ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

коаксиально-торцевой теплотрубный двигатель. Коаксиальный двигатель


Коаксиальный мультитеплотрубный двигатель

Изобретение относится к теплоэнергетике, а именно к тепловым двигателям. Предложенный коаксиальный мультитеплотрубный двигатель содержит испарительную и конденсационную камеры, состоящие из вертикальных гильз, внутренняя поверхность которых покрыта полосами и решеткой из пористого материала и фитилем, соединенных открытыми торцами с крышками соответствующих распределительных (сепарационных) секций. В испарительной камере, отделенной снизу вогнутым перфорированным каплеотбойником, расположен распределительный коллектор, снабженный форсунками, размещенными в центре входа в испарительные гильзы. Испарительная и конденсационная камеры соединены через кольцевое уплотнение с рабочей камерой, внутри которой установлены коаксиально друг за другом силовые турбины, жестко закрепленные периферийными кромками лопастей к внутренней поверхности стенки рабочей камеры по нормали к ней. В центре распределительного коллектора устроен цилиндрический резервуар и питательный насос, соединенный с распределительным коллектором испарительной камеры. Изобретение позволяет повысить эффективность теплового двигателя. 7 ил.

 

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано для утилизации вторичных тепловых энергоресурсов и низкопотенциальной тепловой энергии природных источников, а именно для трансформации тепловой энергии в механическую.

Известен преобразователь тепловой энергии в механическую, содержащий последовательно расположенные испарительную камеру, находящуюся в контакте с горячей средой, рабочую камеру, внутри которой устроены коаксиально друг за другом силовые турбины, жестко закрепленные периферийными кромками лопастей к внутренней поверхности стенки рабочей камеры по нормали к ней, конденсационную камеру, находящуюся в контакте с холодной средой, питательный насос [1].

Основными недостатками известного преобразователя тепловой энергии в механическую являются невозможность утилизации низкопотенциальных вторичных и природных тепловых энергоресурсов, громоздкость конструкции и невозможность работы при изменении ориентации в пространстве, что сужает область его применения и в конечном счете снижает его эффективность.

Более близким к предлагаемому изобретению является коаксиальный теплотрубный двигатель, который содержит последовательно расположенные испарительную камеру, находящуюся в контакте с горячей средой, снабженную каплеотбойником, внутренние боковые стенки ее покрыты фитилем, соединенным с решеткой, выполненной из тонкого слоя пористого материала, покрывающей внутреннюю поверхность торцевой стенки, рабочую камеру, выполненную в форме цилиндрической трубы с кольцевым буртиком и винтом на наружной поверхности, внутри ее устроены коаксиально друг за другом силовые турбины, жестко закрепленные периферийными кромками лопастей к внутренней поверхности стенки рабочей камеры по нормали к ней, конденсационную камеру, соединенную с рабочей камерой через кольцевое уплотнение, состоящую из обоймы, закрывающей винтовую поверхность рабочей камеры, образуя питательный насос, и конденсационной зоны, внутренние боковые стенки которой покрыты фитилем, соединенным с решеткой, выполненной из тонкого слоя пористого материала, покрывающей внутреннюю поверхность торцевой стенки, причем конденсационная камера соединена с испарительной через питательный насос напорным трубопроводом, снабженным на конце форсункой.

Основными недостатками известного коаксиального теплотрубного двигателя являются размещение ротора насоса на наружной поверхности корпуса, что затрудняет увязку его параметров (напора, производительности и т.д.) с мощностью устройства, незначительная площадь контакта с горячей и холодной средами и обусловленная этим малая мощность (меньше 1 кВт), что ограничивает область его применения при утилизации низкопотенциального тепла вторичных и природных источников в промышленных масштабах и снижает его эффективность.

Техническим результатом, на решение которого направлено предлагаемое изобретение, является увеличение мощности коаксиального теплотрубного двигателя и связанные с этим возможность его применения в промышленных масштабах при утилизации тепла (в том числе и низкопотенциального) в различных отраслях народного хозяйства и повышение эффективности.

Поставленная задача реализуется в коаксиальном мультитеплотрубном двигателе (КМТТД), который содержит последовательно расположенные испарительную камеру, находящуюся в контакте с горячей средой, состоящую из вертикальных испарительных гильз, внутренняя боковая поверхность которых покрыта тонкими полосами пористого материала, образующими между собой канавки, а торца - решеткой из таких же полос, соединенных открытым торцом с крышкой сепарационной секции с внутренней поверхностью, покрытой полосами того же пористого материала, в которой расположен распределительный коллектор, снабженный форсунками, размещенными в центре входа в испарительные гильзы, отделенную снизу каплеотбойником, выполненным в виде вогнутого перфорированного щита, с поверхностью боковых стенок, покрытой фитилем и соединенной через кольцевое уплотнение с рабочей камерой, выполненной в форме цилиндрической трубы, соединенной снаружи с рабочим органом, внутри которой устроены коаксиально друг за другом силовые турбины, жестко закрепленные периферийными кромками лопастей к внутренней поверхности стенки рабочей камеры по нормали к ней, которая соединена через кольцевое уплотнение с конденсационной камерой, состоящей из цилиндрической распределительной секции, днище которой покрыто массивом фитиля с отверстиями и выполнено с отверстиями, к которым присоединены открытыми торцами вертикальные конденсационные гильзы с внутренней боковой поверхностью, покрытой полосами, а торца - решеткой из полос пористого материала, образующих между собой канавки и соединенных с массивом фитиля, в центре которого устроен цилиндрический резервуар с перфорированными стенками и питательный насос, ротор которого насажен на вал, жестко соединенный с осью силовой турбины, а напорный трубопровод - с распределительным коллектором в испарительной камере.

На фиг.(1-7) представлен предлагаемый коаксиальный мультитеплотрубный двигатель (КМТТД).

КМТТД содержит расположенные по ходу движения пара: испарительную камеру 1, состоящую из вертикальных испарительных гильз 2, внутренняя боковая поверхность которых покрыта полосами, а торца - решеткой из полос пористого материала 3, образующих между собой канавки 4 и соединенных открытым торцом с крышкой сепарационной секции 5 с внутренней поверхностью, также покрытой полосами того же фитиля 3, в которой расположен распределительный коллектор 6, снабженный форсунками 7, размещенными в центре входа в испарительные гильзы 2, отделенную снизу каплеотбойником, выполненным в виде вогнутого перфорированного щита 8, с поверхностью боковых стенок, покрытой фитилем 9 и соединенной через кольцевое уплотнение 10 с рабочей камерой 11. Камера 11 выполнена в форме цилиндрической трубы, соединенной снаружи с рабочим органом (не показан), внутри которой устроены коаксиально друг за другом силовые турбины 12, 13, жестко закрепленные периферийными кромками лопастей к внутренней поверхности стенки рабочей камеры 11 по нормали к ней, и соединена с конденсационной камерой 14 через кольцевое уплотнение 15. Конденсационная камера 14 состоит из цилиндрической распределительной секции 16, днище которой покрыто массивом фитиля 17 с отверстиями и выполнено с отверстиями, к которым присоединены открытыми торцами вертикальные конденсационные гильзы 18, с внутренней боковой поверхностью, покрытой решеткой из полос пористого материала 3, образующих между собой канавки 4, торца - решеткой из того же материала, и соединенных с массивом фитиля 17. В центре фитиля 17 устроен цилиндрический резервуар с перфорированными стенками 19, в котором помещен питательный насос 20, ротор которого насажен на вал 21, жестко соединенный с осью силовой турбины 13, а напорный трубопровод 22 - с распределительным коллектором 6.

В основе работы предлагаемого КМТТД лежит основной цикл паросиловой установки - цикл Ренкина, согласно которому положительная работа расширения пара в турбине значительно превышает отрицательную работу насоса по сжатию конденсата [3, с.117], устройство и принцип действия винтового насоса [4, с.347] и высокая эффективность передачи теплоты в тепловых трубах, которые делятся на три участка: зона испарения (подвода теплоты), адиабатная зона (переноса теплоты) и зона конденсации (отвода теплоты), покрытых изнутри фитилем и частично заполненных рабочей жидкостью - переносчиком теплоты, в качестве которой используются вода, спирты, хладоны, жидкие металлы т.д. [5, с.106].

Предлагаемый КМТТД работает следующим образом.

Предварительно на открытом участке наружной поверхности рабочей камеры 11 монтируют ротор (не показан), жестко соединяя его с камерой 11 и неподвижной частью рабочего органа (например, электрогенератора, насоса, компрессора и т.д.). Перед началом работы из камер 1, 11, 14 КМТТД удаляют воздух и заполняют фитили 9, 18, пористый материал полос и решеток 3, цилиндрический резервуар 19, полость питательного насоса 20, напорный трубопровод 22 и коллектор 6 рабочей жидкостью, которую выбирают в зависимости от температурного потенциала холодной и горячей сред (штуцера для удаления воздуха и подачи рабочей жидкости не показаны), после чего КМТТД устанавливают таким образом, чтобы испарительная камера 1 контактировала с горячей средой, а конденсационная камера 14 - с холодной, и жестко фиксируют их. В результате нагрева испарительных гильз 2 испарительной камеры 1 происходит испарение рабочей жидкости с внутренней поверхности испарительных гильз 2, причем пористый материал полос и решетки 3 предотвращает образование паровой пленки на внутренней поверхности стенки и, таким образом, интенсифицирует процесс испарения [6, с.22], образуется пар с давлением, равным давлению, развиваемому питательным насосом 20, который, проходя через вогнутый перфорированный сепарационный щит 8, освобождается от уносимых капель рабочей жидкости, которые отбрасываются на фитиль 9 и пористый материал 3, поглощающие эти капли и снова транспортирующие их в зону испарения. Очищенный пар поступает в рабочую камеру 11 на лопатки последовательно расположенных силовых турбин 12, 13, вращая их совместно с корпусом рабочей камеры 11, и соответственно сообщает вращательное движение ротору питательного насоса 20 и вращающий момент М ротору рабочего органа, в результате чего питательный насос 20 перемещает рабочую жидкость и создает требуемое давление в ней, а рабочий орган производит полезную работу. В полости вращающейся рабочей камеры 11 происходит изоэнтропное теплопадение пара с одновременным снижением его температуры и давления [3, с.331], после чего отработавший мятый пар поступает в неподвижную конденсационную камеру 14, давление в которой значительно меньше, чем в испарительной камере 1. Пар конденсируется в конденсационных гильзах 18 за счет контакта их наружной поверхности с холодной средой, после чего образовавшийся конденсат рабочей жидкости всасывается пористым материалом полос и решетки 3, фитилем 18 и под воздействием капиллярных сил и разрежения поступает во всасывающее отверстие насоса 20. Далее рабочая жидкость через напорный трубопровод 22, коллектор 6 и форсунки 7 под давлением, создаваемым насосом 20, величина которого определяет рабочее давление пара в испарительной камере 1, разбрызгивается по внутренней поверхности испарительных гильз 2, где происходит вышеописанный процесс испарения, после чего образовавшийся пар освобождается от капель рабочей жидкости на щите 8 и цикл повторяется.

