ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

4. Судовой дизель как объект технической эксплуатации. Техническая эксплуатация двигателей


Техническая эксплуатация и ремонт двигателей постоянного тока

Содержание

Введение

1. Принцип действия и область применения

1.1 Общие сведения

1.2 Реакция якоря машины постоянного тока

1.3 Момент двигателя постоянного тока

1.4 Регулирование частоты

2. Допустимые режимы работы двигателей постоянного тока

2.1 Допустимые режимы при изменении напряжения

2.2 Допустимые режимы при изменении температуры входящего воздуха

2.3 Допустимые температуры подшипников

3. Обслуживание двигателей постоянного тока, надзор и уход за ними

3.1 Надзор за нагрузкой и подшипниками двигателей

3.2 Надзор и уход за охлаждением двигателя

4. Ремонт двигателя постоянного тока

4.1 Организация ремонта

4.2 Текущий ремонт двигателя

4.3 Капитальный ремонт двигателей

5. Межотраслевые правила по технике безопасности

6. Правила безопасности при эксплуатации электроустановок

Заключение

Список литературы

Введение

Двигатели постоянного тока используются в прецизионных приводах, требующих плавного регулирования частоты вращения в широком диапазоне. Свойства двигателя постоянного тока, так же как и генераторов, определяются способом возбуждения и схемой включения обмоток возбуждения. По способу возбуждения можно разделить двигатели постоянного тока на двигатели с электромагнитным и магнитоэлектрическим возбуждением.

Двигатели с электромагнитным возбуждением подразделяются на двигатели с параллельным, последовательным, смешанным и независимым возбуждением. Электрические машины постоянного тока обратимы, то есть, возможна их работа в качестве двигателей или генераторов. Например, если в системе управления с использованием генератора в обратной связи отсоединить генератор от первичного двигателя и подвести напряжение к обмоткам якоря и возбуждения, то якорь начнет вращаться и машина будет работать как двигатель постоянного тока, преобразуя электрическую энергию в механическую.

Двигатели независимого возбуждения наиболее полно удовлетворяют основным требованиям к исполнительным двигателям самоторможение двигателя при снятии сигнала управления, широкий диапазон регулирования частоты вращения, линейность механических и регулировочных характеристик, устойчивость работы во всем диапазоне вращения, малая мощность управления, высокое быстродействие, малые габариты и масса. Однако двигатели постоянного тока имеют существенные недостатки, накладывающие ограничение на область их применения малый срок службы щеточного устройства из-за наличия скользящего контакта между щетками и коллектором, скользящий контакт является источником радиопомех.

1. Принцип действия и область применения

1.1 Общие сведения

Двигатель постоянного тока — электрическая машина, машина постоянного тока, преобразующая электрическую энергию постоянного тока в механическую энергию.

Двигатели постоянного тока находят широкое применение в промышленных, транспортных и других установках, где требуется широкое и плавное регулирование скорости вращения (прокатные станы, мощные металлорежущие станки, электрическая тяга на транспорте и т. д.).

В разных по мощности двигателях применяется различная обмотка возбуждения:

1) Простая волновая обмотка применяется для машин малой и средней мощности (до 500 кВт) при напряжении 110 В и выше.

2) Простая петлевая обмотка применяется для двухполюсных машин малой мощности (до 1 кВт) и машин свыше 500 кВт.

При вращении обмотки якоря в неподвижном магнитном поле, в ней индуктируется переменная ЭДС, изменяющаяся с частотой:

При вращении якоря между любыми двумя точками обмотки якоря действует переменная ЭДС. Однако между неподвижными контактными щетками действует постоянная по величине и направлению ЭДС E, равная сумме мгновенных значений ЭДС e1 , e2 , e3 и т.д. (рисунок 1), индуктированных во всех последовательно соединенных витках якоря, расположенных между этими щетками. [5]

Рисунок 1.1 - векторная диаграмма, индуктируемых в якорной обмотке ЭДС (e1 , e2 , e3 - мгновенные значения ЭДС, AB – сумма мгновенных значений ЭДС)

Зависимость ЭДС Е от магнитного потока машины и скорости вращения якоря имеет вид:

При подключении обмотки якоря к сети с напряжением U, ЭДС Е будет приблизительно равна напряжению U, и скорость вращения ротора:

Следовательно, благодаря наличию коллектора при работе машины постоянного тока в двигательном режиме скорость вращения ротора не связана жестко с частотой сети, как в асинхронных и синхронных машинах, а может изменяться в широких пределах путем изменения напряжения U и магнитного потока Ф. Ось симметрии, разделяющая полюса машины постоянного тока, называется ее геометрической нейтралью.

