ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Генератор переменного тока: устройство, принцип работы, назначение. Двигатель вырабатывающий ток


Можно ли использовать электродвигатель как генератор

Всем известно, что работа электродвигателя – это преобразование электрической энергии в механическую. Удастся ли заставить его преобразовывать механическую энергию в электрическую, чтобы использовать электродвигатель как генератор? Благодаря действующему в электротехнике принципу обратимости это возможно. Но нужно четко знать принцип работы агрегата и создать условия, способствующие превращению.

Законы, позволяющие использовать асинхронный электродвигатель как генератор

В генераторе напряжение, обычно подаваемое с аккумулятора, возбуждает в обмотке якоря магнитное поле, вращение же обеспечивается любым физическим устройством. В электродвигателе возможность подачи напряжения на обмотку якоря не предусмотрена. Чтобы он не поглощал, а вырабатывал электроэнергию, магнитное поле необходимо создать искусственно.

В асинхронном двигателе вращающееся магнитное поле ротора «отстает» от поля статора, обеспечивая процесс перехода электроэнергии в механическую энергию. Следовательно, чтобы запустить обратный процесс, нужно сделать так, чтобы поле статора вращалось медленнее поля ротора, либо чтобы оно вращалось в противоположную сторону.

Способы переделки электродвигателя в генератор

Есть два способа «регулировки» магнитного поля статора.

Торможение реактивной нагрузкой

Сделать это можно с помощью мощной конденсаторной батареи. Включите ее в цепь питания двигателя, который работает в обычном режиме. Заряд, накопленный в батарее, будет в противофазе с зарядом, создаваемым питающим напряжением, что приведет к замедлению последнего. После этого двигатель вместо поглощения тока начинает генерировать его, отдавая в сеть.

Любой транспорт на электротяге работает именно благодаря этому эффекту – при «самостоятельном» движении под уклон механическая энергия не требуется, и конденсаторная батарея автоматически подключается к цепи питания. Вырабатываемая энергия подается в сеть, чтобы затем опять преобразоваться в механическую.

Самовозбуждение электродвигателя

Остаточное магнитное поле ротора может произвести ЭДС, достаточное для зарядки конденсатора. Вследствие этого возникает эффект самовозбуждения, что делает возможным переход двигателя в режим генерации электроэнергии. Непрерывность этого процесса обеспечивает конденсаторная батарея, подпитывающаяся от произведенного тока.

Этот способ является более действенным, и именно он подходит, если вы хотите применить асинхронный электродвигатель как генератор.

Что нужно знать, чтобы электродвигатель работал как генератор

При переделке двигателя в генератор следует учитывать следующие технические детали:

Поскольку определить необходимую величину емкости конденсаторной батареи невозможно, остается подбирать ее по весу – он должен быть равен весу двигателя или слегка превышать его.

Насколько эффективно использование электродвигателя в качестве генератора

У использования электродвигателя как генератора есть свои «плюсы»:

И «минусы»:

Если в вашем случае преимущества перевешивают недостатки, то применение асинхронного генератора целесообразно.

www.szemo.kz

Генератор переменного тока: устройство, принцип работы, назначение

Электрический ток является основным видом энергии, совершающим полезную работу во всех сферах человеческой жизни. Он приводит в движение разные механизмы, дает свет, обогревает дома и оживляет целое множество устройств, которые обеспечивают наше комфортное существование на планете. Поистине, этот вид энергии универсален. Из нее можно получить все что угодно, и даже большие разрушения при неумелом использовании.

Но было время, когда электрические эффекты все так же присутствовали в природе, но никак не помогали человеку. Что же изменилось с тех пор? Люди стали изучать физические явления и придумали интересные машины – преобразователи, которые, в общем, и сделали революционный скачок нашей цивилизации, позволив человеку получать одну энергию из другой.

Так люди научились вырабатывать электричество из обычного металла, магнитов и механического движения – только и всего. Были построены генераторы, способные выдавать колоссальные по мощности потоки энергии, исчисляемые мегаваттами. Но интересно, что принцип действия этих машин не так уж сложен и вполне может быть понятен даже подростку. Что же такое генератор электрического тока? Попробуем разобраться в этом вопросе.

генератор переменного тока устройство [

Эффект электромагнитной индукции

Основой появления в проводнике электрического тока является электродвижущая сила - ЭДС. Она способна заставить перемещаться заряженные частицы, которых много в любом металле. Эта сила появляется только в случае, если проводник испытывает на себе изменение интенсивности магнитного поля. Сам эффект получил название электромагнитной индукции. ЭДС тем больше, чем больше скорость изменения потока магнитных волн. То есть, можно возле постоянного магнита перемещать проводник, или на неподвижный провод влиять полем электромагнита, меняя его силу, эффект будет один и тот же – в проводнике появится электрический ток.

