, отправить в эвакуацию. На основе исследований, проводившихся с 1937 г., А.М. Люлька подал в 1938 г. заявку на изобретение двухконтурного турбореактивного двигателя, авторское свидетельство на это изобретение ему вручили 22 апреля 1941 г. В 1944 г. A.M. Люлька получил возможность разрабатывать новый ТРД С-18 с тягой 1250 кгс. Несмотря на то что до окончания войны в Советском Союзе было разработано несколько проектов самолетов с ТРД (ХАИ-2, ЛаГГ-3РД-1, БИЧ с ТРД, Ла-ВРД и т. д.), на вооружении советских ВВС самолетов с турбореактивными двигателями (из-за отсутствия таковых) не было.

В Англии пионером в области создания ТРД стал Ф. Уиттл. Вступив в ВВС Англии в шестнадцатилетнем возрасте в 1923 г., он через пять лет окончил авиационную школу в Корнуэлле, а в январе 1930 г. он начал процедуру патентования своего первого варианта двигателя с центробежным компрессором. Однако построить опытный образец своего двигателя он смог только в 1937 г., имея за плечами диплом Кембриджского университета и основанную им собственную фирму Power Jets Ltd.

В апреле 1937 г. Ф. Уиттл провел успешные испытания двигателя, а в марте 1938 г. получил контракт от министерства авиации Англии на разработку и серийное производство ТРД. 15 мая 1941 г. совершил свой первый полет экспериментальный самолет Gloster E.28/39, оснащенный двигателем Уиттла W.1. На вооружение ВВС Англии в середине 1944 г. поступила первая партия истребителей Meteor F.Mk I с турбореактивными двигателями Rolls-Royce W.2B/23 Weiland I, которые до конца войны применялись в системе ПВО страны, в основном они занималась перехватом немецких крылатых ракет V1, которыми немцы обстреливали Южную Англию.

В Германии разработка турбореактивных двигателей началась в 1936 г. на фирме «Хейнкель» в специально созданной для этой цели группе, которую возглавил недавний выпускник Геттингенского университета Х. фон Охайн, принятый на фирму по рекомендации своего научного руководителя профессора Р. Поля. В этой группе к сентябрю 1937 г. создали опытный образец ТРД HeS 1, а 27 августа 1939 г. экспериментальный самолет Не 178 с ТРД HeS 3B разработки фон Охайна впервые поднялся в воздух. Всего за годы войны группа фон Охайна разработала внушительный ряд двигателей – HeS 1, HeS 2, HeS 3, HeS 6, HeS 8, HeS 9, HeS 10, HeS 011, HeS 021, HeS 30 и др., но ни один из них так и не достиг стадии серийного производства.

С 1938 г. к разработке ТРД подключились и другие немецкие фирмы. Так, например, в моторостроительном отделении фирмы «Юнкерс» под руководством А. Франца, получившего инженерное образование в Технологическом институте в Граце (Австрия), создавался один из первых немецких ТРД с осевым компрессором (Junkers LII 401, впоследствии получивший серийное обозначение Jumo 004).

На заводе фирмы BMW в Мюнхене разрабатывались два типа ТРД с центробежным компрессором – BMW LII 757 P3304 (будущий BMW 002, руководитель разработки Х. Вайнрайх) и BMW L II 758 F9225 (руководитель разработки К. Лонер). Однако после передачи фирме BMW в 1939 г. завода фирмы Bramo (Brandenburgische Motorenwerke – филиал концерна «Сименс») в Шпандау, где проектировался ТРД с осевым компрессором (руководитель разработки Г. Острих), предпочтение было отдано последнему, получившему обозначение BMW LII 751 P3302, а позднее BMW 003 (серийное обозначение).

Первым самолетом с ТРД, поступившим на вооружение люфтваффе летом 1944 г., стал истребитель Me 262, до окончания войны на вооружение поступили также самолеты Ar 234 и Не 162. Все они, оснащенные двигателями фирм BMW или «Юнкерс», принимали участие в боевых действиях.

США позже, чем Англия, СССР и Германия, включились в процесс разработки самолетов, оснащенных ТРД. Поскольку такой тип двигателей американская промышленность не производила, то весной 1941 г. между США и Англией было достигнуто соглашение о помощи американской стороне в налаживании производства ТРД Ф. Уиттла. Это соглашение базировалось на законе о ленд-лизе, принятом конгрессом США 11 марта 1941 г. Ленд-лиз (англ. lend-lease, от lend – давать взаймы и lease – сдавать в аренду) изначально задумывался для оказания помощи в условиях войны Англии и странам Британского Содружества путем передачи военной техники, оружия, боеприпасов, снаряжения, стратегического сырья, продовольствия, различных товаров и услуг. В 1941 г. было принято решение создавать первые американские реактивные самолеты с использованием английских ТРД, которые затем стали выпускаться по лицензии американскими фирмами. В мае 1945 г. на вооружение ВВС США поступили первые самолеты Р-59 и Р-80, но в боевых действиях они не участвовали.

В Японии к концу войны было разработано несколько проектов самолетов с ТРД («Ока» моделей 33, 43 и 53, Ки-162, J9Y, К-200 и др.). Многие из них разрабатывались с технической помощью Германии. Однако до окончания войны в состав японской авиации не поступил ни один серийный самолет с ТРД.

Поделитесь на страничке

Следующая глава >

history.wikireading.ru

Турбореактивный двигатель - это... Что такое Турбореактивный двигатель?

Проблемы с содержанием статьи Проверить информацию.

Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.На странице обсуждения должны быть пояснения.