При разомкнутой внешней цепи ток в обмотке якоря не будет протекать, т. к. ЭДС, индуктированные в двух частях обмотки якоря, расположенных по обе стороны геометрической нейтрали, направлены встречно и взаимно компенсируются. Для того чтобы подать от обмотки якоря во внешнюю цепь максимальное напряжение, эту цепь нужно присоединить к двум точкам обмотки якоря, между которыми действует наибольшая разность потенциалов, где и следует устанавливать щетки. При вращении якоря точки смещаются с геометрической нейтрали, но к щеткам будут подходить все новые и новые точки обмотки, между которыми действует ЭДС Е, поэтому ЭДС во внешней цепи будет неизменна по величине и направлению. Для уменьшения пульсаций ЭДС при переходе щеток с одной коллекторной пластины на другую в каждую параллельную ветвь обмотки якоря обычно включается не менее 16 активных проводников.

На якорь, по обмотке которого протекает ток I, действует электромагнитный момент:

При работе машины в двигательном режиме электромагнитный момент является вращающим, а в генераторном режиме - тормозным.[1]

1.2 Реакция якоря машины постоянного тока

При холостом ходе магнитный поток в машине создается только НС Fв обмотки возбуждения. В этом случае магнитный поток Фв при неизменном воздушном зазоре между якорем и сердечником главного полюса (что характерно для многих машин постоянного тока) распределяется симметрично относительно продольной оси машин.

При работе машины под нагрузкой по обмотке якоря проходит ток, и НС якоря создает свое магнитное поле. Воздействие поля якоря на магнитное поле машины называют реакцией якоря. Магнитный поток Фaq , созданный НС якоря Faq в двухполюсной машине при установке щеток на нейтрали направлен по поперечной оси машины, поэтому магнитное поле якоря называют поперечным. В результате действия потока Фaq симметричное распределение магнитного поля машины искажается, и результирующий поток Фрез оказывается сосредоточенным в основном у краев главных полюсов. При этом физическая нейтраль б-б (линия, соединяющая точки окружности якоря, в которых индукция равна нулю) смещается относительно геометрической нейтрали а-а на некоторый угол β (рисунок 2). В генераторах физическая нейтраль смещается по направлению вращения якоря; в двигателях - против направления вращения.

Рисунок 1.2 - Магнитное поле машины постоянного тока: а) от обмотки возбуждения; б) от обмотки якоря; в) результирующее (Фв - магнитный поток при х.х.; Фaq - магнитный поток, созданный НС якоря;Фрез - результирующий поток; а-а - геометрическая нейтраль; б-б - физическая нейтраль; β – угол смещения нейтрали б-б)

Вследствие сосредоточенного характера обмотки возбуждения, кривая распределения создаваемой ею НС

имеет форму прямоугольника, а кривая индукции- форму криволинейной трапеции (рисунок 3).

Рисунок 1.3 - Распределение индукции в воздушном зазоре машины постоянного тока: а) от обмотки возбуждения; б) от обмотки якоря; в) результирующее (Bв - кривая индукции от обмотки возбуждения; Fв - кривая распределения НС; Faq - НС якоря; Baq – кривая магнитной индукции в воздушном зазоре;

- величина воздушного зазора в точке x; Bрез - кривая результирующей индукции)

На основании закона полного тока НС якоря, действующая в воздушном зазоре на расстоянии x от оси главных полюсов определится выражением:

Следовательно, НС якоря Faq изменяется линейно вдоль его окружности; под серединой главного полюса она равна нулю, а в точках, где установлены щетки, имеет максимальное значение. Магнитная индукция в воздушном зазоре при ненасыщенной магнитной системе:

где

- величина воздушного зазора в точке x.

mirznanii.com

Организация эксплуатации электродвигателей | Бесплатные дипломные работы на DIPLOMKA.NET

Техническая эксплуатация

Осмотры электродвигателей, находящихся в эксплуатации, систем их управления и защиты проводят по графику, утвержденному главным энергетиком предприятия. Осмотр и проверку целостности заземления проводят ежедневно (при наличии дежурного).

