ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

В чем проблема создания гражданского сверхзвукового самолета? Двигатель сверхзвукового самолета


Сверхзвуковой самолет: история развития

Сверхзвуковая скорость – это скорость, при которой объект движется быстрее звука. Скорость при полете сверхзвукового самолета измеряется в Махах – скорость самолета в определенной точке пространства относительно скорости звука в этой же точке. Сейчас подобными скоростями передвижения удивить довольно сложно, а еще каких-то 80 лет назад об этом только мечтали.

Немецкий Ме-262 готовится к первому вылету

Немецкий Ме-262 готовится к первому вылету

С чего все началось

В сороковых годах ХХ века во время Второй Мировой Войны над решением этого вопроса активно работали немецкие конструкторы, надеясь с помощью подобных летательных аппаратов переломить ход войны. Как мы знаем, у них этого не получилось, война закончилась. Однако в 1945 г., ближе к ее завершению, немецкий пилот Л. Гофман, испытывая первый в мире реактивный истребитель Me-262, на высоте 7200 м смог развить скорость около 980 км/ч.

Первым, кто воплотил мечту всех летчиков о преодолении сверхзвукового барьера, стал американский пилот-испытатель Чак Йегер. В 1947 году этот пилот первым в истории сумел преодолеть скорость звука на пилотируемом аппарате. Он управлял прототипным летательным аппаратом Bell X-1 с ракетным двигателем. Кстати, захваченные во время войны немецкие ученые и их разработки, довольно сильно способствовали появлению этого аппарата, как и, собственно, всему дальнейшему развитию летных технологий.

Чак Йегер перед установкой рекорда

Чак Йегер перед установкой рекорда

В Советском Союзе достигли скорости звука 26 декабря 1948 г. Это был экспериментальный самолет ЛА-176, на высоте полета 9060 м, который пилотировали И.Е. Федоров и О.В. Соколовский. Примерно через месяц на данном самолете, но уже с более совершенным двигателем, была не только достигнута, но и превышена скорость звука на 7000 м. Проект ЛА-176 был весьма перспективным, но из-за трагической гибели О.В. Соколовского, управлявшего этим аппаратом, разработки были закрыты.

В дальнейшем развитие данной отрасли несколько замедлилось, так как возникло значительное количество физических сложностей, связанных с управлением летательным аппаратом на сверхзвуковых скоростях. На высоких скоростях начинает проявляться такое свойство воздуха, как сжимаемость, аэродинамическая обтекаемость становится совершенно иной. Появляется волновое сопротивление, и такое неприятное для любого летчика явление, как флаттер – самолет начинает сильно нагреваться.

Столкнувшись с этими проблемами, конструкторы начали искать кардинальное решение, способное преодолеть сложности. Таким решением оказался полный пересмотр конструкции летательных аппаратов, предназначенных для сверхзвуковых полетов. Те обтекаемые формы авиалайнеров, которые мы сейчас наблюдаем, – результат многолетних научных изысканий.

Дальнейшее развитие

На тот момент, когда только окончилась Вторая Мировая, и началась корейская и вьетнамская войны, развитие отрасли могло происходить только через военные технологии. Именно поэтому первыми серийными самолетами, способными летать быстрее скорости звука, стали Советский Миг-19 (NATO Farmer) и американский F-100 Super Sabre. Рекорд скорости был за американским самолетом – 1215 км/ч (установлен 29 октября 1953 г.), но уже в конце 1954 г. Миг-19 смогли разогнать до 1450 км/ч.

Советский Миг-19

Советский Миг-19

Интересный факт. Хоть СССР и Соединенные Штаты Америки не вели официальных боевых действий, но реальные многократные боестолкновения во время Корейской и Вьетнамской войн, показали неоспоримое преимущество Советской техники. К примеру, наши Миг-19 были значительно легче, обладали двигателями с лучшими динамическими характеристиками и, как следствие, с более быстрой скороподъемностью. Радиус возможного боевого применения самолета был на 200 км больше у Миг-19. Именно поэтому американцы очень хотели заполучить неповрежденный образец и даже объявили награду за выполнение такой задачи. И она была реализована.

Уже после окончания Корейской войны 1 самолет Миг-19 был угнан с авиабазы офицером ВВС Кореи Но Гым Соком. За что американцы выплатили ему положенные 100000 долларов в качестве награды, за доставку неповрежденного самолета.

Интересный факт. Первой женщиной-пилотом, достигшим скорости звука, является американка Жаклин Кохран. Она достигла скорости 1270 км/ч, пилотируя самолет F-86 Sabre.

Развитие гражданской авиации

В 60х годах прошлого века после появления опробованных во время войн технических наработок, авиация начала бурно развиваться. Нашлись решения для существующих проблем сверхзвуковых скоростей, и тогда началось создание первых сверхзвуковых пассажирских самолетов.

Первый в истории полет гражданского авиалайнера со скоростью, превышающей скорость звука, произошел 21 августа 1961 г. на самолете Douglas DC-8. На момент полета на самолете не было пассажиров, кроме пилотов, был размещен балласт для соответствия полной загрузки лайнера в данных экспериментальных условиях. Была достигнута скорость 1262 км/ч при спуске с высоты 15877 м до 12300 м.

Интересный факт. Boeing 747 SP-09 Китайских авиалиний (China Airlines) 19 февраля 1985 г., совершая перелет из тайваньского Тайпея в Лос-Анжелес, вошел в неуправляемое пике. Причиной тому послужили неисправности двигателя и последующие неквалифицированные действия персонала. Во время пикирования с высоты 12500 м до 2900 м, где экипаж и смог стабилизировать самолет, была превышена скорость звука. При этом не рассчитанный на подобные перегрузки лайнер получил серьезные повреждения хвостовой части. Однако при всем этом, серьезно пострадали всего 2 человека на борту. Самолет сел в Сан-Франциско, был отремонтирован и в дальнейшем снова осуществлял пассажирские перелеты.

Поврежденный в пике хвост Boeing 747 SP-09

Поврежденный в пике хвост Boeing 747 SP-09

Однако действительно настоящих сверхзвуковых пассажирских самолетов (СПС), способных осуществлять регулярные перелеты со скоростями выше скорости звука, было сконструировано и построено все два типа:

Только эти два летательных аппарата были в состоянии поддерживать крейсерскую сверхзвуковую скорость (англ. supercruise). На тот момент они превосходили даже большинство боевых самолетов, конструкция этих лайнеров была уникальна для своего времени. Существовало всего несколько типов самолетов, способных летать в режиме суперкруиза, на сегодняшний день большинство современных военных машин оснащены такими возможностями.

Авиация СССР

Советский Ту-144 был построен несколько раньше европейского аналога, поэтому можно считать его первым в мире пассажирским сверхзвуковым лайнером. Внешний вид этих самолетов, как Ту-144, так и Конкорда, и сейчас не оставит равнодушным ни одного человека. Вряд ли в истории авиастроения были более красивые машины.

Советский Ту-144 на взлете

Советский Ту-144 на взлете

У Ту-144 привлекательные характеристики, за исключением дальности практического применения: выше крейсерская и меньше посадочная скорости, более высокий потолок полета, но и история нашего лайнера значительно трагичнее.

Важно! Ту-144 не только первый летающий, но и первый разбившийся пассажирский сверхзвуковой лайнер. Катастрофа на авиасалоне в Ле-Бурже 3 июня 1973 г., в которой погибло 14 человек, стала первым шагом к завершению полетов Ту-144. Однозначные причины так и не были установлены, а итоговая версия катастрофы вызывает множество вопросов.

Вторая катастрофа под Егорьевском в Московской области 23 мая 1978 г., где в полете произошло возгорание, и при посадке погибли 2 члена экипажа, стала окончательной точкой в решении о прекращении эксплуатации этих самолетов. Несмотря на то, что после анализа было установлено, что возгорание произошло в результате наличия недоработки в топливной системе нового, тестируемого двигателя, а сам самолет показал прекрасную управляемость и надежность конструкции, когда горящий смог произвести посадку, машины сняли с рейсов и вывели из коммерческой эксплуатации.

Как вышло за рубежом

Европейский Конкорд, в свою очередь, отлетал гораздо дольше с 1976 г. по 2003 г. Однако из-за нерентабельности (самолет так и не смогли вывести на минимальную окупаемость), эксплуатацию также в итоге свернули. Во многом это произошло из-за авиакатастрофы в Париже 25 июля 2000 г.: при взлете из аэропорта Шарль Де Голль загорелся двигатель, и самолет рухнул на землю (погибло 113 человек, в том числе 4 на земле), а также террористическим атакам 11 сентября 2001 г. Несмотря на то, что это была единственная катастрофа самолета за 37 лет эксплуатации, а теракты не имели непосредственного отношения к Конкорду, общее снижение потока пассажиров уменьшило и без того отсутствующую рентабельность полетов и привело к тому, что последний рейс данный самолет совершил по маршруту Хитроу – Филтон 26 ноября 2003 г.

Европейский Конкорд осуществляет взлет

Европейский Конкорд осуществляет взлет

Интересный факт. Билет на рейс Конкорда в 70е годы стоил не меньше 1500 долларов в один конец, ближе к концу девяностых цена выросла до 4000 долларов. Билет за место на последнем рейсе этого лайнера стоил уже 10000 долларов.

Сверхзвуковая авиация на данный момент

На сегодняшний день решений, подобным Ту-144 и Конкорд, не предвидится. Но, если вы тот человек, которому неважна стоимость билетов, – есть ряд наработок в сфере бизнес перелетов и маломестных воздушных средств.

Концепт X1

Концепт X1

Наиболее перспективная разработка – самолет XB-1 Baby Boom американской компании Boom technology из Колорадо. Это маленький самолет, длиной около 20 м и размахом крыльев в 5,2 м. Он оборудован 3мя двигателями, разработанными в пятидесятых годах для крылатых ракет.

Вместительность планируется сделать около 45 человек, при дальности перелета 1800 км на скорости до 2х махов. На данный момент это пока разработка, но первый полет прототипа планируется произвести уже в 2018 г., а сам самолет должен пройти сертификацию к 2023му году. Создатели планируют использовать разработку как в качестве бизнес-джета для частных перевозок, так и на регулярных рейсах малой вместительности. Планируемая стоимость для перелета на данной машине будет составлять около 5000 долларов, что достаточно много, но при этом сопоставимо со стоимостью перелета в бизнес классе.

Однако если смотреть на всю отрасль гражданских авиаперевозок в целом, то с сегодняшним уровнем развития технологий, выглядит все не очень перспективно. Крупные компании больше озабочены получением выгоды и рентабельностью проектов, чем новыми разработками в области сверхзвуковых полетов. Причина в том, что за всю историю авиации не было в достаточной степени успешных реализаций задач подобного рода, сколько ни пробовали достичь целей, все они в той или иной степени провалились.