Схема работы ТРД: 1. Забор воздуха 2. Компрессор низкого давления 3. Компрессор высокого давления 4. Камера сгорания 5. Расширение рабочего тела в турбине и сопле 6. Горячая зона; 7. Турбина 8. Зона входа первичного воздуха в камеру сгорания 9. Холодная зона 10. Входное устройство

Турбореактивный двигатель (ТРД, англоязычный термин — turbojet engine) — Воздушно-реактивный двигатель (ВРД), в котором сжатие рабочего тела на входе в камеру сгорания и высокое значение расхода воздуха через двигатель достигается за счёт совместного действия встречного потока воздуха и компрессора, размещённого в тракте ТРД сразу после входного устройства, перед камерой сгорания. Компрессор приводится в движение турбиной, смонтированной на одном валу с ним, и работающей на том же рабочем теле, нагретом в камере сгорания, из которого образуется реактивная струя. Во входном устройстве осуществляется рост статического давления воздуха за счёт торможения воздушного потока. В компрессоре осуществляется рост полного давления воздуха за счёт совершаемой компрессором механической работы. В камере сгорания производится подвод теплоты. Часть энергии рабочего тела отнимается турбиной. В реактивном сопле формируется реактивная струя.

Ключевые характеристики

Ключевые характеристики ТРД следующие.

1. Создаваемая двигателем тяга.

2. Удельный расход топлива. (Масса топлива потребляемая за единицу времени для создания единицы тяги/мощности)

3. Расход воздуха. (Масса воздуха проходящего через каждое из сечений двигателя за единицу времени)

4. Степень повышения полного давления в компрессоре

5. Температура газа на выходе из камеры сгорания.

6. Масса и габариты.

Степень повышения полного давления в компрессоре является одним из важнейших параметров ТРД, поскольку от него зависит эффективный КПД двигателя. Если у первых образцов ТРД (Jumo-004) этот показатель составлял 3, то у современных он достигает 40 (General Electric GE90). Для повышения газодинамической устойчивости компрессоров они выполняются двухкаскадными. Каждый из каскадов работает со своей скоростью вращения и приводится в движение своей турбиной. При этом вал 1-го каскада компрессора (низкого давления), вращаемого последней (самой низкооборотной) турбиной, проходит внутри полого вала компрессора второго каскада (высокого давления). Каскады двигателя также именуют роторами низкого и высокого давления.

ТРД J85 производства компании General Electric. Между 8 ступенями компрессора и 2 ступенями турбины расположена кольцевая камера сгорания.

Камера сгорания большинства ТРД имеет кольцевую форму и вал турбина-компрессор проходит внутри кольца камеры. При поступлении в камеру сгорания воздух разделяется на 3 потока.

Первичный воздух — поступает через фронтальные отверстия в камере сгорания, тормозится перед форсунками и принимает непосредственное участие в формировании топливно-воздушной смеси. Непосредственно участвует в сгорании топлива. Топливо-воздушная смесь в зоне сгорания топлива в ВРД по своему составу близка к стехиометрической.

Вторичный воздух — поступает через боковые отверстия в средней части стенок камеры сгорания и служит для их охлаждения путём создания потока воздуха с гораздо более низкой температурой, чем в зоне горения.

Третичный воздух — поступает через специальные воздушные каналы в выходной части стенок камеры сгорания и служит для выравнивания поля температур рабочего тела перед турбиной.

Из камеры сгорания нагретое рабочее тело поступает на турбину, расширяется, приводя её в движение и отдавая ей часть своей энергии, а после неё расширяется в сопле и истекает из него, создавая реактивную тягу.

ТРД ВК-1 КБ Климова, с редко использующимися центробежным компрессором и трубчатой камерой сгорания. Использовался на самолётах МиГ-15, МиГ-17

Благодаря компрессору ТРД (в отличие от ПВРД) может «трогать с места» и работать при низких скоростях полёта, что для двигателя самолёта является совершенно необходимым, при этом давление в тракте двигателя и расход воздуха обеспечиваются только за счёт компрессора.

При повышении скорости полёта давление в камере сгорания и расход рабочего тела растут за счёт роста напора встречного потока воздуха, который затормаживается во входном устройстве (так же, как в ПВРД) и поступает на вход низшего каскада компрессора под давлением более высоким, чем атмосферное, при этом повышается и тяга двигателя.

Диапазон скоростей, в котором ТРД эффективен, смещён в сторону меньших значений, по сравнению с ПВРД. Агрегат «турбина-компрессор», позволяющий создавать большой расход и высокую степень сжатия рабочего тела в области низких и средних скоростей полёта, является препятствием на пути повышения эффективности двигателя в зоне высоких скоростей:

Повышение допустимой температуры рабочего тела на входе в турбину является одним из главных направлений совершенствования ТРД. Если для первых ТРД эта температура едва достигала 1000 К, то в современных двигателях она приближается к 2000 К. Это обеспечивается как за счёт применения особо жаропрочных материалов, из которых изготовляются лопатки и диски турбин, так и за счёт организации их охлаждения: воздух из средних ступеней компрессора (гораздо более холодный, чем продукты сгорания топлива) подается на турбину и проходит сквозь сложные каналы внутри турбинных лопаток.

В результате максимальная скорость истечения реактивной струи у ТРД меньше, чем у ПВРД, что в соответствии с формулой для реактивной тяги ВРД[1]

P=G\cdot(c - v), (1)

где \,P — сила тяги,\,G — секундный расход массы рабочего тела через двигатель,\,c — скорость истечения реактивной струи (относительно двигателя),\,v — скорость полёта,ограничивает сверху диапазон скоростей, на которых ТРД эффективен, значениями 2,5—3М. На этих и более высоких скоростях полёта торможение встречного потока воздуха создаёт степень повышения давления, измеряемую десятками единиц, такую же, или даже более высокую, чем у высоконапорных компрессоров, и ещё бо́льшее сжатие становится нежелательным, так как воздух при этом нагревается, а это ограничивает количество тепла, которое можно сообщить ему в камере сгорания. Таким образом, на высоких скоростях полёта (при M>3) агрегат турбина-компрессор становится бесполезным, и даже контрпродуктивным, поскольку только создаёт дополнительное сопротивление в тракте двигателя, и в этих условиях более эффективными становятся прямоточные воздушно-реактивные двигатели.

