ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Учи физику!опыты, эксперименты, теория, практика, решения задач. Двигатель физика


Проекты по физике. - Тепловые двигатели

                                                              Тепловые двигатели

Содержание:

Введение

1.История создания

2.Работа совершаемая двигателем

3.КПД замкнутого цикла

4.Цикл Карно

5. Типы тепловых двигателей

6.Тепловые двигатели и охрана окружающей среды

7.Задачи

8.Опыт

9.Заключение

10.Список используемой литературы

 

 

Введение.

История тепловых машин уходит в далекое прошлое. Говорят, еще две с лишним тысячи лет назад, в III веке до нашей эры, великий греческий механик и математик Архимед построил пушку, которая стреляла с помощью пара. Рисунок пушки Архимеда и ее описание были найдены спустя 18 столетий в рукописях великого итальянского ученого, инженера и художника Леонардо да Винчи. Я выбрал тему «тепловой двигатель» потому что она заинтересовала меня по несколько пунктам. Во-первых, тепловой двигатель - необходимый атрибут современной цивилизации. С их помощью вырабатывается около 80% электроэнергии. Без тепловых двигателей невозможно представить, современный транспорт. В то же время повсеместное использование тепловых двигателей связано с отрицательным воздействием на окружающую среду. На мой взгляд, эта тема очень интересна и занимательна. Поэтому я выбрал эту тему для изучения и хотел бы рассмотреть несколько вопросов:

1.Работу теплового двигателя

2. История его создания

3. КПД замкнутого цикла

4. Цикл Карно.

5.Виды тепловых двигателей

6.Провести опыт с тепловым двигателем

7.Решение задач

8. Влияние тепловых двигатель на окружающую среду.

 

 

1. История создания

Появление тепловых двигателей связано с возникновением и развитием промышленного производства в начале XVII в. главным образом в Англии. Копи, в которых добывали руду, нуждались в устройствах для откачки воды. Глубина шахт стала достигать 200 м. Приходилось держать до пятисот лошадей на одном руднике. Эта чисто практическая задача и стала причиной того, что первым тепловым двигателем стала машина для откачки воды. В 1698 г. Томас Севери, шахтовладелец, получил патент № 356 с формулировкой, что он выдан на устройство «для подъема воды и для получения движения всех видов производства при помощи движущей силы огня...». Севери первым отделил рабочее тело (водяной пар) от перекачиваемой воды. Для этого он сделал отдельный котел, а пар, который поломали в котле, через кран выпускал в сосуд с водой, и пар вытеснял воду в напорную (верхнюю) трубу. Впоследствии машина Севери была усовершенствована Дезагюлье, предложившим охлаждать пар в сосуде путем впрыскивания в него воды. Это существенно увеличило частоту рабочих циклов. Одна из таких машин была выписана Петром I и установлена в Летнем саду. Машины Севери оказались очень надежными и долговечными. Вслед за Севери паровую машину (также приспособленную для откачивания воды из шахты) сконструировал английский кузнец Томас Ньюкомен. Он умело использовал многое из того, что было придумано до него. Ньюкомен взял цилиндр с поршнем Папена, но пар для подъема поршня получал, как и Севери, в отдельном котле. Первый универсальный тепловой двигатель был создан в России выдающимся изобретателем, механиком Воскресенских заводов на Алтае И.И.Ползуновым. Кроме того, Ползунов внес серьезные усовершенствования в конструкцию рабочих органов двигателя, применил оригинальную систему паро- и водораспределения, и в отличие от машин Ньюкомена ось вала его машины была параллельна плоскости цилиндров. Проект своей машины Ползунов изложил в 1763 г. в записке, адресованной начальнику Колывано-Воскресенского горного округа А. И. Порошину. Первый патент на двигатель, использующий нагретый(Пидр) воздух, выдан в Великобритании в 1816 г. пастору Роберту Стирлингу. Изготовление двигателей Стирлинга началось в 1818 г. их применяли там где не годились громоздкие паровые машины. Роберт Стирлинг вместе со своим братом долгие годы испытывал затруднения с выбором конструктивных материалов и в конце своей жизни, в 1876 г., выразил надежду, что препятствия, которые возникают из-за отсутствия соответствующих материалов, будут со временем устранены

 

 

2. Работа совершаемая двигателем.