При осмотре электродвигателей напряжением до 10 кВ (синхронных и асинхронных) контролируют температуру подшипников, обмоток, корпусов, нагрузку, вибрацию. Проверяют чистоту машины, помещения, охлаждающей среды, работу подшипников и щеточного аппарата, исправность ограждений.

Измерение температуры подшипников производят методом термометра. У подшипников качения измеряют температуру на внешнем кольце в момент останова машины, у подшипников скольжения — температуру вкладыша или масла, у подшипников скольжения с принудительной смазкой — температуру вкладыша или выходящего масла.

Если электрическая машина имеет со стороны привода общий с присоединенным механизмом подшипник, конструктивно принадлежащий этому механизму, то измерение температуры этого подшипника не входит в объем испытания электрической машины.

Предельная допустимая температура подшипников не должна превышать следующих значений: для подшипников скольжения 80 °С (температура масла при этом не должна быть более 65 °С), для подшипников качения 100 °С. Более высокая температура допускается, если применены специальные подшипники качения или специальные сорта масел при соответствующих вкладышах для подшипников скольжения.

При текущем ремонте электрических машин выполняют следующие работы: - проверку степени нагрева корпуса и подшипников, равномерности воздушного зазора между статором и ротором, отсутствия ненормальных шумов в работе электродвигателя; - чистку и обдувку электродвигателя без его разборки, подтяжку контактных соединений у клеммных щитков и присоединение проводов, зачистку колец и коллекторов, регулирование и крепление траверсы щеткодержателя, восстановление изоляции И выводных концов, смену электрощеток; - смену и долив масла в подшипники.

При необходимости производят: - полную разборку электродвигателя с устранением повреждений отдельных мест обмотки без ее замены; - промывку узлов и деталей электродвигателя; - замену неисправных пазовых клиньев и изоляционных втулок, мойку, пропитку и сушку обмотки электродвигателя, покрытие обмотки покровным лаком, проверку крепления вентилятора и его ремонт, проточку шеек вала ротора и ремонт беличьей клетки (в случае необходимости), смену фланцевых прокладок; - замену изношенных подшипников качения; - промывку подшипников скольжения, их перезаливку, заварку и проточку крышек электродвигателя, частичную пропайку петушков; проточку и шлифование колец; ремонт щеточного механизма и коллектора; проточку коллектора и его продороживание; Сборку и проверку работы электродвигателя на холостом ходу и под нагрузкой.

В процессе обслуживания периодически проверяют сопротивление изоляции подшипников и двигателя. Для обмоток статора сопротивление изоляции должно быть не менее 10 МОм, для обмоток ротора—1,5 МОм, для подшипников — 0,5 МОм.

Если уровни изоляции не соответствуют указанным, обмотки сушат, а у подшипников проверяют и при необходимости заменяют изоляцию. Снижение электрической прочности объясняется способностью хлопчатобумажных и волокнистых материалов изоляции увлажняться.

О степени увлажнения изоляции машин судят по значениям сопротивления изоляции относительно корпуса и между обмотками и по коэффициенту абсорбции. Значение коэффициента абсорбции должно быть не ниже 1,3 при использовании для измерения мегаомметра на 2500 В.

Испытания повышенным напряжением проводят в течение 1 мин напряжением 0,8 (2UH0M + 3) В. Если сопротивление изоляции обмоток ниже нормы, то обмотки очищают от пыли и грязи, протирают бензином, холодным четыреххлористым углеродом и после просушки покрывают изоляцию слоем лака. Электродвигатель сушат обычно в неподвижном состоянии одним из следующих способов: горячим воздухом от воздуходувки, токами короткого замыкания или индукционными токами в стали статора.

Сушку изоляции проводят при температуре, близкой к максимально допустимой — 80—85 °С.

