Пла́зменный дви́гатель (также плазменный инжектор) — ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы.[1]
Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение — в качестве двигателей для поддержания точек стояния геостационарных спутников связи — получили стационарные плазменные двигатели, идея которых была предложена А. И. Морозовым в 1960-х гг. Первые лётные испытания состоялись в 1972 г.[2] Плазменные двигатели не следует путать с ионными. Они не предназначены для вывода грузов на орбиту, и могут работать только в вакууме.
Нейтральный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод-компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за её пределами. Если между анодом и катодом-компенсатором приложить постоянное напряжение в несколько сотен Вольт, то в газоразрядном канале зажигается разряд и ксенон ионизируется, создавая плазму. Тяжёлые ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны всё же составляют небольшую часть разрядного тока. Основной же ток разряда переносят ионы ксенона. Поток ускоренных ионов, вылетающих из газоразрядной камеры, создаёт реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода-компенсатора.[3]
biograf.academic.ru
1) Av. elektromagnetische Rakete
2) eng. Plasmamotor, Plasmatriebwerk
Универсальный русско-немецкий словарь. Академик.ру. 2011.
ЭЛЕКТРОМАГНИТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ — (плазменный магнитогидродинамический), электрический ракетный двигатель, в котором рабочее тело находится в состоянии плазмы и разгоняется с помощью воздействующего на него электромагнитного поля. Удельный импульс 15 100 км/с … Большой Энциклопедический словарь
ЭЛЕКТРОМАГНИТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ — плазменный двигатель, электрический ракетный двигатель, в к ром превращённое в плазму рабочее тело разгоняется с помощью электромагн. поля. Уд. импульс Э. р. д. может достигать неск. сотен км/с. Впервые испытан в полёте на сов. КА Зонд 2 . См.… … Большой энциклопедический политехнический словарь
электромагнитный ракетный двигатель — (плазменный, магнитогидродинамический), электрический ракетный двигатель, в котором рабочее тело находится в состоянии плазмы и разгоняется с помощью воздействующего на него электромагнитного поля. Удельный импульс 15 100 км/с. * * *… … Энциклопедический словарь
Электромагнитный ракетный двигатель — см. Электрический ракетный двигатель … Большая советская энциклопедия
Ракетный двигатель — реактивный двигатель, источник энергии и рабочее тело которого находится в самом средстве передвижения. Ракетный двигатель единственный практически освоенный для вывода полезной нагрузки на орбиту искусственного спутника Земли и применения в… … Википедия
Электромагнитный ракетный ускоритель — VASIMR на испытательном стенде Электромагнитный ускоритель с изменяемым удельным импульсом (англ. Variable Specific Impulse Magnetoplasma Rocket; VASIMR) электромагнитный плазменный … Википедия
Ракетный двигатель (РД) — реактивный двигатель, не использующий для своей работы окружающую среду. Основной тип двигателя в космонавтике. По видам ракетного топлива, энергии и рабочему телу различают химические, ядерные, электрические, газоаккумуляторные и фотонные… … Словарь военных терминов
плазменный ракетный двигатель — 1) электрический ракетный двигатель, в котором рабочее тело плазма; 2) то же, что электромагнитный ракетный двигатель. * * * ПЛАЗМЕННЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ ПЛАЗМЕННЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ, 1) электрический ракетный двигатель (см. ЭЛЕКТРИЧЕСКИЙ… … Энциклопедический словарь
магнитогидродинамический ракетный двигатель — см. Электромагнитный ракетный двигатель. * * * МАГНИТОГИДРОДИНАМИЧЕСКИЙ РАКЕТНЫЙ ДВИГАТЕЛЬ МАГНИТОГИДРОДИНАМИЧЕСКИЙ РАКЕТНЫЙ ДВИГАТЕЛЬ, см. Электромагнитный ракетный двигатель (см. ЭЛЕКТРОМАГНИТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ) … Энциклопедический словарь
ЭЛЕКТРИЧЕСКИЙ РАКЕТНЫЙ ДВИГАТЕЛЬ — (ЭРД) ракетный двигатель, в к ром рабочее тело разгоняется до весьма высоких скоростей (недостижимых в химических ракетных двигателях) с помощью электрич. энергии. Для ЭРД характерны высокий уд. импульс и большая относит. масса электросиловой… … Большой энциклопедический политехнический словарь
ПЛАЗМЕННЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ — 1) электрический ракетный двигатель, в котором рабочее тело плазма;2) то же, что электромагнитный ракетный двигатель … Большой Энциклопедический словарь
universal_ru_de.academic.ru
Электромагнитный ускоритель с изменяемым удельным импульсом (англ. Variable Specific Impulse Magnetoplasma Rocket; VASIMR) — электромагнитный плазменный ускоритель, предназначенный для реактивного ускорения космического аппарата. Реактивный двигатель использует радиоволны для ионизации рабочего тела с последующим разгоном полученной плазмы с помощью электромагнитного поля для получения тяги.
