ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Система охлаждения для охлаждения двигателя внутреннего сгорания. Охладитель для двигателя


Система охлаждения для охлаждения двигателя внутреннего сгорания

Изобретение относится к системе охлаждения для охлаждения двигателя (1) внутреннего сгорания. Система содержит управляющую линию (12), которая имеет впуск (12a), чтобы принимать хладагент из линии (3) системы охлаждения, и термостат (6), содержащий датчик (6b), выполненный с возможностью отслеживания температуры хладагента в управляющей линии (12), и клапан (6a). Система охлаждения содержит тепловое устройство (13, 26, 31) в контакте с хладагентом в управляющей линии (12) в местоположении выше по потоку датчика (6b) и блок (15) управления, выполненный с возможностью оценивания, когда уместно изменять рабочую температуру хладагента в системе охлаждения, и, в таких случаях, приведения в действие теплового устройства (13, 26, 31), чтобы оно нагревало или охлаждало хладагент в управляющей линии (12). Изобретение обеспечивает повышение надежности управления рабочей температурой хладагента. 8 з.п. ф-лы, 3 ил.

 

Область и уровень техники

Настоящее изобретение относится к системе охлаждения для охлаждения двигателя внутреннего сгорания согласно отличительной части пункта 1 формулы изобретения.

Системы охлаждения для охлаждения двигателей внутреннего сгорания транспортных средств обычно содержат термостат, который регулирует температуру хладагента в системе охлаждения. Термостат содержит датчик и клапан. Датчик может содержать восковое вещество, которое меняет фазу при регулирующей температуре термостата. Датчик вынуждает клапан направлять хладагент к двигателю без охлаждения, когда хладагент имеет более низкую температуру, чем регулирующая температура термостата. Когда хладагент имеет более высокую температуру, чем регулирующая температура термостата, датчик вынуждает клапан направлять хладагент в радиатор для охлаждения. Такие термостаты являются недорогими и функционально надежными.

Термостаты поддерживают существенно постоянную рабочую температуру хладагента в системе охлаждения. Однако не всегда желательно поддерживать постоянную рабочую температуру хладагента в системе охлаждения. Известным способом изменения рабочей температуры хладагента является обеспечение датчика электрическим нагревательным элементом. Такой нагревательный элемент может использоваться, чтобы вынудить восковое вещество в датчике нагреться и изменить фазу, когда хладагент имеет более низкую температуру, чем регулирующая температура термостата. Рабочая температура хладагента в системе охлаждения может меняться посредством изменения степени нагревания воскового вещества.

В публикации SE 532354 раскрыт термостат для системы охлаждения двигателя внутреннего сгорания. Термостат содержит клапан, расположенный в линии, которая принимает теплый хладагент из двигателя, и датчик, расположенный в управляющей линии в системе охлаждения, где он отслеживает температуру хладагента, который подается к двигателю. В данном случае температура хладагента, который подается в двигатель, служит в качестве рабочей температуры. Эта температура во многих случаях является более важным параметром управления, чем температура теплого хладагента, покидающего двигатель.

Сущность изобретения

Задачей настоящего изобретения является создание охлаждающей системы с циркулирующим хладагентом для охлаждения двигателя внутреннего сгорания, посредством которого можно управлять рабочей температурой хладагента простым и надежным образом.

Эта задача решается с помощью системы охлаждения типа, упомянутого во введении, которая отличается признаками, обозначенными в отличительной части пункта 1 формулы изобретения. Посредством управляющей линии можно подавать хладагент к датчику термостата по существу из любой области системы охлаждения. Рабочая температура системы охлаждения в этой области системы охлаждения, таким образом, служит в качестве параметра управления для термостата. Система охлаждения содержит тепловое устройство, которое может нагревать или охлаждать хладагент в управляющей линии в местоположении выше по потоку датчика в управляющей линии. Когда тепловое устройство не приведено в действие, датчик отслеживает рабочую температуру хладагента рядом со впуском управляющей линии. В этом случае термостат поддерживает постоянную рабочую температуру хладагента, которая соответствует регулирующей температуре термостата.

Когда тепловое устройство приводится в действие и нагревает хладагент в управляющей линии, хладагент принимает рядом с датчиком температуру, соответствующую рабочей температуре хладагента плюс повышение температуры, которое тепловое устройство придает охлаждающему средству в устройстве управляющей линии. Хладагент рядом с датчиком в управляющей линии, таким образом, принимает изначально более высокую температуру, чем регулирующая температура. Термостат открывается, тем самым направляя по существу весь хладагент в радиатор для охлаждения. Это охлаждение приводит к падению рабочей температуры хладагента. Рабочая температура хладагента падает до значения, которое в соединении с повышением температуры тепловым устройством приводит к тому, что хладагент в управляющей линии принимает температуру, соответствующую регулирующей температуре термостата. В этом случае хладагент в системе охлаждения, таким образом, принимает более низкую рабочую температуру. Когда тепловое устройство приводится в действие и охлаждает хладагент в управляющей линии, хладагент принимает рядом с датчиком температуру, соответствующую рабочей температуре хладагента минус снижение температуры, которое тепловое устройство придает охлаждающему средству в управляющей линии. Когда это происходит, датчик обнаруживает, что хладагент в управляющей линии имеет более низкую температуру, чем регулирующая температура. Термостат, следовательно, направляет по существу весь хладагент к двигателю без охлаждения. Рабочая температура хладагента повышается до значения, которое в соединении с повышением температуры тепловым устройством приводит к тому, что хладагент в управляющей линии принимает температуру, соответствующую рабочей температуре термостата. В этом случае хладагент в системе охлаждения, таким образом, принимает более высокую рабочую температуру. Нагревание или охлаждение хладагента в управляющей линии позволяет рабочей температуре хладагента в системе охлаждения подвергаться соответствующему температурному изменению, хотя и в противоположном направлении.

Согласно варианту осуществления изобретения тепловое устройство содержит электрическое нагревательное устройство, которое в активном состоянии выполнено с возможностью нагревания хладагента в управляющей линии с тем, чтобы он принимал более высокую температуру, чем на впуске управляющей линии. Электрическое нагревательное устройство может иметь относительно простую конфигурацию в форме электрического нагревательного проводника. С помощью электрического нагревательного устройства также просто поднять температуру в управляющей линии с хорошей точностью. В этом случае используется термостат, который имеет регулирующую температуру, соответствующую максимальной рабочей температуре хладагента. Когда электрическое нагревательное устройство приводится в действие, хладагент в управляющей линии нагревается на число градусов, схожее с тем числом градусов, на которое понижается рабочая температура в системе охлаждения.

Согласно альтернативному варианту осуществления тепловое устройство содержит в управляющей линии теплообменник, который в активном состоянии выполнен с возможностью прохождения через него среды, которая имеет более высокую или более низкую температуру, чем регулирующая температура термостата. Среда, которая имеет более высокую температуру, чем регулирующая температура термостата, может являться выхлопными газами, моторным маслом, маслом замедлителя или какой-либо другой теплой средой, присутствующей в транспортном средстве. Среда с более низкой температурой, чем регулирующая температура термостата, может являться воздухом, который с преимуществом имеет температуру, соответствующую температуре окружения.

Согласно дополнительному альтернативному варианту осуществления тепловое устройство содержит линию хладагента, которая в активном состоянии выполнена с возможностью подачи хладагента, который имеет более высокую или более низкую температуру, чем регулирующая температура термостата, в управляющую линию в местоположении выше по потоку относительно датчика. Теплый хладагент с преимуществом забирается из области системы охлаждения, в которой хладагент имеет самую высокую температуру. Хладагент имеет самую высокую температуру после того, как он охладил двигатель и, если это применимо, какой-либо дополнительный компонент системы охлаждения. Холодное хладагент с преимуществом забирается из области системы охлаждения, в которой хладагент имеет самую низкую температуру. Хладагент имеет самую низкую температуру в системе охлаждения после того, как оно было охлаждено в радиаторе.

Согласно другому предпочтительному варианту осуществления изобретения блок управления выполнен с возможностью управления приведением в действие теплового устройства на основании информации от температурного датчика, который отслеживает температуру хладагента в местоположении ниже по потоку теплового устройства в управляющей линии. Посредством такого датчика узел управления принимает прямую информацию о том, на сколько градусов тепловое устройство нагревает или охлаждает хладагент в управляющей линии. На основании этой информации и регулирующей температуры термостата рабочая температура хладагента может управляться с хорошей точностью.