В целом те конструкторы, которые занимаются текущими проектами, – это скорее энтузиасты, с оптимизмом смотрящие в будущее, которые, конечно, рассчитывают получать прибыли, но достаточно реалистично смотрят на итоги, да и большая часть проектов пока существует только на бумаге, и аналитики достаточно скептично смотрят на возможность их реализации.

Один из немногих действительно крупных проектов – это запатентованный в прошлом году компанией Airbus сверхзвуковой самолет Concorde-2. Конструктивно он будет представлять собой летательный аппарат с тремя типами двигателей:

Концепт Конкорд-2

Концепт Конкорд-2

Эта конструктивная особенность предполагает работу различных двигателей на определенных этапах полета (взлет, посадка, движение на крейсерской скорости).

Учитывая одну из основных проблем гражданских авиаперевозок – шум (стандарты организации воздушного движения в большинстве стран выставляют ограничение на уровень шума, если аэропорт расположен близко к жилым зонам, это накладывает ограничения на возможность ночных полетов), компания Airbus для проекта Concorde-2 разработала специальную технологию, позволяющую производить вертикальный взлет. Это позволит практически избежать попадания ударных волн на поверхность земли, что в свою очередь, обеспечит отсутствие дискомфорта для людей внизу. Также благодаря подобной конструкции и технологии полет авиалайнера будет проходить на высоте около 30-35000 м (на данный момент гражданская авиация летает максимум на 12000 м), что будет способствовать снижению шума не только при взлете, но и на протяжении всего полета, так как с такой высоты ударные звуковые волны не смогут достичь поверхности.

Будущее сверхзвуковых полетов

Не все так печально, как может показаться на первый взгляд. Кроме гражданской авиации существует и всегда будет существовать военная отрасль. Боевые потребности государства как раньше двигали развитие авиации, так и продолжат это делать. Армии всех государств нуждаются во все более совершенных летательных аппаратах. Из года в год эта потребность только возрастает, что влечет за собой создание новых конструкторских и технологических решений.

Рано или поздно развитие выйдет на такой уровень, когда использование военных технологий, возможно, станет рентабельным и в мирных целях.

Видео

aviationtoday.ru

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Привет, друзья!

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Один из примеров существующих проектов сверхзвуковых самолетов.

Сегодня начну с небольшого предисловия 🙂.

На этом сайте у меня уже есть статья о дозвуковых скоростях полета летательных аппаратов. То есть давно уже пришла пора написать что-нибудь и о сверхзвуке, тем более, что я обещал это сделать :-). На днях взялся за работу с немалым рвением, но понял, что тема настолько же интересна, насколько и объемна.

Мои статьи в последнее время краткостью не блещут, не знаю уж достоинство это или недостаток :-). А выпуск на тему «сверхзвук» грозил стать еще больше и уж неизвестно сколько бы времени мне пришлось бы его «творить» :-).

Поэтому я решил попробовать сделать несколько статей. Этакую маленькую серию (штуки три-четыре), в которой каждая составляющая будет посвящена одному-двум понятиям на тему сверхзвуковых скоростей. И мне будет проще, и читателям голову меньше буду забивать :-), и яндекс с гуглом будут более благосклонны (что немаловажно, сами понимаете :-)). Ну а что из этого получится судить, конечно, Вам..

********************

Итак, поговорим сегодня о сверхзвуке и сверхзвуковых самолетах. Само понятие «сверхзвук» в нашем языке (тем более в превосходной степени) мелькает гораздо чаще, чем термин «дозвук».

С одной стороны это, вобщем-то, понятно. Дозвуковые летательные аппараты давно стали в нашей жизни чем-то совсем обыденным. А сверхзвуковые самолеты, хоть и летают в воздушном пространстве вот уже 65 лет, но до сих пор представляются чем-то особенным, интересным и заслуживающим повышенного внимания.

Говоря с другой стороны, это вполне справедливо. Ведь полеты на сверхзвуке — это, можно сказать, отдельная, закрытая неким барьером область движения. Однако, у людей неискушенных вполне может возникнуть вопрос: «А чего, собственно, такого выдающегося в этом сверхзвуке? Какая разница летит самолет со скоростью 400 км/ч или 1400 км/ч? Дайте ему движок помощнее и все будет в порядке!» Примерно в таком смысловом положении находилась авиация на заре своего развития.

Скорость всегда была пределом мечтаний и первоначально эти устремления довольно успешно претворялись в жизнь. Уже в 1945 году летчик-испытатель фирмы Мессершмитт Л.Гофман в горизонтальном полете на одном из первых в мире самолетов с реактивными двигателями, МЕ-262, достиг в горизонтальном полете на высоте 7200 м скорости 980 км/ч.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Messerschmitt Me 262.

Однако, далее скорость расти не хотела. Даже при пологом пикировании. Более того проявились проблемы с управляемостью. Хотя, казалось бы, на первый взгляд преград в достижении цели нет….

Однако, на самом деле все далеко не так просто. Ведь полет на сверхзвуке отличается от дозвукового не только величиной скорости и не столько ею. Отличие здесь качественное.

Уже со скоростей порядка 400 км/ч начинает понемногу проявляться такое свойство воздуха, как сжимаемость. И ничего здесь, в принципе, неожиданного нет. Воздух – это газ. А все газы, как известно, в отличие от жидкостей, сжимаемы. При сжатии меняются параметры газа, такие, например, как плотность, давление, температура. Из-за этого в сжатом газе уже по-другому могут протекать различные физические процессы, нежели в разреженном.

Чем быстрее летит самолет, тем больше он вместе со своими аэродинамическими поверхностями становится похожим на эдакий поршень, в определенном смысле сжимающий воздух перед собой. Утрированно, конечно, но в целом именно так :-).

С ростом скорости аэродинамическая картина обтекания летательного аппарата меняется и чем быстрее, тем больше :-). А на сверхзвуке она уже качественно другая. При этом на первый план выходят новые понятия аэродинамики, которые для малоскоростных самолетов зачастую просто не имеют никакого смысла.

Для характеристики скорости полета теперь становится удобным и необходимым использование такого параметра, как число М (число Маха, отношение скорости самолета относительно воздуха в данной точке к скорости звука в воздушном потоке в этой точке). Появляется и становится ощутимым (очень ощутимым!) еще один вид аэродинамического сопротивления – волновое сопротивление ( наряду с итак возросшим обычным лобовым сопротивлением).

Становятся знаковыми такие явления, как волновой кризис (с критическим числом М), сверхзвуковой барьер, скачки уплотнения и ударные волны.

Кроме того ухудшаются управляемость и характеристики устойчивости самолета из-за смещения назад точки приложения аэродинамических сил.

При подходе к области околозвуковых скоростей самолет может испытывать сильную тряску (это было более характерно для первых самолетов, штурмовавших тогда еще таинственный рубеж скорости звука), схожую по своим проявлениям с еще одним очень неприятным явлением, с которым пришлось столкнуться авиаторам в своем профессиональном развитии. Это явление называется флаттер (тема для очередной статьи :-)).

Появляется такой неприятный момент, как разогрев воздуха в результате его резкого торможения перед самолетом (так называемый кинетический нагрев), а также нагрев в результате вязкостного трения воздуха. При этом температуры достаточно высокие, порядка 300ºС. До таких температур разогревается обшивка самолета во время длительного сверхзвукового полета.

Обо всех упомянутых выше понятиях и явлениях, а также причинах их возникновения мы обязательно поговорим в других статьях более подробно. Но сейчас итак, я думаю, вполне понятно, что сверхзвук – это уже нечто совсем другое, нежели полет на дозвуковой ( тем более малой) скорости.

Для того, чтобы ужиться со всеми вновь возникающими эффектами и явлениями на больших скоростях и полностью соответствовать своему предназначению, летательный аппарат тоже должен качественно измениться. Теперь это должен быть сверхзвуковой самолет, то есть самолет, способный выполнять полет со скоростью, превышающей скорость звука на данном участке воздушного пространства.

И для него недостаточно только лишь увеличения мощности двигателя (хотя это тоже очень важная и обязательная деталь). Такие самолеты обычно меняются и внешне. В их облике появляются острые углы и кромки, прямые линии, в отличие от «плавных» очертаний дозвуковых самолетов.

Сверхзвуковые самолеты имеют стреловидное или треугольное в плане крыло. Типичный и один из самых известных самолетов с треугольным крылом – замечательный истребитель МИГ-21 (максимальная скорость на высоте 2230 км/ч, у земли 1300 км/ч).

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Сверхзвуковой самолет с треугольным в плане крылом МИГ-21.

Один из вариантов стреловидного – это крыло оживальной формы,  имеющее повышенный коэффициент подъемной силы. У него имеется специальный наплыв около фюзеляжа, предназначенный для образования искусственных спиральных вихрей.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

МИГ-21И с крылом оживальной формы.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

МИГ-21И - оживальное крыло.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Оживальное крыло ТУ-144.

Интересно, что крыло такого типа, потом установленное на ТУ-144, испытывалось на летающей лаборатории на базе все того же МИГ-21 (МИГ-21И).

Второй вариант – сверхкритическое крыло. Оно имеет уплощенный профиль с определенным образом изогнутой задней частью, что позволяет отодвинуть возникновение волнового кризиса на большие скорости и может быть выгодным в плане экономичности для скоростных дозвуковых самолетов. Такое крыло применено, в частности, на самолете SuperJet 100.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

SuperJet 100. Пример сверхкритического крыла. Хорошо виден изгиб профиля (задняя часть)

Профиль крыла, особенно если самолет предназначен для полетов на больших сверхзвуковых скоростях (тем более длительных полетов), обычно тонкий с острыми кромками (характерный пример — МИГ-25).

Управляющие поверхности хвостового оперения из-за ухудшения условий управляемости на сверхзвуке имеют достаточно большую площадь. Часто стабилизаторы бывают цельно-поворотными, а на некоторых сверхзвуковых самолетах цельноповоротными сделаны и кили.

Интересно, что аппарат, впервые в истории авиации достигший сверхзвуковой скорости, не особо-то походил на современный сверхзвуковой самолет. Это был самолет Bell X-1, совместный проект ВВС США и агенства NACA (предшественник (до 1958 года) нынешнего NASA), на котором стоял жидкостный ракетный двигатель XLR11, специально разработанный для установки на самолет.

Х-1 был создан чисто для эксперимента по достижению высоких скоростей и явился родоначальником Х-серии экспериментальных самолетов, на которых отрабатывались различные новинки и разработки из области скоростных и высотных полетов.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Bell X-1. Первый самолет, преодолевший скорость звука.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Ракетный двигатель XLR-11 для самолета Х-1.