Форсажная камера

Форсажная камера ТРД General Electric J79. Вид со стороны сопла. В торце находится стабилизатор горения с установленными на нём топливными форсунками, за которым видна турбина. F-18 Hornet на форсаже взлетает с палубы авианосца

Хотя в ТРД имеет место избыток кислорода в камере сгорания, этот резерв мощности не удаётся реализовать напрямую — увеличением расхода горючего в камере — из-за ограничения температуры рабочего тела, поступающего на турбину. Этот резерв используется в двигателях, оборудованных форсажной камерой, расположенной между турбиной и соплом. В режиме форсажа в этой камере сжигается дополнительное количество горючего, внутренняя энергия рабочего тела перед расширением в сопле повышается, в результате чего скорость его истечения возрастает, и тяга двигателя увеличивается, в некоторых случаях, более, чем в 1,5 раза, что используется боевыми самолётами при полетах на высоких скоростях. При форсаже значительно повышается расход топлива, ТРД с форсажной камерой практически не нашли применения в коммерческой авиации, за исключением самолётов Ту-144 и Конкорд, полеты которых уже прекратились.

Скоростной разведчик SR-71 с гибридными ТРД/ПВРД.

Гибридный ТРД / ПВРД

Турбопрямоточный двигатель J58

В 1960-х годах в США был создан гибридный ТРД / ПВРД Pratt & Whitney J58, использовавшийся на стратегическом разведчике SR-71 Blackbird. До скорости М=2,4 он работал как ТРД с форсажем, а на более высоких скоростях открывались каналы, по которым воздух из входного устройства поступал в форсажную камеру, минуя компрессор, камеру сгорания и турбину, подача топлива в форсажную камеру увеличивалась, и она начинала работать, как ПВРД. Такая схема работы позволяла расширить скоростной диапазон эффективной работы двигателя до М=3,2. В то же время двигатель уступал по весовым характеристикам как ТРД, так и ПВРД, и широкого распространения этот опыт не получил.

Регулируемые сопла

Регулируемое сопло ТРДДФ F-100 самолёта F-16 створки максимально открыты Регулируемое сопло ТРДФ АЛ-21 регулируемые створки максимально закрыты

ТРД, скорость истечения реактивной струи в которых может быть как дозвуковой, так и сверхзвуковой на различных режимах работы двигателей, оборудуются регулируемыми соплами. Эти сопла состоят из продольных элементов, называемых створками, подвижных относительно друг друга и приводимых в движение специальным приводом, позволяющим по команде пилота или автоматической системы управления двигателем изменять геометрию сопла. При этом изменяются размеры критического (самого узкого) и выходного сечений сопла, что позволяет оптимизировать работу двигателя при полётах на разных скоростях и режимах работы двигателя.[1]

Область применения

ТРД наиболее активно развивались в качестве двигателей для всевозможных военных и коммерческих самолётов до 70-80-х годов XX века. В настоящее время ТРД потеряли значительную часть своей ниши в авиастроении, будучи вытесненными более экономичными двухконтурными ТРД (ТРДД).

Двухконтурный турбореактивный двигатель

Схема ТРДД с малой степенью двухконтурности. 1 — Вентилятор. 2 — Компрессор низкого давления. 3 — Компрессор высокого давления. 4 — Камера сгорания. 5 — Турбина высокого давления. 6 — Турбина низкого давления. 7 — Сопло. 8 — Вал ротора высокого давления. 9 — Вал ротора низкого давления.

На основе исследований, проводившихся с 1937, А. М. Люлька представил заявку на изобретение двухконтурного турбореактивного двигателя (авторское свидетельство вручили 22 апреля 1941 года). В основу двухконтурных ТРД (далее — ТРДД), в англоязычной литературе — Turbofan, положен принцип присоединения к ТРД дополнительной массы воздуха, проходящей через внешний контур двигателя, позволяющий получать двигатели с более высоким полетным КПД, по сравнению с обычными ТРД.

Пройдя через входное устройство, воздух попадает в компрессор низкого давления, именуемый вентилятором. После вентилятора воздух разделяется на 2 потока. Часть воздуха попадает во внешний контур и, минуя камеру сгорания, формирует реактивную струю в сопле. Другая часть воздуха проходит сквозь внутренний контур, полностью идентичный с ТРД, о котором говорилось выше, с той разницей, что последние ступени турбины в ТРДД являются приводом вентилятора.

Одним из важнейших параметров ТРДД, является степень двухконтурности, то есть отношение расхода воздуха через внешний контур к расходу воздуха через внутренний контур.

m=G_2/G_1, (2)

где m — степень двухконтурности,G_1 и G_2 — расход воздуха через внутренний и внешний контуры соответственно.

Принцип присоединения массы можно истолковать следующим образом.Согласно формуле полетного КПД ВРД

\eta_n=\frac{2} {1+\frac{c}{v}}, (3)

его повышение в ТРДД достигается за счёт уменьшения разницы между скоростью истечения рабочего тела из сопла c и скоростью полета v.Уменьшение тяги, которое, согласно формуле (1), вызовет уменьшение этой разницы между скоростями, компенсируется за счёт увеличения расхода воздуха через двигатель. Увеличение расхода воздуха через двигатель достигается увеличением площади фронтального сечения входного устройства двигателя (увеличением диаметра входа в двигатель), что ведет к увеличению его лобового сопротивления и массы. Иными словами, чем выше степень двухконтурности — тем большего диаметра будет двигатель при прочих равных условиях.