Согласно другому предпочтительному варианту осуществления изобретения блок управления выполнен с возможностью приема информации о нагрузке на двигатель и приведения в действие теплового устройства с целью придания охлаждающему средству в системе охлаждения рабочей температуры, которая изменяется с изменениями нагрузки двигателя. Обычно уместно придавать охлаждающему средству в системе охлаждения высокую рабочую температуру, когда нагрузка двигателя низкая, и низкую рабочую температуру, когда нагрузка двигателя высокая. Постепенная или пошаговая регулировка температуры хладагента может применяться согласно нагрузке двигателя. Хладагент в системе охлаждения может быть предназначен, чтобы охлаждать по меньшей мере один дополнительный компонент, отличный от двигателя, и блок управления может быть выполнен с возможностью приема информации, которая заранее указывает, когда упомянутый компонент нуждается в охлаждении посредством системы охлаждения, и, когда случай именно такой, приведения в действие теплового устройства с тем, чтобы рабочая температура хладагента падала до того, как начинается охлаждение упомянутого компонента. Некоторые компоненты, такие как гидравлический замедлитель, требуют большую охлаждающую способность, когда они приводятся в действие. Индикатор позиционирования, такой как GPS (глобальная система позиционирования), может использоваться, чтобы определять местоположение двигателя, и, следовательно, приближается ли транспортное средство к спуску, на котором замедлитель вероятнее всего будет приведен в действие.

Согласно другому предпочтительному варианту осуществления изобретения впуск управляющей линии расположен в линии, которая подает хладагент к двигателю. В этом случае, таким образом, в управляющую линию подается хладагент, который будет иметь ту же температуру, как и хладагент, который подается в двигатель. Температура входа хладагента в двигатель является очень хорошим параметром управления для термостата.

Согласно другому предпочтительному варианту осуществления упомянутый датчик содержит оболочку, содержащую вещество, которое приспособлено для изменения фазы и, следовательно, объема при регулирующей температуре термостата. Такое вещество с преимуществом является восковым веществом, которое меняет фазу из твердого состояния в жидкое состояние при регулирующей температуре термостата. Термостат может содержать механизм передачи движения, выполненный с возможностью передачи движения от датчика к клапану с тем, чтобы последний перемещался между первым положением и вторым положением, когда упомянутое вещество меняет фазу. Механизм передачи движения может содержать стержень или подобное. Стержень может тянутся через по меньшей мере одну стенку, которая разделяет управляющую линию, где расположен датчик, от линии системы охлаждения, в которой расположен клапан.

Краткое описание чертежей

Предпочтительные варианты осуществления изобретения описаны ниже посредством примеров со ссылкой на прилагаемые чертежи, на которых:

Фиг. 1 - система охлаждения двигателя внутреннего сгорания согласно первому варианту осуществления настоящего изобретения.

Фиг. 2 - система охлаждения двигателя внутреннего сгорания согласно второму варианту осуществления настоящего изобретения.

Фиг. 3 - система охлаждения двигателя внутреннего сгорания согласно третьему варианту осуществления настоящего изобретения.

Подробное описание предпочтительных вариантов осуществления изобретения

Фиг. 1 изображает систему охлаждения для охлаждения двигателя 1 внутреннего сгорания, который приводит в движение транспортное средство. Насос 2 хладагента осуществляет циркуляцию хладагента в системе охлаждения. Насос 2 хладагента расположен в линии 3 впуска в двигатель 1. После циркуляции через двигатель хладагент подается в масляный радиатор 4, чтобы охладить масло, которое используется в гидравлическом замедлителе. Затем охладитель подается через линию 5 к термостату 6. Термостат 6 направляет хладагент в линии 5 к двигателю через обратную линию 7 и линию 3 впуска, когда хладагент имеет более низкую температуру, чем регулирующая температура термостата. Когда хладагент имеет более высокую температуру, чем регулирующая температура термостата, по меньшей мере часть его подается через линию 8 в радиатор 9, который может быть расположен в передней части транспортного средства. Вентилятор 10 радиатора пропускает поток охлаждающего воздуха через радиатор 9 с тем, чтобы охладитель подвергался эффективному охлаждению в радиаторе 9. После того, как охладитель был охлажден в радиаторе 9, он подается назад к двигателю 1 через обратную линию 11 и линию 3 впуска.

Система охлаждения содержит управляющую линию 12, которая принимает через впуск 12a небольшую часть потока хладагента в линии 3 впуска. Управляющая линия 12 подает охладитель к термостату 6. Хладагент в управляющей линии 12 подается назад в обратную линию 7 через выпуск 12b. Хладагент, подаваемый в управляющую линию 12, таким образом, будет иметь ту же температуру, как и хладагент, который охлаждает двигатель. Температура хладагента, который подается в двигатель, здесь указывается ссылкой как рабочая температура системы охлаждения. Эта температура во многих случаях является лучшим параметром управления, чем самая высокая температура, которую принимает хладагент в системе в линии 5 после того, как он охладил двигатель и масло замедлителя в масляном радиаторе 4. Управляющая линия 12 содержит тепловое устройство, которое может нагревать и/или охлаждать хладагент в управляющей линии перед тем, как он достигнет термостата 6. Тепловым устройством в варианте осуществления на фиг. 1 является схематически изображенное электрическое нагревательное устройство 13. Датчик 14 отслеживает температуру хладагента в местоположении ниже по потоку относительно электрического нагревательного устройства 13. Блок 15 управления выполнен с возможностью управления приведением в действие электрического нагревательного устройства 13 на основании информации от датчика 14, информации 16, которая относится к нагрузке на двигатель, и информации от индикатора 17 положения, возможно GPS, который отслеживает местоположение транспортного средства.

Во время функционирования двигателя 1 внутреннего сгорания насос 2 хладагента осуществляет циркуляцию хладагента через систему охлаждения. Для оптимального охлаждения двигателя хладагент должен иметь подходящую рабочую температуру. Небольшая часть потока хладагента в линии 3 впуска, таким образом, подается не к двигателю, но в управляющую линию 12. Термостат 6 отслеживает температуру хладагента в управляющей линии 12 ниже по потоку относительно электрического нагревательного устройства 13. Если он обнаруживает, что хладагент в управляющей линии 12 имеет более низкую температуру, чем регулирующая температура, термостат направляет хладагент в линию 5 к двигателю без охлаждения. Если он обнаруживает, что хладагент в управляющей линии имеет более высокую температуру, чем регулирующая температура, термостат направляет хладагент из линии 5 в радиатор 9 для охлаждения. Традиционный термостат 6 будет пытаться придать охлаждающему средству постоянную рабочую температуру, соответствующую регулирующей температуре. Однако поддержание постоянной рабочей температуры хладагента не является желательным во всех рабочих ситуациях. Например, когда двигатель находится под высокой нагрузкой, желательно, чтобы хладагент имел более низкую рабочую температуру, чем когда имеется небольшая нагрузка на двигатель. Для транспортных средств, оборудованных компонентом, который временами налагает высокую нагрузку на систему охлаждения, может быть уместным понизить рабочую температуру хладагента перед приведением компонента в действие. Такой компонент может являться гидравлическим замедлителем.

Блок 15 управления по существу непрерывно принимает информацию 16 о нагрузке на двигатель. Он также по существу непрерывно принимает информацию от индикатора 17 положения о местоположении двигателя. Блок 15 управления может иметь сохраненную информацию, такую как карты или подобное, которую он может использовать в соединении с текущим местоположением транспортного средства, чтобы предсказывать, приближается ли транспортное средство к спуску, на котором гидравлический замедлитель вероятнее всего будет приведен в действие. Так как грузовые транспортные средства часто следуют по предопределенным маршрутам, блок 15 управления может, в качестве альтернативы, или в комбинации, иметь сохраненную информацию, которая предсказывает точки, в которых гидравлический замедлитель будет активирован.

В этом случае используется термостат 6, который имеет регулирующую температуру, соответствующую подходящей рабочей температуре хладагента, когда имеется небольшая нагрузка на двигатель, и/или когда гидравлический замедлитель не приведен в действие. Когда он принимает информацию о том, что двигатель находится под высокой нагрузкой, или что транспортное средство приближается к спуску, блок 15 управления приводит в действие электрическое нагревательное устройство 13, которое вслед за этим нагревает хладагент в управляющей линии 12. Хладагент, таким образом, принимает в управляющей линии более высокую температуру, чем его рабочая температура в линии 3 впуска. Нагретый хладагент в управляющей линии 12, таким образом, принимает изначально более высокую температуру, чем регулирующая температура. Термостат 6, следовательно, переводится в открытое положение, за счет чего весь хладагент в линии 5 направляется в радиатор 9. Результат состоит в том, что рабочая температура охладителя снижается, и, следовательно, также температура, которую имеет хладагент, когда он подается во впуск 12a управляющей линии. Когда рабочая температура упала на то же количество градусов, на которое электрическое нагревательное устройство 13 нагревает хладагент в управляющей линии 12, хладагент в управляющей линии вновь принимает температуру, соответствующую регулирующей температуре термостата. Пока электрическое нагревательное устройство 13 приведено в действие, хладагент, таким образом, будет иметь более низкую рабочую температуру, чем регулирующая температура. Чем больше количество градусов, на которое электрическое нагревательное устройство 13 нагревает хладагент в управляющей линии, тем сильнее может быть снижена рабочая температура, приводя к более эффективному охлаждению двигателя и масла замедлителя в масляном радиаторе 4. Когда блок 15 управления выключает электрическое нагревательное устройство 13, хладагент в управляющей линии изначально принимает рабочую температуру хладагента. Термостат 6, следовательно, переводится в закрытое положение, за счет чего он направляет по существу весь хладагент в линии 5 в линию 7 и двигатель без охлаждения в радиаторе 9. Результат состоит в том, что рабочая температура хладагента поднимается, пока не достигнет регулирующей температуры термостата.