Крыло, так же как и оперение этого самолета не имело заметной стреловидности. Стартовать он мог самостоятельно или же из бомболюка специально модернизированного самолета В-29 (впоследствии EB-50A). Рекордный полет был выполнен 14 октября 1947 года на самолете с серийным номером № 46-062. Пилотировал его капитан ВВС США Charles Elwood «Chuck» Yeager. Свой самолет он назвал «Glamorous Glennis» в честь своей жены :-).

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Charles Yeager у самолета Х-1.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Подвеска Х-1 (№46-064) под самолетом ЕВ-50А 9 ноября 1951 года на авиабазе Эдвардс (Калифорния).

Х-1 стартовал с борта В-29 и в управляемом пологом снижении достиг скорости 1,06М, что соответствовало 1299 км/ч (361 м/с). Это был полет под номером 50. После совершения 80-ти исследовательских полетов этот самолет был помещен в музей Смитсоновского института. Здесь старый хроникальный ролик тех лет.

В Советском Союзе скорость звука была впервые достигнута 26 декабря 1948 года на экспериментальном самолете ЛА-176 на высоте 9060 м. В течение последующих двух месяцев летчики, участвовавшие в установлении рекорда, О.В.Соколовский и И.Е.Федоров, еще шесть раз достигали скорости звука. Полеты осуществлялись методом спуска с высоты 10000 м с разгоном и последующим выходом в горизонтальный полет на высоте 6000 м (так называемый метод «с прижимом»).

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

В полете ЛА-176.

В январе на Ла-176 были установлен более мощный двигатель ВК-1 (вместо ранее стоявшего РД-45) и с этим двигателем 25 января 1949 года на высоте 7000 м была достигнута (и официально зафиксирована!) скорость, превышающая скорость звука: 1105км/ч (или М=1,02). Интересно, что при этом максимальная скорость самолета в горизонтальном полете была всего на 1% меньше звуковой.

ЛА-176 по внешнему виду был, вобщем-то, типичным сверхзвуковым самолетом со стреловидным крылом и тонким профилем. Однако потерянная из-за нелепой случайности  экспериментальная машина (срыв фонаря на взлете и неправильные действия летчика О.В.Соколовского, закончившиеся катастрофой и его гибелью), поставила крест на дальнейшей разработке этого проекта.

Первыми серийно выпускавшимися сверхзвуковыми самолетами стали практически одновременно появившиеся американский F-100 Super Sabre и советский Миг-19 (наименование по классификации НАТО — Farmer). Рекорд скорости F-100 (29 октября 1953 года) составил 1215 км/ч. Он продержался недолго, в конце 1954 года МИГ-19 разогнался до 1450 км/ч.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

North American F-100, 1953 год.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Истребитель МИГ-19 (аэродром Кубинка).

МИГ-19 вообще обладал рядом преимуществ по сравнению со своим американским аналогом (если так можно его назвать :-)). Он был легче, обладал значительно большей (очень высокой по тем временам) скороподъемностью, большей, как я уже сказал, максимальной скоростью, лучшей маневренностью и большим (на 200 км) боевым радиусом.

Этот самолет выпускался в различных модификациях и в качестве истребителя-перехватчика в войсках ПВО страны в начале 60-х годов успешно выполнял реальные боевые задачи.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Истребитель МИГ-19СМ.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

МИГ-19 в китайском варианте J-6 на авиашоу в 2006 году.

Хочу обязательно заметить, что в гонке за сверхзвуком участвовали и женщины. Весной 1953 года известная американская летчица-рекордсменка Jacqueline Cochran стала первой в мире женщиной, преодолевшей звуковой барьер. Достигнутая скорость равнялась 1270 км/ч. Это было сделано в пикировании на предшественнике F-100, самолете F-86 Sabre (том самом, чьи собратья являлись противниками наших МИГ-15 в Корейской войне 1950-53 годов).

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

North American F-86F Sabre , 1953 год.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Легендарный МИГ-15, правда уже не наш :-). Тоже кандидат на сверхзвук.

Немного отвлекаясь упомяну об интересном факте. Вышеупомянутому летчику испытателю Чаку Йегеру довелось опробовать МИГ-15 в полете. Это случилось уже после окончания войны, когда лейтенант северокорейских ВВС НО Гым Сок угнал самолет в Южную Корею. За это он, кстати, получил 100000 долларов, как обещанную США награду за доставку невредимого МИГ-15. Теперь этот самолет находится в национальном музее ВВС США.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

"Американский" МИГ-15 после окончания войны в Корее. Похоже тот самый угнанный...

Эти, хоть и первые, но уже достаточно смелые шаги стали началом эры бурного развития сверхзвуковой авиации. В течение 60-х-70-х годов авиационной наукой были решены многие проблемы, связанные со сверхзвуком и осложнявшие эксплуатацию самолетов на больших скоростях. Появилось много моделей сверхзвуковых самолетов различного назначения, от истребителя и истребителя-бомбардировщика до бомбардировщика и разведчика.

Большая скорость и высота полета была наиболее актуальна для истребителей-перехватчиков, а также для самолетов-разведчиков и бомбардировщиков, основной принцип применения которых был полет к цели на максимально возможной высоте и скорости для преодоления ПВО противника.

Сверхзвуковые самолеты создаются и по сей день. Практически любой вновь создаваемый военный самолет в наши дни обладает возможностью сверхзвукового полета.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

СУ-35. Современный сверхзвуковой самолет.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Сверхзвуковой стратегический бомбардировщик-ракетоносец ТУ-22М3. Исключительный самолет. Максимальная скорость на высоте 2300 км/ч.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Перехватчик МИГ-31. Крейсерская скорость сверхзвука 2,35М (2500 км/ч), максимально допустимая скорость на высоте 3000 км/ч (2,82М). Потомок МИГ-25.

Не обошла эта «мода» и гражданскую авиацию. Первый в истории полет гражданского лайнера на сверхзвуковой скорости состоялся 21 августа 1961 года. Это был самолет Douglas DC-8. Хотя самолет был гражданский, но обычных пассажиров на нем не было :-), был только балласт, соответствующий полной загрузке. Это было сделано потому что полет был экспериментальный и проводился для сбора данных с целью проверки работы вновь установленной передней кромки крыла с пониженным сопротивлением.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

McDonnell Douglas DC-8, первый гражданский самолет, вышедший на сверхзвк.

Эксперимент проводился при пологом пикировании с динамической высоты 15877 м, в результате чего на высоте 12300 м была достигнута скорость 1262 км/ч (число М= 1,012).

Был в истории гражданской авиации еще один заслуживающий внимание случай, когда самолет, не предназначенный для полетов на сверхзвуке, тем не менее стал на некоторое время сверхзвуковым :-).

Это произошло 19 февраля 1985 года. Самолет Boeing 747SP-09 китайской авиакомпании China Airlines, совершавший рейс из Тайпея (Тайвань) в Лос-Анджелес в 550 км к северо-западу от Сан-Франциско из-за отказа одного из двигателей и дальнейших некорректных действий экипажа перешел в неуправляемое пикирование с высоты 12500 м. Экипаж смог вывести самолет в горизонтальный полет только на высоте 2900 м.

По заключению специалистов в пикировании была превышена скорость звука. При этом вертикальная перегрузка достигла величины 5,1g. Большой пассажирский самолет совсем не рассчитан на такие нагрузки (совсем не то, что я на днях увидел в уже довольно старом американском боевике «Турбулентность» :-)). Поэтому он и получил повреждения конструкции, в частности хвостового оперения.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Повреждения хвостового оперения Boeing-747 после вынужденного сверхзвука.

Однако из 251 пассажира и 23 членов экипажа, находившихся на борту, относительно серьезные травмы получили только 2 человека. Самолет произвел благополучную посадку в Сан-Франциско и впоследствии был восстановлен для дальнейших полетов.

Случай, конечно, курьезный, но тем не менее по теме… А вобщем все хорошо, что хорошо кончается :-).

Однако же эти два примера, вобщем-то, случайны и бессистемны. Настоящих сверхзвуковых самолетов в мировой гражданской авиации, которые более или менее длительно использовались по своему прямому назначению было всего два. И наверное нет на земле человека, который бы о них не знал.

Это советский лайнер ТУ-144 и англо-французский Aérospatiale-BAC Concorde. Для обоих этих самолетов основным режимом полета являлся полет на сверхзвуковой скорости, так называемый «крейсерский сверхзвук». В английском для этого существует специальный термин supercruise.

ТУ-144 и Concorde были в этом плане одними из первых. Ведь в то время, когда они создавались, время полета для подавляющего большинства самолетов на сверхзвуке ограничивалось довольно короткими промежутками времени. Исключениями были двухмаховый (максимальная скорость 2100 км/ч на высоте) английский перехватчик English Electric Lightning (ставший пионером в освоении «суперкруиза»), перехватчик ТУ-128 (максимальная скорость с нагрузкой/без – 1655 км/ч/1900 км/ч), наш замечательный МИГ-25 (скорость на высоте до 3000 км/ч, 2,83М), да полуэкзотические А-12,YF-12 и SR-71 (допустимая скорость до 3,2-3,3М).

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Дальний истребитель-перехватчик ТУ-128.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Британский перехватчик English Electric "Lightning". Первый суперкруизер.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Один из самых скоростных серийных самолетов в истории авиации разведчик-бомбардировщик МИГ-25РБ.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Разведчик А-12. (60-е годы).

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Легенда скорости Lockheed SR-71 "Blackbird".

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Разведчик-перехватчик YF-12. Прототип SR-71. Хорошо видно, что кили цельно-поворотные.

Сейчас на таком режиме летает все больше эксплуатируемых и вновь создаваемых сверхзвуковых самолетов.

Как наш, так и англо-французский пассажирские сверхзвуковые самолеты создавались практически одновременно, но ТУ-144 все же несколько раньше :-). Поэтому он носит почетное звание «первый в мире». Внешний вид их даже для неосведомленного человека не оставляет сомнений: их стихия – сверхзвук. Оба выполнены по схеме «бесхвостка» и имеют тонкое крыло оживальной формы.

ТУ-144 и Concorde оборудованы четырьмя мощными ТРДФ. Причем на первом эти двигатели предназначены для длительной работы на форсаже, а на втором форсаж используется только для взлета и прохождения звукового барьера с достижением определенной скорости. Именно поэтому (из-за неэкономичности двигателей) практическая дальность 144-го была меньше, чем у Конкорда (3080 км против 6400 км).

Однако наш самолет имел ряд преимуществ перед Конкордом, которые были результатом огромной конструкторской работы, проделанной его создателями. ТУ-144 имел максимальную скорость полета 2500 км/ч, Конкорд – 2330 км/ч, крейсерская скорость  на сверхзвуке была соответственно 2200 км/ч и 2150 км/ч. Посадочная скорость у 144-го  270 км/ч и 295 км/ч у Конкорда соответственно. Практический потолок 20000 м и 18300 м соответственно.

