На простых механизмах удобно устанавливать аналоговые регуляторы тока. К примеру, они могут изменить скорость вращения вала мотора. С технической стороны выполнить такой регулятор просто (потребуется установка одного транзистора). Применим для регулировки независимой скорости моторов в робототехнике и источниках питания. Наиболее распространены два варианта регуляторов: одноканальные и двухканальные.
Видео №1. Одноканальный регулятор в работе. Меняет скорость кручения вала мотора посредством вращения ручки переменного резистора.
Видео №2. Увеличение скорости кручения вала мотора при работе одноканального регулятора. Рост числа оборотов от минимального до максимального значения при вращении ручки переменного резистора.
Видео №3. Двухканальный регулятор в работе. Независимая установка скорости кручения валов моторов на базе подстроечных резисторов.
Видео №4. Напряжение на выходе регулятора измерено цифровым мультиметром. Полученное значение равно напряжению батарейки, от которого отняли 0,6 вольт (разница возникает из-за падения напряжения на переходе транзистора). При использовании батарейки в 9,55 вольт, фиксируется изменение от 0 до 8,9 вольт.
Ток нагрузки одноканального (фото. 1) и двухканального (фото. 2) регуляторов не превышает 1,5 А. Поэтому для повышения нагрузочной способности производят замену транзистора КТ815А на КТ972А. Нумерация выводов для этих транзисторов совпадает (э-к-б). Но модель КТ972А работоспособна с токами до 4А.
Устройство управляет одним мотором, питание осуществляется от напряжения в диапазоне от 2 до 12 вольт.
Основные элементы конструкции регулятора представлены на фото. 3. Устройство состоит из пяти компонентов: два резистор переменного сопротивления с сопротивлением 10 кОм (№1) и 1 кОм (№2), транзистор модели КТ815А (№3), пара двухсекционных винтовых клеммника на выход для подключения мотора (№4) и вход для подключения батарейки (№5).
Примечание 1. Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.
Порядок работы регулятора мотора описывает электросхема (рис. 1). С учетом полярности на разъем ХТ1 подают постоянное напряжение. Лампочку или мотор подключают к разъему ХТ2. На входе включают переменный резистор R1, вращение его ручки изменяет потенциал на среднем выходе в противовес минусу батарейки. Через токоограничитель R2 произведено подключение среднего выхода к базовому выводу транзистора VT1. При этом транзистор включен по схеме регулярного тока. Положительный потенциал на базовом выходе увеличивается при перемещении вверх среднего вывода от плавного вращения ручки переменного резистора. Происходит увеличение тока, которое обусловлено снижением сопротивления перехода коллектор-эмитттер в транзисторе VT1. Потенциал будет уменьшаться, если ситуация будет обратной.
Необходима печатная плата размером 20х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита (допустимая толщина 1-1,5 мм). В таблице 1 приведен список радиокомпонентов.
Примечание 2. Необходимый для устройства переменный резистор может быть любого производства, важно соблюсти для него значения сопротивления тока указанные в таблице 1.
Примечание 3. Для регулировки токов выше 1,5А транзистор КТ815Г заменяют на более мощный КТ972А (с максимальным током 4А). При этом рисунок печатной платы менять не требуется, так как распределение выводов у обоих транзисторов идентично.
Для дальнейшей работы нужно скачать архивный файл, размещенный в конце статьи, разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора (файл termo1), а монтажный чертеж (файл montag1) – на белом листе офисной (формат А4).
Далее чертеж монтажной платы (№1 на фото. 4) наклеивают к токоведущим дорожкам на противоположной стороне печатной платы (№2 на фото. 4). Необходимо сделать отверстия (№3 на фото. 14) на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпадать. На фото.5 показана цоколёвка транзистора КТ815.
Вход и выход клеммников-разъемов маркируют белым цветом . Через клипсу к клеммнику подключается источник напряжения. Полностью собранный одноканальный регулятор отображен на фото. Источник питания (батарея 9 вольт) подключается на финальном этапе сборки. Теперь можно регулировать скорость вращения вала с помощью мотора, для этого нужно плавно вращать ручку регулировки переменного резистора.
Для тестирования устройства необходимо из архива распечатать чертеж диска. Далее нужно наклеить этот чертеж (№1) на плотную и тонкую картонную бумагу (№2 ). Затем с помощью ножниц вырезается диск (№3).
Полученную заготовку переворачивают (№1 ) и к центру крепят квадрат черной изоленты (№2) для лучшего сцепления поверхности вала мотора с диском. Нужно сделать отверстие (№3) как указано на изображении. Затем диск устанавливают на вал мотора и можно приступать к испытаниям. Одноканальный регулятор мотора готов!
Используется для независимого управления парой моторов одновременно. Питание осуществляется от напряжения в диапазоне от 2 до 12 вольт. Ток нагрузки рассчитан до 1,5А на каждый канал.
Основные компоненты конструкции представлены на фото.10 и включают: два подстроечных резистора для регулировки 2-го канала (№1) и 1-го канала (№2), три двухсекционных винтовых клеммника для выхода на 2-ой мотор (№3), для выхода на 1-ый мотор (№4) и для входа (№5).
Примечание.1 Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.
Схема двухканального регулятора идентична электрической схеме одноканального регулятора. Состоит из двух частей (рис.2). Основное отличие: резистор переменного сопротивления замен на подстроечный резистор. Скорость вращения валов устанавливается заранее.
Примечание.2. Для оперативной регулировки скорости кручения моторов подстроечные резисторы заменяют с помощью монтажного провода с резисторами переменного сопротивления с показателями сопротивлений, указанными на схеме.
Понадобится печатная плата размером 30х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита толщиной 1-1,5 мм. В таблице 2 приведен список радиокомпонентов.
После скачивания архивного файла, размещенного в конце статьи, нужно разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора для термоперевода (файл termo2), а монтажный чертеж (файл montag2) – на белом листе офисной (формат А4).