Фиг. 2 более подробно показывает, как может быть сконфигурирован термостат 6. Термостат расположен в оболочке, которая имеет соединения с четырьмя линиями 5, 7, 8 и 12. Термостат содержит клапан 6a, прикрепленный к стержню 19, который имеет часть верхнего конца, прикрепленную внутри датчика 6b. Датчик расположен в подходящем местоположении в управляющей линии 12 с тем, чтобы хладагент имел хороший контакт с датчиком. Датчик имеет оболочку 18, изготовленную из тонкостенного жесткого материала, который с преимуществом является металлическим материалом с хорошими свойствами тепловой проводимости. Оболочка имеет внутреннее пространство, окружающее восковое вещество, которое имеет свойство изменения фазы из твердого состояния в жидкое состояние при регулирующей температуре термостата. Когда восковое вещество находится в жидком состоянии, его объем больше, чем в твердом состоянии.

Оболочка 18 имеет жесткие стенки, которые окружают восковое вещество во всех направлениях кроме одного, которое в данном случае является направлением вниз. Когда восковое вещество тает и увеличивается в объеме, оно может, следовательно, расширяться только вниз внутри оболочки. Когда восковое вещество увеличивается в объеме, стержень 19 перемещается вниз. Преобразование изменения объема воскового вещества внутри оболочки 18 в линейное движение стержня 19 является традиционным предшествующим уровнем техники и может быть выполнено множеством различных способов. Клапан 6a содержит возвратную пружину 20, выполненную с возможностью перемещения стержня 19 и клапана 6a вверх, когда восковое вещество затвердевает и вслед за этим занимает меньший объем внутри оболочки 18. Возвратная пружина 20 прикладывает к стержню 19 упругую силу, недостаточно сильную, чтобы препятствовать движению вниз стержня 19 и клапана 6a, когда восковое вещество тает и расширяется внутри оболочки 18. Клапан 6a содержит первую тарелку 21 клапана, выполненную с возможностью закрывания отверстия 22 между линией 5 и линией 8, когда клапан 6a находится в своем верхнем первом положении, как на фиг. 2. Клапан 6a также содержит вторую тарелку 23 клапана, выполненную с возможностью закрывания отверстия 24 между линией 5 и обратной линией 7, когда клапан 6a находится в нижнем втором положении. Вторая тарелка 23 клапана растягивается относительно стержня 19 посредством пружины 25.

В данном случае управляющая линия 12 оборудована тепловым устройством в форме теплообменника 26. Теплообменник 26 содержит петлеобразную трубу, соединенную с первым источником 27 среды, содержащим среду при более низкой температуре, чем регулирующая температура термостата, и вторым источником 28 среды, содержащем среду при более высокой температуре, чем регулирующая температура термостата. Первая среда может являться воздухом при температуре окружения, а вторая среда может являться теплыми выхлопными газами из двигателя. Блок 15 управления в этом случае может направлять воздух из первого источника 27 среды к теплообменнику 26 посредством открывания клапана 29 и теплые выхлопные газы из второго источника 28 среды к теплообменнику 26 посредством открывания клапана 30. Блок 15 управления здесь также принимает информацию 16, связанную с нагрузкой на двигатель, и информацию от индикатора положения 17, например GPS, о местоположении транспортного средства.

Во время функционирования двигателя насос 2 хладагента осуществляет циркуляцию хладагента через систему охлаждения. Небольшая часть потока хладагента в линии 3 впуска, таким образом, подается не к двигателю, но в управляющую линию 12. Хладагент, подаваемый в управляющую линию, будет иметь ту же температуру, как и хладагент, который подается в двигатель. Хладагент в управляющей линии 12, таким образом, течет в контакте с датчиком 6b термостата. Когда хладагент в управляющей линии 12 имеет более низкую температуру, чем регулирующая температура термостата, восковое вещество внутри оболочки 18 будет в твердом состоянии и, следовательно, будет занимать минимальный объем внутри оболочки. Возвратная пружина 20, следовательно, будет удерживать стержень 19 и клапан 6a в верхнем положении. В этой ситуации первая тарелка 21 клапана закрывает отверстие 22, в то время как вторая тарелка 23 клапана освобождает отверстие 24. Хладагент из двигателя и линии 5 в этом случае подается в обратную линию 7. После этого оно подается в линию 3 впуска и двигатель. В этом случае хладагент, таким образом, не подвергается охлаждению в радиаторе 9.

Когда хладагент подается к двигателю без охлаждения в радиаторе 9, его температура в системе охлаждения возрастает. Когда температура хладагента в управляющей линии 12 поднимается выше регулирующей температуры, восковое вещество начинает таять. Когда восковое вещество тает, его объем возрастает. Восковое вещество расширяется вниз в оболочке 18, в результате чего стержень 19 и клапан 6a перемещаются вниз. Когда по существу все восковое вещество растаяло, клапан 6a достигает самого низкого положения, в котором вторая тарелка 23 клапана закрывает отверстие 24. Когда клапан достигнет этого положения, первая тарелка 21 клапана освободит отверстие 22. Пружина 25 допускает некоторое непрерывное расширение стержня 19 вниз относительно клапана 6a. Хладагент, выходящий из двигателя и линии 5, в этом случае подается в обратную линию 8, которая направляет его в радиатор 9. Хладагент охлаждается в радиаторе 9 посредством окружающего воздуха перед подачей через линию 11 в линию 3 впуска и двигатель 1.

Во время работы блок 15 управления по существу непрерывно принимает информацию 16 о нагрузке на двигатель и информацию от индикатора положения 17 о местоположении транспортного средства. В этом случае используется термостат 6, который имеет регулирующую температуру, соответствующую подходящей рабочей температуре хладагента, когда нагрузка на двигатель обычная. Когда блок 15 управления принимает информацию о том, что нагрузка на транспортное средство больше обычной, или что транспортное средство приближается к спуску, он открывает клапан 30 с тем, чтобы теплые выхлопные газы из источника 28 выхлопных газов протекали через теплообменник 26. Теплые выхлопные газы в теплообменнике 26 нагревают хладагент в управляющей линии 12 с тем, чтобы он принимал повышенную температуру, когда он достигает датчика 6b. Восковое вещество начинает таять в датчике 6b, и охлаждающее вещество в линии 5 направляется в линию 8 посредством клапана 6a и, таким образом, в радиатор 9, чтобы охлаждаться. Возросшее охлаждение хладагента снижает его рабочую температуру. Блок 15 управления принимает от датчика 14 информацию о температуре хладагента после того, как он было нагрето посредством выхлопных газов в теплообменнике 26. Блок 15 управления может использовать клапан 30, чтобы регулировать поток теплых выхлопных в теплообменник с тем, чтобы рабочая температура хладагента понизилась до подходящего значения. Хладагент, подаваемый в двигатель, таким образом, обеспечивает эффективное охлаждение двигателя и масла замедлителя в масляном радиаторе 4.

Если, напротив, он принимает информацию о том, что нагрузка на транспортное средство меньше обычной, блок 15 управления открывает клапан 29 с тем, чтобы холодный воздух из источника 27 воздуха протекал к теплообменнику 26. Холодный воздух в теплообменнике охлаждает хладагент в управляющей линии 12 с тем, чтобы он принимал более низкую температуру, когда он достигает датчика 6b. Восковое вещество в датчике переходит в твердую фазу, и термостат направляет охлаждающее вещество из линии 5 в линию 7. Это означает, хладагент не подвергается охлаждению в радиаторе 9, и его рабочая температура возрастает. Хладагент, таким образом, принимает более высокую рабочую температуру, чем регулирующая температура термостата. Разница между рабочей температурой хладагента и регулирующей температурой термостата соответствует охлаждению, которому подверглось хладагент в управляющей линии 12. Высокая рабочая температура хладагента, таким образом, желательна, когда нагрузка на двигатель низкая.

Фиг. 3 изображает дополнительную альтернативную конфигурацию. В этом случае управляющая линия 12 обеспечивается тепловым устройством в форме линии 31 хладагента, соединенной с управляющей линией в местоположении выше по потоку относительно датчика 6b термостата. Линия 31 выполнена с возможностью соединения с первым источником 32 среды в форме холодного хладагента, который может быть взят из линии 11 системы охлаждения, и со вторым источником 33 среды в форме теплого хладагента, который может быть взят из линии 5 системы охлаждения. Линия хладагента содержит насос 34 для транспортировки хладагента в управляющую линию из любого из упомянутых источников 32, 33 среды. Насос 34 приводится в действие блоком 15 управления. Когда холодное хладагент должен подаваться в управляющую линию, насос 34 приводится в действие, в то время как блок 15 управления открывает клапан 35, соединенный с первым источником 32 среды. Когда теплый хладагент должен подаваться в управляющую линию 12, насос 34 приводится в действие, в то время как блок 15 управления открывает клапан 36, соединенный со вторым источником 33 среды.