ТУ-144 имел возможность использовать для перелетов 18 аэропортов Советского Союза, в то время как для приема и посадки Конкорда требовалась специальная сертификация аэропорта.

Наш лайнер стал средоточием самых передовых достижений науки и конструкторских решений (одно только переднее горизонтальное оперение чего стоит :-)). Но судьба его оказалась несчастливой.

Две громких катстрофы, одна на авиасалоне в Ле Бурже в 1973 году, вторая во время испытательного полета под Москвой в 1978 году. Совсем короткая коммерческая эксплуатация с 1 ноября 1977 по 1 июня 1978 года.

Самолет оказался нерентабельным и, думается мне, не только в экономическом плане…

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Первый сверхзвуковой пассажирский самолет ТУ-144.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Конкорд. Ушедший символ...

Конкорд эксплуатировался значительно дольше, с 1976-го по 2003-й год. Но дороговизна при создании и эксплуатации преследовали его постянно. В целом эксплуатация его тоже считалась нерентабельной и в конце концов полеты были прекращены. Этому немало поспособствовала громкая катастрофа при вылете из парижского аэропорта «Шарль де Голль» 25 июля 2000 года, и общее сокращение пассажиропотока после известных событий 11 сентября 2001 года в Америке.

После закрытия обоих программ, как ТУ-144, так и Конкорда, в мире не осталось постоянно летающих сверхзвуковых пассажирских самолетов. Все существующие на данный момент разработки имеют место только в качестве перспективных в той или иной степени проектов. Хотя на мой взгляд перспективность эта здесь достаточно эфемерна. В физическом смысле, то есть чтобы «пощупать», есть разве что летающие модели. Но в основном все же красивые картинки :-).

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Один из проектов сверхзвукового самолета. Aerion Supersonic Business Jet-5.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Еще один проект сверхзвукового самолета будущего.

Вот такие не совсем веселые итоги. На сегодняшний момент нельзя сказать, что задача по созданию полностью эффективного сверхзвукового самолета уже решена. Дело в том, что в существующей ситуации конструкторам и инженерам приходится решать очень сложные задачи и для достижения искомой эффективности приходится неимоверно изощряться :-), совмещая вещи часто несовместимые.

В наибольшей степени это относится к взлетно-посадочным характеристикам и выполнению различных задач на малых и относительно малых скоростях. Тонкое крыло с большим углом стреловидности, отлично выполняющее свою задачу на сверхзвуке, значительно менее эффективно на взлете и посадке, нежели прямое крыло с толстым профилем. А прямое крыло, в свою очередь, мало подходит для сверхзвуковых скоростей.

Сверхзвуковой самолет со «скоростным» крылом практически всегда имеет большую посадочную скорость, длинну разбега и пробега, что влечет за собой множество неудобств и технических проблем, как для самого самолета,так и для аэродромного оборудования, вплоть до невозможности выполнения полета.

Компромиссом в этом случае становятся самолеты с изменяемой геометрией крыла в полете. Это различные модели как истребителей, так и бомбардировщиков.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Сверхзвуковой стратегический бомбардировщик с изменяемой в полете геометрией крыла ТУ-160. Максимальная скорость на высоте 2230 км/ч (1,87М).

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Сверхзвуковой самолет с изменяемой в полете геометрией крыла истребитель МИГ-23.

Но изменяемая геометрия — это тоже своего рода компромисс. Он не всегда может стать выходом из положения, потому что опять же влечет за собой необходимость решения множества технических и аэродинамических проблем.

Кроме того нельзя забывать о том, что сверхзвуквые самолеты, особенно большие и тяжелые типы, предназанченные для долгого суперкруиза на больших числах М – это машины высокозатратные, как на этапе их создания, так и на этапе эксплуатации, сложные (зачастую даже громоздкие) в обслуживании и управлении, и не каждое государство может себе позволить заниматься такого рода удовольствиями :-).

Примером тому несчастливая судьба пассажирских ТУ-144 и Конкорда, а также таких шедевров авиационной мысли (иначе не скажешь :-)), как North American Aviation XB-70 Valkyrie (США; максимальная скорость 3,1М (3309 км/ч), крейсерская 3,0М (3200 км/ч)) и советский разведчик-бомбардировщик СУ-100 ( Т-4), знаменитая «сотка» (максимальная скорость 3200 км/ч, крейсерская – 3000 км/ч).

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

North American XB-70. Красавица Валькирия.

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Су-100 (Т-4). Легендарная "сотка"... С совсем не легендарной судьбой....

Сверхзвук, часть1. Кое-что о сверхзвуковых самолетах.

Т-4 (СУ-100) в музее в Монино.

Все эти замечательные по сути самолеты теперь остались только в музеях (последние два в единственном экземпляре каждый) и достойных наследников у них нет. Все в основном на уровне теоретических прожектов. Относительно ХВ-70, кстати, были намерения о переделке его в пассажирский самолет. Однако намерения таковыми и остались :-).

Но прогресс, как известно, не остановить. Очень хочется верить, что новые перспективные разработки будут все же осуществлены. Главное, чтобы сами люди себе все не испортили :-). Это я в том смысле говорю, что неплохо бы такие красавицы, как например Валькирия создавать не для тупой перевозки оружия, а для чего-то по-настоящему красивого, то есть мирного….

К сожалению, технический прогресс в авиации (и, похоже, не только там) получает толчок в своем развитии именно через разработки в военной сфере. И выходит, что у нас на Земле практически все самые красивые и «умные» самолеты ( особенно это касается сверхзвуковых самолетов) создают только с одной целью…. эту самую красоту уничтожить….

Никуда от этого не денешься, факт остается фактом…

Однако, пора заканчивать. Хватит я думаю для введения. На этом я с вами прощаюсь. С надеждой, все же, на лучшее 🙂 и до новых встреч в следующих статьях этой серии… и не только этой :-)…..

В заключение любопытный ролика-подборка ТОР-10 скоростных аппаратов, творений рук человеческих . И еще один небольшой ролик о нашем первом серийном сверхзвуковом истребителе МИГ-19. В конце там, кстати, показан эксперимент по его дозаправке. Об этом будет разговор в следующих статьях, вот здесь, и далее здесь.

Фотографии кликабельны.

No related posts.

avia-simply.ru

Сверхзвуковой самолет

Сверхзвуковые самолеты — летательные аппараты, которые способны совершать полет на скорости, превышающей скорость звука (число Маха M = 1,2-5).

История

Появление в 1940-х годах реактивных истребителей поставило перед конструкторами задачу в дальнейшем увеличении их скорости. Увеличенная скорость улучшала характеристики как бомбардировщиков, так и истребителей.

Первопроходцем в сверхзвуковую эру стал американский летчик-испытатель Чак Йегер. 14.10.1947 г., управляя экспериментальным самолетом Bell X-1 с ракетной силовой установкой XLR-11, в управляемом полете он преодолел скорость звука.

Развитие

Бурное развитие сверхзвуковой авиации началось в 60-70 гг. XX века. Тогда разрешились проблемы аэродинамической эффективности, управляемости и устойчивости самолетов. Большая скорость полета позволила также увеличить практический потолок на более 20 000 м, который являлся комфортной высотой для бомбардировщиков и разведчиков.

До появления зенитно-ракетных установок и комплексов, которые могли поражать цели на больших высотах, главным принципом проведения бомбардировочных операций было удерживание самолетов-бомбардировщиков на максимальной высоте и скорости. Тогда были построены и запущены в серийное производство сверхзвуковые самолеты различного назначения – разведчики-бомбардировщики, перехватчики, истребители, перехватчики-бомбардировщики. Convair F-102 Delta Dagger стал первым сверхзвуковым самолетом-разведчиком, Convair B-58 Hustler – первым сверхзвуковым дальним бомбардировщиком.

В настоящее время проводится проектирование, разработка и выпуск новых самолетов, часть которых производится по особой технологии, снижающей их радиолокационную и визуальную заметность, – «Стелс».

Пассажирские сверхзвуковые самолеты

В истории авиации были созданы только 2 пассажирских сверхзвуковых самолета, которые осуществляли регулярные рейсы. Первый полет советского самолета Ту-144 состоялся 31.12.1968 г., время его эксплуатации – 1975-1978 гг. Англо-французский самолет «Конкорд» сделал первый полет 2.03.1969 г. и эксплуатировался на трансатлантическом направлении в 1976-2003 гг.

Использование таких самолетов позволило не только уменьшить время перелета на дальние расстояния, но и использовать незанятые воздушные линии на больших высотах (около 18 км) в то время, когда высоты 9-12 км, которые использовали лайнеры, были сильно загруженными. Также сверхзвуковые самолеты выполняли рейсы вне воздушных трасс (по спрямленным маршрутам).

Несмотря на провал нескольких проектов околозвуковых и сверхзвуковых самолетов (SSBJ, Ту-444, Ту-344, Ту-244, Lockheed L-2000, Boeing Sonic Cruiser, Boeing 2707) и снятие двух реализованных проектов с эксплуатации, продолжается разработка современных проектов гиперзвуковых авиалайнеров (например SpaceLiner, ZEHST) и десантных (военно-транспортных) самолетов быстрого реагирования. В производство запущен сверхзвуковой бизнес-джет Aerion AS2.

Теоретические вопросы

По сравнению с дозвуковым полет на сверхзвуковой скорости выполняется по другому закону, потому что при достижении самолетом скорости звука происходят изменения в схеме обтекания, как следствие, увеличивается кинетический нагрев аппарата, возрастает аэродинамическое сопротивление, наблюдается смена аэродинамического фокуса. Все это в сумме сказывается на ухудшении управляемости и устойчивости самолета. Также появилось неизвестное доселе явление волнового сопротивления.

Поэтому эффективный полет при достижении скорости звука требует не просто увеличения мощности двигателей, но и внедрения новых конструктивных решений.

Поэтому такие самолеты получили изменение в своем внешнем облике – появились острые углы и характерные прямые линии по сравнению с «гладкой» формой дозвуковых самолетов.

На сегодняшний день задача создания действительно эффективного сверхзвукового самолета не решена. Создатели обязаны находить компромисс между сохранением нормальных взлетно-посадочных характеристик и требованием увеличения скорости.

Поэтому завоевание современной авиацией новых рубежей по высоте и скорости связано не только с внедрением новых двигательных установок и компоновочных схем, но и с изменениями геометрии полетов. Эти изменения должны улучшать качества самолета при полете на больших скоростях, не ухудшая при этом их характеристики на малых скоростях, и наоборот. Конструкторы в последнее время отказываются от уменьшения площади крыльев и толщины их профилей, увеличения угла стреловидности, возвращаясь к крыльям большой относительной толщины и малой стреловидности, если удалось достигнуть требований практического потолка и скорости.

Важно, чтобы сверхзвуковой самолет обладал хорошими летными данными на малых скоростях и был устойчив к лобовому сопротивлению при больших скоростях, особенно на приземных высотах. 