Чертеж монтажной платы наклеивают к токоведущим дорожкам на противоположной стороне печатной платы . Формируют отверстия на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпасть. Производится цоколёвка транзистора КТ815. Для проверки нужно временно соединить монтажным проводом входы 1 и 2 .
Любой из входов подключают к полюсу источника питания (в примере показана батарейка 9 вольт). Минус источника питания при этом крепят к центру клеммника. Важно помнить: черный провод «-», а красный «+».
Моторы должны быть подключены к двум клеммникам, также необходимо установить нужную скорость. После успешных испытаний нужно удалить временное соединение входов и установить устройство на модель робота. Двухканальный регулятор мотора готов!
В АРХИВЕ представленные необходимые схемы и чертежи для работы. Эмиттеры транзисторов помечены красными стрелками.
Источник: servodroid.ru Дополнительная статья ЧИТАТЬvolt-index.ru
Для плавной работы двигателей без скачков используются регуляторы оборотов. Выпускаются модели на 12, 24 и 220 В. Принцип работы оборудования строится на изменении тактовой частоты двигателя. По типу конструкции выделяют тиристорные, трансформаторные, импульсные и симисторные модификации.
По способу установки различают стационарные и мобильные приборы. Также на рынке можно встретить встроенные модификации. Для того чтобы более подробно разобраться в моделях, следует рассмотреть стандартную схему регулятора.
Обычный регулятор оборотов постоянного двигателя включает в себя трансформатор понижающего типа и поворотный контроллер. Выпрямители используются с блоком конденсаторов. Пропускная способность колеблется в районе 5.5 мк. Если говорить про модификации на 12 В, то у них используется кенотрон. В данном случае для безопасной эксплуатации оборудования устанавливаются изоляторы.
Сделать регулятор оборотов своими руками довольно просто. В первую очередь для него подбирается контроллер. Проще всего для двигателя постоянного тока использовать поворотные модификации. В магазинах они продаются сразу с модуляторами. Трансформатор устанавливается с высокой пропускной способностью. После этого важно заняться изоляторами. Для регулировки двигателя переменного тока применяется динистор.
Тиристорный регулятор оборотов двигателя, как правило, выпускается с высокой пропускной способностью. В данном случае выпрямители используются операционного типа. В некоторых моделях устанавливаются модуляторы. Показатель чувствительности у них зависит от выходного напряжения двигателя. Стабилизаторы во многих устройствах с системой защиты.
Максимальная допустимая температура регуляторов равняется 45 градусам. Расширители используются только для двигателей переменного тока. Также важно отметить, что на рынке представлены модификации на резисторах. Отличительной их особенностью является долгий срок службы. Однако следует отметить, что стоят такие модели довольно дорого.
Частотный регулятор оборотов способен эксплуатироваться только в цепи с переменным током. Контакты в данном случае выводятся на модуляторы. Параметр пропускной способности устройств равняется 3.5 мк. Выпрямитель устанавливается операционного типа. Многие производители изготавливают устройства с системой защиты. Показатель допустимой перегрузки колеблется в районе 3 А. В данном случае контроллеры применяются поворотного типа. Еще на рынке продаются цифровые модификации с дисплеями. Некоторые устройства оснащаются двойными изоляторами для защиты.
Трансформаторный регулятор оборотов, как правило, выпускается для мощных двигателей. Реле у моделей используются высоковольтного типа. Непосредственно выпрямители применяются с конденсаторными блоками. Многие модификации имеют трансиверы. Они необходимы для понижения тактовой частоты.
Расширители в моделях имеются кодового и коммутируемого типа. Резисторы используются с обкладкой. Для самостоятельной сборки модели не обойтись без качественного контроллера. Электронные модификации в данном случае собрать самостоятельно проблематично. Также важно отметить, что кнопочные контроллеры используются редко. Однако для трехтактных двигателей они подходят хорошо.
Регулятор оборотов импульсного типа эксплуатируется с двигателями переменного тока различной мощности. Выпрямители в устройствах используются оперативного типа. Пропускания способность моделей находится на уровне 4 мк. В данном случае выходное напряжение модификации зависит от мощности двигателя. Модуляторы применяются как ортогонального, так и бесконденсаторного типа.
Расширители во многих моделях отсутствуют. Также важно отметить, что для подключения устройств используются выходные контакты. Стабилизаторы устанавливаются только в приборах с повторными контроллерами. Электронные модификации данного типа на рынке встречаются редко. Самостоятельно собрать модель довольно сложно.
Симисторные регуляторы являются довольно распространенными. Работают они по принципу фазового изменения частоты. На сегодняшний день встречается много самодельных устройств. Создаются они на базе бесконденсаторного модулятора с реле. Резисторы применяются как подстроечного, так и импульсного типа.
Трансиверы, как правило, в регуляторах данного типа отсутствуют. Также важно отметить, что для мощных моделей устанавливаются стабилизаторы различной чувствительности. В среднем параметр проводимости тока равняется не более 5 мк.
Устройства для вентиляторов могут эксплуатироваться в сети с постоянным и переменным током. Показатель рабочей частоты цепи не превышает 55 Гц. В данном случае симисторные модификации оснащаются выпрямительными реле. Расширители часто используются кодового типа. Также для вентиляторов применяются трансформаторные модификации. Параметр рабочей частоты цепи в данном случае не превышает 50 Гц. Чтобы подключить регулятор оборотов, устанавливаются выходные контакты.
Регуляторы на 12 В часто изготавливаются частотного типа. Устройства с поворотными контроллерами производятся на базе построечных резисторов. В среднем показатель проводимости тока не превышает 5 мк. В данном случае чувствительность реле зависит от мощности двигателя. Выпрямители часто используются оперативного типа. Некоторые модификации оснащаются резисторами открыто типа.
Если рассматривать модели с кнопочными контроллерами, то у них всегда применяется частотный кенотрон. Указанные устройства перегрузки способны выдерживать максимум в 4 А. Однако в данном случае многое зависит от производителя.
