Шаговый электропривод – это исполнительное электромеханическое устройство, предназначенное для осуществления мерного перемещения исполнительного органа какого-либо механизма. В отдельных случаях с помощью шагового привода осуществляют регулирование скорости вращения механизма. Электрический шаговый привод – комплектное устройство, состоящее из шагового двигателя и драйвера шагового привода. Драйвер шагового привода, как правило, является связующим элементом между обмотками шагового двигателя, питающей сетью и контроллером верхнего уровня, который осуществляет управление приводом.
По сравнению с сервоприводами с обратной связью (с энкодерами на вале двигателя) шаговый привод решает ту же задачу позиционирования, однако он более дешевый
Шаговые приводы обладают некоторыми характеристиками, значение и смысл которых представлены ниже.
Шаговый двигатель характеризуется удерживающим моментом (синхронизирующий момент, holding torque). Удерживающий момент – предельный момент в остановившемся состоянии, и протекании номинального тока. При приложении к валу момента равного удерживающему шаговый двигатель перестает работать. Рабочий нагрузочный момент двигателя должен быть, по крайней мере, в 2 – 3 раза меньше значения удерживающего момента.
Уменьшение предельного вращающегося момента в зависимости от скорости. Важная характеристика, учет которой позволяет обеспечить работоспособность шагового привода во всем диапазоне рабочих скоростей. Производитель, как правило, дает зависимость момента на валу шагового двигателя от частоты полных – full (или половинных - half) его шагов. При этом следует помнить, что указывается предельный момент на валу, и что максимальный рабочий нагрузочный момент должен быть в 2 – 3 раза меньше этого предельного значения
Номинальный рабочий ток двигателя. Ток, который может протекать через обмотки шагового двигателя в длительном режиме работы. Этот ток создаёт удерживающий момент, значение которого определено в спецификациях шагового двигателя. Величина тока пропорциональна значению удерживающего момента. Температура корпуса шагового двигателя, при протекании через его обмотки тока с номинальным значением, может достигать температуры 70…80 °C. Этот факт необходимо учитывать в прецизионных системах, когда такой нагрев двигателя может привести к не желаемым температурным деформациям других элементов системы.
Рабочий ток привода в остановленном состоянии. В некоторых драйверах шагового привода имеется настройка этого тока (STOP current) отдельно от настройки рабочего тока в состоянии движения (RUN current). Это сделано для того, чтобы уменьшить тепловые нагрузки на шаговый двигатель в остановленном состоянии, когда уменьшенного тока хватает для того, чтобы обеспечить «стояние» двигателя под нагрузкой. При возобновлении движения ток снова возрастает до уровня рабочего тока.
Количество фаз шагового двигателя. Различают 2-х, 3-х и 5-ти фазные шаговые двигатели. Увеличение количества фаз двигателя улучшает плавность хода привода, и, что особенно важно, подавляет резонансные явления в приводной системе, однако увеличивает стоимость не только двигателя, но и шагового драйвера. Определить количество фаз шагового двигателя возможно по значению полного шага: 0.9° и 1.8° соответствуют 2-х фазному двигателю, 1.2° и 1.5° - трехфазному, 0.72° - пятифазному. Значение полного шага обычно приводится в паспортной табличке двигателя.
Количество выводов обмоток. Для двухфазных шаговых двигателей, как правило, различают – 4-х выводные двигатели, 6-ти выводные и 8 выводные. Наиболее универсальные – это 8-ми выводные двигатели. Если выводы такого двигателя соответствующим образом соединить, то можно получить аналог как 6-ти выводного двигателя, так и 4-х выводного. Более того, полу обмотки 8-ми выводного двигателя можно соединять как последовательно, так и параллельно, и тем самым получать шаговый двигатель либо с большим моментом, либо с большей скоростью вращения. Однако эта универсальность является и недостатком, поскольку имеется вероятность неправильного подключения полу обмоток не совсем опытным пользователем. Большинство недорогих драйверов китайского производства имеют 4-е выходные клеммы для подключения обмоток шаговых двигателей.
Трехфазные двигатели шаговые двигатели имеют либо три вывода, либо шесть. В последнем случае обмотки можно включать по схемам «звезда/треугольник (delta)» изменяя соотношение момент/скорость такого двигателя. Один из наиболее известных производителей, использующий 3-х фазный шаговый привод – Siemens. Однако с драйвером Siemens хорошо работают трехфазные шаговые двигатели китайских производителей.