 

Классификация самолетов:

avia.pro

Сверхзвуковой пассажирский самолет Ту-144Д. - Российская авиация

Сверхзвуковой пассажирский самолет Ту-144Д.

Разработчик: ОКБ Туполева Страна: СССР Первый полет: 1974 г.0.Ту-144Д0.Ту-144Д

Работы по альтернативному двигателю типа РД-36-51 для Ту-144 начались еще в 1964 году. 4 июня 1969 года ВПК при Совете Министров СССР принимает решение № 131 по самолету Ту-144 с двигателями РД-36-51. Дальность полета при взлетной массе 150 тонн со 150 пассажирами оговаривалась в 4500 км, а со 120 пассажирами и при взлетной массе 180 тонн — 6500 км. Вариант Ту-144 с новыми двигателями получает обозначение Ту-144Д («004Д»). К середине 70-х годов РД-36-51 становится реальностью, колесовское ОКБ сумело подготовить для испытаний на Ту-144 первые двигатели РД-36-51А с взлетной тягой 20000 кгс, крейсерской тягой 5100 кгс и удельным расходом топлива на крейсерском сверхзвуковом режиме 1,26 кг/кгс час, на втором этапе предполагалось довести взлетную тягу до 21000 кгс и крейсерский удельный расход топлива до 1,23 кг/кгс*час (на перспективу речь шла о 23000-24000 кгс на взлетном режиме и 5400 кгс на крейсерском.)

Первым Ту-144, летавшим с РД-36-51А стал самолет № 03-1, первый полет 30 ноября 1974 года. До середины 1976 года на этой машине шли отработки и доводки новой силовой установки. 5 июня 1976 года самолет выполняет дальний полет на 6200 км с нагрузкой 5 тонн, этот полет подтвердил перспективность и реальность продолжения работ по Ту-144Д. Однако даже с новыми двигателями технический рейс в Хабаровск удалось выполнить только с самой минимальной загрузкой. А в один из осмотров случайно выяснили, что камера сгорания РД-36-51А буквально истлела за несколько десятков часов налета. Якобы это произошло из-за замены того топлива, на которое был рассчитан этот двигатель на стандартное. Требовались дальнейшие работы по доводке двигателя, рейсы же в Хабаровск должны были проходить с посадкой в Hовосибирске.

Во второй половине 70-х годов ВАЗ переходит к серийному выпуску Ту-144Д. Первым серийным Ту-144Д стал самолет № 06-2 (бортовой № 77111), первый полет 27 апреля 1978 года. Самолет начал проходить совместные испытания, но 23 мая 1978 года машина терпит катастрофу под Егорьевском, причиной которой стало разрушение топливопровода в двигательном отсеке. Самолет пилотировал летчик-испытатель МГА В.Попов, вторым пилотом был Э.В.Елян, экипажу удалось выполнить вынужденную посадку с убранным шасси. При посадке Э.В.Елян получил травмы, а двое инженеров-испытателей погибли. Эта катастрофа стала непосредственной причиной приостановки, а затем и полного прекращения эксплуатации Ту-144 с пассажирами. Выпускаются и доводятся до летного состояния еще четыре Ту-144Д №№ 07-1, 08-1, 08-2 и 09-1 (бортовые №№ 77112, 77113, 77114 и 77115). Первые две машины проходили совместные государственные испытания, которые закончились в начале 80-х годов. По результатам этих испытаний Ту-144Д был рекомендован для эксплуатации с пассажирами, также как и Ту-144 с НК-144А.

С 22 февраля 1977 года Ту-144Д использовался в серии из 50 пробных полетов из Москвы в Хабаровск. Самолет получил сертификат летной годности, но эксплуатации с пассажирами не было, программа была постепенно свернута. Последняя, построенная машина Ту-144Д № 09-2 так и осталась невостребованной и еще долго стояла на аэродроме завода в Воронеже. Помимо перечисленных построенных и летавших Ту-144 несколько планеров самолета было построено для проведения прочностных испытаний. Взлетная масса Ту-144Д превысила 200 тонн, в ходе совместных государственных испытаний удалось получить сверхзвуковую дальность полета с коммерческой нагрузкой в 15 тонн 5330 км, с 11-13 тоннами — 5500-5700 км и с 7 тоннами — 6200 км, при аэронавигационном запасе топлива в конце полета 10 тонн. В 80-е годы часть из построенных самолетов Ту-144 продолжали использовать в качестве летающих лабораторий для проведения различных испытательных программ по созданию новых сверхзвуковых тяжелых самолетов, в том числе и по программам дальнейшего развития СПС. Они использовались также для исследования верхних слоев атмосферы, озонового слоя планеты, звукового удара, воздействия теплового поля на различные конструкционные материалы, изучения аэродинамики, проверки летных характеристик, исследования ламинаризации пограничного слоя, аномальных явлений в атмосфере.

В июле 1983 года на одном из Ту-144Д экипаж во главе с летчиком-испытателем С.Агаповым (второй пилот Б.Веремей) установили 13 мировых рекордов скорости и высоты полета с грузом от 5 до 30 т. (для ФАИ машина была заявлена как самолет «101»). Так в июле 1983 С.Агапов на Ту-144 с грузом 30 т. показал среднюю скорость на замкнутом 1000-км маршруте 2031,55 км/ч и достигнул высоты 18200 м.

В 70-е годы существовали проекты дальнейшей модернизации самолета Ту-144. Опыт разработки, испытаний и начальной эксплуатации Ту-144 с НК-144А показали, что обеспечивается только выполнение задачи минимум — обслуживание авиалиний протяженностью до 4000 км. Начало работ по Ту-144Д с РД-36-51А показали, что Ту-144 способен достигнуть требуемых дальностей и имеет дальнейшие запасы для модернизации. Прежде всего решили отказаться от унификации конструкции по силовой установке. Путем ревизии конструкции планера, самолетных систем и оборудования Ту-144 предполагали поднять весовую отдачу самолета по топливу. Новый проект получил обозначение Ту-144ДА. Первые проработки по нему показали, что имеется возможность при взлетной массе 235 тонн увеличить запас топлива до 125 тонн (вместо 90-95 тонн у Ту-144Д), при этом площадь крыла увеличивалась до 544 кв.м. (вместо 507 кв.м. у Ту-144Д), силовая установка переводилась на двигатели типа «61» с реверсом тяги (развитие РД-36-51А) с удельным расходом топлива на крейсерском режиме 1,23 кг/кгс час и максимальной взлетной тягой 21000 кгс. Количество пассажиров доводилось до 130-160 человек, расчетная практическая дальность полета с нормальной коммерческой нагрузкой увеличивалась до 7000-7500 км. Работы по Ту-144ДА не получили дальнейшего практического развития из-за постепенного свертывания всей программы по Ту-144, однако наработки по проекту использовались в начавшихся исследованиях по теме СПС-2 (Ту-244).

Помимо пассажирских Ту-144, в ОКБ по предложению ВВС прорабатывалось несколько военных вариантов Ту-144 различного назначения. В конце 70-х годов предлагалось создать на базе Ту-144Д постановщик-разведчик Ту-144ПР и дальний перехватчик ДП-2. В начале 80-х годов совместно с авиацией ВМФ прорабатывались предложения по переделке Ту-144Д в постановщик помех Ту-144П и авиационно-ракетные комплексы Ту-144К и Ту-144КП, оборудованные РЛС «Заслон» и средствами РЭБ и вооруженные ракетами класса воздух — воздух Р-33. . Все эти работы не вышли из первоначальной стадии рассмотрения технических предложений и изучения вопроса заказчиком. В начале 70-х на основе Ту-144 выдвигался проект стратегического бомбардировщика (160М), однако в дальнейшем вместо него было решено разработать полностью оригинальный самолет Ту-160. На одном из самолетов Ту-144 отрабатывали посадку экипажи многоразового космического корабля «Буран».

Интересно сравнить судьбу Ту-144 и англо-французского «Конкорда» — машин близких по назначению, конструктивному исполнению и времени создания. Прежде всего следует отметить, что «Конкорд» проектировался в основном для сверхзвуковых полетов над безлюдными океанскими просторами (основное назначение — перелеты между Европой и Америкой через океан), отсюда по условиям звукового удара выбор меньших высот крейсерского сверхзвукового полета и, как следствие, меньшая площадь крыла, меньшая взлетная масса, меньшая потребная крейсерская тяга силовой установки и удельные расходы топлива. Ту-144 предстояло в основном летать над сушей, отсюда большие высоты полета и соответственное увеличение параметров и самолета и требуемых тяг силовой установки. Сюда следует добавить менее совершенные двигатели (по своим удельным параметрам двигатели Ту-144 приблизились к «Олимпу» только в последних вариантах), плюс худшие удельные параметры отечественного оборудования и самолетных агрегатов по сравнению с западными (хроническая болезнь советской авионики). Все эти отрицательные исходные моменты в значительной мере в ходе развития проекта удалось компенсировать высоким совершенством аэродинамики Ту-144 (по значению полученного аэродинамического качества при полетах на крейсерском сверхзвуковом режиме Ту-144 превосходил «Конкорд»), что давалось естественным усложнением конструкции самолета и снижением уровня технологичности самолета в производстве.

Количество построенных серийных Ту-144 и «Конкордов» было приблизительно равным, но в отличие от Ту-144 англо-французские СПС находились в эксплуатации, хотя и дотационной со стороны правительства, практически до начала 90-х годов. Стоимость билета на трассе Лондон — Нью-Йорк в 1986 году составляла $2745. Позволить такие дорогие полеты могли и могут лишь только весьма состоятельные и занятые люди, которых формула «время-деньги» есть основное кредо существования. На Западе такие люди есть и для них полеты на «Конкордах» естественная экономия время и денег, тому подтверждение общий налет «Конкордов» на трассах на 1989 год в 325000 летных часов. В результате можно считать, что программа «Конкорд» для англо-французов была в достаточной мере коммерческой и в определенной степени престижной по отношению к американцам. В СССР богатых деловых людей, для которых время превращалось бы в деньги, не было так, что естественного рынка услуг, который должен был удовлетворять Ту-144 в СССР просто не существовало. Самолет заведомо должен был стать в значительной степени дотационным и убыточным в эксплуатации в Аэрофлоте. Поэтому программу создания Ту-144 в большой степени можно отнести к престижной программе, мало обеспеченной реальными экономическими потребностями отечественного рынка авиационных услуг.

В результате с одной стороны героические усилия ОКБ А.Н.Туполева, других предприятий, организаций МАП и всего ВПК СССР, по развитию Ту-144, с другой стороны первоначальный малопрофессиональный эмоциональный подъем и поддержка со стороны власть придержащих, постепенно перешедшая в безразличие по мере затягивания программы, и в значительной степени торможение со стороны руководства Аэрофлота, которому малодоходная головная боль с освоением сложнейшего комплекса Ту-144 была по большому счету просто не нужна. Поэтому в начале 80-х годов, когда в СССР начали четко проступать черты грядущего экономического и политического кризиса, и советское руководство начало пытаться навести некоторую экономию (военных программ эти благие намерения не касались), одной из первых пострадала программа Ту-144.