Метод нагрева плазмы, используемый в VASIMR, был разработан в результате исследований в области термоядерного синтеза. Цель разработки VASIMR — заполнить разрыв между высокоэффективными реактивными системами малой тяги с высоким удельным импульсом и низкоэффективными системами большой тяги с низким удельным импульсом. VASIMR способен работать в режимах, близких к системам большой тяги и малой.
Концепция двигателя предложена астронавтом и учёным Франклином Чанг-Диазом из Коста-Рики в 1979 году и продолжает развиваться в настоящее время.
VASIMR, иногда рассматриваемый как электротепловой плазменный ускоритель (ЭПУ), использует радиоволны для ионизации и нагрева рабочего тела и электромагнитные поля для ускорения плазмы для получения ускорения. Этот тип двигателя можно рассматривать как вариацию безэлектродного плазменного ускорителя, отличающегося в способе ускорения плазмы. Оба типа двигателя не имеют никаких электродов. Основное преимущество такого проекта в исключении проблемы эрозии электродов. Более того, так как все части VASIMR защищены магнитным полем и не приходят в прямой контакт с ионизированной плазмой, потенциальная продолжительность эксплуатации двигателя, построенного по такому проекту, гораздо выше ионного двигателя.
Проект включает в себя три части:
Изменяя количество энергии на радиоволновый разогрев и количество рабочего тела, направленного на создание плазмы, VASIMR способен как производить малую тягу с высоким удельным импульсом, так и относительно высокую тягу с низким удельным импульсом.
Диаграмма VASIMRВ отличие от обычных циклотронно-резонансных нагревающих процессов, ионы в VASIMR сразу же проходят через магнитное сопло быстрее времени, необходимого для достижения термодинамического равновесия. Основываясь на теоретической работе 2004 года Арефьева (Arefiev) и Брейзмана (Breizman) из Техасского университета в Остине, практически вся энергия в ионной циклотронной волне будет равномерно распределена в ионизированной плазме за один проход в циклотронном абсорбционном процессе. Это позволяет ионам покинуть магнитное сопло с очень узким распределением энергии, что дает упрощенное и компактное распределение магнитов в двигателе.[1]
Текущие VASIMR должны обладать удельными импульсами в диапазоне от 3000 до 30 000 секунд (скорости истечения от 30 до 300 км/с). Нижний предел этого диапазона сопоставим с некоторыми существующими концепциями ионных двигателей. Регулируя получение плазмы и нагрев, VASIMR может управлять удельным импульсом и тягой. Двигатель также способен использовать гораздо более высокие уровни энергии (мегаватты) по сравнению с существующими концепциями ионных двигателей. Поэтому VASIMR может обеспечить в десятки раз большую тягу, при условии наличия подходящего источника энергии.