Над этим вопросом в первой половине XIX века работали ученые Эрстед и Фарадей. Они же и открыли это физическое явление. В последствии на основе электромагнитной индукции были созданы генераторы тока и электродвигатели. Интересно, что эти машины легко могут быть преобразованы друг в друга.

Как работают генераторы постоянного и переменного тока

Понятно, что генератор электрического тока – это электромеханическая машина, вырабатывающая ток. Но на самом деле она есть преобразователь энергии: ветра, воды, тепла, чего угодно в ЭДС, которая уже вызывает ток в проводнике. Устройство любого генератора принципиально ничем не отличается от замкнутого проводящего контура, который вращается между полюсами магнита, как в первых опытах ученых. Только намного больше величина магнитного потока, создаваемого мощными постоянными или чаще электрическими магнитами. Замкнутый контур имеет вид многовитковой обмотки, которых в современном генераторе не одна, а минимум три. Все это сделано для того, чтобы получить как можно большую ЭДС.

Стандартный электрический генератор переменного тока (или постоянного) состоит из:

принцип работы генератора переменного тока

Создание постоянного тока

В генераторе, продуцирующем постоянный ток, проводящий контур вращается в пространстве магнитной насыщенности. Причем за определенный момент вращения каждая половина контура оказывается вблизи того или иного полюсника. Заряд в проводнике за этот полуоборот движется в одном направлении.

Чтобы получить съем частиц, сделан механизм отвода энергии. Его особенность в том, что каждая половина обмотки (рамки) соединена с токопроводящим полукольцом. Полукольца между собой не замкнуты, а закреплены на диэлектрическом материале. За период, когда одна часть обмотки начинает проходить определенный полюс, полукольцо замыкается в электрическую схему щеточными контактными группами. Получается, на каждую клемму приходит только одного вида потенциал.

Правильнее назвать энергию не постоянной, а пульсирующей, с неизменной полярностью. Пульсация вызвана тем, что магнитный поток на проводник при вращении оказывает как максимальное, так и минимальное влияние. Чтобы эту пульсацию выровнять, применяют несколько обмоток на роторе и мощные конденсаторы на входе схемы. Для уменьшения потерь магнитного потока зазор между якорем и статором делают минимальным.

генератор 220 в

Схема генератора переменного тока

Когда происходит вращение подвижной части генерирующего ток устройства, в проводниках рамки также наводится ЭДС, как и в генераторе постоянного тока. Но небольшая особенность – генератор переменного тока устройство коллекторного узла имеет другое. В нем каждый вывод соединен со своим токопроводящим кольцом.

Принцип работы генератора переменного тока следующий: когда половина обмотки проходит возле одного полюса (другая, соответственно, возле противоположного полюса), в цепи движется ток в одном направлении от минимума к наивысшему своему значению и снова к нулю. Как только обмотки меняют свое положение относительно полюсов, ток начинает свое движение в обратном направлении с той же закономерностью.

При этом на входе схемы получается форма сигнала в виде синусоиды с частотой полуволн, соответствующей периоду вращения вала ротора. Для того, чтобы получить на выходе стабильный сигнал, где частота генератора переменного тока постоянна, период вращения механической части должен быть неизменным.

электрический генератор переменного тока

Конструкции генераторов тока, где вместо металлической рамки как носитель зарядов используют токопроводящую плазму, жидкость или газ, получили название МГД-генераторов. Вещества под давлением прогоняют в поле магнитной напряженности. Под воздействием все той же ЭДС индукции заряженные частицы обретают направленное движение, создавая электрический ток. Величина тока прямо пропорциональна скорости прохождения через магнитный поток, а также его мощности.

Генераторы МГД имеют более простое конструктивное решение – в них отсутствует механизм вращения ротора. Такие источники питания способны выдавать большие мощности энергии в короткие промежутки времени. Их применяют в качестве резервных устройств и в условиях экстренных аварийных ситуаций. Коэффициент, определяющий полезное действие (КПД) этих машин выше, чем имеет электрический генератор переменного тока.

Генератор синхронный переменного тока

Существуют такие типы генераторов переменного тока:

Синхронный генератор переменного тока имеет строгую физическую зависимость между вращательным движением ротора и генерируемой частотой электричества. В таких системах ротор – это электромагнит, собранный из сердечников, полюсов и возбуждающих обмоток. Последние запитываются от источника постоянного тока посредством щеток и кольцевых контактов. Статор же представляет собой катушки провода, соединенные между собой по принципу звезды с общей точкой – нолем. В них уже наводится ЭДС и вырабатывается ток.

