ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Двигатель переменного тока


Электродвигатели переменного и постоянного тока

Электродвигатели предназначены для того, чтобы привести в движение некоторый механизм: насос, вентилятор, мельницу, конвейер, лифт и т. д. Полезную механическую работу электродвигатель совершает за счёт потребляемой из сети электроэнергии.

Принцип действия любого электродвигателя основан на законе, согласно которому на проводник с током, помещенный в магнитное поле, действует сила Ампера. В зависимости от способа создания магнитного поля и рода тока электродвигатели можно разделить на двигатели постоянного тока и двигатели переменного тока, которые в свою очередь делятся на синхронные и асинхронные.

Двигатели постоянного тока работают следующим образом. Электроэнергия подаётся в обмотку ротора от неподвижного источника постоянного тока через коллекторно-щёточные контакты. В обмотку статора также подаётся постоянный ток для создания магнитного поля. На обмотку ротора, помещенную в магнитное поле, действует сила Ампера. Ротор вращается. Как уже было сказано, двигатели постоянного тока на электростанциях имеют ограниченное применение.

Принцип действия синхронного электродвигателя переменного тока следующий. В обмотку статора подаётся трёхфазный переменный ток, за счёт которого внутри двигателя создаётся вращающееся магнитное поле. В обмотку ротора подаётся постоянный ток от возбудителя. Возникшая сила Ампера действует на обмотку и вращает ротор с той же частотой, с какой вращается магнитное поле статора. Синхронные электродвигатели переменного тока также не получили значительного распространения на электростанциях. В виде исключения они используются для привода мельниц, где не требуется особой надежности электроснабжения и допускаются большие перерывы питания. Синхронные электродвигатели имеют следующие недостатки:

сложная конструкция, необходим возбудитель;

сложные условия эксплуатации;

сложные условия пуска и самозапуска;

трудности регулирования частоты вращения;

дороговизна.

Асинхронные электродвигатели получили настолько большое распространения в схемах собственных нужд электростанций, что на них следует остановиться особо.

Асинхронные электродвигатели с короткозамкнутым ротором

Рассмотрим принцип действия асинхронного электродвигателя с короткозамкнутым ротором. Как и в случае синхронного двигателя, в обмотку статора асинхронного двигателя подаётся трёхфазный переменный ток, за счёт которого внутри двигателя создаётся вращающееся магнитное поле. Но в отличие от синхронного, в данном типе двигателя в обмотку ротора не подаётся постоянный ток. Обмотка ротора замкнута накоротко и представляет собой так называемую «беличью клетку». В этой обмотке за счёт вращающегося поля статора по закону Фарадея индуцируются переменные токи. Механизм возникновения этих токов – такой же, как и во вторичной обмотке трансформатора с той лишь разницей, что здесь вторичная обмотка вращается.

Вращающееся магнитное поле статора и переменные токи в роторе обусловливают возникновение силы Ампера. Обмотка ротора и сам рот приходят во вращение. При этом ротор несколько запаздывает относительно скорости вращения поля статора. По этой причине двигатель назван асинхронным. Степень этого запаздывания называется скольжением и рассчитывается по формуле:

s = (nсх – n)/nсх,

где nсх – синхронная частота вращения магнитного поля статора;

n – частота вращения ротора.

Синхронная частота вращения магнитного поля статора в свою очередь определяется по той же формуле, что и для синхронного генератора:

nсх = 60f/p,

где р – число пар полюсов ротора.

Причина запаздывания ротора относительно поля статора объясняется законом электромагнитной индукции Фарадея, согласно которому индукционный ток возникнет только в том случае, если будет изменяться магнитный поток. Если же, чисто гипотетически, ротор догонит поле статора и их скорости сравняются, то обмотка ротора относительно вектора магнитной индукции статора окажется неподвижной, а значит и магнитный поток перестанет изменяться во времени. При этом ток в обмотке ротора исчезнет, следовательно, станет равной нулю сила Ампера и ротор замедлит своё вращение. И наоборот – небольшое проскальзывание ротора относительно поля статора – важнейшее условие для существования вращающей силы.