Создание и доводка Ту-144 стала крупнейшей и сложнейшей программой в истории советского самолетостроения. В результате длительной работы удалось создать летательный аппарат высочайшего мирового класса, по своим основным летно-техническим характеристикам не уступающий соответствующему самолету, созданному на Западе. Работы по Ту-144 во многом обеспечили успех других сверхзвуковых тяжелых самолетов ОКБ: модернизированные двигатели НК-144 использовались для Ту-22М0, многие аэродинамические и компоновочные решения, а также подходы к проектированию агрегатов и систем использовались для Ту-22М3 и Ту-160.

Хотя активные работы по Ту-144 в начале 80-х годов были практически свернуты, направление на создание отечественного сверхзвукового пассажирского самолета получило в дальнейших работах ОКБ по созданию СПС-2 — самолета Ту-244. С 1993 года два самолета переоборудуются под летающие лаборатории. Помимо наработок по аэродинамике, силовой установке, системе управления и т.д., для работ по теме СПС-2, в рамках совместных работ с западными авиационными фирмами, один из летных экземпляров Ту-114Д был переоборудован в летающую лабораторию Ту-144ЛЛ «Москва» (4 х НК-32-1), на которой с 1997 года было выполнено несколько десятков экспериментальных полетов по совместной российско-американской программе HSR, нацеленной на создание в будущем экономически и экологически совершенного сверхзвукового пассажирского самолета следующего поколения.

ЛТХ:

Модификация: Ту-144ДРазмах крыла, м: 28,80Длина самолета, м: 65,70Высота самолета, м: 12,50Площадь крыла, м2: 506,35Масса, кг-пустого снаряженного самолета: 99200-максимальная взлетная: 207000Тип двигателя: 4 х ТРД РД-36-51АТяга, кгс-нормальная: 4 х 5100-форсированная: 4 х 20000Максимальная скорость, км/ч: 2340 (М=2,15)Крейсерская скорость, км/ч: 2120Практическая дальность, км: 6200Практический потолок, м: 20000Экипаж, чел: 3Полезная нагрузка: 150 пассажиров или 11000 — 13000 кг груза.

1.Второй серийный Ту-144Д.1.Второй серийный Ту-144Д.

Второй серийный Ту-144Д.

1а.Ту-144Д (борт № 77114), установивший рекорды под наименованием 101.1а.Ту-144Д (борт № 77114), установивший рекорды под наименованием 101.

Ту-144Д (борт № 77114), установивший рекорды под наименованием «101».

tu-144d-na-maks-2007-2tu-144d-na-maks-2007-2

Ту-144Д на МАКС 2007.

tu-144d-na-maks-2007-3tu-144d-na-maks-2007-3

Ту-144Д на МАКС 2007.

4.Ту-144Д на МАКС 2007.4.Ту-144Д на МАКС 2007.

Ту-144Д на МАКС 2007.

5.Ту-144Д на МАКС 20075.Ту-144Д на МАКС 2007

Ту-144Д на МАКС 2007.

6.Ту-144Д на МАКС 2007.6.Ту-144Д на МАКС 2007.

Ту-144Д на МАКС 2007.

7.Буксировка Ту-144Д.7.Буксировка Ту-144Д.

Ту-144Д на МАКС 2007.

8.Буксировка Ту-144Д.8.Буксировка Ту-144Д.

Ту-144Д на МАКС 2007.

tu-144d-na-stoyanke-v-poletnom-polozhenii-vid-spereditu-144d-na-stoyanke-v-poletnom-polozhenii-vid-speredi

Ту-144Д на стоянке в полетном положении. Вид спереди.

10.Вид на кабину Ту-144Д.10.Вид на кабину Ту-144Д.

Вид на кабину Ту-144Д.

11.Носовая часть Ту-144Д.11.Носовая часть Ту-144Д.

Носовая часть Ту-144Д.

12.Носовая часть Ту-144Д.12.Носовая часть Ту-144Д.

Носовая часть Ту-144Д.

14.Взлет Ту-144Д.14.Взлет Ту-144Д.

Взлет Ту-144Д.

15.Опытный Ту-144 с двигателями РД-36-51А на музейной стоянке.15.Опытный Ту-144 с двигателями РД-36-51А на музейной стоянке.

Опытный Ту-144 с двигателями РД-36-51А (прототип Ту-144Д) на музейной стоянке.

16.Шасси Ту-144Д.16.Шасси Ту-144Д.

Шасси Ту-144Д.

17.Правая стойка шасси Ту-144Д.17.Правая стойка шасси Ту-144Д.

Правая стойка шасси Ту-144Д.

kabina-tu-144dkabina-tu-144d

Кабина Ту-144Д.

kabina-tu-144dkabina-tu-144d

Кабина Ту-144Д.

passazhirskij-salon-tu-144dpassazhirskij-salon-tu-144d

Пассажирский салон Ту-144Д.

.

.

Список источников:Ростислав Виноградов, Александр Пономарев. Развитие самолетов мира.Эдмунд Цихош. Сверхзвуковые самолеты.Владимир Ригмант. Под знаками «АНТ» и «ТУ».Авиация и Время. Андрей Совенко. Потерянная эпоха Ту-144.Крылья Родины. А.Пухов. Необыкновенная история Ту-144.Сайт авиационной истории (aviahistory.ucoz.ru).Фотоархив сайта russianplanes.net

xn--80aafy5bs.xn--p1ai

Сверхзвуковой самолёт — WiKi

Сверхзвуковой самолёт — самолёт, способный совершать полёт со скоростью, превышающей скорость звука в воздухе (полёт с числом Маха M = 1,2—5).

F-100 — первый строящийся серийно сверхзвуковой истребитель Сверхзвуковой истребитель-перехватчик Су-27 Сверхзвуковой дальний бомбардировщик Ту-22М3 Американский стратегический разведчик SR-71

История

После появления в 1940-х годах реактивных самолётов-истребителей перед авиаконструкторами встала задача дальнейшего увеличения их скорости. Более высокая скорость расширяла боевые возможности как истребителей, так и бомбардировщиков.

Начало сверхзвуковой эре положил полёт Чака Йегера, американского лётчика-испытателя, 14 октября 1947 года на экспериментальном самолёте Bell X-1 с ракетным двигателем XLR-11 достигшего сверхзвуковой скорости в управляемом полёте.

Развитие

Первый серийный американский истребитель — F-100 (первый полёт в мае 1953 года, серийное производство в том же году). Первый советский сверхзвуковой истребитель — МиГ-19 (первый полёт в конце 1952 года, поступил в серийное производство в 1954 году). 

60—70-е годы XX века ознаменовались бурным развитием сверхзвуковой авиации. Были решены основные проблемы устойчивости и управляемости самолётов, их аэродинамической эффективности. Большая скорость полёта также позволила увеличить потолок свыше 20 км, что было актуально для разведчиков и бомбардировщиков (в то время, до появления зенитно-ракетных комплексов, способных поражать цели на больших высотах, основным принципом применения бомбардировщиков был полёт к цели на максимально возможной высоте и скорости). В эти годы были построены и запущены в серийное производство сверхзвуковые самолёты самого различного назначения: истребители (тактические и перехватчики), бомбардировщики, истребители-бомбардировщики, разведчики (первый сверхзвуковой всепогодный перехватчик — Convair F-102 Delta Dagger; первый сверхзвуковой дальний бомбардировщик — Convair B-58 Hustler).

В наши дни появляются новые самолёты, в том числе выполненные по технологии снижения заметности «Стелс».

  Сравнительные схемы Ту-144 и "Конкорда"

Пассажирские сверхзвуковые самолёты

Известны всего два серийно выпускавшихся пассажирских сверхзвуковых самолёта, выполнявших регулярные рейсы: советский самолёт Ту-144, совершивший первый полёт 31 декабря 1968 года и бывший в эксплуатации с 1975 по 1978 год и выполнивший двумя месяцами позже — 2 марта 1969 года — свой первый полёт англо-французский «Конкорд», совершавший трансатлантические рейсы с 1976 по 2003 год. Их эксплуатация позволяла не только значительно сократить время перелёта на дальних рейсах, но и использовать незагруженное воздушное пространство на больших высотах (≈18 км), в то время как основное используемое лайнерами воздушное пространство (высоты 9—12 км) уже в те годы было сильно загруженным. Также сверхзвуковые самолёты совершали полёты по спрямлённым маршрутам (вне воздушных трасс).

Несмотря на неосуществление нескольких других бывших и существующих проектов пассажирских сверхзвуковых и околозвуковых самолётов (Boeing 2707, Boeing Sonic Cruiser, Douglas 2229, Lockheed L-2000, Ту-244, Ту-344, Ту-444, SSBJ и др.) и вывод из эксплуатации самолётов двух реализованных проектов, разрабатывались ранее и существуют современные проекты гиперзвуковых (в том числе суборбитальных) пассажирских авиалайнеров (напр., ZEHST, SpaceLiner) и военно-транспортных (десантных) самолётов быстрого реагирования. На разрабатываемый пассажирский бизнес-джет Aerion AS2 в ноябре 2015 был сделан твердый заказ на 20 единиц суммарной стоимость 2,4 миллиарда долларов с началом поставок в 2023 году.[1]

Теоретические проблемы

Полёт на сверхзвуковой скорости, в отличие от дозвукового, протекает в условиях иной аэродинамики, поскольку при достижении воздушным судном скорости звука качественно меняется аэродинамика обтекания, из-за чего резко возрастает аэродинамическое сопротивление[2], также растёт кинетический нагрев конструкции от трения набегающего на большой скорости воздушного потока, смещается аэродинамический фокус, что ведёт к утрате устойчивости и управляемости самолёта. Кроме того, проявилось такое неизвестное до создания первых сверхзвуковых самолётов явление, как «волновое сопротивление».

Поэтому достижение скорости звука и эффективный стабильный полёт на около- и сверхзвуковых скоростях были невозможны за счёт простого увеличения мощности двигателей — потребовались новые конструктивные решения. Как следствие, изменился внешний облик самолёта: появились характерные прямые линии, острые углы, в отличие от «гладких» форм дозвуковых самолётов.