VASIMR не подходит для запуска полезной нагрузки с поверхности Земли из-за его низкого соотношения тяги к массе и может быть использован только в невесомости. Он может быть использован в качестве последней ступени, сокращая потребность в топливе для транспортировки в космосе. Ожидается, что двигатель должен выполнять эти операции за доли стоимости от стоимости на основе технологий химического реактивного движения:
Другие применения VASIMR (например, транспортировка людей к Марсу) требуют наличия источников очень высоких энергий с небольшой массой, таких как ядерные энергетические установки.
В августе 2008 г. Тим Гловер (Tim Glover), директор по развитию фирмы «Ad Astra», публично заявил, что первым ожидаемым применением двигателя VASIMR является «заброс грузов (не людей) с низкой околоземной орбиты на низкую лунную орбиту» и будет предназначено для поддержки программы НАСА возвращения на Луну.[2]
Основным разработчиком VASIMR является «Ad Astra Rocket Company». На данный момент основные усилия были направлены на улучшение общей эффективности двигателя, путём увеличения уровней используемой энергии. Согласно данным компании, текущая эффективность VASIMR составляет 67 %. Опубликованные данные по двигателю VX-50 говорят о том, что двигатель способен использовать 50 кВт на излучение в радиодиапазоне, обладает КПД 59 %, вычисленное следующим образом: 90 % NA эффективность процесса получения ионов × 65 % NB эффективность процесса ускорения ионов. Модель VX-100, как ожидается, будет иметь общую эффективность 72 %, путём улучшения параметра NB, то есть эффективности ускорения ионов, до 80 %.[3][4]
Однако имеются дополнительные меньшие потери эффективности, относящиеся к конвертации постоянного тока в радиоволновую энергию и потребление энергии сверхпроводящими магнитами. Для сравнения, рабочий ионный двигатель NASA HiPEP, обладает общей эффективностью ускорителя 80 %.[5] Опубликованные данные испытаний по VASIMR модели двигателя VX-50 показывают, что он способен производить 0,5 Н тяги. «Ad Astra Rocket Company» планировала проведение испытаний прототипа двигателя VX-200 в начале 2008 г. с мощностью излучения в радиодиапазоне 200 кВт с целью достижения требуемой эффективности, требуемой тяги и удельного импульса.
24 октября 2008 года компания заявила, что генерация плазмы двигателем VX-200 с помощью радиоволн первой ступени или твердотельным высокочастотным излучателем энергии достигла планируемых рабочих показателей. Ключевая технология, твердотельное преобразование энергии постоянного тока в радиоволны, стала крайне эффективной и достигла уровня 98 %. Радиоволновый импульс использует 30 кВт для превращения газа аргон в плазму, оставшиеся 170 кВт расходуются на разгон и разогрев плазмы в задней части двигателя с помощью ион-циклотронного резонансного разогрева.[6]
На основании данных, опубликованных по предыдущим испытаниям VX-100[7], можно ожидать, что двигатель VF-200, который должен быть установлен на МКС, будет иметь системную эффективность 60—65 % и уровень тяги 5 Н. Оптимальный удельный импульс предполагается на уровне 5000 с и использованием в качестве рабочего тела аргона. Удельная мощность оценивается в 1 кг/кВт, что означает, что вес данной версии VASIMR будет составлять только 300 кг.
Одна из оставшихся проблем — определение соотношения потенциально возможной тяги по отношению к действительному её значению. То есть, будет или нет горячая плазма находится на расстоянии от двигателя на самом деле. Это будет подтверждено в 2009 г, когда двигатель VX-200 будет установлен и протестирован в достаточно большой вакуумной камере. Другая проблема — управление выделяемым паразитным теплом при работе (60 % эффективности означает около 80 кВт ненужного тепла), решение которой критически важно для продолжительного функционирования двигателя VASIMR.
10 декабря 2008 года «Ad Astra Rocket Company» заключила контракт с NASA на определение расположения и испытание полетной версии VASIMR VF-200 на МКС. Его запуск запланирован на 2011—2012 гг[2][8][9].