Пятифазные шаговые двигатели могут иметь либо пять выводов, либо десять. В последнем случае обмотки можно включать по схемам «звезда/пентагон», изменяя соотношение момент/скорость такого двигателя. Пятифазные шаговые приводы широко представлены на российском рынке продукцией южно-корейской фирмы Autonics. Как плавило, данный тип продукции используется в приводных высокоточных системах.
Напряжение электропитания драйвера шагового привода. Различают драйверы шагового привода, которые могут питаться от сети с напряжением 220В переменного тока, так и драйверы с питанием от шин постоянного тока с различной величиной напряжения (наиболее часто используется напряжение 24В). Драйверы с напряжением питания 220В переменного тока – наиболее дорогие, однако, обеспечивают наиболее широкий диапазон скоростей вращения шагового двигателя. Существенный недостаток таких драйверов – они приводят к повышенному нагреву шагового двигателя. Это происходит из-за повышенной пульсации тока в обмотках двигателя. Питание повышенным напряжением постоянного тока (до 80 вольт и более) также приводит к широкому диапазону достигаемых скоростей в приводе, однако требует специального вторичного источника питания для этих целей.
Микрошаг. Режим микрошага (иногда этот режим называют режимом дробления шага двигателя) используют для увеличения плавности хода и уменьшения резонансных явлений приводной шаговой системы (и как следствие этого, увеличения быстродействия). Можно говорить и об увеличении точности позиционирования, но только в том случае, если шаговый двигатель сильно недогружен, практически отсутствует сухое трение, и в кинематической цепочке от вала шагового двигателя до исполнительного органа приводного механизма нет упругих инерционных элементов.
Формат управляющих импульсов. Различают следующие форматы управляющих командных импульсов, поступающих от контролера верхнего уровня на командные входы драйвера шагового привода:
- P/D (pulse/direction, puls/sign, импульс/направление, 1P) – управляющие импульсы представлены двумя последовательностями импульсов, первая из которых задаёт величину перемещения, а вторая определяет направление перемещения;
- CW / CCW (по часовой стрелке / против часовой стрелки, 2P) - управляющие импульсы представлены двумя последовательностями импульсов, первая из которых задаёт величину перемещения при вращении в одну сторону, а вторая - величину перемещения при вращении в другую сторону;
- A&B (A/B, квадратурный формат, мастер-энкодер, две сдвинутых меандры) - управляющие импульсы представлены двумя последовательностями, количество фронтов сигналов в которых задают величину перемещения (иногда количество импульсов только одной из последовательностей задаёт величину перемещения, в этом случае эффекта «учетверения импульсов» не происходит), а опережение фазы одной из последовательностей по сравнению с другой - определяет направление вращения двигателя.
Большинство драйверов шагового привода способны работать с любым из вышеперечисленных форматов командных импульсов. «Вес» каждого управляющего импульса (то есть, величина перемещения вала шагового двигателя от действия одного импульса на командных входах драйвера) определяется коэффициентом дробления шага (величиной микрошага), который устанавливается в драйвере шагового привода либо с помощью микропереключателей, либо путем программирования этого драйвера. Дискрета перемещения зависит не только от коэффициента дробления шага, но и от типа двигателя, величины его полного шага. Например, при величине полного шага 1.8° и коэффициенте дробления шага – 256, при подаче одного управляющего импульса вал двигателя должен повернуться на 25,31 угловые секунды
Максимальная частота командных импульсов. Предельная частота импульсов, до которой драйвер шагового привода способен работать не «проглатывая» их. При этом скорость вращения шагового двигателя не обязательно будет близка к предельным значениям, поскольку эта скорость связана с частотой командных импульсов через коэффициент дробления шага двигателя.
Частота приёмистости (стартовая частота) – это частота подачи управляющих импульсов, соответствующая частоте полных (или половинных) шагов, с которой двигатель может сразу начать движение. В паспортных данных приводится частота приемистости соответствующая «пустому» двигателю, то есть, без нагрузки на вале, в том числе инерционной. При увеличении нагрузки частота приёмистости падает. Определить теоретически, какую частоту можно подавать в качестве стартовой, невозможно. Значение этой частоты для конкретной нагрузки определяется методом «проб и ошибок» при настройке системы.