Следует отметить, что проблему создания эффективного сверхзвукового самолёта нельзя считать разрешённой до сих пор. Создателям приходится идти на компромисс между требованием увеличения скорости и сохранением приемлемых взлётно-посадочных характеристик. Таким образом, завоевание авиацией новых рубежей по скорости и высотности связано не только с использованием более совершенной или принципиально новой двигательной установки и новой конструктивной компоновки самолётов, но также с изменениями их геометрии в полёте. Такие изменения, улучшая характеристики самолёта на больших скоростях, не должны ухудшать их качества на малых скоростях, и наоборот. В последнее время создатели отказываются от уменьшения площади крыла и относительной толщины их профилей, а также увеличения угла стреловидности крыла у самолётов с изменяемой геометрией, возвращаясь к крыльям малой стреловидности и большой относительной толщины, если уже достигнуты удовлетворительные величины максимальной скорости и практического потолка. В таком случае считается важным, чтобы сверхзвуковой самолёт имел хорошие лётные данные на малых скоростях и малое сопротивление при больших скоростях, особенно на малых высотах.

См. также

Примечания

  1. ↑ Flexjet Order For 20 Supersonic Jets Boosts Aerion. Aviation Week. Проверено 17 ноября 2015.
  2. ↑ На дозвуковых скоростях лобовое сопротивление воздушной среды прямо пропорционально квадрату скорости воздушного потока, а на сверхзвуковых — прямо пропорционально 3—5-й её степени.

Ссылки

ru-wiki.org

Глава ЦИАМ: Россия участвует в создании сверхзвукового самолета на водородном топливе

Михаил Гордин

Михаил Гордин

© ЦИАМ им. П.И. Баранова

Создание перспективного двигателя большой тяги ПД-35 будет профинансировано на несколько лет вперед, заявил президент России Владимир Путин. О том, какими двигателями оснастят самолеты будущего и когда отечественные лайнеры взлетят на электрической тяге, а также создает ли Россия сверхзвуковой пассажирский самолет, в интервью ТАСС рассказал Михаил Гордин, генеральный директор Центрального института авиационного моторостроения им. П.И. Баранова (ЦИАМ, входит в НИЦ "Институт имени Н.Е. Жуковского").

— Михаил Валерьевич, каковы основные направления деятельности ЦИАМ? На каких ключевых проектах и исследованиях сегодня сконцентрированы специалисты института?

— ЦИАМ формирует облик отечественных авиадвигателей — уже сейчас мы работаем над созданием технологий для перспективных силовых установок 2030-х годов. Мы ведем полный цикл исследований для создания двигателей и промышленных газотурбинных установок на их основе, а также осуществляем научно-техническое сопровождение изделий в эксплуатации. Главный наш "продукт" — научно-технический задел, то есть создание новых знаний и технологий, необходимых для того, чтобы конструкторы проектировали современные двигатели для различных сложных систем.

Например, сегодня активно обсуждаются аддитивные технологии как инновационный способ производства деталей и комплектующих (создание объектов по данным 3D-модели наслаиванием материала — прим. ТАСС). Новые технологии производства еще не дают полного понимания, какие дефекты возможны при производстве, насколько такие детали будут надежными, как в них будут развиваться усталостные явления. Кроме того, нужно придумать, как спроектировать детали из новых материалов, потому что в учебниках этого не написано.

Мы занимаемся и фундаментальными исследованиями: знания в основополагающих разделах газо- или аэродинамики необходимо целенаправленно расширять в определенных направлениях для реализации конкретных практических задач.

— Двигатели для самолетов шестого поколения тоже вы разрабатываете?

— Сейчас принято считать, что "в серию" выходят двигатели пятого поколения и ведется разработка двигателей шестого поколения. Опытно-конструкторские работы (ОКР) по шестому поколению начнутся, наверное, только лет через десять. По пятому они сейчас либо завершаются, либо уже завершены. Например, ПД-14 — гражданский двигатель пятого поколения — сейчас завершает процесс испытаний и сертификации и через некоторое время начнет производиться серийно. ЦИАМ активно участвует в его создании: мы разрабатывали подходы к его проектированию и выполнили часть проектных работ. Сейчас основной наш вклад — это его инженерные и сертификационные испытания. Они проходят на нашей уникальной экспериментальной базе. Все узлы для ПД-14 тоже испытывались у нас, в Научно-испытательном центре ЦИАМ, расположенном в Подмосковье. Испытания проводятся в высотно-скоростных полетных условиях, максимально приближенных к реальным, на специальных высотных стендах. Вообще все наиболее сложные и энергоемкие виды обязательных испытаний авиадвигателей выполняются в России только в НИЦ ЦИАМ. Причем у нас испытываются не только отечественные, но и зарубежные силовые установки, например французской компании Safran.

Среди работ в этой области, проведенных ЦИАМ за последнее десятилетие, можно отметить испытания для сертификации модификаций ПС-90А и ПС-90А1, ПС-90А2 и ПС-90А3, SaM146, вспомогательных силовых установок, а также подтверждение сертификатов зарубежных силовых установок для использования на российских самолетах и вертолетах.

А если говорить о шестом поколении, то пока только как о наборе технологий, который необходим для того, чтобы создать такие двигатели — что на Западе, что в России.

— Работает ли сегодня ЦИАМ над двигателями для сверхзвукового полета? Каким должен быть самолет, способный осуществлять продолжительный (не менее часа) крейсерский полет со скоростью, в несколько раз превышающей скорость звука?

— Мы участвуем в международном проекте по разработке высокоскоростного гражданского самолета HEXAFLY-INT. В этом крупном кооперационном проекте сотрудничают ведущие мировые и российские научные организации: ЦАГИ, ЛИИ им. М.М. Громова, МФТИ, Европейское космическое агентство (ESA), ONERA, Германский центр авиации и космонавтики (DLR), CIRA, Университет Сиднея. Цель проекта — создание летательного аппарата на водородном топливе, способного достигать скорости порядка 7000–8000 км/ч, что позволит преодолеть, например, расстояние от Москвы до Сиднея за три часа.

Основным итогом работ на сегодняшний день является демонстрация в высотных условиях положительного аэродвигательного баланса (тяга превышает суммарное аэродинамическое сопротивление) стендового модуля при числе Маха 7,4.

ЦИАМ работает над обликом двигателя и силовой установки для перспективного делового пассажирского самолета со сверхзвуковой скоростью полета при числах Маха 1,6–1,8, с низкими уровнями звукового удара, шума при взлете и посадке, эмиссии вредных веществ. Совместно с ЦАГИ ведем работы по выбору облика, расчетам и испытаниям моделей элементов силовой установки на экспериментальных стендах, в том числе на нашем акустическом стенде и в аэродинамических трубах. Мы предлагаем высокоэффективный воздухозаборник верхнего расположения, малошумные выходные устройства с экранированием шума струи двигателя элементами летательного аппарата.

Выполняется большой комплекс работ по определению перспективных схем и параметров двигателя, включая схемы двигателя переменного цикла.

— Участвовали ли специалисты ЦИАМ в создании концепции двигателя для перспективного скоростного вертолета (ПСВ)?

— ЦИАМ совместно с ЦАГИ участвует в проводимых "Вертолетами России" исследованиях по разработке концепции перспективных скоростных вертолетов (скорость крейсерского полета — до 450 км/ч и более — прим. ТАСС). Выполнен первый этап оценки облика возможных вариантов силовой установки (двигатели и трансмиссия) таких вертолетов.

— Ведутся ли работы над созданием двигателя большой тяги (ПД-35) для перспективного тяжелого транспортного самолета? Когда может быть создан такой двигатель?

— Новый двухконтурный турбореактивный двигатель большой тяги ПД-35 предназначен для установки на перспективные широкофюзеляжные самолеты, в том числе российско-китайский CR929. Он будет значительно мощнее существующих двигателей Д-18Т для самых больших советских самолетов Ан-124/Ан-225. В настоящее время ПД-35 находится в стадии научно-исследовательских разработок (НИР). В ближайшие шесть лет будет создан необходимый научно-технический задел для начала опытно-конструкторских работ.

— Каким будет этот двигатель?

— В нем будут активно использоваться композиционные материалы. Эффективность двигателя повышается с увеличением степени двухконтурности, и в этом случае вентилятор приобретает все большие размеры. А вес вентилятора — это до 15% веса всего двигателя. Лопатки вентилятора ПД-35, например, имеют длину около 1,1 м, диаметр вентилятора на входе — порядка 3 м. Применение металлов в этом случае приводит к недопустимому росту массы. Предлагается изготовить лопатки из полимерных композиционных материалов с металлическими накладками. А каждый килограмм экономии массы вентилятора приводит к снижению массы всего двигателя.

При этом ПД-35 нельзя будет назвать двигателем шестого поколения. У отечественных гражданских двигателей, условно говоря, только-только начинается пятое поколение. Он, скорее всего, будет "5+".

По программе ПД-35 сначала выполняются НИР, разрабатываются 18 технологий, на их основе будет создан двигатель-демонстратор, после этого с небольшим "нахлестом" по времени начнутся ОКР.

В демонстраторе ПД-35 будут заложены все ключевые характеристики с максимальными возможностями: топливная экономичность, простота в изготовлении, обслуживании и т.п. Естественно, такой "супердвигатель" не пойдет в серийное производство, так как получится слишком дорогим и нерентабельным. Когда начнется этап ОКР, будут поставлены задачи развития его определенных характеристик в зависимости от конкретных параметров, которых нужно будет достичь, чтобы этот двигатель был востребован.

Сейчас мы разрабатываем технологии и облик демонстратора для ПД-35. На сегодняшний день согласованы все технические задания на 18 технологий, они сформированы и промышленностью, и нами как головной научной организацией в области авиадвигателестроения. В рамках НИР запланирована их детальная разработка, расчеты, моделирование, потом — изготовление образца.

— За пять-шесть лет, отведенных на эти научно-исследовательские работы, не отстанем ли от зарубежных конкурентов еще больше?

— Пять лет на НИР — это не очень много. Если бы не было определенного задела, точно было бы недостаточно. Но есть опыт ПД-14 и наших западных коллег. Cколько времени займут испытания двигателя и когда он выйдет в серию, — вопрос не к нам, а к промышленности.

Задача ЦИАМ — еще и разработать методики и критерии испытаний деталей авиадвигателей, изготовленных с помощью новых материалов и технических решений, поскольку они будут отличаться от традиционных. Для них нужно создать всю методологическую базу. Например, одно из направлений работ в рамках этой НИР — делать полимеркомпозитные лопатки с дефектами и смотреть, к чему наличие этих дефектов приведет при испытаниях. При этом мы продумываем несколько разных методов изготовления лопаток. По итогам испытаний будет сделан выбор в пользу того или иного варианта.

— Зачем это нужно?

— Мы много лет работаем с металлом и знаем, какие бывают дефекты при литье, обработке, штамповке. И знаем, к чему они приводят при различных ситуациях в воздухе. С полимеркомпозитными материалами опыта мало, статистика развития дефектов не набрана.

— Сколько времени нужно, чтобы разработать двигатель шестого поколения?