Как следует из описания работы устройства, мощность КМТТД можно увеличивать путем увеличения количества испарительных 2 и конденсационных 18 гильз, число которых теоретически может быть сколь угодно большим и практически ограничено лишь конструктивными и технологическими соображениями. Соответственно максимальная мощность КМТТД может быть также очень значительной.

Таким образом, предлагаемый КМТТД позволяет значительно увеличить количество механической и электрической энергии, получаемой за счет утилизации вторичных и природных тепловых энергоресурсов различного потенциала, что обеспечивает его высокую эффективность.

ЛИТЕРАТУРА

1. А.с. СССР №2056606 F28D 15/02, 1981.

2. Патент РФ №2320878 F01K 17/00, 2008.

3. И.Н. Сушкин. Теплотехника. - М.: Металлургия, 1973, 480 с.

4. Т.М. Башта др. Гидравлика, гидромашины и гидроприводы. - М.: Машиностр., 1982, 424 с.

5. В.В. Харитонов и др. Вторичные теплоэнергоресурсы и охрана окружающей среды. - Минск: Высш. школа, 1988, 170 с.

6. Тепловые трубы и теплообменники: от науки к практике. Сборник научн. тр. - М., 1990, 157 с.

Коаксиальный мультитеплотрубный двигатель, содержащий последовательно расположенные испарительную камеру, в которой помещены форсунка, соединенная с напорным трубопроводом, и каплеотбойник, внутренняя поверхность покрыта решеткой из тонкого слоя пористого материала, находящуюся в контакте с горячей средой, соединенную через кольцевое уплотнение с рабочей камерой, выполненной в форме цилиндрической трубы, соединенной снаружи с рабочим органом, внутри которой устроены коаксиально друг за другом силовые турбины, жестко закрепленные периферийными кромками лопастей к внутренней поверхности стенки рабочей камеры по нормали к ней, которая соединена через кольцевое уплотнение с конденсационной камерой, внутренняя поверхность которой также покрыта решеткой из тонкого слоя пористого материала, находящейся в контакте с холодной средой, питательный насос, отличающийся тем, что испарительная камера состоит из вертикальных испарительных гильз, с внутренней поверхностью боковых стенок, покрытой полосами тонкого слоя пористого материала, образующими между собой канавки, а торцы - решеткой из таких же полос, и соединенных открытым торцом с крышкой сепарационной секции с внутренней поверхностью, также покрытой полосами пористого материала, в которой расположен распределительный коллектор, снабженный форсунками, размещенными в центре входа в испарительные гильзы, отделена от рабочей камеры снизу каплеотбойником, выполненным в виде вогнутого перфорированного щита с поверхностью боковых стенок, покрытой фитилем, конденсационная камера состоит из цилиндрической распределительной секции, днище которой покрыто массивом фитиля с отверстиями и выполнено с отверстиями, к которым присоединены открытыми торцами вертикальные конденсационные гильзы с внутренней поверхностью боковых стенок, покрытой полосами, образующими между собой канавки, а торцы - решеткой из пористого материала, и соединенными с массивом фитиля, в центре которого устроен цилиндрический резервуар с перфорированными стенками, в котором помещен питательный насос, ротор которого насажен на вал, жестко соединенный с осью силовой турбины, а напорный трубопровод - с распределительным коллектором в испарительной камере.

www.findpatent.ru

Как выбрать компрессор

Для разных производственных или бытовых нужд может потребоваться использование сжатого воздуха. Его используют на различных приборах и приспособлениях. Это могут быть и инструменты — аналоги электроинструментов (дрели, болгарки, отбойные молотки и т.д.), и различные насадки и пистолеты для, например, продувки, покраски, промывки, подкачки и других целей. Для использования всего вышеуказанного потребуется аппарат, который будет выдавать сжатый воздух — компрессор. Для разных задач требуются компрессоры с разными характеристиками, поэтому неплохо было бы знать, как выбрать компрессор, чтобы купить тот вариант, который подойдет именно вам.

Больше 300 видов компрессоров по низким ценам в одном магазине. Нажмите, чтобы увидеть

В данной статье рассмотрен самый популярный тип этих аппаратов — поршневые компрессоры.

Производительность и давление

Чтобы правильно выбрать компрессор, нужно знать, для чего он будет использоваться. Если он будет питать определенный прибор или инструмент, то нужно знать, какое давление требуется для этого инструмента, а также сколько он потребляет воздуха. Для некоторых операций, например, для подкачки шин нет определенных значений потребления воздуха — тут сами решаете, за какое время требуется накачивать.

Итак, узнали давление и потребление. От них будет зависеть, сколько давления должен выдавать компрессор и какую ему нужно  иметь производительность. Чтобы выбрать компрессор с нужным давлением, надо учитывать, что если, к примеру, компрессор выдает максимум 10 атмосфер, то это значит, что давление в системе будет колебаться в пределах от 8 до 10 атмосфер, так как он выключается, когда в ресивере накапливается давление 10 атмосфер, а включается, когда оно падает до 8ми по мере потребления воздуха. Таким образом, к требуемому давлению нужно прибавить еще пару атмосфер и компрессор следует выбрать с таким или бОльшим давлением.

Чтобы определиться с производительностью компрессора, необходимо к количеству потребляемого питаемым аппаратом воздуха прибавить еще примерно 30% и выбрать компрессор с такой производительностью или большей. Просто, если на компрессоре указана определенная производительность, то по факту не вся она доходит до потребителя. Поэтому нужно выбрать компрессор с запасом.

Объем ресивера

Важное значение может иметь объем ресивера. Есть пневматические приборы, которые, сделав определенную операцию, затем стоят довольно долго без дела. Причем в момент выполнения этой операции потребление воздуха может быть достаточно большим. Так вот, если ресивер у компрессора большой, то производительность компрессора для такого прибора может быть нужна и меньше, чем его потребление. Просто для выполнения своей операции данному потребителю вполне может хватить того воздуха, который уже есть в ресивере. После выполнения этой операции прибор отдыхает, а компрессор снова накачивает ресивер. Поэтому, если у вас именно такой прибор, то можно сэкономить и выбрать компрессор с бОльшим ресивером и меньшей производительностью.

Коаксиальный или ременной?

Еще одним моментом, который нужно знать, чтобы правильно выбрать компрессор, является то, какая у него передача от двигателя к поршневой — ременная или коаксиальная. При коаксиальной передаче двигатель стоит вплотную к поршневой группе и передает вращение напрямую «без посредников». При ременной передаче двигатель и поршневая группа расположены на некотором расстоянии друг от друга. Из них выходят валы, на которые надеты шкивы. И уже на эти шкивы накинут ремень.

Компрессоры с коаксиальной передачей стоят дешевле, однако они не предназначены для продолжительной работы, поэтому выбрать такой компрессор можно, только если вы уверены, что много он работать не будет. Рекомендуемый режим работы для такого компрессора не более 15 минут в течение часа. Если нужно, чтобы компрессор мог работать продолжительно, то нужно выбрать компрессор с ременной передачей. Здесь уже рекомендованный режим работы будет до 45 минут в течение часа.

 

Коаксиальный компрессорКоаксиальный компрессор

 

Ременной компрессорРеменной компрессор

 

Стоит еще сказать, что есть компрессоры, работающие от сетей 220 либо 380 В. Здесь каждый сам знает, к какой сети у него есть возможность подключиться. Если есть обе сети, то предпочтительнее подключаться к 380 В, так как нагрузка на провода будет меньше.

Также в этой статье мы не упомянули о безресиверных компрессорах, а также не привели деление компрессоров на масляные и безмаслянные. Все дело в том, что безресиверные и беззмаслянные компрессоры — это не очень серьезная техника, поэтому было решено ничего не писать о них.

Таковы основные моменты, которые  необходимы, чтобы знать, как выбрать компрессор. Надеемся данная статья оказалась вам полезной.

Читайте также:

instrument-tehnika.ru

Коаксиальный ступенчатый мультитеплотрубный двигатель

Коаксиальный ступенчатый мультитеплотрубный двигатель включает размещенные коаксиально друг за другом и соединенные между собой ступени, содержащие испарительную, рабочую и конденсационную камеры. В первой ступени испарительная камера состоит из вертикальных испарительных гильз, покрытых решеткой из полос фитиля, соединенных с крышкой сепарационной секции покрытой решеткой из полос фитиля. В сепарационной секции расположены распределительный коллектор с форсунками и каплеотбойник. Днище сепарационной секции покрыто слоем фитиля. Сепарационная секция соединена через кольцевое уплотнение с рабочей камерой, соединенной снаружи с рабочим органом. Внутри рабочей камеры устроены коаксиально друг за другом силовые турбины. Рабочая камера через кольцевое уплотнение соединена с конденсационной камерой, которая состоит из распределительной секции, днище которой покрыто массивом фитиля, к которой присоединены вертикальные конденсационные гильзы, покрытые решеткой из полос фитиля, соединенных с массивом фитиля. В центре массива устроен цилиндрический резервуар с питательным насосом, ротор которого соединен осью силовой турбины. Напорный трубопровод соединен с распределительным коллектором. Испарительная камера каждой из последующих ступеней образована межтрубным пространством конденсационной камеры предыдущей ступени, покрытым кожухом. 11 ил.

 

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано для утилизации вторичных тепловых энергоресурсов и тепловой энергии природных источников, а именно для трансформации тепловой энергии в механическую.

Известен коаксиальный теплотрубный двигатель, который содержит последовательно расположенные испарительную камеру, снабженную каплеотбойником, покрытой фитилем и решеткой из фитиля, рабочую камеру, выполненную в форме цилиндрической трубы с винтом на наружной поверхности, внутри которой закреплены силовые турбины, конденсационную камеру, соединенную с рабочей камерой через кольцевое уплотнение, состоящую из обоймы, закрывающей винтовую поверхность рабочей камеры, образуя питательный насос, и конденсационной зоны, покрытой фитилем и решеткой из фитиля, причем конденсационная камера соединена с испарительной через питательный насос напорным трубопроводом с форсункой [патент РФ №2320878, МПК F01K 17/00, 2008].

Основными недостатками известного коаксиального теплотрубного двигателя является размещение ротора насоса на наружной поверхности корпуса, что затрудняет увязку его параметров (напора, производительности и т.д.) с мощностью устройства и незначительная площадь контакта с горячей и холодной средами, обусловленная этим малая мощность (меньше 1 кВт), что ограничивает область его применения при утилизации тепла вторичных и природных источников в промышленных масштабах и снижает его эффективность.