Вал ротора приводится в движение посторонней силой, обычно турбинами, частота движения которых синхронизирована и постоянна. Электрическая цепь, подключаемая к такому генератору, представляет собой трехфазную схему, частота тока в отдельной линии которой смещена на фазу в 120 градусов относительно других линий. Чтобы получить правильную синусоиду, направление магнитного потока в просвете между статорной и роторной частью регулируют конструкцией последних.

Возбуждение генератора переменного тока реализуют двумя методами:

  1. Контактным.
  2. Бесконтактным.

В схеме контактного возбуждения на обмотки электромагнита через щеточную пару подают электроэнергию с другого генератора. Этот генератор может быть совмещен с валом основного. Он, как правило, имеет меньшую мощность, но достаточную, чтобы создать сильное магнитное поле.

Бесконтактный принцип предусматривает, что синхронный генератор переменного тока на валу имеет дополнительные трехфазные обмотки, в которых при вращении наводится ЭДС и вырабатывается электричество. Оно через выпрямляющую схему поступает на катушки возбуждения ротора. Конструктивно в такой системе отсутствуют подвижные контакты, что упрощает систему, делая ее более надежной.

синхронный генератор переменного тока

Асинхронный генератор

Существует асинхронный генератор переменного тока. Устройство его отличается от синхронного. В нем нет точной зависимости ЭДС от частоты с которой вал ротора вращается. Присутствует такое понятие как «скольжение S», которое характеризует эту разницу влияния. Величина скольжения определяется вычислением, так что неправильно думать, будто бы нет закономерности электромеханического процесса в асинхронном двигателе.

Если генератор, работающий вхолостую, нагрузить, то протекающий в обмотках ток будет создавать магнитный поток, препятствующий вращению ротора с заданной частотой. Так образуется скольжение, что, естественно, влияет на выработку ЭДС.

Современный асинхронный генератор переменного тока устройство подвижной части имеет в трех разных исполнениях:

  1. Полый ротор.
  2. Короткозамкнутый ротор.
  3. Фазный ротор.

Такие машины могут иметь само- и независимое возбуждение. Первая схема реализуется за счет включения в обмотку конденсаторов и полупроводниковых преобразователей. Возбуждение независимого типа создается дополнительным источником переменного тока.

Схемы включения генераторов

Все мощные источники питания линий электропередач вырабатывают трехфазный электрический ток. Они содержат в себе три обмотки, в которых образуются переменные токи со смещенной друг от друга фазой на 1/3 периода. Если рассматривать каждую отдельную обмотку такого источника питания, то получим однофазный переменный ток, идущий в линию. Напряжение в десятки тысяч вольт может вырабатывать генератор. 220 В потребитель получает с распределительного трансформатора.

Любой генератор переменного тока устройство обмоток имеет стандартное, но подключение к нагрузке бывает двух типов:

Принцип работы генератора переменного тока, включенного звездой, предполагает объединение всех проводов (нулевых) в один, которые идут от нагрузки обратно к генератору. Это обусловлено тем, что сигнал (электрический ток) передается в основном через выходящий провод обмотки (линейный), который и называют фазой. На практике это очень удобно, ведь не нужно тянуть три дополнительных провода для подключения потребителя. Напряжение между линейными проводами и линейным и нулевым проводом будут отличаться.

Соединяя треугольником обмотки генератора, их замыкают друг с другом последовательно в один контур. Из точек их соединения выводят линии к потребителю. Тогда вообще не нужен нулевой провод, а напряжение на каждой линии будет одинаковым независимо от нагрузки.

Преимуществом трехфазного тока перед однофазным является его меньшая пульсация при выпрямлении. Это положительно сказывается на питаемых приборах, особенно двигателях постоянного напряжения. Также трехфазный ток создает вращающийся поток магнитного поля, который способен приводить в движение мощные асинхронные двигатели.

частота генератора переменного тока

Где применимы генераторы постоянного и переменного тока

Генераторы постоянного тока значительно меньше по размерам и массе, чем машины переменного напряжения. Имея более сложное конструктивное исполнение чем последние, они все же нашли применение во многих отраслях промышленности.

Основное распространение они получили в качестве высокооборотных приводов в машинах, где требуется регулирование частоты вращения, например, в металлообрабатывающих механизмах, подъемниках шахт, прокатных станах. В транспорте такие генераторы установлены на тепловозах, различных судах. Множество моделей ветрогенераторов собраны на базе источников постоянного напряжения.

Генераторы постоянного тока специального назначения применяют в сварке, для возбуждения обмоток генераторов синхронного типа, в качестве усилителей постоянного тока, для питания гальванических и электролизных установок.

Назначение генератора переменного тока - вырабатывать электроэнергию в промышленных масштабах. Такой вид энергии подарил человечеству Никола Тесла. Почему именно изменяющий полярность ток, а не постоянный нашел широкое применение? Это связано с тем, что при передаче постоянного напряжения идут большие потери в проводах. И чем длиннее провод, тем потери выше. Переменное напряжение можно транспортировать на огромные расстояния при гораздо меньших затратах. Причем легко можно преобразовывать переменное напряжение (понижая и повышая его), который выработал генератор 220 В.