Для коллекторных и асинхронных двигателей подходит на 24 В регулятор оборотов. Схема устройства включает контроллеры модульного типа. Если рассматривать трансформаторные модификации, то у них имеется реле, а также конденсаторный блок. Транзисторы применяются, как правило, широкополосного типа. В некоторых моделях используются динисторы для понижения частоты.
Подключение регуляторов осуществляется через выходные контакты. Также важно отметить, что на рынке представлено множество электронных модификаций. Еще есть встроенные устройства, которые отличаются своей компактностью. В большинстве моделей стабилизаторы отсутствуют.
Модификации на 220 В производятся чаще всего импульсного типа. Подходят указанные устройства для синхронных модификаций. Работать такие модели могут в цепи с постоянным током. Показатель рабочей частоты системы не превышает 60 Гц. В данном случае проводимость тока зависит от чувствительности реле. Выпрямители применяются чаще всего оперативного типа. Контроллеры используются как поворотного, так и кнопочного вида. Также важно отметить, что на рынке имеется множество мобильных модификаций. Тиристоры у них применяются полупроводникового типа. В среднем показатель проводимости равняется 6 мк. В данном случае динисторы используются с изоляторами.
Указанный регулятор оборотов коллекторного двигателя производится на базе понижающего трансформатора. Пропускная способность модели равняется 5.7 мк. Реле в данном случае отсутствует. Непосредственно выпрямители используются оперативного типа. Трансиверы у регулятора отсутствуют. Для понижения рабочей частоты применяется кенотрон.
В данном случае чувствительность модификации зависит от мощности двигателя. Степень защиты предусмотрена ИП 35. Также важно отметить, что регулятор оборотов коллекторного двигателя HL-FS 1.6 способен выдерживать большие перегрузки тока. Минимальная допустимая температура равняется -10 градусов.
Регулятор оборотов вентилятора Bahcivan BSC/2 продается с однополюсным трансивером. Особенностью указанной модели можно назвать качественный расширитель. Непосредственно понижение рабочей частоты происходит за счет кенотрона. Обороты двигателя регулируются очень плавно.
Если говорить про параметры, то токовая перегрузка системы составляет 3.5 А. В данном случае регулятор оборотов вентилятора имеет пропускную способность на уровне 5.3 мк.
fb.ru
Работа дизелей, оснащенных ТНВД плунжерного типа, характеризуется крайне неустойчивой частотой вращения. Во время работы машины нагрузка постоянно меняется и соответственно меняется нагрузка на двигатель. Характер изменения нагрузки может быть достаточно интенсивным: от резкого увеличения, например, при разгоне или движении на подъем (наброс нагрузки), до резкого снижения, например, при движении на спуске (сброс нагрузки). Так, при резком снижении внешней нагрузки дизеля частота вращения коленчатого вала увеличивается, что вызывает увеличение цикловой подачи топлива.
Это происходит вследствие сокращения времени прохождения плунжером окон втулки и соответственно сокращения количества вытесняемого топлива из надплунжерного пространства через эти окна. Кроме того, регулятор опережения впрыска топлива при увеличении оборотов корректирует начало подачи и, таким образом, обороты двигателя прогрессирующе возрастают. Данное явление тем более характерно, чем меньше активный ход плунжера. Возрастание цикловой подачи приводит к дальнейшему росту частоты вращения клеенчатого вала, и если нагрузка не увеличится, то это может привести к "разносу" двигателя (саморазрушению)
Увеличение внешней нагрузки двигателя и снижение вследствие этого частоты вращения коленчатого вала, наоборот, приводит к увеличению количества перетекающего топлива в окна втулки и соответственно к сокращению поданного количества топлива через штуцер к форсунке. Поэтому дизели при возрастании внешней нагрузки склонны к останову.
Водитель не всегда может среагировать на колебания нагрузки, поэтому данную функцию выполняют специальные следящие устройства – регуляторы частоты вращения, предназначенные для автоматического поддержания частоты вращения коленчатого вала в заданных пределах.
Регуляторы частоты вращения классифицируют:
Регуляторы прямого действия воздествуют непосредственно на орган управления подачей топлива (рейку ТНВД или дроссельную заслонку карбюратора). Регуляторы непрямого действия воздействуют на них через дополнительную систему – электрический или гидравлический усилитель.
Однорежимные регуляторы поддерживают только один скоростной режим, чаще всего максимальный, не позволяя двигателю превышать предельно допустимые обороты и работать вразнос.
На автомобильных двигателях регуляторы должны ограничивать, как минимум, максимальную и минимальную частоты вращения коленчатого вала. Такие регуляторы называются двухрежимными. На отечественных дизелях используются всережимные регуляторы частоты вращения, которые автоматически поддерживают заданную водителем частоту вращения коленчатого вала на всем диапазоне нагрузок.
***
Всережимные регуляторы частоты вращения устанавливаются на двигателям марок «ЯМЗ», «КамАЗ», двигателе ММЗ Д-235.12 (автомобиль ЗИЛ-5301 «Бычок»).
На рисунке 1 приведена конструкция регулятора двигателя ЯМЗ-238 и схема его работы.
Данный регулятор устанавливается на заднем торце топливного насоса высокого давления (ТНВД). Ведущее зубчатое колесо 1 регулятора приводится во вращение от кулачкового вала топливного насоса через резиновые сухари 27, которые в ней установлены. Резиновые сухари поглощают ударные нагрузки при резком изменении частоты вращения. Ведомое зубчатое колесо 3 установлено в корпусе 4 на двух шариковых подшипниках.
Ведущее и ведомое зубчатые колеса образуют повышенную передачу с целью увеличения чувствительности регулятора. Ведомое зубчатое колесо изготовлено заодно с валиком, на который напрессована державка 5. На осях державки шарнирно закреплены два грузика 29, которые своими роликами упираются в торец муфты 26, которая через радиально-упорный подшипник и пяту 25 передает усилие силовому рычагу 19, подвешенному на оси 13.