Более близким к предлагаемому изобретению является коаксиальный мультитеплотрубный двигатель, который содержит последовательно расположенные испарительную камеру, находящуюся в контакте с горячей средой, состоящую из вертикальных испарительных гильз, внутренняя боковая поверхность которых покрыта тонкими полосами пористого материала, образующими между собой канавки, а торца - решеткой из таких же полос и соединенных открытым торцом с крышкой сепарационной секции, с внутренней поверхностью, покрытой полосами того же пористого материала, в которой расположен распределительный коллектор, снабженный форсунками, размещенными в центре входа в испарительные гильзы, отделенная снизу каплеотбойником, выполненным в виде вогнутого перфорированного щита, с поверхностью боковых стенок покрытой фитилем и соединенной через кольцевое уплотнение с рабочей камерой, выполненной в форме цилиндрической трубы, соединенной снаружи с рабочим органом, внутри которой устроены коаксиально друг за другом силовые турбины, жестко закрепленные периферийными кромками лопастей к внутренней поверхности стенки рабочей камеры по нормали к ней, которая соединена через кольцевое уплотнение с конденсационной камерой, состоящей из цилиндрической распределительной секции, днище которой покрыто массивом фитиля с отверстиями и выполнено с отверстиями, к которым присоединены открытыми торцами вертикальные конденсационные гильзы с внутренней боковой поверхностью покрытой полосами, а торца - решеткой из пористого материала, образующих между собой канавки и соединенными с массивом фитиля, в центре которого устроен цилиндрический резервуар с перфорированными стенками и питательный насос, ротор которого насажен на вал, жестко соединенный с осью силовой турбины, а напорный трубопровод - с распределительным коллектором в испарительной камере [патент РФ №2379526, МПК F01K 25/00, F0128D 15/02, 2010].

Основным недостатком известного коаксиального мультитеплотрубного двигателя является неполное использование потенциальной тепловой энергии при наличии значительной разности температур горячей и холодной сред, что снижает его эффективность при утилизации высокопотенциального тепла вторичных и природных источников.

Техническим результатом, на решение которого направлено предлагаемое изобретение, является повышение эффективности коаксиального ступенчатого мультитеплотрубного двигателя.

Технический результат достигается в коаксиальном ступенчатом мультитеплотрубном двигателе, включающем размещенные коаксиально друг за другом и соединенные между собой ступени, каждая из которых содержит расположенные по ходу движения пара испарительную, рабочую и конденсационную камеры, при этом в первой ступени испарительная камера состоит из вертикальных испарительных гильз, внутренняя боковая поверхность и торцы которых покрыты решеткой из полос фитиля, образующих между собой ячейки и соединенных открытым торцом с крышкой сепарационной секции, внутренняя поверхность которой и боковые стенки также покрыты решеткой из полос фитиля, в которой расположен распределительный коллектор, снабженный форсунками, размещенными в центре входа в испарительные гильзы и установленный снизу каплеотбойник, выполненный в виде вогнутого перфорированного щита, поверхность днища которой покрыта слоем фитиля и соединена через кольцевое уплотнение с рабочей камерой, выполненной в форме цилиндрической трубы, соединенной снаружи с рабочим органом, внутри которой устроены коаксиально друг за другом силовые турбины, жестко закрепленные периферийными кромками лопастей к внутренней поверхности стенки рабочей камеры по нормали к ней и соединена через кольцевое уплотнение с конденсационной камерой, которая состоит из распределительной секции, днище которой покрыто массивом фитиля с отверстиями и выполнено с отверстиями, к которым присоединены открытыми торцами вертикальные конденсационные гильзы, с внутренней боковой поверхностью и торцами, покрытыми решеткой из полос фитиля, образующих между собой ячейки, соединенных с массивом фитиля, в центре которого устроен цилиндрический резервуар с перфорированными стенками, в котором помещен питательный насос, ротор которого насажен на вал, жестко соединенный с осью силовой турбины, напорный трубопровод соединен с распределительным коллектором, при этом испарительная камера каждой из последующих ступеней образована межтрубным пространством конденсационной камеры предыдущей ступени, покрытым кожухом, соединенным своей верхней кромкой с наружной кромкой днища распределительной секции конденсационной камеры предыдущей ступени, а нижней кромкой с днищем сепарационной секции испарительной камеры последующей ступени, в которой внутренняя поверхность кожуха, наружные поверхности днища распределительной секции, вертикальных конденсационных гильз и их торцов предыдущей ступени покрыты решеткой из полос фитиля, образующих между собой ячейки, причем сепарационные секции испарительных камер, рабочие и конденсационные камеры последующих ступеней устроены аналогично сепарационной секции испарительной камеры, рабочей и конденсационной камерам первой ступени.

На фиг.1 представлен общий вид, на фиг.2-7 - разрезы, на фиг.8-11 - узлы предлагаемого коаксиального ступенчатого мультитеплотрубного двигателя (КСМТТД) с двумя ступенями.

КСМТТД состоит из двух размещенных коаксиально друг за другом и соединенных между собой ступеней С1 и С2. Первая ступень С1 содержит расположенные по ходу движения пара испарительную, рабочую и конденсационную камеры 1, 2, 3 соответственно. Испарительная камера 1 состоит из вертикальных испарительных гильз 4, внутренняя боковая поверхность и торцы которых покрыты решеткой из полос фитиля (пористого материала) 5, образующих между собой ячейки 6 и соединенных открытым торцом с крышкой сепарационной секции 7, внутренняя поверхность которой и боковые стенки также покрыты решеткой из полос фитиля 5, в которой расположен распределительный коллектор 8, снабженный форсунками 9, размещенными в центре входа в испарительные гильзы 4, и установленный снизу каплеотбойник 10, выполненный в виде вогнутого перфорированного щита, поверхность днища которой покрыта слоем фитиля 11 и соединена через кольцевое уплотнение 12 с рабочей камерой 2. Камера 2 выполнена в форме цилиндрической трубы, соединенной снаружи с рабочим органом (на фиг.1-8 не показан), внутри которой устроены коаксиально друг за другом силовые турбины 13, 14, жестко закрепленные периферийными кромками лопастей к внутренней поверхности стенки рабочей камеры 2 по нормали к ней и соединена с конденсационной камерой 3 через кольцевое уплотнение 15. Конденсационная камера 3 состоит из распределительной секции 16, днище которой покрыто массивом фитиля 17 с отверстиями и выполнено с отверстиями, к которым присоединены открытыми торцами вертикальные конденсационные гильзы 18, с внутренней боковой поверхностью и торцами покрытыми решеткой из полос фитиля 5, образующих между собой ячейки 6, соединенных с массивом фитиля 17. В центре фитиля 17 устроен цилиндрический резервуар с перфорированными стенками 19, в котором помещен питательный насос 20, ротор которого насажен на вал 21, жестко соединенный с осью силовой турбины 14, а напорный трубопровод 22 с распределительным коллектором 8 (на фиг.1-11 их соединение не показано). Вторая ступень С2 содержит также расположенные по ходу движения пара испарительную, рабочую и конденсационную камеры 1a, 2a, 3a соответственно. Испарительная камера 1а образована межтрубным пространством конденсационной камеры 1 ступени С1, покрытым кожухом 4а, соединенным своей верхней кромкой с наружной кромкой днища распределительной секции 16 конденсационной камеры 3 первой ступени С1, нижней кромкой с днищем сепарационной секции 7а испарительной камеры 1а, внутренняя поверхность кожуха 4а, наружные поверхности днища распределительной секции 16, вертикальных конденсационных гильз 18 и их торцов конденсационной камеры 3 первой ступени С1 покрыты решеткой из полос фитиля 5а, образующих между собой ячейки 6а, в сепарационной секции 7а расположены распределительный коллектор 8а, снабженный форсунками 9а, устроенными в центрах межтрубного пространства между конденсационными гильзами 18, установленный ниже каплеотбойник 10а, выполненный в виде вогнутого перфорированного щита, внутренняя поверхность боковых стенок сепарационной секции 7а покрыта решеткой из полос фитиля 3а, поверхность днища - слоем фитиля 11а и соединена через кольцевое уплотнение 12а с рабочей камерой 2а. Камера 2а выполнена в форме цилиндрической трубы, соединенной снаружи с рабочим органом (на фиг.1-11 не показан), внутри которой устроены коаксиально друг за другом силовые турбины 13а, 14а, жестко закрепленные периферийными кромками лопастей к внутренней поверхности стенки рабочей камеры 2а по нормали к ней и соединена с конденсационной камерой 3а через кольцевое уплотнение 15а. Конденсационная камера 3а состоит из распределительной секции 16а, днище которой покрыто массивом фитиля 17а с отверстиями и выполнено с отверстиями, к которым присоединены открытыми торцами вертикальные конденсационные гильзы 18а, с внутренней боковой поверхностью и торцами, покрытыми решеткой из полос фитиля 5а, образующих между собой ячейки 6а, соединенных с массивом фитиля 17а. В центре фитиля 17а устроен цилиндрический резервуар с перфорированными стенками 19а, в котором помещен питательный насос 20а, ротор которого насажен на вал 21а, жестко соединенный с осью силовой турбины 14а, а напорный трубопровод 22а с распределительным коллектором 8а.

В основе работы предлагаемого КСМТТД лежит основной цикл паросиловой установки - цикл Ренкина, согласно которому положительная работа расширения пара в турбине значительно превышает отрицательную работу насоса по сжатию конденсата [И.Н.Сушкин. Теплотехника. - М.: Металлургия, 1973, с.117], устройство и принцип действия винтового насоса [Т.М.Башта др. Гидравлика, гидромашины и гидроприводы. - М: Машиностроение, 1982, с.347] и высокая эффективность передачи теплоты в тепловых трубах, частично заполненных рабочей жидкостью-переносчиком теплоты, в качестве которой используются вода, спирты, хладоны, жидкие металлы т.д. [В.В.Харитонов и др. Вторичные теплоэнергоресурсы и охрана окружающей среды. - Минск: Выш. школа, 1988, с.106].

Предлагаемый КСМТТД работает следующим образом. Предварительно на открытом участке наружной поверхности рабочих камер 2 и 2а, монтируют роторы (на фиг.(1-11) не показаны), жестко соединяя их с камерами 2 и 2а и неподвижные части рабочих органов (например, электрогенератора, насоса, компрессора и т.д.). Перед началом работы из камер 1 и 1a, 2 и 2а, 3 и 3а КСМТТД удаляют воздух и заполняют полосы решетки фитиля 5, слой фитиля 11, массив фитиля 17, цилиндрический резервуар 19, полость питательного насоса 20, напорный трубопровод 22 и коллектор 8 первой ступени С1 рабочей жидкостью Ж1, предназначенной для первой ступени, после чего заполняют полосы решетки фитиля 5а, слой фитиля 11а, массив фитиля 17а, цилиндрический резервуар 19а, полость питательного насоса 20а, напорный трубопровод 22а и коллектор 8а второй ступени С2 рабочей жидкостью Ж2, предназначенной для второй ступени (штуцера для удаления воздуха и подачи рабочей жидкости на фиг.(1-11) не показаны). При этом рабочие жидкости Ж1 и Ж2 выбирают в зависимости от температурного потенциала холодной и горячей сред и подбирают так, чтобы величина теплоты конденсации Ж1 была близка значению теплоты испарения Ж2, а температура конденсации Ж1 при рабочем давлении первой ступени КСМТТД была выше температуры кипения Ж2 при рабочем давлении второй ступени КСМТТД.