Режим работы. Различают режимы:
- управления положением;
- регулирования скорости.
Управление положением осуществляется шаговым приводом с помощью управляющих импульсов того или иного формата, поступающих от контроллера верхнего уровня (host controller). Однако некоторые производители шаговых проводов предлагают режим регулирования скорости вращения шагового двигателя. Сигнал задания скорости в этом случае является аналоговым сигналом. Двигатель вращается со скоростью пропорциональной величине аналогового сигнала. Перенастройка величины скорости может осуществляться как в режиме реального времени, так и априори, только до момента пуска привода в работу.
Шаговый привод в режиме регулировки скорости может быть использован, например, как простой привод, вращающий нагрузку с постоянной медленной скоростью, без каких либо дополнительных управляющих устройств верхнего уровня.
Дискретные входы. Эти входы воспринимают 2-х уровневый электрический сигнал. Сигналы позволяют управлять драйвером шагового привода. По умолчанию дискретные входы воспринимают отсутствие сигнала, как неактивный уровень сигнала. С помощью этих входов можно осуществить: пуск привода, сбросить аварийное состояние привода, блокировать действие поступающих командных импульсов, изменить направление вращения двигателя и пр.
Степень защиты корпуса. Определяет защиту корпуса от проникновения внутрь твердых предметов, пыли, а также воды. Защита обозначается двумя цифрами после латинских букв IP. Чем больше цифры, тем сильнее защита. Степень – IP20 говорит о том, что для защиты прибора требуется установка его в шкаф, оболочка последнего обеспечивает защиту приборов от пыли и влаги.
www.shop.zetek.ru
Шаговые приводы с обратной связьюВ качестве небольшого предисловия попробуем рассказать, что такое шаговый привод с обратной связью или сервопривод. Говоря на простом языке, сервопривод — это механический прибор, позволяющий с наивысшей точностью выполнить поставленную на входе задачу. Таким образом, входное задание, поступившее от блока управления, выполняется системой с минимальной погрешностью на выходе.
Естественно, электропривод постоянного тока с обратной связью имеет значительно более сложное устройство, поэтому рекомендуем прочитать дальнейшее описание его принципа работы, а также ознакомиться с его основными характеристиками и с тем, как работает обратная связь электропривода, более подробно.
Шаговый привод с обратной связью или без?Серводвигателем или шаговым приводом с обратной связью является электродвигатель с функцией обратной связи. Как правило, этот тип шаговых двигателей используется в станках с ЧПУ, поскольку в отличии от обычных шаговых силовых установок серводвигатель обладает высокой точностью настройки позиционирования, а также повышенными показателями производительности.
Общий принцип работы, который имеет шаговый привод с обратной связью, схож с принципом работы вентильного двигателя постоянного тока, т.к. в нем требующие возбуждения обмотки контролируются по датчикам положения ротора.
Датчик обратной связиВ состав шагового привода с обратной связью входит несколько компонентов:
Поскольку основным назначением, который имеет шаговый привод с обратной связью, является контроль и управление направлением и характеристиками движения, то самым важным элементом конструкции является датчик обратной связи. Благодаря датчику обратной связи движение ротора становится более плавным, что позволяет получить улучшенные показания шаговой частоты.
Оптические датчики обратной связи наиболее часто фиксируются на валу силовой установки. В первую очередь датчик обратной связи определяет положение ротора, после чего эта информация поступает в блок управления, который в зависимости от полученной информации, выбирает фазы для возбуждения (под фазами возбуждения подразумевается угол коммутации).
Современные типы датчиков обратной связи — резольверы или энкодеры устанавливаются во внутреннюю часть конструкции и информируют блок управления о положении и скорости движения силовой установки. Датчик обратной связи может быть инсталлирован во внутреннюю часть системы, в саму силовую установку, либо же он может определять позиционирование ротора по внешним признакам. Второй тип датчиков, как правило, используется в самых современных системах, и требует дополнительных денежных средств.
Остальные элементы конструкции, которые имеют привод с обратной связью, мало чем отличаются от стандартного шагового электродвигателя постоянного или переменного тока с ротором и старом.