При сушке двигателя периодически измеряют сопротивление изоляции обмоток и определяют коэффициент абсорбции для каждой обмотки. Полученные данные заносят в журнал сушки электродвигателя. Перед измерением сопротивления изоляции обмотку разряжают на землю не менее 2 мин, если незадолго до этого производилось измерение изоляции или испытание повышенным напряжением. Ввиду отсутствия нормальной вентиляции при сушке током осуществляют повышенный контроль за нагревом двигателя, если при достижении наивысшей допустимой температуры нельзя уменьшить напряжение на зажимах статора, нужно периодически отключать напряжение, требуемая температура сушки будет обеспечиваться перерывами в подаче тока в статор.

Сушку двигателя заканчивают, если коэффициент абсорбции и сопротивление изоляции остаются неизменными в течение 3 — 5 ч при постоянной температуре. Обычно сушка двигателя, например АЗ-4500-1500, продолжается от 2 до 4 суток в зависимости от состояния изоляции.

При температуре 85 °С в начальный период сушки сопротивление изоляции обмоток электродвигателя постепенно понижается, а затем через 20—30 ч сопротивление изоляции начинает возрастать, температурная кривая повышается и к концу сушки сопротивление изоляции стабилизируется на значениях 250 — 300 МОм. После прекращения сушки и охлаждения обмоток двигателя сопротивление изоляции несколько увеличится.

Сопротивления изоляции обмоток электрических машин после сушки должны быть не ниже: - статоров машин переменного тока с рабочим напряжением выше 1000 В — 1 МОм на 1 кВ рабочего напряжения; до 1000 В —0,5 МОм на 1 кВ; - якоря машин постоянного тока напряжением до 750 В — 1 МОм на 1 кВ. - роторов асинхронных и синхронных электродвигателей, включая цепь возбуждения, — 1 МОм на 1 кВ, но не менее 0,2— 0,5 МОм; - электродвигателей напряжением 3000 В и более: статоров — 1 МОм на 1 кВ, роторов — 0,2 МОм на 1 кВ

Температура обмотки статора не должна превышать на 75 °С, а обмотки ротора на 85 °С температуру охлаждающего воздуха. При профилактических осмотрах (не реже одного раза в 3 месяца) снимают щиты и производят тщательную очистку двигателя, прочищают лобовые части статорной и роторной обмоток, продувают чистым сжатым воздухом, выверяют воздушный зазор с обеих сторон. Во время работы наблюдают за состоянием смазки подшипников. Смазочные кольца не должны иметь как медленного, так и быстрого хода; масло из подшипников не должно попадать на обмотки. Для охлаждения двигателя используют воздух с температурой не выше 35 °С при относительной влажности не выше 75%, не содержащий пыли и взрывоопасных примесей. Если окружающая температура низка, то при длительных остановках двигателя нужно его прогревать током или другим способом, так чтобы температура обмоток была не ниже + 5 °С.

В случаях, когда температура окружающего воздуха превышает 35 °С, нужно снизить нагрузку двигателя так, чтобы нагрев его отдельных частей не превышал допустимых заводских значений. При нагреве обмотки или железа двигателя выше норм следует остановить двигатель и проверить вентиляционную систему. Особое внимание обращают на чистоту вентиляционных каналов статора и ротора, исправность вентиляционных крыльев.

Перегрев двигателя сверх допустимых температур в течение длительного времени резко сокращает срок службы изоляции обмоток и может привести к ее повреждению и аварии. Двигатель может нагреваться и от перегрузки током при неисправности амперметра. Поэтому, если во время осмотра обнаружено такое нарушение в работе, следует проверить контрольным амперметром ток двигателя и в случае его превышения по сравнению с номинальным снизить нагрузку. Меры по снижению температуры электродвигателя принимают в зависимости от причин, вызывающих перегрев.

Тепловой контроль за нагревом отдельных элементов электродвигателя осуществляют с помощью термометров сопротивления, включенных на логометр, и частично ртутными термометрами (рисунок 2).

Если цикл охлаждения замкнут, то температура 40 °С входящего в электродвигатель воздуха и 35 °С в возбудитель считаются нормальными.