КСМТТД устанавливают таким образом, чтобы испарительная камера 1 первой ступени С1 контактировала с горячей средой, а конденсационная камера 3a второй ступени С2 с холодной и жестко фиксируют их. В результате нагрева испарительных гильз 4 испарительной камеры 1 первой ступени С1 происходит испарение рабочей жидкости Ж1 с внутренней поверхности испарительных гильз 4, причем решетка из полос фитиля 5 предотвращает образование паровой пленки на внутренней поверхности стенки и, таким образом, интенсифицирует процесс испарения [Тепловые трубы и теплообменники: от науки к практике. Сборник научн. тр. - М.: 1990, с.22], образуется пар с давлением, равным давлению, развиваемому питательным насосом 20, который, проходя через каплеотбойник (перфорированный сепарационный щит) 10, освобождается от уносимых капель рабочей жидкости Ж1, которые отбрасываются на фитиль 11 и полосы решетки фитиля 5, поглощающие эти капли и снова транспортирующие их в зону испарения. Очищенный пар поступает в рабочую камеру 2 на лопатки последовательно расположенных силовых турбин 13, 14, вращая их совместно с корпусом рабочей камеры 2 и, соответственно, сообщает вращательное движение ротору питательного насоса 20 и вращающий момент Ml ротору рабочего органа, в результате чего питательный насос 20 перемещает рабочую жидкость Ж1 и создает требуемое давление в ней, а рабочий орган первой ступени С1 производит полезную работу. В полости вращающейся рабочей камеры 2 происходит изоэнтропное теплопадение пара с одновременным снижением его температуры и давления, после чего отработавший мятый пар поступает в неподвижную конденсационную камеру 3, давление в которой значительно меньше, чем в испарительной камере 1. Пар конденсируется в конденсационных гильзах 18 за счет контакта их наружной поверхности с рабочей жидкостью Ж2, находящейся в решетке фитиля 5 а, после чего образовавшийся конденсат рабочей жидкости Ж1 всасывается полосами решетки фитиля 5, фитилем 17 и под воздействием капиллярных сил и разрежения поступает во всасывающее отверстие насоса 20. Далее, рабочая жидкость Ж1 через напорный трубопровод 22, коллектор 8 и форсунки 9 под давлением, создаваемым насосом 20, величина которого определяет рабочее давление пара в испарительной камере 1, разбрызгивается по внутренней поверхности испарительных гильз 4, где происходит вышеописанный процесс испарения, после чего образовавшийся пар освобождается от капель рабочей жидкости Ж1 на каплеотбойнике 10 и цикл повторяется.

Одновременно, в результате конденсации паров рабочей жидкости Ж1 в конденсационных гильзах 18 конденсационной камеры 3 первой ступени С1, в испарительной камере 1а второй ступени С2 при передаче теплоты конденсации Ж1 через стенки конденсационных гильз 18 происходит испарение рабочей жидкости Ж2 с их наружной поверхности, образуется пар с давлением, равным давлению, развиваемому питательным насосом 20а, который, проходя через каплеотбойник (вогнутый перфорированный сепарационный щит) 10а, освобождается от уносимых капель рабочей жидкости Ж2, которые отбрасываются на фитиль 11а и полосы решетки фитиля 5a, поглощающие эти капли и снова транспортирующие их в зону испарения. Очищенный пар поступает в рабочую камеру 2а на лопатки, последовательно расположенных силовых турбин 13а, 14а, вращая их совместно с корпусом рабочей камеры 2а и, соответственно, сообщает вращательное движение ротору питательного насоса 20а и вращающий момент М2 ротору рабочего органа, в результате чего питательный насос 20а перемещает рабочую жидкость и создает требуемое давление в ней, а рабочий орган второй ступени С2 производит дополнительную полезную работу. В полости вращающейся рабочей камеры 2а происходит изоэнтропное теплопадение пара с одновременным снижением его температуры и давления, после чего отработавший мятый пар поступает в неподвижную конденсационную камеру 3а, давление в которой значительно меньше, чем в испарительной камере 1а. Пар конденсируется в конденсационных гильзах 18а за счет контакта их наружной поверхности с холодной средой, после чего образовавшийся конденсат рабочей жидкости Ж2 всасывается полосами решетки фитиля 5а, фитилем 17а и под воздействием капиллярных сил и разрежения поступает во всасывающее отверстие насоса 20а. Далее, рабочая жидкость Ж2 через напорный трубопровод 22а, коллектор 8а и форсунки 9а под давлением, создаваемым насосом 20а, величина которого определяет рабочее давление пара в испарительной камере 1а, разбрызгивается по наружной поверхности конденсационных гильз 18, где происходит вышеописанный процесс испарения, после чего образовавшийся пар освобождается от капель рабочей жидкости Ж2 на каплеотбойнике 10а и цикл повторяется.

Из описания работы устройства: мощность КСМТТД увеличивается путем установки второй ступени, которая работает за счет тепла конденсации пара рабочей жидкости Ж1 первой ступени. При этом число ступеней КСМТТД может быть больше двух и ограничено конструктивными и технологическими соображениями. Соответственно, максимальная мощность КСМТТД по сравнению с одноступенчатым двигателем может быть увеличена в несколько раз.

Таким образом, предлагаемый КСМТТД позволяет значительно увеличить количество механической и электрической энергии, получаемой за счет утилизации вторичных и природных тепловых энергоресурсов высокого потенциала, что обеспечивает его высокую эффективность.

Коаксиальный ступенчатый мультитеплотрубный двигатель, включающий расположенные по ходу движения пара испарительную, рабочую и конденсационную камеры, при этом испарительная камера состоит из вертикальных испарительных гильз, внутренняя боковая поверхность и торцы которых покрыты решеткой из полос фитиля, образующих между собой ячейки и соединенных открытым торцом с крышкой сепарационной секции, внутренняя поверхность которой и боковые стенки также покрыты решеткой из полос фитиля, в которой расположен распределительный коллектор, снабженный форсунками, размещенными в центре входа в испарительные гильзы, и установленный снизу каплеотбойник, выполненный в виде вогнутого перфорированного щита, поверхность днища которой покрыта слоем фитиля и соединена через кольцевое уплотнение с рабочей камерой, выполненной в форме цилиндрической трубы, соединенной снаружи с рабочим органом, внутри которой устроены коаксиально друг за другом силовые турбины, жестко закрепленные периферийными кромками лопастей к внутренней поверхности стенки рабочей камеры по нормали к ней, и соединена через кольцевое уплотнение с конденсационной камерой, которая состоит из распределительной секции, днище которой покрыто массивом фитиля с отверстиями и выполнено с отверстиями, к которым присоединены открытыми торцами вертикальные конденсационные гильзы с внутренней боковой поверхностью и торцами, покрытыми решеткой из полос фитиля, образующих между собой ячейки, соединенных с массивом фитиля, в центре которого устроен цилиндрический резервуар с перфорированными стенками, в котором помещен питательный насос, ротор которого насажен на вал, жестко соединенный с осью силовой турбины, напорный трубопровод соединен с распределительным коллектором, отличающийся тем, что испарительная, рабочая и конденсационная камеры помещены в ступени, размещенные коаксиально друг за другом и соединенные между собой, причем испарительная камера каждой из последующих ступеней образована межтрубным пространством конденсационной камеры предыдущей ступени, покрытым кожухом, соединенным своей верхней кромкой с наружной кромкой днища распределительной секции конденсационной камеры предыдущей ступени, а нижней кромкой с днищем сепарационной секции испарительной камеры последующей ступени, в которой внутренняя поверхность кожуха, наружные поверхности днища распределительной секции, вертикальных конденсационных гильз и их торцов предыдущей ступени покрыты решеткой из полос фитиля, образующих между собой ячейки, при этом сепарационные секции испарительных камер, рабочие и конденсационные камеры последующих ступеней устроены аналогично сепарационной секции испарительной камеры, рабочей и конденсационной камерам первой ступени.

www.findpatent.ru

Коаксиальный теплотрубный двигатель

Изобретение относится к теплоэнергетике. Коаксиальный теплотрубный двигатель содержит испарительную камеру, выполненную в форме цилиндрического колпака, соединенного с рабочей камерой через кольцевое уплотнение, и снабжена каплеотбойником, внутренние боковые стенки ее покрыты фитилем, соединенным с решеткой, выполненной из тонкого слоя пористого материала, покрывающей внутреннюю поверхность торцевой стенки, рабочая камера выполнена в форме цилиндрической трубы с ограничительным кольцом и винтом на наружной поверхности, конденсационная камера, соединенная с рабочей камерой через кольцевое уплотнение, выполнена в форме цилиндрического колпака и состоит из обоймы, закрывающей винтовую поверхность рабочей камеры, которая образует питательный насос, и конденсационной зоны, и внутренние боковые стенки которой покрыты фитилем, в свою очередь, частично покрытым втулкой с фланцем и соединенным с решеткой, выполненной из тонкого слоя пористого материала, покрывающей внутреннюю поверхность торцевой стенки, причем конденсационная камера соединена с испарительной через питательный насос напорным трубопроводом, снабженным на конце форсункой. Изобретение позволяет повысить эффективность теплового двигателя. 5 ил.

 

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано для утилизации вторичных тепловых энергоресурсов и низкопотенциальной тепловой энергии природных источников, а именно для трансформации тепловой энергии в механическую.

Известна паротурбинная установка, содержащая паровую турбину, конденсатор, соединенный со сливным и напорным трубопроводами и по конденсату с конденсатным насосом, циркуляционные насосы и тепловой аккумулятор [1].

Недостатками известной паротурбинной установки являются невозможность при ее эксплуатации использования вторичных тепловых энергоресурсов и природных источников низкопотенциального тепла.

Более близким к предлагаемому изобретению является коаксиальный теплотрубный двигатель (преобразователь тепловой энергии в механическую), содержащий последовательно расположенные испарительную камеру, находящуюся в контакте с горячей средой, рабочую камеру, внутри которой устроены коаксиально, друг за другом силовые турбины, жестко закрепленные периферийными кромками лопастей к внутренней поверхности стенки рабочей камеры по нормали к ней, конденсационную камеру, находящуюся в контакте с холодной средой, питательный насос [2].

Основными недостатками известного устройства являются невозможность утилизации низкопотенциальных вторичных тепловых энергоресурсов, тепловых ресурсов природных источников, громоздкость конструкции и невозможность работы при изменении ориентации в пространстве, что сужает область его применения и, в конечном счете, снижает его эффективность.