Преимущества привода с обратной связьюОсновным преимуществом электропривода постоянного тока с обратной связью является высокая скорость работы. Благодаря отсутствию шума и вибрации в системе можно избежать сбоев привода и механических люфтов. Кроме того, система обладает увеличенным временем работоспособности, а также имеет возможность моментально производить информирование обслуживающего персонала о наличии повреждения в конструкции.
Общая масса системы небольшая, а сама конструкция обладает довольно компактными размерами. Отдельно отметим пониженное энергопотребление сервопривода: за счет порционной подачи тока только для фиксации рабочего положения общее энергопотребление системы значительно ниже, чем у обычного шагового двигателя.
Недостатки привода с обратной связьюС другой стороны, привод с обратной связью имеет в сравнении с классическим шаговым двигателем ряд недостатков. В первую очередь, шаговый привод с обратной связью значительно дороже, поскольку имеет более сложную структуру. Датчик обратной связи требует дополнительного фиксирования, для чего в конструкции применяется дополнительный червячный мотор-редуктор. Кроме того, данная система должна регулярно обслуживаться сертифицированными специалистами, а в случае поломки ремонт такого оборудования значительно дороже, чем у классических шаговых силовых установок.
Типы шаговых двигателей с обратной связьюСуществует несколько типов приводов с обратной связью. Во-первых, это сервопривод линейного и вращательного движения. Первый тип разделяется на плоские и круглые системы, вторые — на синхронные и асинхронные.
В зависимости своего типа, двигатель выполняет функцию перемещения с конкретными характеристиками: линейный сервопривод предназначен для получения наивысших ускорений, синхронный сервопривод используются для наиболее точной калибровки угла поворота, ускорения и скорости вращения.
Применение шаговых двигателей с обратной связьюШаговые приводы с обратной связью незаменимы в системах, требующих высокой точности исполнения, а также в системах с высоким значением крутящего момента.
Сервоприводы применяются в различных промышленных областях: автомобилестроении, металлургии, на железно дороге и т.д.. Промышленные роботы и станки с ЧПУ, оборудование Flow pack и другое упаковочное оборудование, станки в типографии, швейное оборудование также не могут обойтись без шаговых двигателей с обратной связью в составе своей конструкции.
Купить шаговые приводы с обратной связьюТорговый Дом «Степмотор» предлагает Вам не только купить шаговые приводы с обратной связью, но и оформить заказ на другие типы шаговых двигателей из Европы или Азии. Мы доставим для Вас оборудование любой сложности за срок от 14 дней, поможем внедрить его на производство и организуем его дальнейшее обслуживание.
Мы ознакомим Вас с самой современной базой электродвигателей и сервоприводов, наши инженеры проконсультируют вас о типе подходящего для вашего производства оборудования, а по необходимости — помогут составить ТЗ или его подкорректировать.
У нас вы получите не только квалифицированную консультацию, какой шаговый электропривод с обратной связью выбрать для вашего производственного цикла, но и как сэкономить на покупке шаговых двигателей, не потеряв при этом высокого уровня качества производства.
stepmotor.ru
Рис. 33. Процесс ШИМ-стабилизации тока.
Нужно сказать, что аналоговая часть системы ШИМ-стабилизации тока фаз двигателя является довольно «капризной». Дело в том, что сигнал, снимаемый с датчика тока, содержит большое количество помех. Помехи возникают в основном в моменты коммутации обмоток двигателя, причем как «своей», так и «чужой» фазы. Для правильной работы схемы требуется корректная разводка печатной платы, особенно это касается земляных проводников. Возможно, придется подобрать номиналы ФНЧ на входе компаратора или даже ввести в компаратор небольшой гистерезис. Как уже отмечалось выше, при управлении маломощными двигателями от ШИМ-стабилизации тока можно вовсе отказаться, применив обычную L/R-схему питания обмоток. Для исключения ШИМ-стабилизации достаточно просто не подключать входы INT0 и INT1 микроконтроллера, естественно, при этом можно вообще не устанавливать компаратор и датчики тока. В данной программе периодичность вычисления новых значений скорости и периода выбрана равной 15.625мс. Такое значение выбрано не случайно. Этот интервал составляет 1/64с, а главное, он содержит целое число периодов переполнения таймера 0 (25мкс). Удобно, если значения скорости и ускорения задаются в естественных единицах, т.е. в шагах в секунду и в шагах, деленных на секунду в квадрате. Для того чтобы иметь возможность в целочисленной арифметике вычислять мгновенную скорость 64 раза в секунду, нужно перейти к внутреннему представлению скорости, увеличенному в 64 раза. Умножение и деление на 64 сводится к обычным сдвигам и поэтому требует очень мало времени. Заданную периодичность вычислений обеспечивает еще один программный таймер URCNT, который декрементируется в прерывании таймера 0 (раз в 25мкс). Этот таймер всегда загружается постоянной величиной, что обеспечивает неизменный период его переполнений, равный 15.625мс. При переполнении этого таймера устанавливается битовый флаг UPD, который сигнализирует основной программе, что «пора-бы обновить значения скорости и периода». Основная программа (рис. 34) выполняет вычисление мгновенных значений скорости и периода следования шагов, обеспечивая необходимую кривую разгона. В данном случае разгон и торможение осуществляются с постоянным ускорением, поэтому скорость меняется линейно. Период при этом меняется по гиперболическому закону, и его вычисление – основная работа программы.