Пята регулятора с помощью рычага 20 и тяги 11 связана с рейкой 6 топливного насоса, которая при расхождении грузиков перемещается в сторону уменьшения подачи топлива. В верхней части к рычагу 20 присоединена пружина 8, а в нижней части рычага запрессован палец 23, который входит в паз кулисы 24. Кулиса соединяется со скобой 21 останова двигателя через распложенную внутри кулисы пружину, предохраняющую механизм регулятора от чрезмерных усилий при выключении подачи топлива.
Пружина 14 регулятора одним концом соединена с рычагом 12, который жестко связан с рычагом 9 управления регулятором, а вторым – с двуплечим рычагом 15. Усилие пружины передается с двуплечего рычага на винт 16.
Регулятор работает следующим образом. При вращении кулачкового вала ТНВД и валика с державкой 5 центробежная сила грузиков 29 стремится развести их в стороны и через ролики 30 переместить муфту 26 с пятой 25 вправо. Этому препятствует пружина 14, которая тянет нижнее плечо рычага 15 вверх и через винт 16 и рычаг 19 отжимает пяту 25 влево. Таким образом, на муфту 26 и пяту действует две силы: направленная вправо центробежная сила грузиков и направленная влево сила, создаваемая пружиной 14.
При определенном натяжении пружины развивается частота вращения, при которой эти две силы взаимно уравновешиваются. Тогда все подвижные детали регулятора (грузики, муфта, пята, рычаги 15, 19 и 20, тяга 11), а также рейка 6 и плунжеры занимают положение, обеспечивающее работу двигателя с заданной частотой вращения.
Если нагрузка на двигатель уменьшится (например, при движении автомобиля под уклон), частота вращения коленчатого вала начнет возрастать и увеличивающаяся сила грузиков передвигает муфту с пятой вправо (при этом пружина, натянутая водителем через рычаги 9 и 12, еще больше растянется). Пята повернет рычаг 20 по часовой стрелке, и тяга 11 выдвинет рейку из корпуса ТНВД, рейка повернет плунжеры, и подача топлива уменьшится, что приведет к уменьшению частоты вращения коленчатого вала двигателя.
Если нагрузка увеличится (автомобиль движется на подъем или по труднопроходимому участку местности), частота вращения коленчатого вала начнет падать и вместе с тем уменьшаться центробежная сила грузиков, а так как сила натяжения пружины заданная водителем остается неизменной, то ее усилия становится достаточно, чтобы передвинуть рейку ТНВД в сторону увеличения подачи топлива. В результате увеличения подачи топлива частота вращения коленчатого вала сохраняется и будет таким образом поддерживаться постоянной при заданном водителем через педаль управления положении рейки насоса.
Водитель может по своему усмотрению изменить частоту вращения коленчатого вала, а значит, и скорость движения автомобиля с помощью педали управления подачей топлива, установленной в кабине. При нажатии на педаль система тяг и рычагов перемещает тягу 28 влево, рычаг 9 поворачивает валик с рычагом 12 против часовой стрелки и сильнее натягивает пружину 14. Усилием пружины детали 15 и 19 перемещают пяту 25 и рычаг 20 влево, и рейка перемещается влево (в сторону увеличения подачи топлива), в результате чего частота вращения увеличивается.
Когда водитель освобождает педаль подачи топлива полностью, двигатель работает на режиме холостого хода. Натяжение пружины 14 регулятора на этом режиме регулируется винтами 16 и 17.
Чтобы заглушить двигатель, водитель должен вытянуть кнопку «стоп», расположенную в его кабине. Тогда трос, на конце которого закреплена кнопка, повернет скобу 21 с кулисой 24 в положение, показанное на рис. 2, б штрихпунктирной с двумя точками линией, а кулиса поворачивает рычаг 20 вокруг его оси, закрепленной в пяте 25. Нижний конец рычага 20 переместится влево, верхний конец его переместит рейку еще немного назад и подача топлива в цилиндры прекратится.
***
Регулятор насоса серии 33 (двигатель КамАЗ-740) скомпонован в развале секций насоса (внешний вид регулятора КамАЗ-740 на рисунке в верху страницы). Привод вала регулятора – от вала насоса через три шестерни, ведущая из которых соединена с валом насоса через резиновые сухари. На валу регулятора отлита крестовина 2 (рис. 3), на котором шарнирно закреплены двуплечие рычаги с грузами 3. Одни из плеч рычагов упираются в муфту 4, а она – в промежуточный рычаг 5, управляющий верхней рейкой 1. Этот рычаг установлен на одном шарнире с главным рычагом 6, на который воздействует главная пружина 9. Рейка нижнего (левого) ряда перемещается коромыслом 18 в обратную сторону. Регулятор имеет корректор и пружину обогатителя. Работа этого регулятора (рис. 3, в) аналогична работе рассмотренного выше всережимного регулятора двигателя ЯМЗ-238.
***
Особенностью двухрежимного регулятора частоты вращения (рис. 2) заключается в том, что при работе дизеля на малых частотах вращения коленчатого вала грузики 6 уравновешиваются только внешней пружиной 2. Любое изменение частоты вращения нарушит равновесие между центробежной силой грузиков 6 и усилием пружины 2, что приведет к перемещению муфты 5 и рейки 4 в сторону увеличения или уменьшения подачи топлива. В результате частота вращения будет удерживаться в заданном диапазоне.
При переходе на режим частичных нагрузок водитель, воздействуя на педаль управления подачей топлива, увеличивает частоту вращения коленчатого вала. При этом грузики расходятся и, преодолевая сопротивление внешней пружины, доводят муфту 5 до соприкосновения с внутренней пружиной 3. Однако пружина 3 имеет значительную жесткость и установлена с предварительной деформацией, поэтому в дальнейшем регулятор исключается из работы, так как грузики не могут преодолеть совместное сопротивление двух пружин, а перемещение рейки ТНВД происходит непосредственно под воздействием водителя на педаль, систему тяг, рычага 1 и рейки 4. При достижении предельной частоты вращения центробежной силы грузиков становится достаточно для преодоления сопротивления пружин, и регулятор снова включается в работу. В результате муфта 5 и рейка 4 перемещаются в сторону уменьшения цикловой подачи топлива.