Техническим результатом, на решение которого направлено предлагаемое изобретение, является повышение эффективности теплового двигателя.

Технический результат достигается в коаксиальном теплотрубном двигателе (КТТД), содержащем последовательно расположенные испарительную камеру, находящуюся в контакте с горячей средой, рабочую камеру, внутри которой устроены коаксиально, друг за другом силовые турбины, жестко закрепленные периферийными кромками лопастей к внутренней поверхности стенки рабочей камеры по нормали к ней, конденсационную камеру, находящуюся в контакте с холодной средой, питательный насос, причем испарительная камера выполнена в форме цилиндрического колпака, соединенного с рабочей камерой через кольцевое уплотнение и снабжена каплеотбойником, внутренние боковые стенки ее покрыты фитилем, соединенным с решеткой, выполненной из тонкого слоя пористого материала, покрывающей внутреннюю поверхность торцевой стенки, рабочая камера выполнена в форме цилиндрической трубы с ограничительным кольцом и винтом на наружной поверхности, конденсационная камера, соединенная с рабочей камерой через кольцевое уплотнение, выполнена в форме цилиндрического колпака и состоит из обоймы, закрывающей винтовую поверхность рабочей камеры, которая образует питательный насос, и конденсационной зоны, внутренние боковые стенки которой покрыты фитилем, в свою очередь, частично покрытым втулкой с фланцем и соединенным с решеткой, выполненной из тонкого слоя пористого материала, покрывающей внутреннюю поверхность торцевой стенки, причем конденсационная камера соединена с испарительной через питательный насос напорным трубопроводом, снабженным на конце форсункой.

На фиг.(1-5) представлен предлагаемый коаксиальный теплотрубный двигатель (КТТД).

КТТД содержит расположенные по ходу движения пара: испарительную камеру 1, выполненную в форме цилиндрического колпака, снабженную каплеотбойником 2, внутренняя поверхность боковых стенок которой покрыта фитилем 3, соединенным с решеткой 4, выполненной из тонкого слоя пористого материала, покрывающей внутреннюю поверхность торцевой стенки, и соединенную через кольцевое уплотнение 5 с рабочей камерой 6, которая выполнена в форме цилиндрической трубы с кольцевым буртиком 7, и винта 8 на наружной поверхности, внутри которой устроены коаксиально друг за другом силовые турбины 9, 10, жестко закрепленные периферийными кромками лопастей к внутренней поверхности стенки рабочей камеры 6 по нормали к ней, конденсационную камеру 11, также соединенную с рабочей камерой 6 через кольцевое уплотнение 12, выполненную в форме цилиндрического колпака и состоящую из обоймы 13, покрывающей винтовую часть 8 рабочей камеры 6, образуя питательный винтовой насос 14 с кольцевыми всасывающей и напорной камерами 15, 16, и конденсационной зоны 17, внутренние боковые стенки которой покрыты фитилем 18, в свою очередь, частично покрытым втулкой 19 с фланцем 20 и соединенным с решеткой 21, выполненной из тонкого слоя пористого материала, покрывающей внутреннюю поверхность торцевой стенки конденсационной камеры 11, соединенной с испарительной камерой 1 через питательный насос 14 напорным трубопроводом 22, снабженным на конце форсункой 23.

В основе работы предлагаемого КТТД лежит основной цикл паросиловой установки - цикл Ренкина, согласно которому положительная работа расширения пара в турбине значительно превышает отрицательную работу насоса по сжатию конденсата [3, с.117], устройство и принцип действия винтового насоса [4, с.347] и высокая эффективность передачи теплоты в тепловых трубах, которые делятся на три участка: зона испарения (подвода теплоты), адиабатная зона (переноса теплоты) и зона конденсации (отвода теплоты), покрытых изнутри фитилем и частично заполненных рабочей жидкостью - переносчиком теплоты, в качестве которой используются вода, спирты, хладоны, жидкие металлы т.д. [5, с.106].

Предлагаемый КТТД работает следующим образом.

Предварительно на открытом участке наружной поверхности рабочей камеры 6 монтируют ротор (на фиг.(1-5) не показан), жестко соединяя его с камерой 6, и неподвижную часть исполнительного механизма (например, электрогенератора, насоса, компрессора и т.д.). Перед началом работы из камер 1, 6, 11 КТТД удаляют воздух и заполняют фитили 3, 18, пористый материал решеток 4, 21, полость питательного насоса 14 и напорный трубопровод 22 рабочей жидкостью, которую выбирают в зависимости от температурного потенциала холодной и горячей сред (штуцера для удаления воздуха и подачи рабочей жидкости на фиг.(1-5) не показаны), после чего КТТД устанавливают таким образом, чтобы испарительная камера 1 контактировала с горячей средой, а конденсационная камера 11 с холодной и жестко фиксируют их. В результате нагрева торца испарительной камеры 1 происходит испарение рабочей жидкости с его внутренней поверхности, причем пористый материал решетки 4 предотвращает образование паровой пленки на внутренней поверхности торца и, таким образом, интенсифицирует процесс испарения [6, с.22], образуется пар с давлением, равным давлению, развиваемому питательным насосом 14, который, проходя через каплеотбойник 2, освобождается от уносимых капель рабочей жидкости, а фитиль 3 поглощает эти капли и снова транспортирует их в зону испарения. Очищенный пар поступает в рабочую камеру 6 на лопатки последовательно расположенных силовых турбин 9, 10, вращая корпус рабочей камеры 6, и соответственно сообщает вращательное движение винту 8 питательного насоса 14 и вращающий момент М ротору исполнительного механизма, в результате чего питательный насос 14 перемещает рабочую жидкость и создает требуемое давление в ней, а исполнительный механизм производит полезную работу, после чего в полости рабочей камеры 6 происходит изоэнтропное теплопадение пара с одновременным снижением его температуры и давления [3, с.331]. Далее, отработавший мятый пар поступает в неподвижную конденсационную камеру 11, давление в которой значительно меньше, чем в испарительной камере 1, конденсируется там за счет контакта наружной поверхности камеры 11 с холодной средой, после чего образовавшийся конденсат рабочей жидкости всасывается пористым материалом решетки 21, которая увеличивает скорость движения конденсата к фитилю 18 и под воздействием капиллярных сил и разрежения во всасывающей камере 15, насосом 14 через напорную камеру 16 подается в напорный трубопровод 22 и форсунку 23 под давлением, величина которого определяет рабочее давление пара в испарительной камере 1. В камере 1 форсунка 23 разбрызгивает рабочую жидкость по внутренней поверхности ее торцевой стенки, где происходит вышеописанный процесс испарения, после чего образовавшийся пар освобождается от капель рабочей жидкости и далее цикл повторяется.

Таким образом, предлагаемый КТТД обеспечивает возможность получения механической и электрической энергии за счет утилизации вторичных тепловых энергоресурсов различного потенциала (энергии сбросных вод, отходящих газов и т.д.), тепловых ресурсов природных источников (энергии солнца, воды и т.д.) при любой ориентации в пространстве, что обеспечивает его высокую эффективность в самых различных ситуациях.

ЛИТЕРАТУРА

1. А.с. №1574842, М.кл. F01K 17/04, 1990.

2. Пат. РФ №2056606, Мк.л. F28D 15/02, 1996.

3. И.Н.Сушкин. Теплотехника. - М.: Металлургия, 1973, 480 с.

4. Т.М.Башта др. Гидравлика, гидромашины и гидроприводы. - М: Машиностр., 1982, 424 с.

5. В.В.Харитонов и др. Вторичные теплоэнергоресурсы и охрана окружающей среды. - Минск: Выш. школа, 1988, 170 с.

6. Тепловые трубы и теплообменники: от науки к практике. Сборник научн. тр. - М.: 1990, 157 с.

Коаксиальный теплотрубный двигатель (КТТД), содержащий последовательно расположенные испарительную камеру, находящуюся в контакте с горячей средой, рабочую камеру, внутри которой устроены коаксиально друг за другом силовые турбины, жестко закрепленные периферийными кромками лопастей к внутренней поверхности стенки рабочей камеры по нормали к ней, конденсационную камеру, находящуюся в контакте с холодной средой, питательный насос, отличающийся тем, что испарительная камера выполнена в форме цилиндрического колпака, соединенного с рабочей камерой через кольцевое уплотнение и снабжена каплеотбойником, внутренние боковые стенки ее покрыты фитилем, соединенным с решеткой, выполненной из тонкого слоя пористого материала, покрывающей внутреннюю поверхность торцевой стенки, рабочая камера выполнена в форме цилиндрической трубы с ограничительным кольцом и винтом на наружной поверхности, конденсационная камера, соединенная с рабочей камерой через кольцевое уплотнение, выполнена в форме цилиндрического колпака и состоит из обоймы, закрывающей винтовую поверхность рабочей камеры, которая образует питательный насос, и конденсационной зоны и внутренние боковые стенки которой покрыты фитилем, в свою очередь, частично покрытым втулкой с фланцем и соединенным с решеткой, выполненной из тонкого слоя пористого материала, покрывающей внутреннюю поверхность торцевой стенки, причем конденсационная камера соединена с испарительной через питательный насос напорным трубопроводом, снабженным на конце форсункой.

www.findpatent.ru

коаксиальный мультитеплотрубный двигатель - патент РФ 2379526

Изобретение относится к теплоэнергетике, а именно к тепловым двигателям. Предложенный коаксиальный мультитеплотрубный двигатель содержит испарительную и конденсационную камеры, состоящие из вертикальных гильз, внутренняя поверхность которых покрыта полосами и решеткой из пористого материала и фитилем, соединенных открытыми торцами с крышками соответствующих распределительных (сепарационных) секций. В испарительной камере, отделенной снизу вогнутым перфорированным каплеотбойником, расположен распределительный коллектор, снабженный форсунками, размещенными в центре входа в испарительные гильзы. Испарительная и конденсационная камеры соединены через кольцевое уплотнение с рабочей камерой, внутри которой установлены коаксиально друг за другом силовые турбины, жестко закрепленные периферийными кромками лопастей к внутренней поверхности стенки рабочей камеры по нормали к ней. В центре распределительного коллектора устроен цилиндрический резервуар и питательный насос, соединенный с распределительным коллектором испарительной камеры. Изобретение позволяет повысить эффективность теплового двигателя. 7 ил.

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано для утилизации вторичных тепловых энергоресурсов и низкопотенциальной тепловой энергии природных источников, а именно для трансформации тепловой энергии в механическую.

Известен преобразователь тепловой энергии в механическую, содержащий последовательно расположенные испарительную камеру, находящуюся в контакте с горячей средой, рабочую камеру, внутри которой устроены коаксиально друг за другом силовые турбины, жестко закрепленные периферийными кромками лопастей к внутренней поверхности стенки рабочей камеры по нормали к ней, конденсационную камеру, находящуюся в контакте с холодной средой, питательный насос [1].