Опять-таки, блок 15 управления по существу непрерывно принимает информацию 16 о нагрузке на двигатель и информацию от индикатора положения 17 о местоположении транспортного средства. Термостат 6 имеет регулирующую температуру, соответствующую подходящей рабочей температуре хладагента, когда нагрузка на двигатель обычная. Когда блок 15 управления принимает информацию о том, что нагрузка на транспортное средство больше обычной, или что транспортное средство приближается к спуску, он приводит в действие насос 34, в то же время открывая клапан 36, с тем, чтобы теплый хладагент из источника 33 среды направлялся через линию 31 хладагента и в управляющую линию 12. Эта подача теплого хладагента вынуждает хладагент достигать датчика 6b в управляющей линии, чтобы изначально принять повышенную температуру. Термостат 6, следовательно, направляет по существу весь хладагент в линию 5 в радиатор 9. Рабочая температура хладагента, следовательно, падает ниже регулирующей температуры. Хладагент, подаваемый в двигатель, таким образом, обеспечивает эффективное охлаждение двигателя и/или масла в масляном радиаторе 4. Блок 15 управления может определять, насколько рабочая температура должна быть ниже, чем регулирующая температура, посредством регулировки количества теплого хладагента, направляемого в управляющую линию 12 посредством клапана 36.

Если, напротив, он принимает информацию о том, что нагрузка на транспортное средство меньше обычной, блок 15 управления приводит в действие насос 34, в то же время открывая клапан 35, с тем, чтобы холодное хладагент из первого источника 32 среды подавался в управляющую линию 12. Эта подача холодного хладагента в управляющую линию вынуждает хладагент достигать датчика 6b, чтобы изначально принять более низкую температуру, чем регулирующая температура. Термостат 6, следовательно, переводится в положение, в котором он направляет по существу весь хладагент к двигателю без охлаждения. Рабочая температура хладагента, таким образом, повышается до уровня, который превышает регулирующую температуру на значение, соответствующее охлаждению хладагента тепловым устройством в управляющей линии. Повышенная рабочая температура хладагента, таким образом, желательна, когда нагрузка на двигатель низкая.

Изобретение никоим образом не ограничено вариантом осуществления, на который ссылаются чертежи, но может свободно изменяться в пределах объема формулы изобретения. Варианты осуществления на фиг. 2 и 3 используют как теплую, так и холодную среду, чтобы изменять температуру хладагента в управляющей линии 12, и такого нагревания или охлаждения в управляющей линии достаточно, чтобы отрегулировать рабочую температуру хладагента относительно регулирующей температуры. В варианте осуществления на фиг. 2 по существу любая газообразная или жидкая среда может использоваться, чтобы нагревать или охлаждать хладагент в управляющей линии.

1. Система охлаждения для охлаждения двигателя (1) внутреннего сгорания, содержащая радиатор (9) для охлаждения хладагента, который циркулирует в системе охлаждения, управляющую линию (12), термостат (6), содержащий датчик (6b), выполненный с возможностью отслеживания температуры хладагента в управляющей линии (12), клапан (6а), выполненный с возможностью направления хладагента из линии (5) системы охлаждения в двигатель (1) без охлаждения в радиаторе (9), когда датчик (6b) определяет, что хладагент в управляющей линии (12) имеет более низкую температуру, чем регулирующая температура, и направления хладагента из линии (5) системы охлаждения в радиатор (9) для охлаждения перед тем, как он подается в двигатель (1), когда датчик (6b) определяет, что хладагент в управляющей линии (12) имеет более высокую температуру, чем регулирующая температура, и тепловое устройство (13, 26, 31) в контакте с хладагентом в управляющей линии (12) в местоположении выше по потоку датчика (6b), отличающаяся тем, что она содержит блок (15) управления, выполненный с возможностью оценивания, когда уместно изменять рабочую температуру хладагента в системе охлаждения, и, в таких случаях, приведения в действие теплового устройства (13, 26, 31) для того, чтобы оно нагревало или охлаждало хладагент в управляющей линии (12), причем управляющая линия (12) принимает через впуск (12а) небольшую часть потока хладагента в линии (3) впуска, которая подает хладагент к двигателю (1) внутреннего сгорания.

2. Система по п. 1, отличающаяся тем, что тепловое устройство содержит электрическое нагревательное устройство (13), которое в активном состоянии выполнено с возможностью нагревания хладагента в управляющей линии (12) до более высокой температуры, чем на впуске (12а) управляющей линии.

3. Система по п. 1, отличающаяся тем, что тепловое устройство содержит в управляющей линии (12) теплообменник (26), который в активном состоянии выполнен с возможностью прохождения через него среды, которая имеет более высокую или более низкую температуру, чем регулирующая температура термостата.

4. Система по п. 1, отличающаяся тем, что тепловое устройство содержит линию (31) хладагента, которая в активном состоянии выполнена с возможностью подачи хладагента, который имеет более высокую или более низкую температуру, чем регулирующая температура термостата, в управляющую линию (12) в местоположении выше по потоку датчика (6b).

5. Система по п. 1, отличающаяся тем, что блок (15) управления выполнен с возможностью управления приведением в действие теплового устройства (13, 26, 31) на основании информации от температурного датчика (14), который отслеживает температуру хладагента в местоположении ниже по потоку теплового устройства (13, 26, 31) в управляющей линии (12).

6. Система по п. 1, отличающаяся тем, что блок (15) управления выполнен с возможностью приема информации (16) о нагрузке на двигатель и приведения в действие теплового устройства (13, 26, 31) с целью придания охлаждающему средству в системе охлаждения рабочей температуры, которая изменяется с нагрузкой на двигатель.

7. Система по п. 1, отличающаяся тем, что хладагент в системе охлаждения предназначен для охлаждения по меньшей мере одного дополнительного компонента (4), отличного от двигателя (1), причем блок управления выполнен с возможностью приема информации, которая заранее указывает, когда компонент (4) нуждается в охлаждении посредством системы охлаждения, и, когда случай именно такой, приведения в действие теплового устройства (13, 26, 31) для того, чтобы рабочая температура хладагента падала перед тем, как компонент (4) нуждается в охлаждении посредством системы охлаждения.

8. Система по п. 1, отличающаяся тем, что датчик (6b) содержит оболочку (18), содержащую вещество (18), которое изменяет фазу и, следовательно, объем при регулирующей температуре термостата.

9. Система по п. 8, отличающаяся тем, что термостат (6) содержит механизм (19) передачи движения, выполненный с возможностью передачи движения от датчика (6b) к клапану (6а) для того, чтобы последний перемещался между первым положением и вторым положением, когда вещество меняет фазу.

www.findpatent.ru

система охлаждения для двигателя внутреннего сгорания с турбонаддувом - патент РФ 2445478

Изобретение относится к системе для двигателя (2) внутреннего сгорания с турбонаддувом, содержащей первую систему охлаждения с циркулирующим хладагентом, вторую систему охлаждения с циркулирующим хладагентом, который во время нормальной работы двигателя (2) внутреннего сгорания находится при более низкой температуре, чем хладагент в первой системе охлаждения, и охладитель (10, 15), в котором газообразная среда, которая содержит пары воды, охлаждается с помощью хладагента во второй системе охлаждения. Система содержит теплообменник (28), выполненный с возможностью получения хладагента из второй системы охлаждения, протекающего через него, и средства (30) клапана, которые могут находиться в закрытом положении, при котором выхлопные газы из двигателя внутреннего сгорания не протекают через теплообменник (28), и в открытом положении, при котором выхлопные газы из двигателя (2) внутреннего сгорания протекают через теплообменник (28), так что хладагент во второй системе охлаждения нагревается под действием выхлопных газов. Изобретение обеспечивает улучшение охлаждения с одновременным предотвращением забивания радиатора. 7 з.п. ф-лы, 1 ил. система охлаждения для двигателя внутреннего сгорания с турбонаддувом, патент № 2445478

Рисунки к патенту РФ 2445478

Описание

Область и уровень техники

Настоящее изобретение относится к системе для двигателя внутреннего сгорания с турбонаддувом согласно ограничительной части п.1 формулы изобретения.