На рис. 4 показан двухрежимный регулятор частоты вращения, устанавливаемый на двигателе ЗИЛ-645. Регулятор обеспечивает устойчивую работу на холостом ходу при частоте вращения коленчатого вала 600…650 об/мин.
Регулятор имеет два цилиндрических пустотелых грузика 13, установленных на крестовине 14. Внутри каждого грузика находятся пружины: наружная пружина для ограничения частоты вращения холостого хода и внутренняя для ограничения максимальной частоты вращения; тарелки 20 пружин с регулировочной гайкой.
При неподвижном коленчатом вале грузики прижаты пружинами к крестовине. Во время вращения коленчатого вала грузики под действием центробежных сил расходятся, сжимая наружную пружину. При этом угловой рычаг 10 перемещает ползун 9 углового рычага влево, который при помощи оси 8 кулисы выдвинет рейку насоса вправо, уменьшая подачу топлива и ограничивая частоту вращения коленчатого вала.
Если частота вращения коленчатого вала станет меньше 650 об/мин, регулятор начнет задвигать рейку, увеличивая подачу топлива. Таким образом, на холостом ходу ползун непрерывно перемещается, вследствие чего изменяется подача топлива и поддерживается заданная частота вращения.
При достижении частоты вращения 2850 об/мин центробежная сила грузиков начнет преодолевать сопротивление пружин, под действием системы рычагов рейка перемещается, уменьшая подачу топлива и частоту вращения коленчатого вала. На этом режиме ползун также перемещается, в результате чего частота вращения составляет 2850…2950 об/мин. Между минимальным и максимальным значениями частоты вращения изменение подачи топлива осуществляется рычагом управления подачей топлива, связанным с педалью подачи топлива.
***
Система подачи воздуха, наддув и дымовой корректор
k-a-t.ru
Всем привет, наверно многие радиолюбители, также как и я, имеют не одно хобби, а несколько. Помимо конструирования электронных устройств занимаюсь фотографией, съемкой видео на DSLR камеру, и видео монтажом. Мне, как видеографу, был необходим слайдер для видео съемки, и для начала вкратце объясню, что это такое. Ниже на фото показан фабричный слайдер.
Слайдер предназначен для видеосъемки на фотоаппараты и видеокамеры. Он являются аналогом рельсовой системы, которая используется в широкоформатном кино. С его помощью создается плавное перемещение камеры вокруг снимаемого объекта. Другим очень сильным эффектом, который можно использовать при работе со слайдером, – это возможность приблизиться или удалиться от объекта съемки. На следующем фото изображен двигатель, который выбрал для изготовления слайдера.
В качестве привода слайдера используется двигатель постоянного тока с питанием 12 вольт. В интернете была найдена схема регулятора для двигателя, который перемещает каретку слайдера. На следующем фото индикатор включения на светодиоде, тумблер, управляющий реверсом и выключатель питания.
При работе такого устройства важно, чтоб была плавная регулировка скорости, плюс легкое включение реверса двигателя. Скорость вращения вала двигателя, в случае применения нашего регулятора, плавно регулируется вращением ручки переменного резистора на 5 кОм. Возможно, не только я один из пользователей этого сайта увлекаюсь фотографией, и кто-то ещё захочет повторить это устройство, желающие могут скачать в конце статьи архив со схемой и печатной платой регулятора. На следующем рисунке приведена принципиальная схема регулятора для двигателя:
Схема очень простая и может быть легко собрана даже начинающими радиолюбителями. Из плюсов сборки этого устройства могу назвать его низкую себестоимость и возможность подогнать под нужные потребности. На рисунке приведена печатная плата регулятора:
Но область применения данного регулятора не ограничивается одними слайдерами, его легко можно применить в качестве регулятора оборотов, например бор машинки, самодельного дремеля, с питанием от 12 вольт, либо компьютерного кулера, например, размерами 80 х 80 или 120 х 120 мм. Также мною была разработана схема реверса двигателя, или говоря другими словами, быстрой смены вращения вала в другую сторону. Для этого использовал шестиконтактный тумблер на 2 положения. На следующем рисунке изображена схема его подключения:
Средние контакты тумблера, обозначенные (+) и (-) подключают к контактам на плате обозначенным М1.1 и М1.2, полярность не имеет значения. Всем известно, что компьютерные кулеры, при снижении напряжения питания и, соответственно, оборотов, издают в работе намного меньший шум. На следующем фото, транзистор КТ805АМ на радиаторе:
В схеме можно использовать почти любой транзистор средней и большой мощности n-p-n структуры. Диод также можно заменить на подходящие по току аналоги, например 1N4001, 1N4007 и другие. Выводы двигателя зашунтированы диодом в обратном включении, это было сделано для защиты транзистора в моменты включения - отключения схемы, так как двигатель у нас нагрузка индуктивная. Также, в схеме предусмотрена индикация включения слайдера на светодиоде, включенном последовательно с резистором.
При использовании двигателя большей мощности, чем изображен на фото, транзистор для улучшения охлаждения нужно прикрепить к радиатору. Фото получившейся платы приведено ниже:
Плата регулятора была изготовлена методом ЛУТ. Увидеть, что получилось в итоге, можно на видеоролике.
В скором времени, как будут приобретены недостающие части, в основном механика, приступлю к сборке устройства в корпусе. Статью прислал Алексей Cитков.
Форум
Обсудить статью РЕГУЛЯТОР ОБОРОТОВ ДВИГАТЕЛЯ С РЕВЕРСОМ
radioskot.ru
Категория:
Дизельные двигатели
Регуляторы ДВССкорость вращения коленчатого вала измеряют числом его оборотов в минуту. Каждый двигатель рассчитан на определенное число оборотов, выше или ниже которого он работать не должен.