Первым, предложившим концепцию ТРДД в отечественном авиадвигателестроении был Люлька А. М.

Все ТРДД можно разбить на 2 группы: со смешением потоков за турбиной и без смешения.

В ТРДД со смешением потоков (ТРДДсм) потоки воздуха из внешнего и внутреннего контура попадают в единую камеру смешения. В камере смешения эти потоки смешиваются и покидают двигатель через единое сопло с единой температурой. ТРДДсм более эффективны, однако наличие камеры смешения приводит к увеличению габаритов и массы двигателя.

Например, длина ТРДД АИ-25, устанавливаемого на самолёте Як-40 — 2140 мм, а ТРДДсм АИ-25ТЛ, устанавливаемого на самолёте L-39 — 3358 мм.

ТРДД как и ТРД могут быть снабжены регулируемыми соплами и форсажными камерами. Как правило это ТРДДсм с малыми степенями двухконтурности для сверхзвуковых военных самолётов.

Управление вектором тяги (УВТ) / Отклонение вектора тяги (ОВТ)

Отклоняемые створки сопла с ОВТ. ТРДД Rolls-Royce Pegasus поворотные сопла которого позволяют осуществлять вертикальные взлет и посадку. Устанавливается на самолёте Harrier.

Специальные поворотные сопла, на некоторых ТРДД, позволяют отклонять истекающий из сопла поток рабочего тела относительно оси двигателя. ОВТ приводит к дополнительным потерям тяги двигателя за счёт выполнения дополнительной работы по повороту потока и усложняют управление самолётом. Но эти недостатки полностью компенсируются значительным повышением маневренности и сокращением разбега самолёта при взлете и пробега при посадке, до вертикальных взлета и посадки включительно. ОВТ используется исключительно в военной авиации.

ТРДД с высокой степенью двухконтурности / Турбовентиляторный двигатель

Порою в популярной литературе ТРДД с высокой степенью двухконтурности (выше 2) называют турбовентиляторными. В англоязычной литературе этот двигатель называется turbofan с добавлением уточнения high bypass (высокая двухконтурность), сокращённо — hbp. ТРДД с высокой степенью двухконтурности выполняются, как правило, без камеры смешения. По причине большого входного диаметра таких двигателей их сопло внешнего контура достаточно часто делают укороченным с целью снижения массы двигателя.

Область применения

Можно сказать, что с 1960-х и по сей день в самолётном авиадвигателестроении — эра ТРДД. ТРДД различных типов являются наиболее распространённым классом ВРД, используемых на самолётах, от высокоскоростных истребителей-перехватчиков с ТРДДФсм с малой степенью до гигантских коммерческих и военно-транспортных самолётов с ТРДД с высокой степенью двухконтурности.

Як-44 с винтовентиляторными двигателями Д-27

Винтовентиляторный двигатель

У винтовентиляторного двигателя поток холодного воздуха создаётся двумя соосными, вращающимися в противоположных направлениях, многолопастными саблевидными винтами, приводимыми в движение от турбины через редуктор. Степень двухконтурности таких двигателей достигает 90.

На сегодня известен лишь один серийный образец двигателя этого типа — Д-27 (ЗМКБ «Прогресс» им. академика А. Г. Ивченко, г. Запорожье, Украина.), использовавшийся на самолёте Як-44 с крейсерской скоростью полёта 670 км/ч, и на Ан-70 с крейсерской скоростью 750 км/ч.

Турбовинтовой двигатель (ТВД)

Турбовинтовой двигатель. Привод винта от вала турбины осуществляется через редуктор Устройство турбовинтового двигателя

Турбовинтовые или турбовальные двигатели (ТВД) относятся к ВРД непрямой реакции. Конструктивно ТВД схож с ТРД, в котором мощность, развиваемая последним каскадом турбины, передаётся на вал воздушного винта (обычно через редуктор). Этот двигатель не является, строго говоря, реактивным (реакция выхлопа турбины составляет не более 10 % его суммарной тяги), однако традиционно их относят к ВРД.

Турбовинтовые двигатели используются в транспортной и гражданской авиации при полётах с крейсерскими скоростями 400—800 км/ч.

Вариант этого двигателя с вертикальным выходным валом редуктора используется для привода винтов вертолётов, такие двигатели называют также турбовальными.

Примечания

  1. ↑ Теория и расчёт воздушно-реактивных двигателей. Учебник для вузов. Авторы: В. М. Акимов, В. И. Бакулев, Р. И. Курзинер, В. В. Поляков, В. А. Сосунов, С. М. Шляхтенко. Под редакцией С. М. Шляхтенко. 2-е издание, переработанное и дополненное. М.: Машиностроение, 1987
Question book-4.svg В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 17 ноября 2011.

biograf.academic.ru

Способ запуска турбореактивного двигателя самолета

 

Способ запуска турбореактивного двигателя самолета заключается в запуске стартера, подключении его вала к ротору двигателя и после набора ротором заданной частоты вращения отключении от него вала стартера. В аварийной ситуации при невозможности запуска двигателя в полете или при проверке работы систем самолета на земле вал стартера отключается от ротора двигателя и стартер переключается на работу в режиме вспомогательной силовой установки. В штатных условиях для запуска двигателя или при проверке работы систем самолета на земле в качестве стартера используют пороховой стартер. В экстремальных условиях для запуска двигателя и в аварийных ситуациях в качестве стартера параллельно с газотурбинным стартером используют пороховой стартер. В зоне негарантированного запуска газотурбинного стартера используют пороховой стартер. Изобретение позволяет произвести запуск двигателя практически в любых условиях на земле и на любой высоте в зоне возможных полетов самолета и дает возможность летчику в аварийной ситуации ориентировать самолет в зону возможного катапультирования. 1 ил.