 схема генератора переменного тока

Заключение

Человек до конца не познал природу магнетизма, который пронизывает все вокруг. И электрическая энергия – это лишь малая часть открытых тайн мироздания. Машины, которые мы называем генераторами энергии, по сути очень просты, но то, что они могут нам дать, просто поражает воображение. Все же настоящее чудо здесь не в технике, а в мысли человека, которая смогла проникнуть в неисчерпаемый резервуар идей, разлитых в пространстве!

fb.ru

Электродвигатель в качестве генератора электричества / Возобновляемая энергия / EcoVoice

Трехфазный асинхронный электродвигатель, изобретённый в конце 19-го века русским учёным-электротехником М.О. Доливо-Добровольским, получил в настоящее время преимущественное распространение и в промышленности, и в сельском хозяйстве, а также в быту. Асинхронные электродвигатели–самые простые и надёжные в эксплуатации. Поэтому во всех случаях, когда это допустимо по условиям электропривода и нет необходимости в компенсации реактивной мощности, следует применять асинхронные электродвигатели переменного тока. Различают два основных вида асинхронных двигателей: с короткозамкнутым ротором и с фазным ротором. Асинхронный короткозамкнутый электродвигатель состоит из неподвижной части — статора и подвижной части — ротора, вращающегося в подшипниках, укреплённых в двух щитах двигателя. Сердечники статора и ротора набраны из отдельных изолированных один от другого листов электротехнической стали. В пазы сердечника статора уложена обмотка, выполненная из изолированного провода. В пазы сердечника ротора укладывают стержневую обмотку или заливают расплавленный алюминий. Кольца-перемычки накоротко замыкают обмотку ротора по концам (отсюда и название — короткозамкнутый). В отличие от короткозамкнутого ротора, в пазах фазного ротора размещают обмотку, выполненную по типу обмотки статора. Концы обмотки подводят к контактным кольцам, укреплённым на валу. По кольцам скользят щетки, соединяя обмотку с пусковым или регулировочным реостатом. Асинхронные электродвигатели с фазным ротором являются более дорогостоящими устройствами, требуют квалифицированного обслуживания, менее надёжны, а потому применяются только в тех отраслях производства, в которых без них обойтись нельзя. По этой причине они мало распространены, и мы их в дальнейшем рассматривать не будем.

По обмотке статора, включенной в трехфазную цепь, протекает ток, создающий вращающее магнитное поле. Магнитные силовые линии вращающегося поля статора пересекают стержни обмотки ротора и индуктируют в них электродвижущую силу (ЭДС). Под действием этой ЭДС в замкнутых накоротко стержнях ротора протекает ток. Вокруг стержней возникают магнитные потоки, создающие общее магнитное поле ротора, которое, взаимодействуя с вращающим магнитным полем статора, создает усилие, заставляющее ротор вращаться в направлении вращения магнитного поля статора. Частота вращения ротора несколько меньше частоты вращения магнитного поля, создаваемого обмоткой статора. Этот показатель характеризуется скольжением S и находиться для большинства двигателей в пределах от 2 до 10%. В промышленных установках наиболее часто используются трёхфазные асинхронные электродвигатели, которые выпускают в виде унифицированных серий. К ним относится единая серия 4А с диапазоном номинальной мощности от 0,06 до 400 кВт, машины которой отличаются большой надёжностью, хорошими эксплуатационными качествами и соответствуют уровню мировых стандартов. Автономные асинхронные генераторы — трёхфазные машины, преобразующие механическую энергию первичного двигателя в электрическую энергию переменного тока. Их несомненным достоинством перед другими видами генераторов являются отсутствие коллекторно-щеточного механизма и, как следствие этого, большая долговечность и надежность. Если отключенный от сети асинхронный двигатель привести во вращение от какого-либо первичного двигателя, то в соответствии с принципом обратимости электрических машин при достижении синхронной частоты вращения, на зажимах статорной обмотки под действием остаточного магнитного поля образуется некоторая ЭДС. Если теперь к зажимам статорной обмотки подключить батарею конденсаторов С, то в обмотках статора потечёт опережающий ёмкостный ток, являющийся в данном случае намагничивающим. Ёмкость батареи С должна превышать некоторое критическое значение С0, зависящее от параметров автономного асинхронного генератора: только в этом случае происходит самовозбуждение генератора и на обмотках статора устанавливается трёхфазная симметричная система напряжений. Значение напряжения зависит, в конечном счёте, от характеристики машины и ёмкости конденсаторов. Таким образом, асинхронный короткозамкнутый электродвигатель может быть превращен в асинхронный генератор.