Количество воздуха, которое может подаваться в двигатель внутреннего сгорания с турбонаддувом, зависит как от давления воздуха, так и от температуры воздуха. Подача наибольшего возможного количества воздуха в двигатель внутреннего сгорания влечет за собой эффективное охлаждение воздуха перед тем, как он направляется в двигатель внутреннего сгорания. Сжатый воздух может подвергаться воздействию на первой стадии охлаждения в охладителе нагнетаемого воздуха, который охлаждается с помощью хладагента из системы охлаждения двигателя внутреннего сгорания, и на второй стадии охлаждения в охладителе нагнетаемого воздуха, который охлаждается с помощью хладагента из системы охлаждения, в которой хладагент находится при значительно меньшей температуре, чем в системе охлаждения двигателя внутреннего сгорания. Такая низкотемпературная система охлаждения позволяет сжатому воздуху охлаждаться до температуры, близкой к температуре окружающей среды. При условиях холодной погоды сжатый воздух подвергается на второй стадии охлаждения охлаждению до температуры, которая может быть ниже точки росы для воздуха, что приводит к преципитации паров воды в форме жидкости в охладителе нагнетаемого воздуха. Когда температура окружающего воздуха менее 0°C, существует также риск того, что преципитированная вода может замерзнуть до состояния льда внутри охладителя нагнетаемого воздуха. Такое образование льда может вызвать больший или меньший уровень забивания прохода для протекания воздуха внутри охладителя нагнетаемого воздуха, что приводит к снижению потока воздуха в двигателе внутреннего сгорания и последующие эксплуатационные неисправности или остановки.

Технология, известная как EGR (рециркуляция выхлопных газов) представляет собой рециркуляцию части выхлопных газов из процесса сгорания в двигателе внутреннего сгорания. Рециркулированные выхлопные газы смешиваются с поступающим воздухом в двигателе внутреннего сгорания перед тем, как смесь направляется в цилиндры двигателя внутреннего сгорания. Добавление выхлопных газов к воздуху обеспечивает более низкую температуру горения, что приводит, помимо прочего, к понижению содержания оксидов азота NOx в выхлопных газах. Эта технология используется как для двигателей, работающих по циклу Отто, так и для дизельных двигателей. Подача большого количества выхлопных газов в двигатель внутреннего сгорания влечет за собой эффективное охлаждение выхлопных газов перед тем, как они направляются в двигатель внутреннего сгорания. Выхлопные газы могут подвергаться воздействию на первой стадии охлаждения в EGR охладителе, который охлаждается с помощью хладагента из системы охлаждения двигателя внутреннего сгорания, и на второй стадии охлаждения в EGR охладителе, который охлаждается с помощью хладагента из низкотемпературной системы охлаждения. Выхлопные газы могут таким же образом охлаждаться до температуры, близкой к температуре окружающей среды. Выхлопные газы содержат пары воды, которые конденсируются внутри EGR охладителя тогда, когда выхлопные газы подвергаются охлаждению на второй стадии охлаждения до температуры паров воды ниже точки росы. Когда температура окружающего воздуха ниже 0°C, существует также риск того, что сформировавшийся конденсат может замерзнуть до состояния льда внутри второго EGR охладителя. Таким образом, образование льда вызвало бы больший или меньший уровень забивания прохода для протекания воздуха внутри EGR охладителя. Если EGR охладитель забивается, и рециркуляция выхлопных газов прекращается или снижается, результатом будет являться увеличение количества оксидов азота в выхлопных газах.

Краткое описание изобретения

Задачей настоящего изобретения является создание системы, в которой газообразная среда содержит пары воды и может подвергаться воздействию очень хорошего охлаждения в радиаторе с одновременным предотвращением забивания радиатора.

Эта задача решается посредством создания системы, которая характеризуется элементами, указанными в отличительной части п.1 формулы изобретения. Согласно п.1 формулы изобретения, возможно эффективное охлаждение газообразной среды, при этом среда должна охлаждаться с помощью хладагента во второй системе охлаждения, которая может рассматриваться как низкотемпературная система охлаждения. Когда используется хладагент из второй системы охлаждения, газообразная среда обычно охлаждается до температуры, при которой вода в жидкой форме преципитирует внутри радиатора. Если также хладагент будет холоднее, чем 0°C, существует очевидный риск того, что вода может замерзнуть до состояния льда внутри радиатора. Чем ниже температура хладагента во второй системе охлаждения, тем больше данный риск. Согласно настоящему изобретению, тепло от выхлопных газов двигателя внутреннего сгорания используется для того, чтобы сделать возможным нагревание хладагента во второй системе охлаждения тогда, когда образуется лед или существует риск образования льда в радиаторе. Во время нормальной работы двигателя внутреннего сгорания средства клапанов находятся в закрытом положении, при этом предотвращается протекание выхлопных газов через теплообменник. Результатом является то, что хладагент во второй системе охлаждения не нагревается. Когда клапан находится в открытом положении, теплые выхлопные газы протекают через теплообменник. В этом случае хладагент во второй системе охлаждения нагревается под действием выхлопных газов. Такой нагрев является благоприятным в ситуациях, когда хладагент во второй системе охлаждения имеет настолько низкую температуру, что он рискует охладить газообразную среду до такой степени, что образуется лед внутри радиатора. Если кто-то решает, что радиатор под угрозой замерзания или находится при температуре замерзания, средства клапанов могут переводиться в ручном режиме в открытое положение. Когда риск образования льда пропадает, средства клапана могут быть возвращены в закрытое положение. Газообразная среда может, таким образом, обеспечить при этом очень хорошее охлаждение в радиаторе, в то же время она может предотвращать образование льда в радиаторе.

Согласно предпочтительному варианту осуществления настоящего изобретения, система содержит выхлопной контур, соединенный с выхлопным трактом двигателя внутреннего сгорания и содержащий теплообменник и средства клапана. Такой выхлопной контур может иметь форму буквы U. Он может в этой связи иметь первое соединение с выхлопным трактом для приема выхлопных газов и второе соединение с выхлопным трактом для возврата принятых выхлопных газов. Второе соединение, преимущественно, располагается после первого соединения, так что часть выхлопных газов в выхлопном тракте направляется параллельно через выхлопной контур и подогревает хладагент в теплообменнике, когда существует риск образования льда.

Согласно предпочтительному варианту осуществления настоящего изобретения, система содержит, по меньшей мере, один датчик, выполненный с возможностью определения параметра, который показывает, охлаждена ли газообразная среда до такой степени, что существует риск образования льда, и управляющее устройство, выполненное с возможностью приема информации от компонента и решающее, существует ли риск образования льда в радиаторе и, если это так, переводящее средства клапанов в открытое положение. При такой конфигурации средства клапана могут переводиться автоматически во второе положение, когда существует риск образования льда в радиаторе. Управляющее устройство может представлять собой вычислительное устройство с пригодным для этой цели программным обеспечением. Датчик может представлять собой датчик температуры или датчик давления. Датчик температуры может определять температуру хладагента во второй системе охлаждения. Если температура хладагента выше 0°C, тогда он направляется в радиатор, без риска образования льда внутри радиатора. Для полного предотвращения образования льда управляющее устройство может переводить средства клапана во второе положение, как только температура хладагента падает ниже 0°C. Система может содержать, по меньшей мере, один датчик температуры или датчик давления, выполненный с возможностью определения параметра, который относится к давлению или к температуре газообразной среды вблизи радиатора. Датчик может определять давление или температуру газообразной среды после того, как она пройдет через радиатор. Если давление или температура находится ниже предельного значения, управляющее устройство может обнаружить, что трубопроводы в радиаторе находятся в точке, где начинается забивание льдом. В таких случаях управляющее устройство переводит средства клапана в открытое положение, так что хладагент во второй системе охлаждения подвергается воздействию нагревания. Нагретый хладагент, который протекает через радиатор, плавит лед, который сформировался внутри радиатора. Когда лед расплавляется, управляющее устройство получает от датчика информацию, которая показывает, что давление или температура в радиаторе вернулась к приемлемым значениям. Управляющее устройство переводит средства клапана в закрытое положение. В этом случае вследствие этого может образоваться ограниченное количество льда внутри радиатора. Однако результатом является очень эффективное охлаждение газообразной среды, при этом температуры хладагента ниже 0°C являются приемлемыми до тех пор, пока радиатор не начинает замерзать.

Согласно другому предпочтительному варианту осуществления настоящего изобретения, вторая система охлаждения содержит элемент радиатора, в котором циркулирующий хладагент охлаждается с помощью воздуха до температуры окружающей среды. Хладагент может, таким образом, охлаждаться до температуры, близкой к температуре окружающей среды. Теплообменник с преимуществами располагается во второй системе охлаждения в положении после элемента радиатора и перед радиатором относительно предполагаемого направления течения хладагента во второй системе охлаждения. Хладагент во второй системе может, таким образом, подвергаться нагреву, по существу, непосредственно перед тем, как он направляется в радиатор. В ситуациях, когда средства клапана располагаются в открытом положении, весь лед, который сформировался внутри радиатора, может, таким образом, быстро расплавляться и вытекать.