Основные преимущества использования асинхронных электродвигателей (АЭД) с короткозамкнутым ротором заключаются в следующем.

1. АЭД допускают прямой пуск от полного напряжения питающей сети безо всякой пускорегулирующей аппаратуры, которую приходится применять в случае синхронных двигателей.

2. Группа АЭД одной или нескольких секций успешно самозапускаются после кратковременного обесточивания и последующего восстановления питания в результате действия станционной автоматики.

3. Для АЭД не требуется возбудителя. Поэтому они дешевле и относительно просты в эксплуатации.

4. Регулировать скорость вращения АЭД можно не только со стороны статора, но и со стороны ротора. Для сравнения, в отличие от АЭД, скорость вращения синхронных двигателей жёстко связана с электрической частотой сети.

При этом АЭД имеют недостатки, перечисленные ниже.

1. Вследствие больших пусковых токов в элементах системы электроснабжения возникают значительные падения напряжения, и групповой пуск и самозапуск происходит при пониженных напряжениях на секциях.

2. Синхронная частота вращения АЭД не может превышать 3000 об/мин. Для получения более высоких скоростей необходимо использовать повышающий редуктор или турбопривод.

3. Максимальная номинальная мощность асинхронных электродвигателей составляет 8 МВт. При необходимости создания более мощного привода приходится использовать синхронный двигатель или турбопривод.

4. Регулирование скорости вращения АЭД имеет дорогостоящую и сложную реализацию по сравнению с регулированием с помощью двигателя постоянного тока или турбопривода.

5. При возникновении короткого замыкания вблизи шин с работающими двигателями, появляется значительная подпитка тока от АЭД.

6. АЭД чувствительны к провалам напряжения из-за того, что их электромагнитный момент обладает квадратичной зависимостью от напряжения Ме ~ U2 . Для синхронного двигателя эта зависимость линейна: Ме ~ U.

7. Изменение электромагнитных моментов асинхронных электродвигателей с короткозамкнутым ротором происходит при изменении не только напряжения, но и частоты.

С точки зрения использования электропривода механизмов собственных нужд электростанций основные недостатки АЭД проявляются в наибольшей степени для питательных и бустерных насосов. Поэтому на мощных блоках для этой цели применяют турбопривод.

Похожие статьи:

poznayka.org

Двигатель переменного тока

Подробности Категория: Патенты Никола Тесла

 ПАТЕНТНОЕ ВЕДОМСТВО СОЕДИНЁННЫХ ШТАТОВ

НИКОЛА ТЕСЛА, ПРОЖИВАЮЩИЙ В НЬЮ-ЙОРКЕ, ШТАТ НЬЮ-ЙОРК, ПЕРЕУСТУПАЮЩИЙ ПРАВА НА ДАННОЕ ИЗОБРЕТЕНИЕ ФИРМЕ «ТЕСЛА ЭЛЕКТРИК КОМПАНИ», НЬЮ-ЙОРК

ДВИГАТЕЛЬ ПЕРЕМЕННОГО ТОКА

ОПИСАНИЕ, ЯВЛЯЮЩЕЕСЯ ЧАСТЬЮ ПАТЕНТА № 433701 ОТ 5 АВГУСТА 1890 Г. ЗАЯВКА ОТ 26 МАРТА 1890 Г., НОМЕР ЗАЯВКИ 345339 (МОДЕЛЬ НЕ ПРИЛАГАЕТСЯ)

Всем заинтересованным лицам:

Я, Никола Тесла, подданный Австрийской империи, родившийся в Смилянах Лики (провинция Австро-Венгрии), проживающий ныне в Нью-Йорке, штат Нью-Йорк, изобрел некоторые новые и полезные усовершенствования в двигателях переменного тока, описание которых со ссылками на прилагающиеся чертежи приводится ниже.