Можно подобрать емкость так, чтобы номинальное напряжение и мощность асинхронного генератора равнялись соответственно напряжению и мощности при работе его в качестве электродвигателя. В таблице 1 приведены емкости конденсаторов для возбуждения асинхронных генераторов (U=380 В, 750….1500 об/мин). Здесь реактивная мощность Q определена по формуле:

Q = 0,314·U2·C·10 -6 С — ёмкость конденсаторов, мкФ

Как видно из приведённых данных, индуктивная нагрузка на асинхронный генератор, понижающая коэффициент мощности, вызывает резкое увеличение потребной ёмкости. Для поддержания напряжения постоянным с увеличением нагрузки необходимо увеличивать и ёмкость конденсаторов, то есть подключать дополнительные конденсаторы. Это обстоятельство необходимо рассматривать как недостаток асинхронного генератора. Частота вращения асинхронного генератора в нормальном режиме должна превышать асинхронную на величину скольжения S = 2…10%, и соответствовать синхронной частоте. Не выполнение данного условия приведёт к тому, что частота генерируемого напряжения может отличаться от промышленной частоты 50 Гц, что приведёт к неустойчивой работе частото-зависимых потребителей электроэнергии: электронасосов, стиральных машин, устройств с трансформаторным входом. Особенно опасно снижение генерируемой частоты, так как в этом случае понижается индуктивное сопротивление обмоток электродвигателей, трансформаторов, что может стать причиной их повышенного нагрева и преждевременного выхода из строя. В качестве асинхронного генератора может быть использован обычный асинхронный короткозамкнутый электродвигатель соответствующей мощности без каких-либо переделок. Мощность электродвигателя — генератора определяется мощностью подключаемых устройств.

В качестве трёхфазной батареи конденсаторов хорошо использовать так называемые ком-пенсаторы реактивной мощности, предназначенные для улучшения соsφ в промышленных осветительных сетях. Их типовое обозначение: КМ1-0,22-4,5-3У3 или КМ2-0,22-9-3У3, которое расшифровывается следующим образом. КМ- косинусные конденсаторы с пропиткой минеральным маслом, первая цифра-габарит (1 или 2), затем напряжение (0,22 кВ), мощность (4,5 или 9 квар), затем цифра 3 или 2 означает трёхфазное или однофазное исполнение, У3 (умеренный климат третьей категории). В случае самостоятельного изготовления батареи, следует использовать конденсаторы типа МБГО, МБГП, МБГТ, К-42-4 и др. на рабочее напряжение не менее 600 В. Электролитические конденсаторы применять нельзя. Рассмотренный выше вариант подключения трёхфазного электродвигателя в качестве генератора можно считать классическим, но не единственным. Существуют и другие способы, которые так же хорошо зарекомендовали себя на практике. Например, когда батарея конденсаторов подключается к одной или двум обмоткам электродвигателя-генератора.

Двухфазный режим асинхронного генератора Такую схему следует использовать тогда, когда нет необходимости в получении трёхфазного напряжения. Этот вариант включения уменьшает рабочую ёмкость конденсаторов, снижает нагрузку на первичный механический двигатель в режиме холостого хода и т.о. экономит «драгоценное» топливо. В качестве маломощных генераторов, вырабатывающих переменное однофазное напряжение 220 В, можно использовать однофазные асинхронные короткозамкнутые электродвигатели бытового назначения: от стиральных машин типа «Ока», «Волга», поливальных насосов «Агидель», «БЦН» и пр. У них конденсаторная батарея может подключаться параллельно рабочей обмотке, либо использовать уже имеющийся фазосдвигающий конденсатор, подключенный к пусковой обмотке. Емкость этого конденсатора, возможно, следует несколько увеличить. Его величина будет определяться характером нагрузки, подключаемой к генератору: для активной нагрузки (электропечи, лампочки освещения, электропаяльники) требуется небольшая емкость, индуктивной (электродвигатели, телевизоры, холодильники) — больше.