Изобретение относится к области авиационной техники, в частности к способам запуска авиационных турбореактивных двигателей.

Известен способ запуска турбореактивного двигателя самолета, заключающийся в запуске стартера, подключении его вала к ротору двигателя и после набора ротором заданной частоты вращения отключении от него вала стартера, а в аварийной ситуации при невозможности запуска двигателя в полете или при проверке работы систем самолета на земле в отключении вала стартера от двигателя и переключении его на работу в режиме вспомогательной силовой установки, причем в штатных условиях для запуска двигателя или при проверке систем самолета на земле в качестве стартера используют газотурбинный стартер [1]. Недостатком известного способа является ограниченный диапазон высоты полета, на которой может быть произведен запуск двигателя в случае его заглохания. Известно, что с увеличением высоты полета мощность на выходе газотурбинного стартера существенно снижается. Так, например, на высоте полета свыше 7 километров мощность газотурбинного стартера недостаточна для подкрутки ротора двигателя при признаках его заглохания, и запуск двигателя не гарантирован. Вместе с тем, обеспечение возможности такого запуска особенно актуально для современных сверхманевренных самолетов. Раскрутка ротора двигателя газотурбинным стартером также затруднительна и при экстремальных условиях для запуска двигателя на земле (высокая температура окружающей среды, высокогорные условия и т.п.). Кроме того, известным способом не всегда обеспечивается привод исполнительных агрегатов самолета в аварийной ситуации, и тем самым летчику не дается возможность ориентировать самолет в зону возможного катапультирования. Предлагаемым изобретением решается задача обеспечения запуска двигателя на земле при любых условиях окружающей среды, в том числе и экстремальных, и в полете при признаках заглохания двигателя практически на любой высоте из области возможных полетов самолета и обеспечения аварийного режима работы исполнительных агрегатов самолета. Для решения вышеуказанной задачи в способе запуска турбореактивного двигателя самолета, заключающемся в запуске стартера, подключении его вала к ротору двигателя и после набора ротором заданной частоты вращения отключении от него вала стартера, а в аварийной ситуации при невозможности запуска двигателя в полете или при проверке работы систем самолета на земле в отключении вала стартера от ротора двигателя и переключении стартера на работу в режиме вспомогательной силовой установки, причем в штатных условиях для запуска двигателя или при проверке работы систем самолета на земле в качестве стартера используют газотурбинный стартер, в экстремальных условиях для запуска двигателя и аварийных ситуациях в качестве стартера параллельно с газотурбинным стартером используют пороховой стартер, а в зоне негарантированного запуска газотурбинного стартера используют пороховой стартер. Отличительные признаки предлагаемого способа заключаются в использовании для запуска двигателя в экстремальных условиях или в аварийных ситуациях параллельно с газотурбинным стартером порохового стартера, а в зоне негарантированного запуска газотурбинного стартера одного порохового стартера. Это позволяет произвести запуск двигателя практически в любых условиях на земле и на любой высоте зоны возможных полетов, а также дает возможность летчику в аварийной ситуации при невозможности запуска двигателя на протяжении некоторого времени (приблизительно 2 минуты) воздействовать на управляющие поверхности самолета и тем самым ориентировать самолет в зону возможного катапультирования. Предлагаемое изобретение поясняется представленной на чертеже схемой системы запуска двигателя самолета. Предлагаемый способ реализуется системой запуска турбореактивного двигателя самолета, которая содержит газотурбинный и пороховой (преимущественно многозарядный) стартеры 1 и 2, установленные параллельно друг другу. Оба стартера 1 и 2 соединены своими валами с узлами энергоснабжения систем самолета: с генератором 3 и плунжерным насосом 4. Стартер 1, генератор 3 и насос 4 обеспечивают энергоснабжение систем самолета на земле в испытательных целях, работая в режиме вспомогательной силовой установки. Для работы в режиме вспомогательной силовой установки вышеперечисленные агрегаты механически отсоединяются от вала двигателя 5 посредством одной управляемой муфты 6 или нескольких муфт. Оба стартера 1 и 2 соединены с валом двигателя через обгонные муфты (не показаны). Способ запуска турбореактивного двигателя самолета осуществляется следующим образом. Для обеспечения проверки систем самолета без использования наземных средств, а также для обеспечения комфортных условий в кабине летчика при крайних температурных условиях на боевом дежурстве включают режим вспомогательной силовой установки, для чего запускают газотурбинный стартер 1, крутящий момент от которого передается через обгонную муфту стартера 1 и набор шестеренчатых передач потребителям, при этом муфта 6 разомкнута. Газотурбинный стартер 1 выходит на установившийся режим и обеспечивает привод самолетных агрегатов и подачу воздуха на систему кондиционирования воздуха в течение заданного времени. Для запуска двигателя на земле газотурбинный стартер переводят в режим запуска. По достижении определенной частоты вращения вала двигателя от газотурбинного стартера стартер отключают и дальнейший привод самолетных агрегатов осуществляют от двигателя. При экстремальных условиях для запуска двигателя на земле (высокая температура окружающей среды, высокогорные условия) параллельно с запуском газотурбинного стартера запускают пороховой стартер, дополнительный крутящий момент от которого передается на ротор двигателя, таким образом улучшая условия запуска. Запуск двигателя в полете производится после его заглохания при включении зажигания и подаче топлива в диапазоне авторотации ротора двигателя и высоты полета, достаточных для запуска двигателя. При меньших оборотах авторотации, то есть при меньших приборных скоростях, до определенной высоты полета (до 7 км) для запуска двигателя используют подкрутку ротора двигателя газотурбинным стартером 1, который запускают по команде, выработанной в соответствии с приборной скоростью и признаками заглохания двигателя. При этом муфта 6 замкнута и крутящий момент от газотурбинного стартера 1 передается на вал двигателя 5. После запуска двигателя стартер 1 отключают. Для уменьшения времени запуска двигателя подкрутку его ротора в полете в зоне гарантированного запуска газотурбинного стартера производят параллельно газотурбинным и пороховым стартером. В области негарантированного запуска газотурбинного стартера (на высоте более 7 км) подкрутку ротора двигателя производят запуском порохового стартера. В ситуации, когда запуск двигателя в полете невозможен (заклинивание, пожар и т. д.), для обеспечения условий катапультирования летчика, а также увода самолета в безопасную зону падения размыкают муфту 6 и запускают длительно работающую (2-3 минуты) ступень порохового стартера 2, крутящий момент от которого через обгонную муфту и шестеренчатые передачи передается на валы генератора 3 и насоса 4, обеспечивающих частичное питание гидравлических и электрических систем самолета на время 2-3 минуты. Если аварийная ситуация возникла в зоне возможной работы газотурбинного стартера, то параллельно с пороховым стартером 2 может быть включен газотурбинный стартер 1. Предложенный способ позволяет расширить зону запуска двигателя и обеспечивает аварийный режим работы исполнительных агрегатов самолета. Источник информации Патент US 4461143 А, МПК F 02 С 7/26, 1984 г.