Данное изобретение касается того типа двигателей переменного тока, в которых индукторы возбуждаются обмоткой, образующей две цепи различной индуктивности, ответвляемые от одного источника тока, причем ток в одной цепи или ветви замедляется сильнее, чем в другой, результатом чего становится последовательное смещение или вращение точек максимального магнитного эффекта в рабочих обмотках, что поддерживает вращение якоря. В двигателях данного типа я, помимо прочих средств, использовал катушку индуктивности в одной цепи и резистор

—             в другой, или обеспечивал тот же результат особым характером обмотки обеих цепей, а еще в одной модификации вплотную закрывал железом обмотки с запаздывающим током, что очень сильно увеличивает индуктивность таких обмоток.

Объект изобретения, представляемый в данной заявке, — усовершенствование последней схемы.

Изобретение реализуется следующим образом: я конструирую индуктор с двумя группами полюсов или направленных внутрь сердечников и размещенных рядом друг с другом так, чтобы практически формировать два силовых поля, причем эти сердечники расположены попеременно, то есть полюса одной группы или поля располагаются напротив промежутков между полюсами другой группы. Затем я соединяю свободные концы одной группы полюсов посредством набранных железных полос или мостов значительно меньшего сечения, чем сами сердечники, при этом все сердечники составляют элементы замкнутых магнитных цепей. Когда обмотки на каждой группе магнитов соединены параллельно или в ответвлении от источника переменного тока, эдс возникает или наводится в каждой цепи одновременно; но обмотки на зашунтированных магнитных сердечниках из-за замкнутых магнитных контуров будут обладать высокой индуктивностью, что замедлит ток, и в начальный момент каждого импульса будут пропускать ток лишь небольшой силы. С другой стороны, поскольку такое противодействие в другой группе обмоток отсутствует, ток будет свободно проходить по ним, намагничивая полюса, на которых они расположены. Однако как только в набранных скобах произойдет насыщение и они утратят способность поглощать все магнитные линии, генерируемые возрастающей эдс и, следовательно, усиливающимся током, на концах соответствующих сердечников возникнут свободные полюса, и они, взаимодействуя с другими полюсами, вызовут вращение якоря.

Подробности конструкции представлены на прилагаемых рисунках.

Рисунок 1 — вид двигателя сбоку, сконструированного в соответствии с принципом изобретения; рисунок 2 — вертикальное сечение двигателя.

А — рама двигателя предпочтительно из листового железа нужной формы, эти листы скреплены вместе с соответствующим изолирующим слоем между ними. В завершенном виде эта рама образует индуктор с направленными внутрь полюсными наконечниками В и С. Чтобы соответствовать требованиям конкретного случая, эти наконечники не находятся на одной линии; полюса В находятся с одной стороны якоря, а другие полюса, например С, — с противоположной стороны и расположены они попеременно, то есть наконечники одной группы оказываются на одной линии с зазорами между наконечниками другой группы.

Якорь И имеет цилиндрическую форму, он также набран обычным способом и имеет продольную обмотку, замкнутую на себя. Полюсные наконечники С соединены, или шунтированы мостами Е. Их можно расположить отдельно и прикрепить к полюсным наконечникам, или же они могут быть элементами форм или заготовок, отштампованными или вырезанными из листового железа. Их размер или масса определяются различными условиями, такими, как сила необходимого тока, масса или размер сердечников, с которыми они контактируют, и прочими известными факторами.

Обмотки Е расположены на полюсных наконечниках В, а другие обмотки <5 находятся на наконечниках С. Эти обмотки соединены последовательно в две цепи, являющиеся ответвлениями цепи генератора переменного тока, и они могут быть намотаны так, или же компоновка цепей, в которые они включены, может быть такой, что цепь с обмотками в независимо от особенностей описываемой конструкции будет иметь более высокую индуктивность, чем другая цепь или ветвь.