Маломощный генератор из однофазного асинхронного двигателя

Теперь несколько слов о первичном механическом двигателе, который будет приводить во вращение генератор. Как известно, любое преобразование энергии связано с её неизбежными потерями. Их величина определяется КПД устройства. Поэтому мощность механического двигателя должна превышать мощность асинхронного генератора на 50…100%. Например, при мощности асинхронного генератора 5 кВт, мощность механического двигателя должна быть 7,5…10 кВт. С помощью передаточного механизма добиваются согласования оборотов механического двигателя и генератора так, чтобы рабочий режим генератора устанавливался на средних оборотах механического двигателя. При необходимости, можно кратковременно увеличить мощность генератора, повышая обороты механического двигателя. Каждая автономная электростанция должна содержать необходимый минимум навесного оборудования: вольтметр переменного тока (со шкалой до 500 В), частотомер (желательно) и три выключателя. Один выключатель подключает нагрузку к генератору, два других — коммутируют цепь возбуждения. Наличие выключателей в цепи возбуждения облегчает запуск механического двигателя, а также позволяет быстро снизить температуру обмоток генератора, после окончания работы – ротор невозбужденного генератора еще некоторое время вращают от механического двигателя. Эта процедура продлевает активный срок службы обмоток генератора. Если с помощью генератора предполагается запитывать оборудование, которое в обычном режиме подключается к сети переменного тока (например, освещение жилого дома, бытовые электроприборы), то необходимо предусмотреть двухфазный рубильник, который в период работы генератора будет отключать данное оборудование от промышленной сети. Отключать надо оба провода: «фазу» и «ноль».

В заключение несколько общих советов. 1)Генератор переменного тока является устройством повышенной опасности. Применяйте напряжение 380 В только в случае крайней необходимости, во всех остальных случаях пользуйтесь напряжением 220 В.

2) По требованиям техники безопасности электрогенератор необходимо оборудовать заземлением.

3)Обратите внимание на тепловой режим генератора. Он «не любит» холостого хода. Снизить тепловую нагрузку можно более тщательным подбором емкости возбуждающих конденсаторов.

4)Не ошибитесь с мощностью электрического тока, вырабатываемого генератором. Если при работе трёхфазного генератора используется одна фаза, то её мощность будет составлять 1/3 общей мощности генератора, если две фазы — 2/3 общей мощности генератора.

5)Частоту переменного тока, вырабатываемого генератором, можно косвенно контролировать по выходному напряжению, которое в режиме «холостого хода» должно на 4…6 % превышать промышленное значение 220/380 В.

ecovoice.ru

Двигатель вырабатывающий электричество | Facte

Поршень FPEG

Несмотря на бурное развитие электромобилей и водородных транспортных средств, традиционное углеводородное топливо из ископаемого сырья ещё долго будет востребованным, что даёт «переходным» гибридным автомобилям возможность и право на долгую и благополучную жизнь.

Аккумуляторным электромобилям остро недостаёт автономности, их запас хода пока ограничен, а время заряда по прежнему велико. Для активной эксплуатации водородных автомобилей нет инфраструктуры, заправки для них по всей планете можно чуть ли не по пальцам сосчитать.

В этих условиях компания Toyota с целью создания экономных гибридов, сочетающих по мере возможности преимущества бензиновых и электрических автомобилей, разрабатывает двигатель внутреннего сгорания совмещённый с генератором электрического тока, так называемый линейный генератор с двигателем со свободным поршнем (Free Piston Engine Linear Generator, FPEG).

Научные публикации по технологии FPEG регулярно появляются в печати в последние годы. Но Toyota, вероятно, впервые пробует применить линейный генератор в транспортном средстве.

Обычный двигатель внутреннего сгорания используется в автомобилях для того, чтобы вращать колёса. Вместо этого, FPEG вырабатывает электроэнергию, которую можно использовать для питания тяговых электромоторов или для накопления в аккумуляторах.

В отличие от традиционных ДВС в линейном двигателе со свободным поршнем нет вращающегося коленчатого вала. Вместо этого под действием сгорающего внутри одной большой камеры топлива поршень перемещается в прямом и обратном направлении.

Поршень FPEG, над которым работают инженеры Toyota, оборудован W-образным постоянным магнитом. При перемещениях поршня туда и обратно, магнит движется вместе с ним внутри обмоток стационарных катушек, в результате чего генерируется электрический ток.

Конструкция FPEG проще конструкции традиционных бензиновых и дизельных двигателей. Технология отлично подходит для использования как в гибридных автомобилях, так и в электрических в качестве «расширителя диапазона», которым GM оборудует свои модели Volt.

Пока ещё Toyota не готова предложить массовую серийную версию FPEG. Тестовым моделям предстоит пройти немалый путь до внедрения. Наиболее мощные линейные генераторы способны «выдавать» около 10 кВт, или приблизительно 13 л.с.

Для движения по скоростным шоссе этого явно маловато, даже если закрыть глаза на крайне вялый разгон. Однако, вполне возможно, что в качестве первого шага подобные силовые установки появятся под капотом лёгких транспортных средств, предназначенных для регулярных пригородных рейсов на работу и домой.

www.facte.eu

Вырабатывающий электричество двигатель внутреннего сгорания от Toyota

Создано 08.05.2014 13:27 Автор: Алексей Норкин

Несмотря на бурное развитие электромобилей и водородных транспортных средств, традиционное углеводородное топливо из ископаемого сырья ещё долго будет востребованным, что даёт «переходным» гибридным автомобилям возможность и право на долгую и благополучную жизнь.