Основными недостатками известного преобразователя тепловой энергии в механическую являются невозможность утилизации низкопотенциальных вторичных и природных тепловых энергоресурсов, громоздкость конструкции и невозможность работы при изменении ориентации в пространстве, что сужает область его применения и в конечном счете снижает его эффективность.

Более близким к предлагаемому изобретению является коаксиальный теплотрубный двигатель, который содержит последовательно расположенные испарительную камеру, находящуюся в контакте с горячей средой, снабженную каплеотбойником, внутренние боковые стенки ее покрыты фитилем, соединенным с решеткой, выполненной из тонкого слоя пористого материала, покрывающей внутреннюю поверхность торцевой стенки, рабочую камеру, выполненную в форме цилиндрической трубы с кольцевым буртиком и винтом на наружной поверхности, внутри ее устроены коаксиально друг за другом силовые турбины, жестко закрепленные периферийными кромками лопастей к внутренней поверхности стенки рабочей камеры по нормали к ней, конденсационную камеру, соединенную с рабочей камерой через кольцевое уплотнение, состоящую из обоймы, закрывающей винтовую поверхность рабочей камеры, образуя питательный насос, и конденсационной зоны, внутренние боковые стенки которой покрыты фитилем, соединенным с решеткой, выполненной из тонкого слоя пористого материала, покрывающей внутреннюю поверхность торцевой стенки, причем конденсационная камера соединена с испарительной через питательный насос напорным трубопроводом, снабженным на конце форсункой.

Основными недостатками известного коаксиального теплотрубного двигателя являются размещение ротора насоса на наружной поверхности корпуса, что затрудняет увязку его параметров (напора, производительности и т.д.) с мощностью устройства, незначительная площадь контакта с горячей и холодной средами и обусловленная этим малая мощность (меньше 1 кВт), что ограничивает область его применения при утилизации низкопотенциального тепла вторичных и природных источников в промышленных масштабах и снижает его эффективность.

Техническим результатом, на решение которого направлено предлагаемое изобретение, является увеличение мощности коаксиального теплотрубного двигателя и связанные с этим возможность его применения в промышленных масштабах при утилизации тепла (в том числе и низкопотенциального) в различных отраслях народного хозяйства и повышение эффективности.

Поставленная задача реализуется в коаксиальном мультитеплотрубном двигателе (КМТТД), который содержит последовательно расположенные испарительную камеру, находящуюся в контакте с горячей средой, состоящую из вертикальных испарительных гильз, внутренняя боковая поверхность которых покрыта тонкими полосами пористого материала, образующими между собой канавки, а торца - решеткой из таких же полос, соединенных открытым торцом с крышкой сепарационной секции с внутренней поверхностью, покрытой полосами того же пористого материала, в которой расположен распределительный коллектор, снабженный форсунками, размещенными в центре входа в испарительные гильзы, отделенную снизу каплеотбойником, выполненным в виде вогнутого перфорированного щита, с поверхностью боковых стенок, покрытой фитилем и соединенной через кольцевое уплотнение с рабочей камерой, выполненной в форме цилиндрической трубы, соединенной снаружи с рабочим органом, внутри которой устроены коаксиально друг за другом силовые турбины, жестко закрепленные периферийными кромками лопастей к внутренней поверхности стенки рабочей камеры по нормали к ней, которая соединена через кольцевое уплотнение с конденсационной камерой, состоящей из цилиндрической распределительной секции, днище которой покрыто массивом фитиля с отверстиями и выполнено с отверстиями, к которым присоединены открытыми торцами вертикальные конденсационные гильзы с внутренней боковой поверхностью, покрытой полосами, а торца - решеткой из полос пористого материала, образующих между собой канавки и соединенных с массивом фитиля, в центре которого устроен цилиндрический резервуар с перфорированными стенками и питательный насос, ротор которого насажен на вал, жестко соединенный с осью силовой турбины, а напорный трубопровод - с распределительным коллектором в испарительной камере.

На фиг.(1-7) представлен предлагаемый коаксиальный мультитеплотрубный двигатель (КМТТД).

КМТТД содержит расположенные по ходу движения пара: испарительную камеру 1, состоящую из вертикальных испарительных гильз 2, внутренняя боковая поверхность которых покрыта полосами, а торца - решеткой из полос пористого материала 3, образующих между собой канавки 4 и соединенных открытым торцом с крышкой сепарационной секции 5 с внутренней поверхностью, также покрытой полосами того же фитиля 3, в которой расположен распределительный коллектор 6, снабженный форсунками 7, размещенными в центре входа в испарительные гильзы 2, отделенную снизу каплеотбойником, выполненным в виде вогнутого перфорированного щита 8, с поверхностью боковых стенок, покрытой фитилем 9 и соединенной через кольцевое уплотнение 10 с рабочей камерой 11. Камера 11 выполнена в форме цилиндрической трубы, соединенной снаружи с рабочим органом (не показан), внутри которой устроены коаксиально друг за другом силовые турбины 12, 13, жестко закрепленные периферийными кромками лопастей к внутренней поверхности стенки рабочей камеры 11 по нормали к ней, и соединена с конденсационной камерой 14 через кольцевое уплотнение 15. Конденсационная камера 14 состоит из цилиндрической распределительной секции 16, днище которой покрыто массивом фитиля 17 с отверстиями и выполнено с отверстиями, к которым присоединены открытыми торцами вертикальные конденсационные гильзы 18, с внутренней боковой поверхностью, покрытой решеткой из полос пористого материала 3, образующих между собой канавки 4, торца - решеткой из того же материала, и соединенных с массивом фитиля 17. В центре фитиля 17 устроен цилиндрический резервуар с перфорированными стенками 19, в котором помещен питательный насос 20, ротор которого насажен на вал 21, жестко соединенный с осью силовой турбины 13, а напорный трубопровод 22 - с распределительным коллектором 6.

В основе работы предлагаемого КМТТД лежит основной цикл паросиловой установки - цикл Ренкина, согласно которому положительная работа расширения пара в турбине значительно превышает отрицательную работу насоса по сжатию конденсата [3, с.117], устройство и принцип действия винтового насоса [4, с.347] и высокая эффективность передачи теплоты в тепловых трубах, которые делятся на три участка: зона испарения (подвода теплоты), адиабатная зона (переноса теплоты) и зона конденсации (отвода теплоты), покрытых изнутри фитилем и частично заполненных рабочей жидкостью - переносчиком теплоты, в качестве которой используются вода, спирты, хладоны, жидкие металлы т.д. [5, с.106].

Предлагаемый КМТТД работает следующим образом.

Предварительно на открытом участке наружной поверхности рабочей камеры 11 монтируют ротор (не показан), жестко соединяя его с камерой 11 и неподвижной частью рабочего органа (например, электрогенератора, насоса, компрессора и т.д.). Перед началом работы из камер 1, 11, 14 КМТТД удаляют воздух и заполняют фитили 9, 18, пористый материал полос и решеток 3, цилиндрический резервуар 19, полость питательного насоса 20, напорный трубопровод 22 и коллектор 6 рабочей жидкостью, которую выбирают в зависимости от температурного потенциала холодной и горячей сред (штуцера для удаления воздуха и подачи рабочей жидкости не показаны), после чего КМТТД устанавливают таким образом, чтобы испарительная камера 1 контактировала с горячей средой, а конденсационная камера 14 - с холодной, и жестко фиксируют их. В результате нагрева испарительных гильз 2 испарительной камеры 1 происходит испарение рабочей жидкости с внутренней поверхности испарительных гильз 2, причем пористый материал полос и решетки 3 предотвращает образование паровой пленки на внутренней поверхности стенки и, таким образом, интенсифицирует процесс испарения [6, с.22], образуется пар с давлением, равным давлению, развиваемому питательным насосом 20, который, проходя через вогнутый перфорированный сепарационный щит 8, освобождается от уносимых капель рабочей жидкости, которые отбрасываются на фитиль 9 и пористый материал 3, поглощающие эти капли и снова транспортирующие их в зону испарения. Очищенный пар поступает в рабочую камеру 11 на лопатки последовательно расположенных силовых турбин 12, 13, вращая их совместно с корпусом рабочей камеры 11, и соответственно сообщает вращательное движение ротору питательного насоса 20 и вращающий момент М ротору рабочего органа, в результате чего питательный насос 20 перемещает рабочую жидкость и создает требуемое давление в ней, а рабочий орган производит полезную работу. В полости вращающейся рабочей камеры 11 происходит изоэнтропное теплопадение пара с одновременным снижением его температуры и давления [3, с.331], после чего отработавший мятый пар поступает в неподвижную конденсационную камеру 14, давление в которой значительно меньше, чем в испарительной камере 1. Пар конденсируется в конденсационных гильзах 18 за счет контакта их наружной поверхности с холодной средой, после чего образовавшийся конденсат рабочей жидкости всасывается пористым материалом полос и решетки 3, фитилем 18 и под воздействием капиллярных сил и разрежения поступает во всасывающее отверстие насоса 20. Далее рабочая жидкость через напорный трубопровод 22, коллектор 6 и форсунки 7 под давлением, создаваемым насосом 20, величина которого определяет рабочее давление пара в испарительной камере 1, разбрызгивается по внутренней поверхности испарительных гильз 2, где происходит вышеописанный процесс испарения, после чего образовавшийся пар освобождается от капель рабочей жидкости на щите 8 и цикл повторяется.

Как следует из описания работы устройства, мощность КМТТД можно увеличивать путем увеличения количества испарительных 2 и конденсационных 18 гильз, число которых теоретически может быть сколь угодно большим и практически ограничено лишь конструктивными и технологическими соображениями. Соответственно максимальная мощность КМТТД может быть также очень значительной.

Таким образом, предлагаемый КМТТД позволяет значительно увеличить количество механической и электрической энергии, получаемой за счет утилизации вторичных и природных тепловых энергоресурсов различного потенциала, что обеспечивает его высокую эффективность.

ЛИТЕРАТУРА

1. А.с. СССР № 2056606 F28D 15/02, 1981.

2. Патент РФ № 2320878 F01K 17/00, 2008.

3. И.Н. Сушкин. Теплотехника. - М.: Металлургия, 1973, 480 с.

4. Т.М. Башта др. Гидравлика, гидромашины и гидроприводы. - М.: Машиностр., 1982, 424 с.

5. В.В. Харитонов и др. Вторичные теплоэнергоресурсы и охрана окружающей среды. - Минск: Высш. школа, 1988, 170 с.