Согласно другому предпочтительному варианту осуществления настоящего изобретения, первая система охлаждения выполнена с возможностью охлаждения двигателя внутреннего сгорания. Во время нормальной работы система охлаждения, которая охлаждает двигатель внутреннего сгорания, обычно имеет температуру 80-100°C. Хладагент во второй системе охлаждения преимущественно находится при значительно меньшей температуре. Система может содержать дополнительный радиатор, в котором газообразная среда, как предполагается, подвергается воздействию на первой стадии охлаждения с помощью хладагента в первой системе охлаждения перед тем, как газообразная среда направляется в вышеуказанный радиатор, в котором подвергается воздействию на второй стадии охлаждения с помощью хладагента во второй системе охлаждения. Газообразная среда может представлять собой сжатый воздух, который направляется во впускной тракт, в двигатель внутреннего сгорания. Когда воздух сжимается, он подвергается некоторому нагреву, который зависит от степени сжатия воздуха. В двигателях внутреннего сгорания с турбонаддувом воздух сжимается до высокого давления. Воздух, таким образом, нуждается в эффективном охлаждении. По этой причине является предпочтительным охлаждение сжатого воздуха более чем в одном радиаторе и на нескольких ступенях так, чтобы он мог достичь желательной низкой температуры перед тем, как он направляется в двигатель внутреннего сгорания. Указанная газообразная среда может также представлять собой рециркулированные выхлопные газы, заведенные в возвратный тракт, в двигатель внутреннего сгорания. Выхлопные газы могут иметь температуру 500-600°C, когда они направляются в возвратный тракт. Тем не менее является таким же образом преимущественным охлаждение рециркулированных выхлопных газов более чем в одном радиаторе и на нескольких ступенях так, чтобы они могли достичь желательной низкой температуры, перед тем как они направляются в двигатель внутреннего сгорания.

Краткое описание чертежа

Предпочтительный вариант осуществления настоящего изобретения описывается далее с помощью примера со ссылкой на прилагаемый чертеж, на котором:

фиг.1 - система для двигателя внутреннего сгорания с турбонаддувом согласно одному из вариантов осуществления изобретения.

Подробное описание предпочтительного варианта осуществления изобретения

На фиг.1 показана система для двигателя внутреннего сгорания с турбонаддувом, предназначенного для приведения в движение схематически показанного транспортного средства 1. Двигатель внутреннего сгорания в данном документе иллюстрируется как дизельный двигатель 2. Дизельный двигатель 2 может использоваться для приведения в движение тяжелого транспортного средства 1. Выхлопные газы от цилиндров дизельного двигателя 2 направляются по выхлопному коллектору 3 в выхлопной тракт 4. Дизельный двигатель 2 снабжается турбинным устройством, которое содержит турбину 5 и компрессор 6. Выхлопные газы в выхлопном тракте 4, которые имеют давление, превышающее атмосферное, направляются сначала в турбину 5. Турбина 5, таким образом, снабжается приводной мощностью, которая передается по соединению на компрессор 6. Компрессор 6 сжимает воздух, который всасывается в воздушный впускной тракт 8 через воздушный фильтр 7. Воздух во впускном тракте 8 сначала охлаждается в охлаждаемом хладагентом первом охладителе 9 нагнетаемого воздуха. Воздух охлаждается в первом охладителе 9 нагнетаемого воздуха, с помощью хладагента из первой системы охлаждения, которая также охлаждает двигатель 2 внутреннего сгорания. Первая система охлаждения упоминается далее как система охлаждения двигателя внутреннего сгорания. Сжатый воздух впоследствии охлаждается в охлаждаемом хладагентом втором охладителе 10 нагнетаемого воздуха. Воздух охлаждается во втором охладителе 10 нагнетаемого воздуха с помощью хладагента из второй системы охлаждения. Хладагент во второй системе охлаждения имеет значительно меньшую температуру, чем хладагент в системе охлаждения двигателя внутреннего сгорания.

Система содержит возвратный тракт 11 для осуществления рециркуляции части выхлопных газов в выхлопном тракте 4. Возвратный тракт 11 имеет некоторую протяженность между выхлопным трактом 4 и впускным трактом 8. Возвратный тракт 11 содержит EGR клапан 12, с помощью которого может перекрываться поток выхлопных газов в возвратном тракте 11. EGR клапан 12 может также использоваться для плавного управления количеством выхлопных газов, которое направляется от выхлопного тракта 4 во впускной тракт 8 через возвратный тракт 11. Первое управляющее устройство 13 адаптируется для управления EGR клапаном 12 на основе информации о текущем рабочем состоянии дизельного двигателя 2. Возвратный тракт 11 содержит охлаждаемый хладагентом первый EGR охладитель 14 для обработки выхлопных газов на первой стадии охлаждения. Выхлопные газы охлаждаются в первом EGR охладителе 14 с помощью хладагента из системы охлаждения двигателя внутреннего сгорания. Выхлопные газы подвергаются воздействию второй стадии охлаждения в охлаждаемом хладагентом втором EGR охладителе 15. Выхлопные газы охлаждаются во втором EGR охладителе 15 с помощью хладагента из второй системы охлаждения.

При конкретных рабочих ситуациях в дизельных двигателях 2 с турбоннадувом давление выхлопных газов в выхлопном тракте 4 будет меньше, чем давление сжатого воздуха во впускном тракте 8. В таких рабочих ситуациях является невозможным смешение выхлопных газов в возвратном тракте 11 напрямую со сжатым воздухом во впускном тракте 8 без специальных вспомогательных устройств. Для этого является возможным использование, например, сопла 16 Вентури или турбинного устройства с изменяемой геометрией. Если вместо этого двигатель внутреннего сгорания 2 представляет собой двигатель с турбоннадувом, работающий по циклу Отто, выхлопные газы в возвратном тракте 11 могут направляться напрямую во впускной тракт 8, поскольку выхлопные газы в выхлопном тракте 4 двигателя, работающего по циклу Отто, во всех, по существу, рабочих ситуациях будут иметь большее давление, чем сжатый воздух во впускном тракте 8. После того как выхлопные газы смешиваются со сжатым воздухом во впускном тракте 8, смесь направляется в соответствующие цилиндры дизельного двигателя 2 по коллектору 17.

Двигатель внутреннего сгорания 2 охлаждается традиционным образом с помощью циркулирующего хладагента. Хладагент в системе охлаждения двигателя внутреннего сгорания циркулирует с помощью насоса 18 для хладагента. Основной поток хладагента направляется через двигатель 2 внутреннего сгорания. После того как хладагент охлаждает двигатель 2 внутреннего сгорания, он направляется в термостат 19. Термостат 19 направляет изменяемое количество хладагента в линию 21a и линию 21b в зависимости от температуры хладагента. Линия 21a направляет хладагент в двигатель внутреннего сгорания 2, тогда как линия 21b направляет хладагент в радиатор 20, присоединенный в передней части транспортного средства 1. Когда хладагент достигает нормальной рабочей температуры, по существу, весь хладагент направляется в радиатор 20 для охлаждения. Линия 23 направляет охлажденный хладагент назад в двигатель внутреннего сгорания 2. Меньшая часть хладагента в системе охлаждения не используется для охлаждения двигателя внутреннего сгорания, но направляется в две параллельные линии 22а, 22b. Линия 22а направляет хладагент в первый охладитель 9 нагнетаемого воздуха, в котором он воздействует на сжатый воздух на первой стадии охлаждения. Линия 22b направляет хладагент в первый EGR охладитель 14, в котором он подвергает воздействию рециркулированные выхлопные газы на первой стадии охлаждения. Хладагент, который охлажден воздухом в первом охладителе 9 нагнетаемого воздуха, и хладагент, который охлажден выхлопными газами в первом EGR охладителе 14, воссоединяются в линии 22с. Линия 22с направляет хладагент в положение в системе охлаждения, которое располагается между термостатом 19 и насосом 18, где он смешивается с охлажденным хладагентом из радиатора 20.

Вторая система охлаждения содержит элемент 24 радиатора, присоединенный в передней части радиатора 20, в периферийной области транспортного средства 1. В этом случае периферийная область располагается в передней части транспортного средства 1. Вентилятор 25 радиатора выполнен с возможностью генерирования потока окружающего воздуха через элемент 24 радиатора и радиатор 20. Так как элемент 24 радиатора располагается в передней части радиатора 20, хладагент в элементе 24 радиатора охлаждается с помощью воздуха до температуры окружающей среды. Хладагент в элементе радиатора 24 может, таким образом, охлаждаться до температуры, близкой к температуре окружающей среды. Охлажденный хладагент от элемента 24 радиатора циркулирует во второй системе охлаждения в контуре 26 трубопровода с помощью насоса 27. Контур 26 трубопровода содержит первую линию 26a, которая направляет охлажденный хладагент из элемента 24 радиатора в охладители 10, 15. Контур 26 трубопровода содержит вторую линию 26b, которая направляет хладагент обратно в элемент 24 радиатора после использования для охлаждения указанных охладителей 10, 15.