Рис. 34. Блок-схема основного цикла программы.
Обновление значений скорости и периода следования шагов основная программа делает периодически, периодичность задается флагом UPD. Обновление программа делает на основе сравнения значений двух переменных: мгновенной скорости VC и требуемой скорости VR.
Значение требуемой скорости также определяется в основной программе. Это делается на основе анализа управляющих сигналов и сигналов с концевых выключателей. В зависимости от этих сигналов, основная программа загружает переменную VR значением требуемой скорости. В данной программе это V для движения вперед, -V для движения назад и 0 для остановки. В общем случае, набор скоростей (а также ускорений и токов фаз) может быть сколь угодно большим, в зависимости от требований. Если скорости VC и VR равны, значит, шаговый двигатель работает в стационарном режиме и обновления не требуется. Если же скорости не равны, то значение VC с заданным ускорением приближается к VR, т.е. двигатель ускоряется (или замедляется) до достижения номинальной скорости. В случае, когда даже знаки VR и VC отличаются, двигатель замедляется, реверсируется и потом достигает требуемой скорости. Происходит это как бы само собой, благодаря структуре программы. Если при очередной проверке обнаруживается, что скорости VR и VC не равны, то к значению VC прибавляется (или вычитается) значение ускорения A. Если в результате этой операции происходит превышение требуемой скорости, то полученное значение корректируется путем замены на точное значение требуемой скорости.
Затем происходит вычисление периода T (рис. 35).
Рис. 35. Блок-схема подпрограммы вычисления периода.
Вначале вычисляется модуль текущей скорости. Затем происходит ограничение минимальной скорости. Это ограничение необходимо по двум причинам. Во-первых, бесконечно малой скорости соответствует бесконечно большой период, что вызовет ошибку в вычислениях. Во-вторых, шаговые двигатели имеют довольно протяженную по скорости зону старта, поэтому нет необходимости стартовать на очень маленькой скорости, тем более что вращение на малых скоростях вызывает повышенный шум и вибрацию. Значение минимальной скорости VMIN должно выбираться исходя из конкретной задачи и типа двигателя. После ограничения минимальной скорости производится вычисление периода по формуле T = 2560000/|VC|. На первый взгляд формула не очевидна, но если учесть, что период необходимо получить в 25мкс-интервалах, а внутреннее представление VC – это умноженное на 64 ее истинное значение, то все становится на свои места. При вычислении T требуется операция беззнакового деления формата 24/24, которое AVR на тактовой частоте 10МГц делает примерно за 70мкс. Учитывая, что вычисления периода происходят не чаще, чем один раз в 15.625мс, загрузка процессора получается очень низкой. Основную загрузку производит прерывание таймера 0, да и оно в основном выполняется по короткой ветке (без переполнения STCNT) длительностью примерно 3мкс, что соответствует 12%-й загрузке процессора. Это означает, что имеются значительные резервы вычислительных ресурсов.
Печатная плата контроллера шагового двигателя приведена на рис. 36.
Рис. 36. Печатная плата контроллера шaгового двигателя.
mirznanii.com
Высокая скорость спада тока, которая реализуется путем замыкания обмотки на источник питания, приводит к повышенным пульсациям. Вместе с тем, устраняются недостатки, свойственные медленному спаду тока. Однако при этом точность поддержания среднего тока меньше, также больше потери. Наиболее совершенные микросхемы драйверов имеют возможность регулировать скорость спада тока.