Функция шунтов, или мостов Е заключается в том, чтобы вместе с сердечниками С создать замкнутую магнитную цепь для потока заранее установленной силы, и, достигнув насыщения таким потоком и будучи не в силах поглотить больше силовых линий, чем создает данный поток, эти скобы не будут сколько-нибудь ощутимо препятствовать возникновению более сильного потока на свободных магнитных полюсах на концах сердечников С.

В таком двигателе ток замедляется в обмотках в, а возникновение свободного магнетизма на полюсах С задерживается и наступает после периода максимального магнитного эффекта, в результате чего возникает сильный вращающий момент, и двигатель работает примерно с той же силой, которую развивает двигатель такого типа, возбуждаемый независимо создаваемыми токами с различием между ними в четверть фазы.

Формула изобретения такова:

  1. В двигателе переменного тока с двумя группами или наборами полюсных наконечников сочетание одной такой группы с магнитными шунтами, или мостами, соединяющими их свободные концы.
  2. В двигателе переменного тока с двумя наборами или группами полюсных наконечников, возбуждаемых обмотками в независимых цепях от одного источника, сочетание одного набора или группы полюсных наконечников с магнитными шунтами, или мостами, соединяющими их свободные концы.
  3. В двигателе переменного тока с набранным или подразделенным индуктором, имеющим два набора или группы сердечников или полюсных наконечников, сочетание таких наконечников, рабочих обмоток, соединенных соответственно в две цепи, запитанные от одного источника переменного тока, и набранных или подразделенных железных шунтов, или мостов меньшего сечения, чем наконечники, соединяющих свободные концы всех сердечников или наконечников одной группы для образования замкнутых магнитных контуров.
  4. В двигателе переменного тока сочетание набора или группы полюсов возбуждения и их обмоток, промежуточной группы полюсных наконечников, образующих части замкнутых магнитных цепей, и их обмоток в цепи, отведенной от одного источника переменного тока.

Никола Тесла.

Свидетели: Р.Ф. Гейлорд, П.У. Пейдж.

Н.  ТЕСЛА ДВИГАТЕЛЬ ПЕРЕМЕННОГО ТОКА  № 433701   5 АВГУСТА 1890 Г.

 Двигатель переменного тока

radiofanatic.ru

Электрические машины постоянного и переменного тока - Физика - Каталог статей

«Электрические машины постоянного и переменного тока»

Производство электроэнергии является достаточно легким процессом, а электродвигатели могут служить для различных целей - от бурения скважин до обеспечения движения поездов.

 

(Облака - естественные генераторы электричества. В результате внутреннего трения облака могут наэлектризоваться. В итоге изоляция воздуха может нарушиться, что приведет к электрическому разряду, направленному к земле в виде гигантских искр - молний.)

Введение

Материя состоит из атомов, которые, в свою очередь, складываются из  электрически заряженных час­тиц  - протонов и электронов. Еще древние греки знали, что если потереть янтарь ку­сочком ткани, он будет притягивать легкие предметы, но не понимали причину про­исходящего. На самом деле в результате трения возникало  электричество . Обычно в любом веществе находится равное количество отрицательно и поло­жительно заряженных частиц. Поэтому их электрические заряды уравновешены, а вещество нейтрально. Однако в резуль­тате трения некоторые электроны пере­мещаются с одного материала на другой. Как следствие, нарушается равновесие за­рядов: материал, притянувший электро­ны, становится отрицательно заряжен­ным, а материал, отдавший их - положи­тельно заряженным.

(В машине Уимсхерта металлические пластины на вращающихся стеклянных дисках заряжаются электростатической индукцией, что в итоге приводит к искрению.)

 

 Заряженные предметы 

Термины «электрон» и «электричество» произошли от греческого словаelektron, означающего «янтарь». Хотя греки сдела­ли важный шаг в направлении крупного открытия, первая машина, способная вы­рабатывать электричество, была изобре­тена лишь ок. 1650 г. в Германии. Отто фон Герике создал простую машину, включавшую большой шар из серы. При касании рукой шара, насаженного на вал и вращаемого с помощью ручки, тот заряжался в результате трения. К 21 в. были изобретены многие подобные фрикционные генераторы. В основе работы другого типа генератора лежал принцип электромагнитной индукции - процесса, при котором предмет заряжается от находящегося поблизо­сти другого заряженного предмета. Такие асинхронные генераторы накапливают индуцированные заряды для получения высокого напряжения. Подобная машина, изобретенная Джеймсом Уимсхерстом в 1883 г., по-прежнему используется в ла­бораторных опытах для получения напряжения до 50000 вольт, а иногда и выше. 