Первая линия 26a содержит часть 26a' линии, выполненную с возможностью направления охлажденного хладагента в теплообменник 28. Теплообменник 28 располагается в выхлопном контуре 29, который соединяется с выхлопным трактом 4. Выхлопной контур имеет первое соединение 29a с выхлопным трактом 4 для приема выхлопных газов и второе соединение 29b с выхлопным трактом 4 для обратной подачи принятых выхлопных газов. Второе соединение 29b располагается после первого соединения 29a, так что часть выхлопных газов в выхлопном тракте 4 может направляться параллельно через петлю 29 выхлопа. Выхлопной контур 29 содержит не только теплообменник 28, но также клапан 30. Клапан 30 управляется с помощью второго управляющего устройства 31. После того как хладагент проходит через теплообменник 28, нагретый хладагент направляется обратно в часть 26a' линии. Линия 26a содержит хладагент, в положении после части 26a' линии, линии 26c и линии 26d. Линия 26c предназначается для направления охлажденного хладагента во второй охладитель 10 нагнетаемого воздуха, в котором он воздействует на сжатый воздух на второй стадии охлаждения, и линия 26d предназначается для направления охлажденного хладагента во второй EGR охладитель 15, в котором он воздействует на рециркулированные выхлопные газы на второй стадии охлаждения. После того как хладагент проходит через указанные охладители 10, 15, нагретый хладагент направляется обратно в радиатор 24 по линии 26b.

Во время работы дизельного двигателя 2 выхлопные газы протекают через выхлопной тракт 4 и приводят в движение турбину 5. Турбина 5, таким образом, снабжается приводной мощностью, которая приводит в движение компрессор 6. Компрессор 6 всасывает окружающий воздух через воздушный фильтр 7 и сжимает воздух во впускном тракте 8. Воздух, таким образом, приобретает повышенное давление и повышенную температуру. Сжатый воздух охлаждается в первом охладителе нагнетаемого воздуха 9 с помощью жидкости радиатора в системе охлаждения двигателя внутреннего сгорания. Жидкость в радиаторе, в данном документе, может иметь температуру около 80-85°C. Таким образом, сжатый воздух может нагреваться в первом охладителе 9 нагнетаемого воздуха первой стадии охлаждения до температуры, близкой к температуре хладагента. Во время нормальной работы управляющее устройство 31 адаптируется для удержания клапана 30 в закрытом положении, так что выхлопные газы от выхлопного тракта не направляются в петлю 29 выхлопа. Хладагент, таким образом, не подвергается нагреву в теплообменнике 28, и охлажденный хладагент направляется в линию 26c. Хладагент охлаждает сжатый воздух во втором охладителе 10 нагнетаемого воздуха. Хладагент, в данном документе, может иметь температуру, близкую к температуре окружающей среды. Таким образом, сжатый воздух может при благоприятных обстоятельствах охлаждаться до температуры, близкой к температуре окружающей среды, во втором охладителе 10 нагнетаемого воздуха.

В большинстве рабочих состояний дизельного двигателя 2 первое управляющее устройство 13 будет удерживать EGR клапан 12 открытым, так что часть выхлопных газов в выхлопном тракте 4 направляется в возвратный тракт 11. Выхлопные газы в выхлопном тракте 4 могут иметь температуру около 500-600°C, когда они достигают первого EGR охладителя 14. В первом EGR охладителе 14 рециркулированные выхлопные газы подвергаются воздействию на первой стадии охлаждения с помощью хладагента в системе охлаждения двигателя внутреннего сгорания. Хладагент в системе охлаждения двигателя внутреннего сгорания будет, таким образом, иметь относительно высокую температуру, но более низкую, чем температура выхлопных газов. Таким образом, можно осуществлять хорошее охлаждение выхлопных газов в первом EGR охладителе 14. Когда клапан 30 находится в закрытом положении, охлажденный хладагент направляется в линию 26d, в котором хладагент охлаждает рециркулированные выхлопные газы во втором EGR охладителе 15. Хладагент может, таким образом, иметь температуру, близкую к температуре окружающей среды. При благоприятных обстоятельствах рециркулированные выхлопные газы могут вследствие этого таким же образом охлаждаться до температуры, близкой к температуре окружающей среды, во втором EGR охладителе 15. Выхлопные газы в возвратном тракте 11 могут, таким образом, подвергаться охлаждению, по существу, до такой же температуры, что и сжатый воздух, перед тем, как они смешиваются и направляются в двигатель внутреннего сгорания 2. По существу, оптимальное количество воздуха и рециркулированных выхлопных газов может вследствие этого направляться в двигатель внутреннего сгорания. Таким образом, можно обеспечить сгорание в двигателе 2 внутреннего сгорания, по существу, с оптимальной производительностью. Низкая температура сжатого воздуха и рециркулированных выхлопных газов также приводит к низкой температуре сгорания и низкому содержанию оксидов азота в выхлопных газах.

Это эффективное охлаждение сжатого воздуха и рециркулированных выхлопных газов также имеет недостатки. Сжатый воздух охлаждается во втором охладителе 10 нагнетаемого воздуха до температуры, при которой вода в жидкой форме конденсируется в охладителе 10 нагнетаемого воздуха. Аналогично, выхлопные газы во втором EGR охладителе 15 охлаждаются до температуры, при которой формируется конденсат внутри второго EGR охладителя 15. Когда температура окружающего воздуха менее 0°C, существует также риск того, что преципитированная вода во втором охладителе 10 нагнетаемого воздуха и преципитровавший конденсат во втором EGR охладителе 15 могут замерзнуть до состояния льда. Образование льда внутри второго охладителя 10 нагнетаемого воздуха и второго EGR охладителя 15 может серьезно затруднить работу двигателя 2 внутреннего сгорания. Второе управляющее устройство 31 выполнено с возможностью приема информации от, по меньшей мере, одного датчика, который показывает, образовался ли лед или существует ли риск образования льда во втором охладителе 10 нагнетаемого воздуха и/или втором EGR охладителе 15. Такой датчик может представлять собой датчик температуры 35, который определяет температуру хладагента во второй системе охлаждения. Фиг.1 иллюстрирует такой датчик 35, который определяет температуру хладагента в линии 26a во второй системе охлаждения. Если хладагент в линии 26a имеет температуру, которая определенно ниже 0°C, существует очевидный риск того, что может сформироваться лед во втором охладителе 10 нагнетаемого воздуха и/или во втором EGR охладителе 15. Управляющее устройство 31 может, альтернативно, получать информацию от двух или более датчиков температуры или датчиков давления. Один такой датчик температуры может измерять температуру сжатого воздуха после его охлаждения во втором охладителе 10 нагнетаемого воздуха, и другой датчик температуры может измерять температуру рециркулированных выхлопных газов после того, как они охлаждаются во втором EGR охладителе 15. Если сжатый воздух и/или рециркулированные выхлопные газы имеет или имеют температуру ниже 0°C, это значит, что ожидается формирование льда внутри охладителя 10 нагнетаемого воздуха и/или внутри второго EGR охладителя 15.

Если он получает информацию, которая показывает, что существует риск образования льда или что сформировался лед внутри обоих охладителей 10, 15, второе управляющее устройство 31 переводит клапан 30 в открытое положение. Подогретые выхлопные газы, таким образом, направляются от выхлопного тракта 4 через петлю 29 выхлопа. Теплые выхлопные газы в петле выхлопа 29 подогревают хладагент, который проходит через теплообменник 28. Подогретый хладагент направляется по линии 26a в линии 26c и 26d, при этом он протекает через второй охладитель 10 нагнетаемого воздуха и второй EGR охладитель 15. Подогретый хладагент быстро расплавляет любой лед, который сформировался внутри охладителя 10 нагнетаемого воздуха и/или во втором EGR охладителе 15. Любое образование льда в охладителе 10 нагнетаемого воздуха и/или во втором EGR охладителе 15 может устраняться таким простым и эффективным образом. После того, как хладагент прошел через охладители 10, 15, он направляется в линию 26b и возвращается в элемент 24 радиатора. После установленного времени или когда второе управляющее устройство 31 получает информацию, которая показывает, что в охладителе 10 нагнетаемого воздуха и/или во втором EGR охладителе 15 лед расплавился, второе управляющее устройство 31 переводит клапан 30 обратно в закрытое положение. Выхлоп, протекающий через выхлопной контур 29, останавливается, и хладагент направляется в часть 26a' линии, не подвергаясь больше никакому нагреву в теплообменнике 28.