Практическая реализация драйверов
Драйвер шагового двигателя должен решать две основные задачи: это формирование необходимых временных последовательностей сигналов и обеспечение необходимого тока в обмотках. В интегральных реализациях иногда эти задачи выполняются разными микросхемами. Примером может служить комплект микросхем L297 и L298 фирмы SGS-Thomson. Микросхема L297 содержит логику формирования временных последовательностей, а L298 представляет собой мощный сдвоенный H-мост. К сожалению, существует некоторая путаница в терминологии относительно подобных микросхем. Понятие «драйвер» часто применяют ко многим микросхемам, даже если их функции сильно различаются. Иногода микросхемы логики называют «трансляторами». В этой статье далее будет использоваться следующая терминология: «контроллер» - микросхема, ответственная за формирование временных последовательностей; «драйвер» - мощная схема питания обмоток двигателя. Однако термины «драйвер» и «контроллер» могут также обозначать законченное устройство управления шаговым двигателем. Необходимо отметить, что в последнее время все чаще контроллер и драйвер объединяются в одной микросхеме. На практике можно обойтись и без специализированных микросхем. Например, все функции контроллера можно реализовать программно, а в качестве драйвера применить набор дискретных транзисторов. Однако при этом микроконтроллер будет сильно загружен, а схема драйвера может получится громоздкой. Несмотря на это, в некоторых случаях такое решение будет экономически выгодным.
Самый простой драйвер требуется для управления обмотками униполярного двигателя. Для этого подходят простейшие ключи, в качестве которых могут быть использованы биполярные или полевые транзисторы. Достаточно эффективны мощные МОП-транзисторы, управляемые логическим уровнем, такие как IRLZ34, IRLZ44, IRL540. У них сопротивление в открытом состоянии менее 0.1ом и допустимый ток порядка 30А. Эти транзисторы имеют отечественные аналоги КП723Г, КП727В и КП746Г соответственно. Существуют также специальные микросхемы, которые содержат внутри несколько мощных транзисторных ключей. Примером может служить микросхема ULN2003 фирмы Allegro (наш аналог К1109КТ23), которая содержит 7 ключей с максимальным током 0.5 А. Принципиальная схема одной ячейки этой микросхемы приведена на рис. 26.
Рис. 26. Принципиальная схема одной ячейки микросхемы ULN2003.
Аналогичные микросхемы выпускаются многими фирмами. Необходимо отметить, что эти микросхемы пригодны не только для питания обмоток шаговых двигателей, но и для питания любых других нагрузок. Кроме простых микросхем драйверов существуют и более сложные микросхемы, имеющие встроенный контроллер, PWM-регулировку тока и даже ЦАП для микрошагового режима. Как уже отмечалось ранее, для управления биполярными двигателями требуются более сложные схемы, такие как H-мосты. Такие схемы тоже можно реализовать на дискретных элементах, хотя в последнее время все чаще они реализуются на интегральных схемах. Пример дискретной реализации показан на рис. 27.
Рис. 27. Реализация мостового драйвера на дискретных компонентах.
Такой H-мост управляется с помощью двух сигналов, поэтому он не позволяет обеспечить всех возможных комбинаций. Обмотка запитана, когда уровни на входах разные и закорочена, когда уровни одинаковые. Это позволяет получить только медленный спад тока (динамическое торможение). Мостовые драйверы в интегральном исполнении выпускаются многими фирмами. Примером могут служить L293 (КР1128КТ3А) и L298 фирмы SGS-Thomson. До недавнего времени большое количество микросхем для управления шаговыми двигателя выпускала фирма Ericsson. Однако 11 июня 1999 года она передала производство своих микросхем индустриального назначения фирме New Japan Radio Company (New JRC). При этом обозначения микросхем помянялись с PBLxxxx на NJMxxxx. Как простые ключи, так и H-мосты могут составлять часть ключевого стабилизатора тока. Схема управления ключами может быть выполнена на дискретных компонентах или в виде специализированной микросхемы. Довольно популярной микросхемой, реализующей ШИМ-стабилизацию тока, является L297 фирмы SGS-Thomson. Совместно с микросхемой мостового драйвера L293 или L298 они образуют законченную систему управления для шагового двигателя (рис. 28).