 (Ток, индуцированный в роторе короткозамкнутого электродвигателя, намагничивает его и заставляет поворачиваться вместе с окружающим его вращающимся полем.)

Мощные электромашины

 

В 1931 г. Ван-де-Грааф изобрел электроста­тический генератор широкого практичес­кого применения. Движущаяся лента из диэлектрика передает на металлический шар заряд, постепенно увеличивающийся до нескольких миллионов вольт. Генера­тор Ван-де-Граафа используется при испы­таниях изоляторов и другого оборудова­ния, рассчитанного на высокие напряже­ния, а также в ядерных исследованиях, при этом высокое напряжение служит для разгона заряженных субатомных частиц. Хотя фрикционные и асинхронные ма­шины могли создавать высокое напряже­ние, они не годились для выработки силь­ного постоянного тока. Данная проблема была решена в конце 1790-х гг., когда ита­льянский ученый Алессандро Вольта изоб­рел первую  батарею . Впоследствии она была усовершенствована, что позволило, начиная с конца XIX в., использовать элек­тричество для освещения .Хотя батареи являются удобным и мно­гоцелевым источником электроэнергии, они постепенно разряжаются и нуждают­ся в замене или подзарядке. Эксперименты, проведенные в начале XIX в., привели к созданию современных генераторов. 

 (Синхронный двигатель, создающий вращающиеся магнитное поле, за которым следует ротор - как один магнит следует за другим.)

 

Эрстед и Ампер

В 1819 г. датский профессор Ханс Эрстед сделал открытие: текущий по проводу электрический ток заставлял отклоняться стрелку магнитного компа­са. Так Эрстед открыл явление электро­магнетизма - магнетизма, создаваемого электричеством. В 1821 г. французский ученый Андре Ампер продемонстриро­вал связанное с этим механическое вза­имодействие токов: при пропускании электрического тока через провод, на­ходящийся рядом с мощным магнитом, наблюдалось перемещение провода, - и установил закон этого взаимодействия. Этот принцип лежит в основе электри­ческого двигателя: преобразование эле­ктрической энергии в механическую. Опыты Ампера были чрезвычайно интересны, но не имели практического применения. Провод просто немного сдви­гался при появлении тока. Но в том же году английский ученый Майкл Фарадей создал машину, которая с помощью электричества обеспечивала длительное дви­жение. Нижний конец подвешенного провода помещался в сосуд с ртутью, в центре которого находился стержневой магнит. При подключении батареи между верхним концом провода и ртутью провод начинал вращаться вокруг магнита.

(У линейного, как и у асинхронного двигателя, статор открыт и вытянут в линию. Здесь вместо вращения ротора металлическая пластина перемещается вдоль этой линии непосредственно над магнитным полем.)

Электромагнитная индукция

Открытое Фарадеем явление электромаг­нитной индукции, названное им «электри­ческим вращением », легло в основу прин­ципа работы современных электродвига­телей. Первый электродвигатель, нашед­ший практическое применение, был изоб­ретенизоб­ретен в 1837 г. американским инженеромТомасом Давенпортом. Он использовал два таких двигателя: для работы сверлиль­ного и деревообрабатывающего станков. Изучив электричество как движущую силу, Фарадей начал искать пути преображение образования механической энергии в элект­рическую. В 1831 г. он показал, что пере­мещение стержневого магнита возле проволочной катушки вызывало прохождение электротока через подключенный к ней измерительный прибор. При этом сила тока была намного выше, чем в случае одинарного провода. 