7 июля 2009 года сотрудники «Ad Astra Rocket Company» успешно испытали плазменный двигатель на сверхпроводящих магнитах.[10]
VASIMR-двигатель на МКС будет использоваться в пакетно-монопольном режиме, с периодическими включениями. Так как производство электроэнергии на МКС недостаточно велико, система будет включать в себя набор батарей с достаточно малым потреблением тока для подзарядки, которая позволит двигателю работать в течение 10 мин. Этого будет достаточно для поддержания высоты станции, что исключит необходимость дорогостоящей операции по подъему станции с использованием ускорителей на основе химических реакций горения.
Наиболее важным применением в обозримом будущем для VASIMR-ускоряемых космических аппаратов является транспортировка грузов. Многочисленные исследования показали, что VASIMR-ускоряемый аппарат будет более эффективным при движении в космосе по сравнению с традиционными интегрированными химическими ракетами. Космический буксир, ускоряемый одним VF-200, был бы способен переместить 7 т груза с низкой земной орбиты на низкую лунную орбиту примерно за шесть месяцев полета.
NASA планирует перемещение 34 т полезного груза от Земли до Луны. Для того, чтобы совершить такое путешествие, должно быть сожжено около 60 тонн кислород/водород. Сопоставимый космический буксир требовал бы 5 двигателей VF-200, потребляющих 1 МВт электроэнергии, получаемой от солнечных батарей или от ядерного реактора. Для того, чтобы проделать такую же работу, подобный буксир потратил бы только 8 тонн аргона. Время полета буксира может быть сокращено за счёт полета с меньшим грузом или используя большее количество аргона в двигателях при меньшем удельном импульсе (большем расходе топлива). Например, пустой буксир при возвращении к Земле должен покрывать это расстояние за 23 дня при оптимальном удельном импульсе 5000 с или за 14 дней при удельном импульсе 3000 с.
Предполагается, что 200-мегаваттный двигатель класса VASIMR сможет осуществлять миссии по доставке людей к Марсу всего за 39 дней, по сравнению с шестью месяцами, которые требуются традиционным ракетам.[11]
dvc.academic.ru
Engineering: magnetically contained thruster
Универсальный русско-английский словарь. Академик.ру. 2011.
Электромагнитный ракетный ускоритель — VASIMR на испытательном стенде Электромагнитный ускоритель с изменяемым удельным импульсом (англ. Variable Specific Impulse Magnetoplasma Rocket; VASIMR) электромагнитный плазменный … Википедия
Электрический ракетный двигатель сильноточный — Электромагнитный ракетный двигатель, плазменный ракетный двигатель, ЭРД электрический ракетный двигатель, создающий тягу за счёт разгона в электромагнитном поле рабочего тела, превращённого в плазму. Принципы работы ЭРД состоит из двух основных… … Википедия
Жидкостный ракетный двигатель — (ЖРД) химический ракетный двигатель, использующий в качестве ракетного топлива жидкости, в том числе сжиженные газы. По количеству используемых компонентов различаются одно , двух и трёхкомпонентные ЖРД. Содержание 1 История … Википедия
Ядерный ракетный двигатель — (ЯРД) разновидность ракетного двигателя, которая использует энергию деления или синтеза ядер для создания реактивной тяги. Бывают реактивными (нагрев рабочего тела в ядерном реакторе и вывод газа через сопло) и импульсными (ядерные взрывы… … Википедия
Электромагнитный ускоритель с изменяемым удельным импульсом — VASIMR на испытательном стенде Электромагнитный ускоритель с изменяемым удельным импульсом (англ. Variable Specific Impulse Magnetoplasma Rocket, VASIMR™) электромагнитный плазменный ускоритель, предназначен для реактивного … Википедия
Воздушно-реактивный двигатель — (ВРД) тепловой реактивный двигатель, в качестве рабочего тела которого используется смесь забираемого из атмосферы воздуха и продуктов окисления топлива кислородом, содержащимся в воздухе. За счёт реакции окисления рабочее тело нагревается… … Википедия
VASIMR — на испытательном стенде Электромагнитный ускоритель с изменяемым удельным импульсом (англ. Variable Specific Impulse Magnetoplasma Rocket, VASIMR™) электромагнитный плазменный ускоритель, предназначен для реактивного ускорения КА. Реактивный … Википедия
universal_ru_en.academic.ru
ЭЛЕКТРОМАГНИТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ, см. Электрический ракетный двигатель.