6. Тепловые трубы и теплообменники: от науки к практике. Сборник научн. тр. - М., 1990, 157 с.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Коаксиальный мультитеплотрубный двигатель, содержащий последовательно расположенные испарительную камеру, в которой помещены форсунка, соединенная с напорным трубопроводом, и каплеотбойник, внутренняя поверхность покрыта решеткой из тонкого слоя пористого материала, находящуюся в контакте с горячей средой, соединенную через кольцевое уплотнение с рабочей камерой, выполненной в форме цилиндрической трубы, соединенной снаружи с рабочим органом, внутри которой устроены коаксиально друг за другом силовые турбины, жестко закрепленные периферийными кромками лопастей к внутренней поверхности стенки рабочей камеры по нормали к ней, которая соединена через кольцевое уплотнение с конденсационной камерой, внутренняя поверхность которой также покрыта решеткой из тонкого слоя пористого материала, находящейся в контакте с холодной средой, питательный насос, отличающийся тем, что испарительная камера состоит из вертикальных испарительных гильз, с внутренней поверхностью боковых стенок, покрытой полосами тонкого слоя пористого материала, образующими между собой канавки, а торцы - решеткой из таких же полос, и соединенных открытым торцом с крышкой сепарационной секции с внутренней поверхностью, также покрытой полосами пористого материала, в которой расположен распределительный коллектор, снабженный форсунками, размещенными в центре входа в испарительные гильзы, отделена от рабочей камеры снизу каплеотбойником, выполненным в виде вогнутого перфорированного щита с поверхностью боковых стенок, покрытой фитилем, конденсационная камера состоит из цилиндрической распределительной секции, днище которой покрыто массивом фитиля с отверстиями и выполнено с отверстиями, к которым присоединены открытыми торцами вертикальные конденсационные гильзы с внутренней поверхностью боковых стенок, покрытой полосами, образующими между собой канавки, а торцы - решеткой из пористого материала, и соединенными с массивом фитиля, в центре которого устроен цилиндрический резервуар с перфорированными стенками, в котором помещен питательный насос, ротор которого насажен на вал, жестко соединенный с осью силовой турбины, а напорный трубопровод - с распределительным коллектором в испарительной камере.

www.freepatent.ru

коаксиально-торцевой теплотрубный двигатель - патент РФ 2320879

Изобретение относится к теплоэнергетике. Коаксиально-торцевой теплотрубный двигатель содержит испарительную камеру, внутренняя поверхность которой покрыта решеткой из пористого материала, с сепаратором, соединенную с транспортной камерой, которая также соединена с кольцевой обоймой, снабженной кольцевым буртиком, внутри которой коаксиально помещен цилиндрический корпус, соединенный с ней через кольцевые уплотнения с винтом на наружной поверхности, которые совместно образуют питательный винтовой насос, а внутри цилиндрического корпуса последовательно расположены рабочая камера, в которой устроены силовые турбины, жестко закрепленные к внутренней поверхности стенки рабочей камеры по нормали к ней, и отделенная от нее шайбой конденсационная камера с фитилем на внутренней поверхности боковой стенки, сообщающимся с питательным насосом, соединенным с испарительной камерой напорным трубопроводом, снабженным разбрызгивающим устройством и проходящим через полость транспортной камеры. Изобретение позволяет повысить эффективность теплового двигателя. 1 н. и 2 з.п. ф-лы, 5 ил. коаксиально-торцевой теплотрубный двигатель, патент № 2320879

Рисунки к патенту РФ 2320879

коаксиально-торцевой теплотрубный двигатель, патент № 2320879 коаксиально-торцевой теплотрубный двигатель, патент № 2320879 коаксиально-торцевой теплотрубный двигатель, патент № 2320879 коаксиально-торцевой теплотрубный двигатель, патент № 2320879

Изобретение относится к теплоэнергетике и может быть использовано для утилизации вторичных тепловых энергоресурсов и низкопотенциальной тепловой энергии природных источников, а именно для трансформации тепловой энергии в механическую.

Известна паротурбинная установка, содержащая паровую турбину, конденсатор, соединенный со сливным и напорным трубопроводами и по конденсату - с конденсатным насосом, циркуляционные насосы и тепловой аккумулятор [1].

Недостатками известной паротурбинной установки являются невозможность при ее эксплуатации использования вторичных тепловых энергоресурсов и природных источников низкопотенциального тепла.

Более близким к предлагаемому изобретению является устройство (тепловой двигатель) для утилизации тепла огнетехнического агрегата, содержащее последовательно соединенные между собой парогенератор (испарительную камеру), подключенный к огнетехническому агрегату (горячей среде), силовую турбину, помещенную в корпус (рабочую камеру), конденсатор (испарительную камеру), питательный насос, подогреватель и воздушный теплообменник [2].

Основными недостатками известного устройства (теплового двигателя) являются невозможность утилизации низкопотенциальных вторичных тепловых энергоресурсов, тепловых ресурсов природных источников, громоздкость конструкции и невозможность работы при изменении ориентации в пространстве, что сужает область его применения и, в конечном счете, снижает его эффективность.

Технической задачей, на решение которой направлено предлагаемое изобретение, является повышение эффективности теплового двигателя.

Поставленная задача реализуется в коаксиально-торцевом теплотрубном двигателе (КТТТД), который содержит последовательно расположенные испарительную камеру, находящуюся в контакте с горячей средой, рабочую камеру, конденсационную камеру, находящуюся в контакте с холодной средой, питательный насос, причем испарительная камера, внутренняя поверхность торца и боковых стенок которой покрыты решеткой, выполненной из тонкого слоя пористого материала, снабжена сепаратором и жестко соединена с транспортной камерой, выполненной из жесткого или гибкого материала, которая также жестко соединена с кольцевой обоймой, снабженной кольцевым буртиком, внутри которой коаксиально помещен цилиндрический корпус, соединенный с ней через кольцевые уплотнения с винтом на наружной поверхности, которые совместно образуют питательный винтовой насос, с всасывающей и напорной кольцевыми камерами, а внутри цилиндрического корпуса последовательно расположены рабочая камера, в которой устроены коаксиально друг за другом силовые турбины, жестко закрепленные периферийными кромками лопастей к внутренней поверхности стенки рабочей камеры по нормали к ней, и отделенная от нее шайбой конденсационная камера с фитилем на внутренней поверхности боковой стенки, сообщающимся через отверстия в ней с всасывающей камерой питательного насоса, соединенного с испарительной камерой напорным трубопроводом, изготовленным из жесткого или гибкого материала, снабженным разбрызгивающим устройством и проходящим через полость транспортной камеры.

На фиг.1 - 4 представлен предлагаемый коаксиально-торцевой теплотрубный двигатель (КТТТД).

КТТТД содержит расположенные по ходу движения пара: испарительную камеру 1, выполненную в форме цилиндрического колпака, снабженную сепаратором 2, внутренняя поверхность торца боковых стенок которой покрыты решеткой 3, выполненной из тонкого слоя пористого материала, жестко соединенную с транспортной камерой 4, из жесткого или гибкого материала, которая также жестко соединена с кольцевой обоймой 5, снабженной кольцевым буртиком 6, внутри которой коаксиально помещен цилиндрический корпус 7, соединенный с ней через кольцевые уплотнения 8, 9, с винтом 10 на наружной поверхности, которые совместно образуют питательный винтовой насос 11 с всасывающей и напорной кольцевыми камерами 12 и 13, причем внутри корпуса 7 последовательно расположены рабочая камера 14, в которой устроены коаксиально друг за другом силовые турбины 15, 16, жестко закрепленные периферийными кромками лопастей к внутренней поверхности стенки рабочей камеры 14 по нормали к ней, и отделенная от нее шайбой 17 конденсационная камера 18 с фитилем 19 на внутренней поверхности боковой стенки, сообщающимся через отверстия 20 в ней с всасывающей камерой 12 питательного насоса 11, соединенного с испарительной камерой 1 напорным трубопроводом 21, снабженным разбрызгивающим устройством 22 и размещенным внутри транспортной камеры 4.

В основе работы предлагаемого КТТТД лежит основной цикл паросиловой установки - цикл Ренкина, согласно которому положительная работа расширения пара в турбине значительно превышает отрицательную работу насоса по сжатию конденсата [3, с.117], устройство и принцип действия винтового насоса [4, с.347] и высокая эффективность передачи теплоты в тепловых трубах, которые делятся на три участка: зона испарения (подвода теплоты), адиабатная зона (переноса теплоты) и зона конденсации (отвода теплоты), покрытых изнутри фитилем и частично заполненных рабочей жидкостью-переносчиком теплоты, в качестве которой используются вода, спирты, хладоны, жидкие металлы т.д. [5, с.106].

Предлагаемый КТТТД работает следующим образом.

Предварительно к наружной поверхности торца конденсационной камеры 18 крепят рабочий орган исполнительного механизма, например ротор электрогенератора, насоса, компрессора и.д. (на фиг.1-4 не показан), таким образом, чтобы поток холодной среды в результате вращения ротора турбулизовался и, таким образом, значительно интенсифицировался процесс теплопередачи при конденсации пара рабочей жидкости в конденсационной камере 18. Перед началом работы из камер 1, 4, 14, 18 КТТТД удаляют воздух и заполняют фитиль 19, пористый материал решетки 3, полость питательного насоса 11 и напорный трубопровод 21 рабочей жидкостью, которую выбирают в зависимости от температурного потенциала холодной и горячей сред (штуцера для удаления воздуха и подачи рабочей жидкости (на фиг.1-4 не показаны), после чего КТТД устанавливают таким образом, чтобы испарительная камера 1 контактировала с горячей средой, а конденсационная камера 18 - с холодной. В результате нагрева торца испарительной камеры 1 происходит испарение рабочей жидкости с ее внутренней поверхности, причем наличие пористого материала решетки 3 на внутренней поверхности торца и боковых стенок предотвращает образование паровой пленки и, таким образом, интенсифицирует процесс испарения [6, с.22], а также способствует улавливанию и транспортировке капель неиспарившейся рабочей жидкости в зону испарения. Образовавшийся пар с давлением, равным давлению, развиваемому питательным насосом 11, проходит через сепаратор 2, освобождается от уносимых капель рабочей жидкости, а пористый материал решетки 3 поглощает эти капли и снова транспортирует их в зону испарения. Очищенный пар проходит через транспортную камеру 4 и поступает в рабочую камеру 14 на лопатки последовательно расположенных силовых турбин 15, 16, вращая цилиндрический корпус 7 и, соответственно, сообщает вращательное движение винту 10 питательного насоса 11 и вращающий момент М ротору исполнительного механизма, в результате чего питательный насос 11 перемещает рабочую жидкость и создает требуемое давление в ней, а исполнительный механизм производит полезную работу, после чего в полости рабочей камеры 14 происходит изоэнтропное теплопадение пара с одновременным снижением его температуры и давления [3, с.331]. Далее отработавший мятый пар поступает во вращающуюся конденсационную камеру 18, давление в которой значительно меньше, чем в испарительной камере 1, конденсируется там за счет контакта наружной поверхности камеры 11 с холодной средой, причем скорость конденсации значительно увеличивается в результате турбулизации потока холодной среды, после чего образовавшийся конденсат рабочей жидкости под действием центробежной силы, возникающей в результате вращения испарительной камеры, отбрасывается на периферию, освобождая место для конденсации новых порций пара и уменьшая толщину конденсатной пленки, что также увеличивает скорость конденсации [3, с.172] и поглощается фитилем 19. Из фитиля 19 рабочая жидкость под воздействием капиллярных сил и разрежения во всасывающей камере 12 насосом 11 через напорную камеру 13 поступает в напорный трубопровод 21 и разбрызгивается устройством 22 под давлением, величина которого определяет рабочее давление пара в испарительной камере 1. В камере 1 рабочая жидкость разбрызгивается таким образом, что распределяется по внутренней поверхности ее не только торцевой, но и боковых стенок, увеличивая тем самым поверхность теплопередачи и, соответственно, ее скорость, в результате чего происходит вышеописанный процесс испарения, очистки образовавшегося пара от капель рабочей жидкости и далее цикл повторяется. При этом если транспортная камера 4 и напорный трубопровод 21 изготовлены из гибкого материала, то можно изменять ориентацию в пространстве конденсационной камеры 18 и, соответственно, исполнительного механизма независимо от ориентации испарительной камеры 1.