Изобретение не ограничивается никаким образом вариантом осуществления, к которому относится чертеж, и может свободно изменяться в рамках формулы изобретения. Система может также использоваться для удерживания только одного из охладителей 10, 15, по существу, свободным ото льда.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Система для двигателя (2) внутреннего сгорания с турбонаддувом, содержащая первую систему охлаждения с циркулирующим хладагентом, вторую систему охлаждения с циркулирующим хладагентом, который во время нормальной работы двигателя (2) внутреннего сгорания находится при более низкой температуре, чем хладагент в первой системе охлаждения, и охладитель (10, 15), в котором газообразная среда, которая содержит пары воды, охлаждается с помощью хладагента во второй системе охлаждения, и элемент (24) радиатора, причем циркулирующий хладагент во второй системе охлаждения охлаждается с помощью воздуха, имеющего температуру окружающей среды, отличающаяся тем, что она содержит теплообменник (28), выполненный с возможностью получения хладагента из второй системы охлаждения, протекающего через него, и средства (30) клапана, которые могут находиться в закрытом положении, при котором выхлопные газы из двигателя внутреннего сгорания не протекают через теплообменник (28), и в открытом положении, при котором выхлопные газы из двигателя (2) внутреннего сгорания протекают через теплообменник (28), так что хладагент во второй системе охлаждения нагревается под действием выхлопных газов, причем теплообменник (28) расположен во второй системе охлаждения в положении ниже по потоку элемента (24) радиатора и выше по потоку охладителя (10, 15) относительно предполагаемого направления течения хладагента во второй системе охлаждения.

2. Система по п.1, отличающаяся тем, что она содержит выхлопной контур (29), соединенный с выхлопным трактом (4) двигателя (2) внутреннего сгорания, причем выхлопной контур (29) содержит теплообменник (28) и средства (30) клапана.

3. Система по п.1 или 2, отличающаяся тем, что она содержит, по меньшей мере, один датчик (35), определяющий параметр, который показывает, охлаждается ли газообразная среда до такой степени, что образуется лед или имеется риск образования льда в охладителе (10, 15), и управляющее устройство (31), выполненное с возможностью приема информации от датчика (35) и определения того, образуется ли лед или существует ли риск образования льда в охладителе (10, 15) и, если это так, для перевода средств (30) клапана в открытое положение.

4. Система по п.3, отличающаяся тем, что датчик представляет собой датчик (35) температуры или датчик давления.

5. Система по п.1, отличающаяся тем, что первая система охлаждения выполнена с возможностью охлаждения двигателя (2) внутреннего сгорания.

6. Система по п.1, отличающаяся тем, что она содержит дополнительный охладитель (9, 14), в котором газообразная среда подвергается воздействию на первой стадии охлаждения с помощью хладагента в первой системе охлаждения перед тем, как газообразная среда направляется в охладитель (10, 15), в котором подвергается воздействию на второй стадии охлаждения с помощью хладагента во второй системе охлаждения.

7. Система по п.1 или 6, отличающаяся тем, что газообразная среда представляет собой сжатый воздух, который направляется во впускной тракт (8) двигателя (2) внутреннего сгорания.

8. Система по п.1 или 6, отличающаяся тем, что газообразная среда принимает форму рециркулированных выхлопных газов, которые направляются в возвратный тракт (11) двигателя (2) внутреннего сгорания.

www.freepatent.ru

Детали и компоненты системы охлаждения двигателя ДВС

система охлаждения двигателя

Для надежной, эффективной и продолжительной работы двигателя  — система охлаждения является жизненно важным элементом.

От правильного регулирования температуры двигателя обеспечивается и максимальная производительность двигателя, качество и экономичность работы.

В современных двигателях, производитель старается увеличить мощность двигателя от качества топлива, возможность продолжительной работы двигателя при высоких нагрузках, а соответственно  рассчитывается пропорциональная нагрузка на компоненты системы охлаждения.

система охлаждения двигателяКакие основные компоненты системы охлаждения?

Читайте так же:

 

Радиатор системы охлаждения двигателя

радиатор охлажденияРадиатор располагается в передней части транспортного средства, чаще перед, а иногда и позади вентилятора системы охлаждения. В радиаторе циркулирует охлаждающая жидкость, которая служит теплоносителем, а радиатор использует теплоноситель для отвода тепла, генерируемого двигателем. От мощности и эффективности системы охлаждения зависит оптимальная производительность при работе двигателя.

На эффективность автомобильного радиатора влияет охлаждающая жидкость, он же антифриз, который имеет свой срок службы и должен меняться в регламентируемый срок. Поддержание качество антифриза, то есть не смешивать с другим цветом, производителем и концентрацией — продлит срок службы всей системы охлаждения двигателя.

Пока радиатор целый, то он способен противостоять вибрации и давлению, которое вызывается с каждым запуском двигателя. Если радиатор качественный, то он долгий срок будет противостоять наружной коррозии и условиям окружающей среды, а так же соляными ваннами в зимнее время.

крышка радиатораКрышка радиатора

Крышка радиатора представляет собой предохранительный клапан системы охлаждения. Те, кто накручивали пробку или вставляли чопик вместо нее, сейчас вспоминают последствиях.

Крышка радиатора предназначена для создания давления в системе охлаждения двигателя, что увеличивает температуру кипения антифриза, а так же способствует герметизации системы и предотвращение коррозии.

Вентилятор охлаждения

Задача вентилятора охлаждения — прогонять воздух через радиатор, что бы предотвратить перегрев охлаждающей жидкости.

вентилятор охлаждения двигателяЭлектродвигатель раскручивает крыльчатку вентилятора, когда датчик температуры охлаждающей жидкости замыкает контакты при нагреве. Температуру включения вентилятора охлаждения можно узнать, посмотрев на датчик охлаждающей жидкости.

С возрастом автомобиля, когда датчик требует замены, рекомендуется покупать новый, с температурой включения ниже. Был 92 градуса, автомобилю более 10 лет, тогда установите на 87. Это связанно с тем, что КПД (коэффициент полезного действия) системы охлаждения двигателя не работает, как 10 лет назад.

Забитые соты радиатора и общее загрязнение всей системы охлаждения способствует слабому теплоотводу, поэтому стоит иметь запас в системе принудительного охлаждения.

Интеркулер

Интеркулер — это тоже радиатор, но используется в сочетании с турбонаддувом. Располагается в передней части автомобиля, перед или после радиатора.

интеркулер системы охлажденияКогда воздух с турбины подается во впускной коллектор под давление, пропорционально больше топлива поступает для правильного соотношения смеси, тем самым увеличивается мощность двигателя. Без интеркулера, температура воздуха в турбокомпрессоре под давлением повышается до 180° С,  а давление при этом составляет  более 2,5 бар, что вызывает механическое напряжение в двигателе. 

Интеркулер, как теплообменник, понижает температуру воздуха до 50° С на выходе из турбокомпрессора, а соответственно уменьшается механическая нагрузка на двигатель. Охлажденный воздух плотнее, что позволяет увеличить количество, которое попадет в камеру сгорания.

Термостат

Термостат постоянно контролирует температуру системы охлаждения в двигателе, а соответственно регулирует поток охлаждающей жидкости через радиатор. Хороший термостат уменьшает время разминки между двигателем и системой охлаждения, чем точнее происходит регулировка рабочей температуры двигателя, тем максимум производительность двигателя.

термостат системы охлажденияДля повышения эффективности системы охлаждения, производители автомобилей разработали электронные термостаты, которые более чувствительны к изменениям температуры, чем традиционный термостат. Хоть электрический термостат, хоть традиционный с пружиной, одинаково изменяют поток охлаждающей жидкости вокруг двигателя, для поддержания оптимальной температуры, только один моментально, а второй постепенно.

В дополнение электрическим термостатам изменили и систему обратной связи. Датчики температуры располагаются вокруг двигателя, а не только в одном месте или на патрубке. Информация обрабатывается ЭБУ со всех датчиков температуры двигателя, что бы гарантировать максимальную точность в разных частях двигателя и не допустить образования «горячих точек».

Водяной насос или помпа

Водяной насос обеспечивает циркуляцию охлаждающей жидкости через систему охлаждения двс путем выталкивания жидкости через двигатель в радиатор. Антифриз циркулирует по радиатору и охлажденный встречным ветром и принудительным обдувом вентилятора возвращается в двигатель. Такой процесс помогает предотвратить перегрев двигателя.помпа системы охлаждения

Помпа приводится в действие от шестерен двигателя через ремень ГРМ (газораспределительный механизм). Аналогичный механизм действия, как и электронные термостаты, внедряют инженеры в новые и спортивные автомобили, что бы минимизировать задержку и увеличить скорость охлаждения, тем самым увеличить мощность и общий потенциал двигателя.

Преимущество более совершенной системы охлаждения дает возможность повысить экономичность топливной системы и снизить выброс вредных веществ в атмосферу.

Патрубки и шланги

шланги системы охлажденияДа, именно через соединительные компоненты, как патрубки и шланги, антифриз распределяется по системе охлаждения двигателя. От двигателя к термостату, от радиатора к помпе, патрубки и шланги должны быть износостойкими и справляться с агрессивными средами и умещаться в компактных моторных отсеках.

Зачастую патрубок имеет изогнутую форму и определенную длину, что бы занимать свое место под капотом, но можно применять и универсальные компоненты. Помните, что рабочий спектр при которых эксплуатируются патрубки системы охлаждения двигателя примерно — 30 до +120 градусов.

P.S. Помните, что некачественные детали системы охлаждения могут привести к поломке двигателя.

avtobiznes.biz