(Двигатель постоянного тока изменяет направление тока ротора для поддержания его вращения.)

 

Электроснабжение

Фарадей первым использовал электромаг­нитный эффект для производства элект­ричества. К концу 1870-х гг. появились мощные генераторы, а в 1881 г. заработала первая электростанция в Годалминге (Анг­лия). Она же стала и первой в мире  гидро­электростанцией , так как генератор при­водился в движение водяной мельницей.У электрических двигателей и генера­торов много общего, и некоторые маши­ны могут выполнять функции обоих. В простом электродвигателе проволочная катушка крепится на валу, что позволяет ей свободно вращаться между полюсами подковообразного постоянного магнита. Катушка играет роль электромагнита, на­магничиваясь при прохождении через нее электрического тока. Находящийся внутри катушки железный сердечник уси­ливает создаваемый магнитный эффект. 

(Генераторы переменного тока на ГЭС работают от гидроприводных турбин. Показанные здесь турбины установлены на одной из ГЭС в Шотландии.)

 

Двигатели постоянного тока 

Электрический ток от батареи или друго­го источника, движущийся только в од­ном направлении, называется постоян­ным током. Если батарея подключена ккатушке простого электродвигателя, ка­тушка намагничивается, при этом на про­тивоположных ее концах возникают два полюса - отрицательный и положитель­ный. Поскольку противоположные полю­сы взаимно притягиваются, северный и южный полюсы катушки стремятся, соот­ветственно, к южному и северному полю­сам постоянного магнита. Эти силы при­тяжения заставляют катушку вращаться вокруг своей оси, и вскоре ее полюсы располагаются у противоположных полюсов постоянного магнита.Однако в этот момент автоматическое переключающее устройство (коллектор) направляет ток в противоположную сто­рону. Коллектор простого электродвига­теля постоянного тока состоит из медно­го кольца, разрезанного пополам и кре­пящегося (с прокладкой из диэлектрика) на оси ротора. Концы катушки подключа­ются к двум половинкам кольца. Ток про­ходит через катушку и попадает на пару угольных контактов - щеток, касающих­ся противоположных сторон коллектора.При вращении ротора каждая щетка поочередно взаимодействует с обеими сторонами катушки.Автоматическая коммутация Благодаря автоматической коммутации магнитные полюсы катушки изменяются на противоположные при достижении полюсов постоянного магнита. Теперь они уже не разноименные, а одноимен­ные полюсы по отношению к ближайшим полюсам магнита. Так как одноименные полюсы взаимно отталкиваются, катушка продолжает вращаться, а ее полюсы при­тягиваются к соответствующим полюсам на другой стороне магнита. Вращающаяся часть электрической ма­шины называется ротором (или якорем), а неподвижная - статором. В простом электродвигателе постоянного тока блок катушки служит ротором, а постоянный магнит - статором.В некоторых двигателях для создания магнитного поля вместо постоянного магнита служит электромагнит. Витки проволоки такого электромагнита называютсяобмоткой возбуждения.

 

(Фарадей использовал подобный прибор, чтобы показать, что при перемещении магнита возле катушки возникает электрический ток.)

 

Двигатели переменного тока

 

Переменный ток периодически меняет направление, обычно 50 или 60 раз в секунду. Некоторые двигатели переменного тока имеют   ротор , на который ток подавался через коллектор, как в двигателях постоянного тока. Но у многих двигателях этого типа вообще нет соединений с ро ром. Их действие основано на принципе индукции. Проходящий через статор ременный ток создает вращающееся магнитное поле, как было бы в случае вращения постоянного магнита. Это движущееся поле заставляет ток течь в направлении обмоток ротора, намагничивая его. В результате ротор вращается, так как его полюсы вынуждает двигаться по кругу вращающееся вокруг ротора магнитное поле. Часто ротор состоит из медных и алюминиевых стержней, концы которых соединяют два металлических кольца. Ротор в сборе похож на клетку, и кие машины называют двигателя с «беличьей клеткой», или короткозамкнутыми двигателями.