Аккумуляторным электромобилям, кроме дорогой Tesla Model S, остро недостаёт автономности, их запас хода пока ограничен, а время заряда по прежнему велико. Для активной эксплуатации водородных автомобилей нет инфраструктуры, заправки для них по всей планете можно чуть ли не по пальцам сосчитать.

В этих условиях компания Toyota с целью создания экономных гибридов, сочетающих по мере возможности преимущества бензиновых и электрических автомобилей, разрабатывает двигатель внутреннего сгорания совмещённый с генератором электрического тока, так называемый линейный генератор с двигателем со свободным поршнем (Free Piston Engine Linear Generator, FPEG).

Научные публикации по технологии FPEG регулярно появляются в печати в последние годы. Но Toyota, вероятно, впервые пробует применить линейный генератор в транспортном средстве.

Обычный двигатель внутреннего сгорания используется в автомобилях для того, чтобы вращать колёса. Вместо этого, FPEG вырабатывает электроэнергию, которую можно использовать для питания тяговых электромоторов или для накопления в аккумуляторах.

В отличие от традиционных ДВС в линейном двигателе со свободным поршнем нет вращающегося коленчатого вала. Вместо этого под действием сгорающего внутри одной большой камеры топлива поршень перемещается в прямом и обратном направлении.

Поршень FPEG, над которым работают инженеры Toyota, оборудован W-образным постоянным магнитом. При перемещениях поршня туда и обратно, магнит движется вместе с ним внутри обмоток стационарных катушек, в результате чего генерируется электрический ток.

Конструкция FPEG проще конструкции традиционных бензиновых и дизельных двигателей. Технология отлично подходит для использования как в гибридных автомобилях, так и в электрических в качестве «расширителя диапазона», которым GM оборудует свои модели Volt.

Пока ещё Toyota не готова предложить массовую серийную версию FPEG. Тестовым моделям предстоит пройти немалый путь до внедрения. Наиболее мощные линейные генераторы способны «выдавать» около 10 кВт, или приблизительно 13 л.с.

Для движения по скоростным шоссе этого явно маловато, даже если закрыть глаза на крайне вялый разгон. Однако, вполне возможно, что в качестве первого шага подобные силовые установки появятся под капотом лёгких транспортных средств, предназначенных для регулярных пригородных рейсов на работу и домой.

Facepla.net по материалам Geek

Читайте также про необычный двигатель внутреннего сгорания с высочайшим КПД EcoMotors:

www.facepla.net

Расчет генератора Амперы/вольты толщина провода

Напряжение и ток от генератора зависит от множества факторов, таких как обороты генератора, мощность магнитов, скорость движения магнитов на роторе, количество витков в обмотках участвующих в выработке электричества за единицу времени и др. Основным показателем в выработке напряжения является линейная скорость движения магнитов, которая зависит от оборотов генератора и длинны окружности по которой эти магниты вращаются.

Напряжение генератора переменного тока прямо пропорционально скорости движения магнитов, и соответственно оборотом генератора. То-есть если обороты увеличились в два раза, то и напряжение соответственно увеличится в два раза.

Чтобы вычислить напряжение генератора на определенных оборотах нужно магнитную индукцию магнитов (Тл) умножить на активную длину проводника (м), и умножить на скорость движения магнитов (м/с). Формула расчета выглядит так.

>

E=B·V·L где: Е-напряжение генератора (V). B-магнитная индукция (Тл). V-скорость движения магнитов (м/с). L-активная длина проводника (м).

Формула очень простая, скорость магнитов вычислить легко, достаточно вычислить длину окружности и умножить на количество оборотов генератора. Активная длинна проводника это та часть которую перекрывают магниты. А вот индукцию магнитов можно только измерить или вычислить путем прокрутки готового генератора. Если индукция магнитов не известна то ее можно брать равной 0,8Тл. Это значение справедливо для аксиальных генераторов где расстояние между магнитами равно толщине самих магнитов. У генераторов с железными статорами не все так однозначно, но тоже при использовании разумной толщины магнитов (3-5мм) индукция в зазоре будет примерно 0,8Тл.

Пример расчета генератора

Например у нас планируется изготовление трехфазного аксиального генератора на постоянных магнитах. Магниты 40*20*5мм., количество магнитов по 12 на диске. Катушек у нас 18, в каждой катушке по 70 витков, намотанных проводом 1мм. Диаметр ротора 27см.

Так-как высота магнитов 40мм, то значит и активная длинна в катушках 40мм или 0,04м. За один оборот генератора магниты продавливают расстояние (L=2πr) 27/2*3,14=84,78см. Получается за один оборот магниты преодолеют 0,84м. Возьмем формулу выше E=B·V·L и подставим значения.