Формула изобретения

Способ запуска турбореактивного двигателя самолета, заключающийся в запуске стартера, подключении его вала к ротору двигателя и после набора ротором заданной частоты вращения отключении от него вала стартера, а в аварийной ситуации при невозможности запуска двигателя в полете или при проверке работы систем самолета на земле в отключении вала стартера от ротора двигателя и переключении стартера на работу в режиме вспомогательной силовой установки, причем в штатных условиях для запуска двигателя или при проверке работы систем самолета на земле в качестве стартера используют газотурбинный стартер, отличающийся тем, что в экстремальных условиях для запуска двигателя и в аварийных ситуациях в качестве стартера параллельно с газотурбинным стартером используют пороховой стартер, а в зоне негарантированного запуска газотурбинного стартера используют пороховой стартер.

РИСУНКИ

Рисунок 1

www.findpatent.ru

ТУРБОРЕАКТИВНЫЙ САМОЛЕТ

 ТУРБОРЕАКТИВНЫЙ САМОЛЕТ

Турбореактивная авиация зародилась в годы Второй мировой войны, когда был достигнут предел совершенства прежних винтомоторных самолетов, оснащенных двигателями внутреннего сгорания. С каждым годом гонка за скоростью становилась все труднее, поскольку даже незначительный ее прирост требовал сотен добавочных лошадиных сил мощности двигателя и автоматически приводил к утяжелению самолета. В среднем, увеличение мощности на 1 л.с. вело за собой увеличение массы двигательной установки (самого двигателя, винта и вспомогательных средств) в среднем на 1 кг. Простые расчеты показывали, что создать винтомоторный самолет-истребитель со скоростью порядка 1000 км/ч практически невозможно. Необходимая для этого мощность двигателя в 12000 лошадиных сил могла быть достигнута только при весе мотора порядка 6000 кг. В перспективе выходило, что дальнейший рост скорости приведет к вырождению боевых самолетов, превратит их в аппараты, способные носить лишь самих себя. Для оружия, радиооборудования, брони и запаса горючего на борту уже не оставалось места. Но даже такой ценой невозможно было получить большого прироста скорости. Более тяжелый мотор увеличивал общий вес машины, что заставляло увеличивать площадь крыла, это вело к возрастанию их аэродинамического сопротивления, для преодоления которого необходимо было повысить мощность двигателя. Таким образом, круг замыкался и скорость порядка 850 км/ч оказывалась предельно возможной для самолета с поршневым двигателем. Выход из этой порочной ситуации мог быть только один — требовалось создать принципиально новую конструкцию авиационного двигателя, что и было сделано, когда на смену поршневым самолетам пришли турбореактивные.

Принцип действия простого реактивного двигателя можно понять, если рассмотреть работу пожарного брандспойта. Вода под давлением подается по шлангу к брандспойту и истекает из него. Внутреннее сечение наконечника брандспойта суживается к концу, в связи с чем струя вытекающей воды имеет большую скорость, чем в шланге. Сила обратного давления (реакции) при этом бывает настолько велика, что пожарник зачастую должен напрягать все силы для того, чтобы удержать брандспойт в требуемом направлении. Этот же принцип можно применить в авиационном двигателе. Самым простым реактивным двигателем является прямоточный.

Представим себе трубу с открытыми концами, установленную на движущемся самолете. Передняя часть трубы, в которую поступает воздух вследствие движения самолета, имеет расширяющееся внутреннее поперечное сечение. Из-за расширения трубы скорость поступающего в нее воздуха снижается, а давление соответственно увеличивается. Допустим, что в расширяющейся части в поток воздуха впрыскивается и сжигается горючее. Эту часть трубы можно назвать камерой сгорания. Сильно нагретые газы стремительно расширяются и вырываются через суживающееся реактивное сопло со скоростью, многократно превосходящей ту, которую воздушный поток имел на входе. За счет этого увеличения скорости создается реактивная сила тяги, которая толкает самолет вперед. Нетрудно видеть, что такой двигатель может работать лишь в том случае, если он движется в воздухе со значительной скоростью, но он не может приводиться в действие тогда, когда находится без движения. Самолет с таким двигателем должен или запускаться с другого самолета или разгоняться с помощью специального стартового двигателя. Этот недостаток преодолен в более сложном турбореактивном двигателе.