(На большинстве электростанций используются паровые турбины для работы генераторов переменного тока. Тепло, необходимое для превращения воды в пар, можно получать с помощью ядерной реакции или путем сжигания топлива.)

 

Синхронные двигатели

 

В индукционных (асинхронных) двигателях ротор вращается медленнее, чем движущееся вокруг него магнитное пол< синхронных двигателях ротор поворачивается одновременно с полем. В простых синхронных двигателях ротор состоит из одного или нескольких постоянных магнитов. Их полюсы притягиваются к одноименным полюсам вращающегося iмагнитного поля, поэтому они вращают одинаковой скоростью. Иногда вместо постоянных магнитов в роторах используются электромагниты, но принцип боты остается неизменным. В другом из синхронных двигателей используют скачки переменного тока для создания магнитного поля, которое пошагово вращает ротор с зубчатым колесом.Большинство электродвигателей со ют вращательное движение. Но у некоторых из них обмотки статора открыты и расположены на одной линии, благо/ чему создается магнитное поле, движущееся линейно вместе с проводниковым материалом. Такие двигатели называются линейными асинхронными. Они исполь­зуются для открывания раздвижных дверей, транспортировки багажа в аэро­портах, в скоростных поездах.

 

Генераторы

Если ротор простого электродвигателя по­стоянного тока вращать вручную, двига­тель будет работать как генератор. В катуш­ке возникает переменное напряжение, до­стигающее пиковых величин, когда ее по­люсы проходят полюсы постоянного маг­нита. Затем напряжение падает до нуля и меняет свое направление, достигая макси­мума, когда полюсы катушки проходят противоположные полюсы постоянного магнита. Можно подключиться к катушке, соединив концы двух сплошных медных колец (называемых контактными кольца­ми), находящихся на оси ротора. Угольные щетки трутся об эти кольца и снимают переменное напряжение, в результате чего пои подключении к электрической цепи возникает переменный ток. Такой генера­тор относится к генераторам переменного тока, т. е. электрическим машинам, выраба­тывающим переменный ток.

(У стационарного генератора переменного тока три отдельных обмотки статора, в которых вырабатывается электричество. Переменный ток в каждой обмотке достигает пиковой величины в разное время. Автомобильный генератор (внизу) соединен с двигателем ремнем, проходящим через приводной шкив.)

  

Динамо-машины

Если же используется коллектор (как в электродвигателе постоянного тока), он постоянно будет изменять соединения между катушкой и щетками, что препятст­вует переменам напряжения в катушке. В результате, вместо переменного тока по щеткам будет протекать пульсирующий постоянный ток. Генераторы, вырабатыва­ющие постоянный ток таким образом, называются динамо-машинами. В большинстве динамо-машин для со­здания необходимого магнитного поля используется не постоянный, а электро­магнит. Однако сердечник электромагни­та немного намагничен, и силы его поля достаточно, чтобы машина начала выра­батывать электричество при включении. Затем часть выработанного тока прохо­дит через обмотку электромагнита для усиления его магнитного поля и увеличе­ния объема электроэнергии. Некоторые генераторы переменного тока (например, автомобильные) выра­батывают постоянный ток благодаря встроенным выпрямителям - устройст­вам, допускающим течение тока только в одном направлении. В большинстве генераторов переменно­го тока - от служащих для подзарядки ак­кумуляторов автомобилей до гигантских машин, вырабатывающих электричество для питающей сети - катушки имеются и на роторе, и на статоре, причем именно ротор создает магнитное поле. Относи­тельно слабый ток проходит через обмот­ки возбуждения на роторе по щеткам и контактным кольцам, а более сильный вы­рабатываемый ток отбирается непосредст­венно со статора. Это позволяет избежать потерь мощности и искрения, возможных при отборе сильного вырабатываемого то­ка с ротора посредством колец и щеток.

 

 

 

 

 

 

 

 

 

ingenious.ucoz.ru


Смотрите также