Рисунок 2 – Схема теплового контроля электродвигателя СТМ-4000-2: А — электродвигатель, Б — возбудитель, В — воздухоочиститель, 1, 3, 14, 17 — места измерения температуры холодного воздуха, 2, 15, 16—горячего воздуха, 4, 11 — подшипники двигателя, 5, 7,9 — температура «меди», 6, 8, 10 — температура «стали», 12, 13 — подшипники возбудителя, 18 — холодная вода, 19 — горячая вода

diplomka.net

4. Судовой дизель как объект технической эксплуатации. Техническая эксплуатация и надёжность судового дизельного двигателя.

Похожие главы из других работ:

Анализ совместной работы судового двигателя с регулятором частоты вращения вала

1. Судовой двигатель как объект управления и регулирования

...

Анализ совместной работы судового двигателя с регулятором частоты вращения вала

2.2.1 Объект регулирования

Уравнение динамики главного двигателя как объекта регулирования частоты вращения вала, согласно принятых на рисунках обозначений для фазовых переменных, представим в виде...

Водоналивной транспорт "Судак" (U756)

8. Особенности технической эксплуатации вспомогательных механизмов

Пуск холодильной установки после технического осмотра или длительной остановки производится только с разрешения рефрижераторного механика или механика, ответственного за холодильную установку...

Грузовой тепловоз мощностью 3000 кВт. Дизель-генератор

2.3 Дизель

Дизельная тяга остается доминирующей на магистральных железных дорогах многих стран, так как целесообразнее всего сжигать ископаемое топливо в дизеле...

Мехатронная система обеспечения заданной скорости электровоза на различных участках пути

2 Объект модернизации

...

Организация технической эксплуатации перегрузочных машин в порту

3.1 Организация технической эксплуатации перегрузочных машин в порту

Техническая эксплуатация перегрузочных машин в морских портах ведется на основе "Правил технической эксплуатации перегрузочных, машин морских портов" и "Положения о планово-предупредительном ремонте перегрузочных машин морских портов"...

Особенности летно-технической эксплуатации экипажем противообледенительной системы ВС Ил-76ТД

1. Анализ технической эксплуатации ПОС ВС Ил-76ТД

...

Проект реконструкции производственной базы "Костанайавтотранс"

2.2 Цели технической эксплуатации автомобильного транспорта

автобус ремонт кузов двигатель В качестве подсистемы автомобильного транспорта техническая эксплуатация автомобиля должна, во-первых, способствовать реализации целей автомобильного транспорта, во-вторых...

Проектирование и техническая эксплуатация судового вспомогательного энергетического оборудования

7. Рекомендации по технической эксплуатации насоса

Перед пуском центробежного насоса его внутренняя полость и всасывающий трубопровод должен быть залит жидкостью. Залить всасывающий трубопровод можно с помощью напорного трубопровода или отсасывания воздуха...

Техническая диагностика магистрального трубопровода

1. Объект диагностирования

Магистральным газопроводом (МГ) называется трубопровод, предназначенный для транспортировки газа, прошедшего подготовку из района добычи в районы его потребления...

Техническая эксплуатация авиадвигателей в степени простых аппаратов

Глава 1. Летательный авиадвигатель как объект технической эксплуатации

...

Техническое обслуживание сельскохозяйственных машин

1.2 Организационно-экономические вопросы производственной и технической эксплуатации МТП

ОАО "Хальч" имеет свой МТП. Для энергетических средств заблаговременно закупаются ТСМ. Рабочий день начинается в 8 часов утра. Все необходимые условия для посева создаются заранее, а сами операции посева выполняются своевременно и в срок...

Экспертиза технического состояния транспортного средства Toyota Avensis

2. Объект независимой технической экспертизы

...

Эффективность системы технической эксплуатации судна

1. Повышение эффективности технической эксплуатации флота

...

Эффективность системы технической эксплуатации судна

1.1 Основные проблемы технической эксплуатации

Функционирование ТЭ как производственно-технической системы связано с затратами живого и овеществленного труда, материальных ресурсов, преобразованием энергии, заключенной в топливе, для обеспечения движения судна с заданной скоростью...

tran.bobrodobro.ru