Рис. 28. Типовая схема включения микросхем L297 и L298N.
Микросхема L297 сильно разгружает управляющий микроконтроллер, так как от него требуется только тактовая частота CLOCK (частота повторения шагов) и несколько статических сигналов: DIRECTION – направление (сигнал внутренне синхронизирован, переключать можно в любой момент), HALF/FULL – полушаговый/полношаговый режим, RESET – устанавливает фазы в исходное состояние (ABCD = 0101), ENABLE – разрешение работы микросхемы, V ref – опорное напряжение, которое задает пиковую величину тока при ШИМ-регулировании. Кроме того, имеется несколько дополнительных сигналов. Сигнал CONTROL задает режим работы ШИМ-регулятора. При его низком уровне ШИМ-регулирование происходит по выходам INh2, INh3, а при высоком – по выходам ABCD. SYNC – выход внутреннего тактового генератора ШИМ. Он служит для синхронизации работы нескольких микросхем. Также может быть использован как вход при тактировании от внешнего генератора. HOME – сигнал начального положения (ABCD = 0101). Он используется для синхронизации переключения режимов HALF/FULL. В зависимости от момента перехода в полношаговый режим микросхема может работать в режиме с одной включенной фазой или с двумя включенными фазами. Ключевое регулирование реализуют и многие другие микросхемы. Некоторые микросхемы обладают теми или иными особенностями, например драйвер LMD18T245 фирмы National Semiconductor не требует применения внешнего датчика тока, так как он реализован внутри на основе одной ячейки ключевого МОП-транзистора. Некоторые микросхемы предназначены специально для работы в микрошаговом режиме. Примером может служить микросхема A3955 фирмы Allegro. Она имеет встроенный 3-битный нелинейный ЦАП для задания изменяющегося по синусоидальному закону тока фазы.
Рис. 29. Ток и вектор смещения ротора.
Смещение ротора в зависимомти от токов фаз, которые сформированы этим 3-битным ЦАПом, показано на рис. 29. Микросхема A3972 имеет встроенный 6-битный линейный ЦАП.
Выбор типа драйвера
Максимальный момент и мощность, которую может обеспечить на валу шаговый двигатель, зависит от размеров двигателя, условий охлаждения, режима работы (отношения работа/пауза), от параметров обмоток двигателя и от типа применяемого драйвера. Тип применяемого драйвера сильно влияет на мощность на валу двигателя. При одной и той же рассеиваемой мощности драйвер с импульсной стабилизацией тока обеспечивает выигрыш в моменте на некоторых скоростях до 5 – 6 раз, по сравнению с питанием обмоток номинальным напряжением. При этом также расширяется диапазон допустимых скоростей. Технология приводов на основе шаговых двигателей постоянно развивается. Развитие направлено на получение наибольшего момента на валу при минимальных габаритах двигателя, широких скоростных возможностей, высокого КПД и улучшенной точности. Важным звеном этой технологии является применение микрошагового режима. На практике немаловажным является и время разработки привода на основе шагового двигателя. Разработка специализированной конструкции для каждого конкретного случая требует значительных затрат времени. С этой точки зрения предпочтительней применять универсальные схемы управления на основе PWM стабилизации тока, несмотря на их более высокую стоимость.
Практический пример контроллера шагового двигателя на основе микроконтроллера семейства AVR
Несмотря на то, что в настоящее время существует большое количество специализированных микросхем для управления шаговыми двигателями, в отдельных случаях можно обойтись и без них. Когда не предъявляется слишком жестких требований, контроллер можно реализовать полностью программно. При этом стоимость такого контроллера получается очень низкой.
Предлагаемый контроллер предназначен для управления униполярным шаговым двигателем со средним током каждой обмотки до 2.5А. Контроллер может использоваться с распространенными шаговыми двигателями типа ДШИ-200-1, -2, -3. Его также можно использовать и для управления менее мощными двигателями, например теми, что применялись для позиционирования головок в 5-дюймовых дисководах. При этом схему можно упростить, отказавшись от параллельного включения ключевых транзисторов и от ключевой стабилизации тока, так как для маломощных двигателей достаточно простого L/R-питания.
mirznanii.com