Таким образом, предлагаемый КТТТД обеспечивает возможность получения механической и электрической энергии за счет утилизации вторичных тепловых энергоресурсов различного потенциала (энергии сбросных вод, отходящих газов и т.д.), тепловых ресурсов природных источников (энергии солнца, воды и т.д.) при любой ориентации в пространстве, что обеспечивает его высокую эффективность в самых различных ситуациях.

ЛИТЕРАТУРА

1. А.с. №1574842, Мкл. F01K 17/04, 1990.

2. А.с. №769038, Мкл. F01K 17/06, 1980.

3. И.Н.Сушкин. Теплотехника. - М.: Металлургия, 1973, 480 с.

4. Т.М.Башта др. Гидравлика, гидромашины и гидроприводы. - М: Машиностроение, 1982, 424 с.

5. В.В.Харитонов и др. Вторичные теплоэнергоресурсы и охрана окружающей среды. - Минск: Высшая школа, 1988, 170 с.

6. Тепловые трубы и теплообменники: от науки к практике. Сборник научн. тр. - М.: 1990, 157 с.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Коаксиально-торцевой теплотрубный двигатель (КТТТД), включающий последовательно расположенные испарительную камеру, находящуюся в контакте с горячей средой, рабочую камеру, конденсационную камеру, находящуюся в контакте с холодной средой, питательный насос с трубопроводом, отличающийся тем, что испарительная камера, внутренняя поверхность торца и боковых стенок которой покрыты решеткой, выполненной из тонкого слоя пористого материала, снабжена сепаратором и жестко соединена с транспортной камерой, которая также жестко соединена с кольцевой обоймой, снабженной кольцевым буртиком, внутри которой коаксиально помещен цилиндрический корпус, соединенный с ней через кольцевые уплотнения с винтом на наружной поверхности, которые совместно образуют питательный винтовой насос, с всасывающей и напорной кольцевыми камерами, а внутри цилиндрического корпуса последовательно расположены рабочая камера, в которой устроены коаксиально друг за другом силовые турбины, жестко закрепленные периферийными кромками лопастей к внутренней поверхности стенки рабочей камеры по нормали к ней, и отделенная от нее шайбой конденсационная камера с фитилем на внутренней поверхности боковой стенки, сообщающимся через отверстия в ней с всасывающей камерой питательного насоса, соединенного с испарительной камерой напорным трубопроводом, снабженным разбрызгивающим устройством и проходящим через полость транспортной камеры.

2. Коаксиально-торцевой теплотрубный двигатель по п.1, отличающийся тем, что транспортная камера и напорный трубопровод выполнены из жесткого материала.

3. Коаксиально-торцевой теплотрубный двигатель по п.1, отличающийся тем, что транспортная камера и напорный трубопровод выполнены из гибкого материала.

www.freepatent.ru

Рекомендации по выбору компрессора

Сегодня трудно найти область деятельности, где бы ни использовался сжатый воздух, как один из основных источников энергии для увеличения производительности и спектра выполняемых работ. Основными параметрами компрессора являются его производительность и максимальное давление, но еще необходимо обращать внимание на такие характеристики, как количество оборотов в минуту и конструкция компрессорной группы. Правильный выбор компрессора с оптимальным соотношением всех вышеуказанных параметров обеспечивает надежную и безотказную работу установки на протяжении длительного времени.

КОАКСИАЛЬНЫЙ КОМПРЕССОР

Коаксиальные компрессоры делятся на две группы: масляные и безмасляные. Компактные размеры данного типа компрессоров значительно расширяют сферу их применения. Безмасляные установки применяются в медицине, пищевой промышленности, где необходим чистый воздух без примесей масла. При сборке этих компрессоров используются особые материалы с низким коэффициентом трения и пониженной степенью износа, что значительно увеличивает срок эксплуатации установки. Масляные коаксиальные компрессоры широко применяются во всех сферах малого бизнеса, для выполнения бытовых и домашних работ, в гараже, на даче и т.д. Все внутренние детали смазываются посредством системы разбрызгивания. Игла, расположенная в нижней головке шатуна, погружается в масло и разбрызгивает его по стенкам цилиндра и шатуна, которые наиболее подвержены трению. Все коаксиальные компрессоры поставляются с пластиковыми кожухами, которые закрывают головку и двигатель установки, а также улучшают поток воздуха для охлаждения. Благодаря уникальному техническому решению значительно снижены затраты на производство, что делает компрессорные установки доступными широкому кругу потребителей: вал электродвигателя в этих компрессорах напрямую соединен с валом компрессорной головки. Это позволило отказаться от целого ряда механических компонентов и, что наиболее важно, избежать потерь мощности, которые неизбежны при непрямом соединении. Еще одно преимущество прямого соединения: компрессорная головка работает с той же скоростью, что и двигатель, и обеспечивает оптимальную подачу воздуха.

РЕМЕННЫЙ КОМПРЕССОР

Для обслуживания СТО, шиномонтажа, в строительстве, в сфере обслуживания и в быту применяются компрессоры с ременным приводом, так как они имеют очень большой срок службы и особенно пригодны для жестких условий эксплуатации. В ременных компрессорах применяется традиционная система ременного привода от электродвигателя со шкивом, вращающим маховик компрессорной головки. Диаметр шкива двигателя всегда меньше диаметра маховика компрессорной головки, поскольку маховик используется и для воздушного охлаждения компрессорной головки во время работы. Передаточное число ременных компрессоров позволяет компрессорной головке работать с меньшей частотой вращения, что гарантирует оптимальный уровень производительности, смазки, охлаждения и срока службы. Для большинства моделей типично наличие алюминиевой головки, ребер воздушного охлаждения цилиндров, большого масляного картера для улучшения смазки, динамически сбалансированного чугунного шкива и клапанов из специальной износостойкой нержавеющей стали. Ременные компрессоры поставляются в одно- или двухступенчатом исполнении. Последние имеют значительно более высокую производительность и пониженный уровень шума.

ВИНТОВОЙ КОМПРЕССОР

Винтовой компрессор обладает целым рядом преимуществ в организации пневмосистем промышленного предприятия. Высокая надежность, длительный ресурс работы, возможность непрерывного круглосуточного функционирования, низкий уровень шума и энергозатрат на куб. метр произведенного воздуха являются основными достоинствами винтовых компрессоров. Основой винтового компрессора является винтовая группа, рабочим элементом которой является винтовая пара, состоящая из двух взаимно сцепленных "червячных" роторов. Это обеспечивает более низкое потребление электроэнергии на выработку сжатого воздуха. Обычно ведущий ротор выполнен как винт с четырех -заходной резьбой (витками), а ведомый с шестью. Такое передаточное число считается оптимальным и сделано для того, чтобы уменьшить нагрузку на ведущий винт. Полный рабочий цикл сжатия осуществляется за один оборот ведущего винта. Особая конструкция воздушной головки компрессоров позволяет достичь высоких выходных данных при низких потерях мощности. Компрессоры снабжены панелью управления и электронной системой контроля, охлаждающей камерой и шумозащитным кожухом. Данные установки способны обеспечивать круглосуточную подачу сжатого воздуха и отвечают требованиям самых взыскательных потребителей, как по производительности, так и по эксплуатационным расходам.

АКСЕССУАРЫ

Вместе с компрессором используется широкую гамма аксессуаров : ресиверы, осушители, воздушные фильтры, сепараторы и т.д. Вертикальный ресивер.При неравномерной подаче воздуха они служат буфером, который придает распределяющей системе временную устойчивость и потребление воздуха может быть выше, чем производительность компрессора. ОсушительИспользование осушителя позволяет конденсировать большую часть воды, которая находится в парообразном состоянии. Применение осушителя решает раз и навсегда проблемы наличия воды в сжатом воздухе. Сепаратор для разделения воды и маслаСепараторы для разделения воды и масла собирают отделяемое остаточное масло в специальный контейнер, выделяя воду, очищенную от примесей, для последующего выпаривания, содержание масла в конденсате, сливаемом из воздушных компрессоров, должно соответствовать нормам экологического законодательства. Сепаратор циклонного типаСепараторы циклонного типа используют центробежную силу для удаления капель конденсата, которые образуются в потоке сжатого воздуха при снижении температуры. Охладитель воздухаПрименяется для снижения температуры сжатого воздуха и удаление из него образовавшегося конденсата перед входом в основную систему. Устройство для слива конденсатаДренажные устройства предназначены для слива конденсата, образующегося во вторичных охладителях, осушителях, фильтрах и воздушных ресиверах. Используются в любых системах сжатого воздуха, требующих слива конденсата. Выпускаются с ручным, полуавтоматическим, автоматическим и электронным сливом конденсата. Фильтр для сжатого воздухаКерамический предварительный фильтр применяется в качестве фильтра отделения жидкости, эмульсий и твердых частиц до 3 микрон с минимальным сопротивлением потоку, позволяет увеличить продолжительность срока службы установки, устойчив к высоким температурам и абразивным частицам, представляет наилучшую защиту на начальном этапе подачи сжатого воздуха. Фильтр-маслоотделитель применяется для отделения жидкости, масла и твердых частиц диаметром от 1 микрона. Масляные фильтры способны задерживать частицы жидких и твердых тел диаметром до 0,01 микрона и практически очищают воздух от включений и масла на 99,99 %. Применяются как предварительные фильтры. Углеродные фильтры : абсорбционные фильтры способны притягивать и абсорбировать активные молекулы углерода, твердые частицы диаметром до 1 мкм, пары и запахи после очистки маслоотделяющим фильтром. Этот тип фильтров обеспечивает выход воздуха без запаха до 0,003 мг/ м3.

uralgidroservis.ru


Смотрите также