Наиболее ответственным элементом этого двигателя является газовая турбина (6), которая приводит во вращение воздушный компрессор (2), сидящий на одном с ней валу. Воздух, поступающий в двигатель, сначала сжимается во входном устройстве — диффузоре (1), затем в осевом компрессоре (2) и после этого попадает в камеру сгорания (3). Топливом обычно служит керосин, который вбрызгивается в камеру сгорания через форсунку. Из камеры продукты сгорания, расширяясь, поступают прежде всего на лопатки газовой турбины, приводя ее во вращение, а затем в сопло (7), в котором разгоняются до очень больших скоростей. Газовая турбина использует лишь небольшую часть энергии воздушно-газовой струи. Остальная часть газов идет на создание реактивной силы тяги, которая возникает за счет истекания с большой скоростью струи продуктов сгорания из сопла. Тяга турбореактивного двигателя может форсироваться, то есть увеличиваться на короткий период времени различными способами. Например, это можно делать с помощью так называемого дожигания (при этом в поток газов позади турбины дополнительно впрыскивается топливо, которое сгорает за счет кислорода, не использованного в камерах сгорания). Дожиганием можно за короткий срок дополнительно увеличить тягу двигателя на 25-30% при малых скоростях и до 70% при больших скоростях.

Газотурбинные двигатели начиная с 1940 года, произвели настоящую революцию в авиационной технике, но первые разработки по их созданию появились десятью годами прежде. Отцом турбореактивного двигателя по праву считается английский изобретатель Френк Уиттл. Еще в 1928 году, будучи слушателем в авиационной школе в Крэнуэлле, Уиттл предложил первый проект реактивного двигателя, оснащенного газовой турбиной. В 1930 году он получил на него патент. Государство в то время не заинтересовалось его разработками. Но Уиттл получил помощь от некоторых частных фирм, и в 1937 году по его проекту фирма «Бритиш-Томсон-Хаустон» построила первый в истории турбореактивный двигатель, получивший обозначение "U". Только после этого министерство авиации обратило внимание на изобретение Уиттла. Для дальнейшего совершенствования двигателей его конструкции была создана фирма «Пауэр», имевшая поддержку от государства.

Тогда же идеи Уиттла оплодотворили конструкторскую мысль Германии. В 1936 году немецкий изобретатель Охайн, в то время студент Геттингенского университета, разработал и запатентовал свой турбореактивный двигатель. Его конструкция почти ничем не отличалась от конструкции Уиттла. В 1938 году фирма «Хейнкель», принявшая Охайна на работу, разработала под его руководством турбореактивный двигатель HeS-3B, который был установлен на самолете He-178. 27 августа 1939 года этот самолет совершил первый успешный полет.

Конструкция He-178 во многом предвосхищала устройство будущих реактивных самолетов. Воздухозаборник располагался в носовой части фюзеляжа. Воздух, разветвляясь, обходил кабину летчика и попадал прямым потоком в двигатель. Горячие газы истекали через сопло в хвостовой части. Крылья у этого самолета были еще деревянные, но фюзеляж — из дюралюминия. Двигатель, установленный позади кабины летчика, работал на бензине и развивал тягу 500 кг. Максимальная скорость самолета достигала 700 км/ч. В начале 1941 года Охайн разработал более совершенный двигатель HeS-8 с тягой 600 кг. Два таких двигателя были установлены на следующем самолете He-280V. Испытания его начались в апреле того же года и показали хороший результат — самолет развивал скорость до 925 км/ч. Однако серийное производство этого истребителя так и не началось (всего было изготовлено 8 штук) из-за того, что двигатель все-таки оказался ненадежным.

Тем временем «Бритиш-Томсон-Хаустон» выпустила двигатель W1.X, специально спроектированный под первый английский турбореактивный самолет «Глостер G40», который совершил свой первый полет в мае 1941 года (на самолете был установлен затем усовершенствованный двигатель Уиттла W.1). Английскому первенцу было далеко до немецкого. Максимальная скорость его равнялась 480 км/ч. В 1943 году был построен второй «Глостер G40» с более мощным двигателем, развивавший скорость до 500 км/ч.

По своей конструкции «Глостер» удивительно напоминал немецкий «Хейнкель». G40 имел цельнометаллическую конструкцию с воздухозаборником в носовой части фюзеляжа. Подводящий воздуховод был разделен и огибал с обеих сторон кабину летчика. Истечение газов происходило через сопло в хвосте фюзеляжа. Хотя параметры G40 не только не превосходили те, что имели в то время скоростные винтомоторные самолеты, но и заметно уступали им, перспективы применения реактивных двигателей оказались настолько многообещающими, что английское министерство авиации решило приступить к серийному выпуску турбореактивных истребителей-перехватчиков. Фирма «Глостер» получила заказ на разработку такого самолета. В последующие годы сразу несколько английских фирм начали производить различные модификации турбореактивного двигателя Уиттла. Фирма «Ровер», взяв за основу двигатель W.1, разработала двигатели W2B/23 и W2B/26. Затем эти двигатели были куплены фирмой «Роллс-Ройс», которая на их основе создала свои модели — «Уэллэнд» и «Дервент».