Механизм, служащий для автоматического регулирования числа оборотов двигателя, называется регулятором. На дизелях применяются однорежимные, двухрежимные, всережимные и предельные автоматические регуляторы.
Однорежимные регуляторы устанавливаются, главным образом, на дизельгенераторах, у которых обычно надо поддерживать постоянное число оборотов при постоянных нагрузках.
Двухрежимные регуляторы обеспечивают автоматическое регулирование при двух скоростных режимах — при минимальном и максимальном числах оборотов. При промежуточных режимах управление двигателем осуществляется вручную, воздействием на рейку топливного насоса.
Всережимные регуляторы применяются на двигателях, у которых нагрузка носит переменный характер. Они автоматически поддерживают заданное число оборотов вала при изменении нагрузки.
Предельные регуляторы устанавливаются на двигателе для предупреждения возрастания числа оборотов вала сверх допустимого. В таких двигателях регулирование осуществляется вручную с помощью рейки топливного насоса.
Все основные типы современных автоматических регуляторов основаны на использовании центробежных сил, возникающих при вращении деталей. Схема действия осевого центробежного регулятора показана на рис. 1. Вертикальный валик регулятора приводится во вращение от вала двигателя посредством шестеренчатой передачи.
На валике закреплена траверса с шарнирно закрепленными на ее концах грузами, имеющими рычаги. По мере возрастания числа оборотов двигателя грузы регулятора начинают расходиться, как показано стрелками, воздействуя рычагами на муфту, а последняя с помощью тяг прикрывает дроссельную заслонку (в карбюраторных двигателях) или уменьшает подачу топлива (в дизелях). При уменьшении числа оборотов пружина, воздействуя на муфту, перемещает ее вверх, устанавливая нормальный режим работы двигателя.
Он обеспечивает устойчивую работу двигателя при малых нагрузках и поддерживает в известных пределах заданное число оборотов при изменении нагрузки. Когда число оборотов вала двигателя при уменьшении нагрузки начнет увеличиваться, регулятор, воздействуя на рейку, повернет плунжеры в гильзах в сторону уменьшения подачи топлива. Мощность двигателя уменьшится в соответствии с изменением нагрузки, и увеличение числа оборотов прекратится. Возрастание нагрузки приведет к уменьшению числа оборотов вала двигателя; при этом регулятор переместит рейку в обратном направлении, увеличит подачу топлива и предотвратит дальнейшее уменьшение числа оборотов.
Регулятор крепится к топливному насосу и составляет с ним один узел. Шаровые грузы регулятора (шесть штук) располагаются в радиальных прорезях крестовины, которая сидит на коническом конце кулачкового вала топливного насоса. Со стороны насоса шары упираются в коническую стальную шайбу, которая сидит в выточке корпуса регулятора, а с противоположной стороны — в плоскую шайбу, которая может свободно вращаться и передвигаться по оси.
Осевое перемещение плоской шайбы, вызываемое грузами при увеличении числа оборотов и, следовательно, увеличении их центробежной силы, передается через бронзовую втулку и шарикоподшипник на рычаг. Поворот рычага вокруг его неподвижной оси связан с растя-рением двух пружин регулятора и одновременным передвижением рейки насоса в сторону уменьшения подачи топлива плунжерами.
Рис. 1. Схема действия осевого центробежного регулятора
Пружины своими концами закреплены на рычаге, сидящем на одном валике с наружным рычагом регулятора. Перестановкой наружного рычага задается величина натяжения пружин регулятора, что, в свою очередь, определяет число оборотов двигателя. Смазка регулятора производится разбрызгиванием.
На рис. 3 изображен всережимный центробежный регулятор дизеля 2ДСП 16,5/20. Конструктивной его особенностью является наличие одной пружины, позволяющей изменять число оборотов от 350 до 650 об/мин путем ручного воздействия на нее маховичком с поста управления двигателем.
Вал регулятора составляет одно целое с валом масляного насоса и приводится в движение ведомой шестерней от шестерни, посаженной на коленчатый вал. На шестерне шарнирно закреплены два груза, в прорезях которых установлены шариковые подшипники. В прорези заходят, опираясь на ролики, концы подвижной вильчатой втулки, нагруженной сверху пружиной, опирающейся на тарелку пружины.
Подвижная вильчатая втулка связана с грузами и пружиной, а также с механизмом регулирования топливного насоса посредством вилки двуплечего рычага, входящего в кольцевой паз. Вращаемая грузами, она может перемещаться вдоль вала под влиянием центробежной силы грузов и упругости пружины, воздействуя на механизм регулирования топливного насоса. При увеличении числа оборотов грузы регулятора расходятся, поднимают втулку с помощью рейки емого топлива.
Рис. 2. Центробежный всережимный регулятор дизеля ЗД6: 1 — крышка; 2 — корпус; 3 — рычаг; 4 — ролик; 5 — маслоотражатель; 6 — шарикоподшипник; 7 — тарелка регулятора; 8 — шарик; 9 — крестовина; 10 — упорный диск
Рис. 3. Центробежный всережимный регулятор дизеля 2ДСП16,5/20: 1 —вал; 2—шестерня привода; 3 — ось груза; 4 — грузы; 5 — ось ролика; 6 — ролик; 7 — вильчатая втулка; 8 — пружина; 9 — тарелка пружины; 10 — упор; 11— регулировочный винт; 12 — маховичок
Читать далее: Топливные фильтры ДВС
Категория: - Дизельные двигатели
stroy-technics.ru
Читать все новости ➔
Большинство мировых производителей профессиональных угловых шлифовальных машинок (болгарок) таких как Bosch, Metabo, Makita, DeWalt и других используют два типа регуляторов оборотов с обратной связью.
С помощью таходатчика
На конце якоря мотора установлен кольцевой магнит с прорезью или срезом, а на плате регулятора установлена катушка индуктивности или датчик Холла. Такой регулятор обеспечивает максимально точную стабилизацию оборотов двигателя при изменении нагрузки.