ЭЛЕКТРОМАШИННЫЙ ДИНАМОМЕТР,
устройство для измерения вращающих моментов электродвигателей. Э. д. используют при стендовых испытаниях двигателей для снятия механич. или электромеханич. характеристик. Э. д. представляет собой электрическую машину, работающую в генераторном режиме и механически связанную с испытуемым двигателем. Наиболее часто в качестве Э. д. используют генератор постоянного тока. Момент, развиваемый электродвигателем, находят по формуле:
где U - напряжение на зажимах гене ратора в в; I - ток в обмотке возбужде ния в а; п - частота вращения в об/мин т) - кпд генератора. Изменение момент: достигается регулированием нагрузочноп сопротивления и тока в обмотке возбуж дения генератора. Э. д. применяют npи испытании мощных тяговых машин. Мо менты электродвигателей малой мощ ности иногда определяют на более npocTON Э. д., представляющем собой диск из ферромагнитного материала, к-рый насаживают на вал электродвигателя и электромагнит постоянного тока с противовесом. При вращении диска создаётся тормозной момент в результате взаимодействия вихревых токов в диске < магнитным полем электромагнита. Угол поворота электромагнита с противовесом пропорционален измеряемому моменту
М. И. Озеров
ЭЛЕКТРОМАШИННЫЙ УСИЛИТЕЛЬ
(ЭМУ), электрическая машина, предназначенная для усиления мощности подаваемого на обмотку возбуждения сигнале за счёт энергии первичного двигателя (обычно электрического). ЭМУ примениют в системах автоматич. управления и ре гулирования; выпускаются на мощности от долей вт до десятков квт с коэфф усиления (отношение мощности на выходе к мощности на входе) 104_ 105. Небольшое изменение мощности подводимой в цепь возбуждения, вызывает во много раз большее изменение мощности, отдаваемой ЭМУ. Различают ЭМУ продольного поля (с одной ступенью усиления) и ЭМУ поперечногс поля (с двумя ступенями). Наиболее распространены ЭМУ поперечного поля (рис.). Такой ЭМУ представляет собой генератор пост, тока, обычно двухполюсный с двумя парами щёток на коллекторе. На полюсах статора расположены одна или неск. обмоток возбуждения, чаще наз. обмотками управления (ОУ). При подаче в ОУ сигнала, подлежащего усилению, она создаёт магнитный поток Ф1, направленный вдоль оси d-d, В обмотке якоря наводится эдс, к-рая достигает наибольшего значения на щётках а - а и равна нулю на щётках b - b. Т. к. якорь замкнут накоротко щётками а-а, то даже при незначнт. эдс в цепи (обмотке) якоря возникает достаточнс большой ток /а, обусловливающий увеличение мощности сигнала (первая ступень усиления). Этот ток создаёт сильное поперечное магнитное поле (магнитный поток Фаq). При вращении якоря в поперечном поле на щётках b-b, связанных с внеш. цепью, появляется напряжение U2. В результате этого во внеш. цепи возникает большой ток I2, обусловливающий большую выходную мощность (вторая ступень усиления). Дополнит. обмотка, наз. компенсационной, создаёт намагничивающую силу FKO, равную Fad, устраняя искажение сигнала.
Лит.: Горяинов Ф. А., Электромашинные усилители, М.- Л., 1962.
М. Д. Находкин.
Большая советская энциклопедия
ЭЛЕКТРОМЕГАФОН →← ЭЛЕКТРОМАГНИТНЫЙ ПРИБОР
bse.slovaronline.com