0,8*0,84*0,04=0,02V, это означает что при скорости вращения 1об/с или 60об/м напряжение одного витка катушки составит 0,02 вольта.

Чтобы узнать напряжение фазы генератора нужно посчитать количество витков. Из информации выше известно что в генераторе 18 катушек по 70 витков, значит в фазе 6 катушек. 6*70=420витков. теперь 420*0,02=8,4вольта. Таким образом мы знаем что напряжение фазы при 60об/м равно 8,4вольта. Если фазы генератора соединить в звезду то напряжение поднимется в 1,7раза, это значит 8,4*1,7=12,28вольта. Вот так вычисляется напряжение генератора. Так-как напряжение генератора пропорционально скорости движения магнитов, то при 60об/м=12,2вольта, при 120об/м=24,4вольта, при 180об/м=36,6вольта, и так далее.

Еще момент: Но если на бумаге начертить схему расположения магнитов и катушек в этом генераторе, то будет видно что магниты перекрывают лишь половину катушек фазы, это значит что не все сразу витки катушек фаз участвуют в выработке энергии. И это надо учитывать, выше написано что в фазе 420 витков, но только половина из них перекрывается магнитами значит всего 210витков будет вырабатывать напряжение. А это получается 420/2=210*0,02=4,2вольта при 60об/м с фазы, если фазы соединить в звезду, то 4,2*1,7=7,14 вольта. Площадь магнитов тоже не маловажный фактор.

Как вычислить силу тока генератора.

Зная напряжение генератора и сопротивление его катушек можно легко вычислить силу тока. Но сопротивление нам не известно, его можно вычислить исходя из длинны проводника и толщины провода. Чтобы вычислить силу тока на аккумулятор 12 вольт нужно от напряжения генератора отнять напряжение аккумулятора и полученную сумму разделить на общее сопротивление генератора+аккумулятора.

>

Формула расчета силы тока выглядит так, Ug-Ua=U/(R+r)=I, где Ug-напряжение генератора без нагрузки, Ua-напряжение аккумулятора, U-разность напряжений, (R+r)-общее сопротивление всех элементов в цепи, I -сила тока.

Можно посчитать какой ток выдаст генератор на аккумулятор, но не известно сопротивление фазы. Тогда можно сопротивление вычислить. Если в генераторе катушки намотаны проводом 1мм, а средняя длинна витка в катушке 0,08м, а витков в катушках по 70. Получается 420*0,08=33,6метра. Сопротивление 1м провода толщиной 1мм равно 0,0224Ом значит 33,6*0,0224=0,75Ом. Сопротивление фазы равно 0,75Ом, чтобы узнать сопротивление всего генератора при соединении звезду нужно сопротивление умножить на 1,7 получится 0,75*1,7=1,27Ом. Теперь когда известно сопротивление можно посчитать ток генератора.

>

Например нам надо узнать какой ток генератор выдаст на аккумулятор 14 вольт при 300об/м. Тогда от напряжения генератора 44,4вольта (7,4*6) нужно отнять напряжение аккумулятора 14 вольт и разделить на сопротивление генератора 44,4-14=30.4/1,27=23А. Получается что ток на аккумулятор составит 23А.

Но в реальности ток будет меньше потому что не учтено сопротивление аккумулятора, оно хоть и небольшое, но присутствует. Так-же сопротивление соединяющих проводов, например если провода 20 метров и он тонкий то это существенное сопротивление. Так-же есть еще активное и реактивное сопротивление генератора, которое может быть достаточно большим и значимым.

Из-за активного и реактивного генератора падает общий КПД самого генератора, так-как на внутреннем сопротивлении теряется мощность ( нагрев катушек и т.п.). Поэтому в реальности сила тока будет меньше. На малых оборотах и при небольшом токе можно КПД генератора брать около 0,8мм, тогда 23*0,8=18,4Ампер.В среднем из-за разных других потерь рекомендуют брать средний КПД около 0,5, тогда в реальности будет 23*0,5=11,5Ампер, но все же основной показатель это сопротивление генератора.

В общем для примерного расчета генератора нужны всего две основные формулы, это формула расчета напряжения генератора, и формула расчета силы тока генератора.

>

Конечно, как я уже упоминал здесь учитывается не все моменты от которых зависит напряжение и ток генератора, но основные моменты, от которых координатно зависят характеристики генератора здесь учтены. Если вооружиться этими двумя формулами и проверить готовые генераторы, все параметры которых известны, то результаты будут очень близки к реальным генераторам. Перед написанием статьи я проверил так-же и свои генераторы, если брать КПД 50% то данные практически совпадают, разброс на разных оборотах 10-20%.

Если возникли вопросы, или вы заметили неточности, то оставляйте комментарии под этой статьей.

e-veterok.ru