На основе измерения падения напряжения на электродвигателе
В этом случае измеряется падение напряжения на двигателе, и схема управления изменяет длительность открытия силового ключа. Такой регулятор, если он правильно настроен, обеспечивает также хорошую стабилизацию оборотов двигателя при изменении нагрузки.
Все промышленные регуляторы, собранные на микроконтроллерах, полностью залитые эпоксидной смолой и в итоге они не пригодны для ремонта, а цена за новый регулятор достаточно большая, и составляет примерно 20-30% от стоимости самого электроинструмента.
В поиске специализированных микросхем для решения данной задачи мне приглянулись регуляторы Phase Control фирмы Atmel. Например, простой вариант регулятора на микросхеме U2008B. Рассмотрим схему регулятора на ИМС U2008B приведенную на рис.1. В данном регуляторе можно использовать обратную связь по току или режим плавного пуска, однако в нём нет защиты от перегрузки. Если использовать плавный пуск тогда нужны только элементы С1, R4 и перемычку Х1 не ставим, а если нужна обратную связь - тогда все наоборот.
Рис. 1
Так как ИMC U2008B не может одновременно работать в режиме плавного пуска и обратной связи, она не подходит для нашей задачи. На рис.2 показана схема регулятора на микросхеме U2010B, у которой есть обратная связь по току, защита от перегрузки и плавный старт одновременно. Светодиод D2 индицирует перегрузку электродвигателя. Переключатель SA1 «Mode» обеспечивает возможность выбора действий при перегрузке на двигателе в трех режимах: Положение А — индикация перегрузки и последующий сброс на минимальные обороты. Для восстановления рабочих оборотов, необходимо выключить инструмент.
Рис. 2
Положение В — индикация перегрузки, последующий сброс на минимальные обороты, после снятие нагрузки с инструмента, восстанавливаются установленные обороты, т.е. происходит авто старт.
Положение С — только индикация перегрузки, без остановки двигателя и защиты.
Подбором ёмкости конденсатора СЗ от 1 до 10 мкФ можно изменять длительность и плавность пуска двигателя.
Настройка регулятора.
В техническом описании к ИМС U2010B в схеме подключения обозначено только падение напряжение на R6 в 250 мВ и не указано, каким именно должен быть этот резистор.
Рассчитать сопротивление R6 можно исходя из мощности двигателя по формуле:
R6 = UR6/(Рдвиг/Uпит),
где:UR6 - напряжение на R6 (250 мВ),Рдвиг - мощность двигателя,UПИТ - напряжение питания сети.
Например, для двигателя мощностью 750 Вт рассчитываем: R6= 0,25/(750/220) = 0,07 Ом.
Номиналы резисторов R6 и R11, в зависимости от мощности электродвигателя, приведены в таблице.
R11 Мощность, Вт | R6*, Ом | Нихром, D 1 мм | Нихром, D 0,8 мм | R11*, кОм |
250 | 0,22 | 30 | 19 | 180-270 |
300 | 0,18 | 27 | 17 | 180-220 |
550 | 0,1 | 25 | 16 | 180 |
700 | 0,08 | 20 | 14 | 160 |
850 | 0,07 | 17 | 11 | 150 |
1000 | 0,055 | 15 | 10 | 100-120 |
1200 | 0,047 | 13 | 9 | 90-110 |
1500 | 0,04 | 12 | 8 | 80-100 |
1800 | 0,03 | 10 | 7 | 70-100 |
2000 | 0,028 | 8 | 6 | 65-90 |
2200 | 0,025 | 7 | 5 | 65-90 |
Главное правильно подбирать резистор R6 под мощность двигателя. Выше представленная формула правильная, но на практике может потребоваться некоторая коррекция по поведению двигателя под нагрузкой. Если резистор великоват, то двигатель довольно резко стартует (т.е. происходит большая компенсация нагрузки, чем надо), а потом отключается, а если резистор будет мал, то не будет обеспечиваться компенсация нагрузки.
В Datasheet к ИМС U2010B ёмкость конденсатора С2 указана 0,01 мкФ, но она рассчитана на 60-герцовую сеть, и при использования ИМС в сети 50 Гц за период выдавалось несколько импульсов управления. В итоге, обороты электродвигателя практически не регулировались и двигатель работал на полную мощность. Для сети с частотой 50 Гц нужно ёмкость конденсатора С2 увеличить до 0,015 мкФ.
Первый пуск
Переменный резистор Р1 (регулятор оборотов) нужно установить на минимальные обороты двигателя, по схеме движок потенциометра должен быть повернут в сторону резистора R13. Затем подстроенный резистор R10 (компенсация нагрузки) установить в среднее положение, а на место R11 (перегрузка) временно подпаять постоянный резистор сопротивлением 62 кОм. Потом включить регулятор в сеть 220 В / 50 Гц и подстроенным резистором R8 выставить самые минимальные обороты двигателя.
Нужно сделать так, чтобы при включении двигатель начинал вращаться на минимальных оборотах. Если настроить устройство так, чтобы совсем не было напряжения на электродвигателе, то тогда становится слишком нелинейная зависимость управления резистором Р1 — при его повороте сначала двигатель не крутится, а потом резко стартует без плавного пуска.
Далее нужно подключить вольтметр с диапазоном измерения 300 В к выводам двигателя, включить двигатель и на средних оборотах, зажимая вал или привод двигателя через тряпку рукой, выставить такое положение резистора R10, чтобы обороты электродвигателя не менялись при изменении нагрузки на его валу. Одновременно с этим нужно смотреть на вольтметр, подключенный к двигателю. При увеличении нагрузки на валу электродвигателя регулятор прибавляет напряжение, и двигатель крутится с одинаковыми оборотами, независимо от нагрузки.