Первым в истории серийным турбореактивным самолетом стал, впрочем, не английский «Глостер», а немецкий «Мессершмитт» Ме-262. Всего было изготовлено около 1300 таких самолетов различных модификаций, оснащенных двигателем фирмы «Юнкерс» «Юмо-004B». Первый самолет этой серии был испытан в 1942 году. Он имел два двигателя с тягой 900 кг и развивал скорость 845 км/ч.

Английский серийный самолет «Глостер G41 Метеор» появился в 1943 году. Оснащенный двумя двигателями «Дервент» с тягой каждого по 900 кг, «Метеор» развивал скорость до 760 км/ч и имел высоту полета до 9000 м. В дальнейшем на самолеты начали устанавливать более мощные «Дервенты» с тягой около 1600 кг, что позволило увеличить скорость до 935 км/ч. Этот самолет отлично зарекомендовал себя, поэтому производство различных модификаций G41 продолжалось вплоть до конца 40-х годов.

США в развитии реактивной авиации поначалу сильно отставали от европейских стран. Вплоть до Второй мировой войны здесь вообще не было предпринято никаких попыток создать реактивный самолет. Только в 1941 году, когда из Англии были получены образцы и чертежи двигателей Уиттла, эти работы развернулись полным ходом. Фирма «Дженерал Электрик», взяв за основу модель Уиттла, разработала турбореактивный двигатель I-A, который был установлен на первом американском реактивном самолете P-59A «Эркомет». Американский первенец впервые поднялся в воздух в октябре 1942 года. Он имел два двигателя, которые размещались под крыльями вплотную к фюзеляжу. Это была еще несовершенная конструкция. По свидетельству американских летчиков, испытывавших самолет, P-59 был хорош в управлении, но летные данные его оставались неважными. Двигатель оказался слишком маломощным, так что это был скорее планер, чем настоящий боевой самолет. Всего было построено 33 таких машины. Их максимальная скорость составляла 660 км/ч, а высота полета до 14000 м.

Первым серийным турбореактивным истребителем в США стал «Локхид F-80 Шутинг Стар» с двигателем фирмы «Дженерал Электрик» I-40 (модификация I-A). До конца 40-х годов было выпущено около 2500 этих истребителей различных моделей. Скорость их в среднем составляла около 900 км/ч. Однако на одной из модификаций этого самолета XF-80B 19 июня 1947 года впервые в истории была достигнута скорость 1000 км/ч.

В конце войны реактивные самолеты по многим параметрам еще уступали отработанным моделям винтомоторных самолетов и имели множество своих специфических недостатков. Вообще, при строительстве первых турбореактивных самолетов конструкторы во всех странах столкнулись со значительными трудностями. То и дело прогорали камеры сгорания, ломались лопатки турбин и компрессоров и, отделившись от ротора, превращались в снаряды, сокрушавшие корпус двигателя, фюзеляж и крыло. Но, несмотря на это, реактивные самолеты имели перед винтомоторными огромное преимущество — приращение скорости с увеличением мощности турбореактивного двигателя и его веса происходило гораздо стремительнее, чем у поршневого. Это решило дальнейшую судьбу скоростной авиации — она повсеместно становится реактивной. Увеличение скорости вскоре привело к полному изменению внешнего вида самолета. На околозвуковых скоростях старая форма и профиль крыла оказались неспособными нести самолет — он начинал «клевать» носом и входил в неуправляемое пике. Результаты аэродинамических испытаний и анализ летных происшествий постепенно привели конструкторов к новому типу крыла — тонкому, стреловидному.

Впервые такая форма крыльев появилась на советских истребителях. Несмотря на то что СССР позже западных государств приступил к созданию турбореактивных самолетов, советские конструкторы очень быстро сумели создать высококлассные боевые машины. Первым советским реактивным истребителем, запущенным в производство, был Як-15. Он появился в конце 1945 года и представлял собой переоборудованный Як-3 (известный во время войны истребитель с поршневым мотором), на который был установлен турбореактивный двигатель РД-10 — копия трофейного немецкого «Юмо-004B» с тягой 900 кг. Он развивал скорость около 830 км/ч.

В 1946 году на вооружение Советской армии поступил МиГ-9, снабженный двумя турбореактивными двигателями «Юмо-004B» (официальное обозначение РД-20), а в 1947 году появился МиГ-15 — первый в истории боевой реактивный самолет со стреловидным крылом, оснащенный двигателем РД-45 (так обозначался двигатель «Нин» фирмы «Роллс-Ройс», купленный по лицензии и модернизированный советскими авиаконструкторами) с тягой 2200 кг. МиГ-15 поразительно отличался от своих предшественников и удивлял боевых летчиков необыкновенными, скошенными назад крыльями, огромным килем, увенчанным таким же стреловидным стабилизатором, и сигарообразным фюзеляжем. Самолет имел и другие новинки: катапультирующееся кресло и гидравлические усилители рулей. Он был вооружен скорострельной пушкой и двумя пулеметами (в более поздних модификациях — тремя пушками). Обладая скоростью 1100 км/ч и потолком в 15000 м, этот истребитель в течение нескольких лет оставался лучшим в мире боевым самолетом и вызвал к себе огромный интерес. (Позже конструкция МиГ-15 оказала значительное влияние на проектирование истребителей в западных странах.) В короткое время МиГ-15 стал самым распространенным истребителем в СССР, а также был принят на вооружение в армиях его союзников. Этот самолет хорошо зарекомендовал себя и во время Корейской войны. По многим параметрам он превосходил американские «Сейбры».

С появлением МиГ-15 закончилось детство турбореактивной авиации и начался новый этап в ее истории. К этому времени реактивные самолеты освоили все дозвуковые скорости и вплотную приблизились к звуковому барьеру.

Пожалуйста оцените материал:

www.dmitrysmor.ru


Смотрите также