— В принципе, разделение на поколения условно. Некоторые технологии уже готовы, некоторые — в процессе разработки. Безусловно, мы хотели бы, чтобы в науку вкладывалось как можно больше средств, так скорее удастся создать что-то новое. Но процесс познания регулируется не только деньгами — требуются и время, и усилия. Есть такое понятие, как S-кривая, которая моделирует развитие различных проектов: сначала идет бурное развитие технологий — резкий рывок вверх, потом наступает плато — область насыщения. Область турбиностроения в этой кривой сейчас ближе к насыщению. Чтобы повысить КПД двигателей на несколько процентов, нужно вложить много времени и денег. Безусловно, в этой области еще есть резервы для совершенствования, но каждый дополнительный процент эффективности, каждое новое качество дается тяжело и дорого.

В самом начале этой кривой находится электродвижение. Мы считаем, что в ближайшие несколько лет будет бурный рост технологий, связанных с электрификацией транспорта, — как в воздухе, так и на земле.

— Что это такое — электрический двигатель?

— Пока это электромотор и пропеллер. Во всяком случае мы говорим о винтовых двигателях. На пути к созданию полностью электрического двигателя все развитые страны сейчас проходят этап разработки гибридного двигателя, у которого есть и турбина, и генератор, вырабатывающий электроэнергию. Второй вариант — отказ от турбины и сохранение электричества в аккумуляторах или топливных элементах. Это более дальний горизонт, потому что пока керосин является очень эффективным источником энергии с точки зрения веса. При сжигании малого количества керосина он дает такое количество энергии, которое ни одна батарея пока не может обеспечить. Но мир активно развивает все более емкие и легкие аккумуляторы и топливные элементы, работающие, например, на водороде. Работы ведутся и по весовой эффективности всего двигателя.

Отдельная проблема для электрического самолета — количество энергии, потребное для самолетных нужд, и управление ее потоками. Есть вопрос управления выделяющимся теплом, с которым нужно что-то делать.

Вообще гибридная и электрическая тяга — это очень перспективное направление, одна из определяющих технологий для будущего авиации. Сейчас в мире много небольших самолетов на одного-двух человек, но все они могут летать очень недолго. На этапе демонстратора технологий и исследований час полета — отлично, дальше уже начинаются вопросы. Пока в мире нет ни одного электрического самолета, который мог бы перевозить пассажиров или грузы. На них летают пилоты-энтузиасты, потому что вопросы надежности такой техники еще до конца не решены. Впереди еще очень длинный путь.

— В России подобные самолеты-демонстраторы есть?

— Мы над ними работаем. Пока ничего, кроме моделей, не летает. Несколько лет назад на топливном элементе летал беспилотник. В настоящее время у нас есть проект по созданию демонстратора гибридной силовой установки с электродвигателем на основе высокотемпературной сверхпроводимости. Подобных проектов в мире нет. В основе нашего — специальный проводник, охлаждаемый жидким азотом, который при температуре минус 196 °С обладает эффектом нулевого сопротивления. В результате достигается высокий КПД и существенно уменьшаются массогабаритные характеристики двигателя. Двумя такими двигателями мощностью 500 кВт каждый можно будет оборудовать региональный самолет на 19 мест. На уровень демонстратора с пилотом можем выйти в 2019 году. А пилотируемый самолет на два места можем сделать хоть сейчас. Было бы больше средств, наверное, взлетели бы уже в следующем году.

— Поговорим о двигателях для малой авиации. Для ТВС-2-ДТ, созданного СибНИА на замену Ан-2, планируется устанавливать TPE331 компании Honeywell. Почему у нас нет новых разработок в этом сегменте?

— Проблема не в отсутствии новых разработок, они могут быть. Эти самолеты и их двигатели относятся к предыдущим поколениям. Нужны большие вложения в проектирование, испытания и в создание производств, рентабельность которых очень низкая. А западные страны, в отличие от нас, сохранили свои производства.

Недавно в ЦИАМ прошла конференция как раз по теме создания единой федеральной концепции развития двигателестроения для малой и региональной авиации. Была создана рабочая группа, которая представит предложения правительству.

Современные отечественные серийные газотурбинные двигатели для самолетов и вертолетов малой и региональной авиации сегодня просто отсутствуют. В разработке сейчас находятся только два отечественных двигателя: ТВ7-117СТ-01 для самолета Ил-114-300 и ВК-800С для ремоторизации самолета Л-410.

Предпринимаются попытки наладить серийное производство малоразмерных двигателей (в основном поршневых), так как они применяются и на беспилотных летательных аппаратах. Однако их надо разрабатывать в широком диапазоне: от 50–60 до 300–500 л.с.

Еще одним важным направлением исследований являются работы по односекционному экспериментальному роторно-поршневому двигателю, на базе которого возможно создание модельного ряда авиадвигателей мощностью от 100 до 400 л.с. Это размер двигателя для Як-152. Но это демонстратор технологий. Необходимо просчитать, сколько будет стоить зарубежный двигатель, а сколько — отечественный.

Для обеспечения конкурентоспособности отечественных малоразмерных двигателей необходимо создать научно-технический задел по технологиям электрического "умного" двигателя. Исследования по этим направлениям ведутся в ЦИАМ совместно с отраслевыми ОКБ. Реализация технологий должна обеспечить к 2035 году снижение удельного расхода топлива на 15–20%, снижение массы до 30% и повышение надежности и ресурса в два-три раза.

Одним из направлений, позволяющих кардинально улучшить характеристики поршневых двигателей, является применение турбокомпаундных схем, в которых энергия выхлопных газов используется для получения дополнительной мощности, используемой на привод воздушного винта или электрогенератора.  

— Получается, перспективы учебной авиации плачевны?

— Нужны тысячи двигателей, чтобы окупить новую разработку. Иногда проще купить или локализовать производство. Это сложная проблема. Поршневые двигатели, наверное, могут развиваться только на базе импортозамещения. Безусловно, двигатели для беспилотников могут выйти в серийное производство, так как сейчас ученые думают над концепцией "роя", то есть большого количества, БПЛА (беспилотный летательный аппарат). Уже есть много проектов, мы регулярно проводим экспертизу некоторых из них. Все развивается, но есть большая проблема с нормативной базой по беспилотной авиации.

— Что можете сказать о нашумевшем в этом году заявлении китайских ученых, которые сообщили о создании "рабочей" версии микроволнового двигателя EmDrive? Его работу действительно невозможно объяснить фундаментальными законами физики? Теоретически — можно ли создать что-то подобное?

— Двигатель EmDrive состоит из устройства-магнетрона, генерирующего микроволновое излучение, и резонатора. Принцип его работы представляет собой новую концепцию электрореактивных двигателей, которые напрямую конвертируют подводимую электрическую энергию в тягу. Никакого нарушения законов физики здесь нет. Двигатель вырабатывает "постоянную" тягу, не тратя при этом топливо, а используя энергию микроволн.

Однако если бы доказательства работоспособности EmDrive существовали, они потребовали бы серьезной работы теоретиков. Пока отсутствие объяснения — незыблемая скала, о которую разбиваются все доводы энтузиастов "невозможного" двигателя. Кто-то любит замечать, что работает — и ладно, не обязательно же знать, как. Но такой подход может привести к неожиданным проблемам при практическом использовании. Например, если работа двигателя связана с магнитным полем, то он может непредсказуемо повести себя среди магнитных полей открытого космоса. А ведь никому не нужно, чтобы аппарат потерял свой единственный источник тяги где-нибудь на полпути к Марсу или далеким объектам пояса Койпера. К классическому требованию предъявить надежные доказательства обязательно должно прилагаться и требование объяснить все происходящее в двигателе. Пока создатели EmDrive не могут показать ни того ни другого.

Беседовала Анна Юдина

tass.ru

В чем проблема создания гражданского сверхзвукового самолета?

Проблема в цене полета. Сверхзвуковые двигатели очень неэкономичны и их установка оправдана только в целях, не связанных с экономической эффективностью. Военная отрасль не ставит целью извлечение прибыли от эксплуатации воздушных судов, поэтому может позволить себе сколь угодно неэффективные в плане расхода топлива воздушные суда. Даже СССР, в котором экономика не ставила своей целью быть рыночной, не мог себе позволить сверхзвуковой самолет. 

На днях Пыня пернул в воду очередной своей идиотской инициативой: а давайте на базе Ту-160 сделаем гражданский самолет, но чтобы он был сверхзвуковой. Ну что же, давайте посчитаем расход топлива. Из открытых источников мне стало известно, что максимальная дальность самолета 13950 км, крейсерская скорость 850 км/ч, топливная нагрузка 148000 кг. Максимальная дальность означает, что самолет летит в крейсерском режиме, то есть на самом эффективном с т.з. всех параметров полета режиме работы двигателей. Получается, что в воздухе самолет будет находиться 13950/850=16,4 часа. За это время он сожжет (грубо говоря) 148000 кг топлива, то есть 148000/16,4=9024,4 кг/ч. То есть, больше 9 тонн. Это уже очень много, т.к. гражданские самолеты, например Ту-154М имеет расход 5400 кг/ч, что уже настолько много, что не позволяет его экономически эффективно эксплуатировать; у Boeing 737-800 расход топлива 2500 кг/ч, что приемлемо. НО! Это я посчитал только в крейсерском режиме, далеко до сверхзвуковой скорости. А каков же расход топлива на сверхзвуке? Если честно, я не знаю, но гораздо больше 9 тонн. Гораздо! Для сравнения, Ту-144Д сжигал 27000 т. Я не думаю, что Ту-160 что-то координально меньшее. 

ОК, а давайте заодно и разработаем экономичный двигатель для Ту-160. Вы смеетесь? Гораздо более технологически развитые страны не могут разработать сверхзвуковой экономичный двигатель, а мы сможем? Мы даже обычный двигатель экономичный сделать не можем. О чем вы!

ОК, допустим найдутся люди, которые готовы будут оплатить полет на этом самолете. Ну что же, Давайте посчитаем: допустим самолет будет развивать скорость 2100 км/ч, при этом дальность его, конечно же, уменьшится. Допустим, это будет 5000 км, которую он будет преодолевать за 2 часа 20 минут. Аналогичное расстояние на "Боинге" можно преодолеть за 6 часов. Экономия 3 часа 40 минут (грубо). Интересно, кто готов ради этой экономии переплачивать 10 раз (именно такая примерно разница в экономической эффективности). Ну допустим, что кто-то и готов, но разве их будет набираться целый салон регулярно?

Короче, очередной бред сумасшедшего диктатора.

Но самое интересное то, что, несмотря на то, что это очевидный бред, и все об этом знают, включая самого Пыню (тут я не уверен), в итоге таки займутся разработкой. Потратят энное количество миллиардов рублей, скорее, даже большее, чем если бы создавать самолет с нуля. Через какое-то время проект под шумок закроют.

thequestion.ru


Смотрите также