И вот в последнюю очередь настраивается резистор R11 (перегрузка). Постоянный резистор номиналом 62 кОм выпаиваем и вместо него ставим подстроенный или переменный резистор номиналом 220 кОм. На оборотах двигателя чуть больше минимальных, сильно зажимая вал или привод двигателя, стараемся почти заклинить вал двигателя, и по степенно изменяем величину резистора R11, пока не начнет срабатывать защита, и не станет светиться VD2. Затем измерьте сопротивление переменного резистора тестером и запаяйте в устройство соответствующий резистор. В таблице указано приблизительные значения сопротивления R11,
Детали регулятора
Купить микросхемы U2008B, U2010B можно через сайт AliExpress (www.ru.aliexpress.com) в Китае с бесплатной доставкой на Украину, а далее посылка бесплатно отправляется через «Укрпочту» в любое почтовое отделение на территории Украины. Доставка на Украину производится на протяжении 25-40 дней. Например, цена 1 шт. микросхемы U2010B зависит от корпуса исполнения, примерно 0,9 USD в корпусе S016 и 1,2 USD в корпусе DIP16, а симистора ВТА24-800 - 0,4 USD.
Печатная плата устройства изготовлена из одностороннего фольгированного стеклотекстолита толщиной 1 мм.
Симистор VS1 лучше использовать с изолированной площадкой под радиатор серии ВТА, например BTA12-800, BTA16-800, BTA24-800, или применить другие. При мощности двигателя до 400 Вт, VS1 можно не устанавливать на радиатор. Все SMD детали типоразмера 1206, их можно запаять обычным паяльником с тонким жалом.
Подстроенные резисторы - типа СП3-19а или другой малогабаритный. Переменный резистор Р1 любой на 47-50 кОм, можно малогабаритные СП4-1, СП3-9. Резистор R1 мощностью не менее 2 Вт, например, типа MЛT-2 или др. Резистор R6 изготовлен из нихромовой проволоки диаметром 0,7 - 1 мм. Автор использовал нихромовый провод из старого блока сопротивлений для зажигания автомобилей ГАЗ с маркировкой 1402.3729. Все электролитические конденсаторы на напряжение не менее 50 В. Диод D1 - типа 1N4007 или КД208, также можно использовать диод в SMD исполнении. Светодиод D2 любой малогабаритний диаметром 3-5 мм красного света. Переключатель SA1 любой малогабаритный 3-х позиционный. Если нужен только один режим перегрузки, тогда вместо него можно установить перемычку.
Литература:
Печатная плата для схемы показанной на рисунке 2:
Чтобы увидеть ссылку войдите или зарегистрируйтесь
Автор: Валентин Шипляк, г. Ужгород
meandr.org
Специалистам, работающим с электрическими инструментами, приводами для швейных машин, а также других приборов, задействованных в различных производственных и бытовых сферах, часто приходится сталкиваться с необходимостью регулировки оборотов.Проводить такую процедуру через понижение питания — не лучшая идея. При этом теряется мощность электродвигателя, он уменьшает скорость, в итоге останавливается.
Схема двигателя с внутренним ротором.
Поэтому лучшим вариантом для осуществления управления оборотами считается регулирование напряжения и оборотной связи током нагрузки в двигателе.
Обычно в электрических приборах и инструментах применимы коллекторные двигатели универсального типа на последовательном возбуждении. Их работа отлично зарекомендовала себя при постоянном и переменном токе. К особенностям этого регулятора электродвигателя относят возникновение импульсов самоиндукции противоэлектродвижущей силы. Это происходит во время размыкания якорных обмоток, расположенных на ламелях коллектора, в случае их коммутации. Эти импульсы такие же, как питающие по амплитуде, а на фазе совершенно противоположны.
Направляющий угол, на который смещается противоэлектродвижущая сила, определен наружными свойствами электродвигателя, его нагрузкой и прочим. Негативное влияние состоит в следующем:
Типовая схема регулятора оборотов дрели.
Определенное количество противоэлектродвижущей силы погашается конденсаторами, шунтирующими узел.
Процессы, которые происходят при режиме регулятора с оборотной связью, можно представить таким образом. Опорное движение, определяющее скорость оборотов электродвигателя, строго формируется посредством резистивно-емкостной цепи.
Когда нагрузка увеличивается, крутящий момент понижается, а вместе с ним падает скорость оборотов. Уменьшается возникшая противоэлектродвижущая сила, которая была направлена между катодом и заправляющим электродом.
Это всегда сводится к возрастанию напряжения на тиристоре. Он запускается на уровне угла осечки и подает большее количество тока на электродвигатель, одновременно компенсируя понижение скорости оборотов.
Таким образом, напряжение по импульсу становится сбалансированным, что может сделать регулятор оборотов электродвигателя. С помощью нужного переключателя можно подать напряжение, не проводя дополнительную регулировку. Правильно подобранный тиристор с наименьшим током включения лучше стабилизирует скорость оборотов.
Вернуться к оглавлению
Описанный выше принцип действует также для двигателей с большими мощностями. Разница лишь в том, что установка транзистора производится на радиатор, общая площадь которого от 25 см² и более.
На оборудование с малыми мощностями применимо питание, уровень постоянного тока которого составляет 12 В. Это же действует и для получения низкой скорости. При воздействии высокого напряжения рабочая микросхема запитывается параметрическим стабилизатором, у которого максимум составляет 15 В. Причем скорость регулируется изменением усредненных значений импульсов, подаваемых на оборудование.
В случае если нужно отрегулировать обороты электродвигателя, на валу которого высокий крутящий момент, понадобится мощность на максимуме. Гасящий резистор и диоды обеспечивают запуск устройства питанием. Заряд конденсатора от источника осуществляет пофазную задержку открытия тиристоров.
Конденсатор заряжается до уровня, на котором срабатывает транзистор, и запускается тиристор с положительным напряжением на аноде. После разрядки конденсатора происходит выключение однопереходного транзистора. Тип электродвигателя и предполагаемая глубина обратной связи определяют номинал резистора.
moiinstrumenty.ru