Совершение механической работы в современных машинах и механизмах в основном происходят за счет внутренней энергии веществ. Примером такого механизма может служит тепловой двигатель. Тепловой двигатель-устройство преобразующее внутреннюю энергию топлива в механическую энергию. Механическая работа в двигателе совершается при расширении рабочего вещества, перемещающего поршень в цилиндре. Для цикличной, непрерывной работы двигателя необходимо возращение поршня в первоначальное положение, т.е. сжатие рабочего вещества. Легко сжимаемым является вещество в газообразном состоянии, поэтому в качестве рабочего вещества в тепловых двигателях используется газ или пар. Сжатие газа не может быть самопроизвольным, оно происходит только под действием внешней силы, например за счет энергии, запасенной маховиком двигателя при расширении газа. Полная механическая работа А складывается из работы расширение газа и работы сжатия. Так как при сжатии дельта V<0, то Асжатия=-Асжатия по модулю<0, поэтому А=Арасш-Асж Для получения положительной полной механической работы А>0 необходимо чтобы работа сжатия газа была меньше работы расширения. А=(Pрасш-Рсж)V Изменение объема V газа при расширении и сжатии должно быть одинаковым из-за цикличности работы двигателя. Следовательно, давление газа при сжатии должно быть меньше его давления при расширении. При одном и том же объеме давление газа тем меньше, чем ниже его температура, поэтому перед сжатием газ должен быть охлажден, Т.е. приведен в контакт с холодильником- телом, имеющим более низкую температуру. Для получения механической работы в тепловом двигателе при циклическом процессе расширение газа должно происходить при более высокой температуре, чем сжатие. Необходимое условие для циклического получения механической работы в тепловом двигателе- наличие нагревателя и холодильника.

 

3. КПД замкнутого цикла

Для непрерывного совершения механической работы термодинамический цикл должен быть замкнутым. Замкнутый процесс (цикл)- совокупность термодинамических процессов, в результате которых система возвращается в исходное состояние. Замкнутые (круговые) процессы используются при работе всех тепловых машин: двигателей внутреннего сгорания, паровых и газовых турбин, холодильных машин. Для оценки эффективности преобразования внутренней энергии газа в механическую работу, совершаемую за цикл, вводится коэффициент полезного действия. Коэффициент полезного действия теплового двигателя (КПД)- отношение работы, совершаемой двигателем за цикл, к количеству теплоты, полученному от нагревателя:

В циклическом тепловом двигателе нельзя преобразовать в механическую работу все количество теплоты Q1, получаемое от нагревателя. Некоторое количество  теплоты Q2 отдается холодильнику, поэтому работа, совершаемая двигателем за цикл, не может быть больше

А=Q1-Q2

Учитывая полученное равенство, выражение для КПД можно записать в виде:

Коэффициент полезного действия теплового двигателя всегда меньше единицы.

Круговой цикл не реализуется при отсутствии холодильника, т.е. при Q2=0

 

4.Цикл Карно

Сади Карно, выясняя при каком замкнутом процессе тепловой двигатель будет иметь максимальный КПД, предложил использовать цикл, состоящий из 2 адиабатных процессов. Выбор именно этих процессов обусловлен тем, что работа газа при изотермическом расширении совершается за счет внутренней энергии нагревателя, а при адиабатном процессе за счет внутренней энергии расширяющегося газа. В этом цикле исключен контакт тел с разной температурой, а значит, исключена теплопередача без совершения работы.

Цикл Карно- самый эффективный цикл ,имеющий максимальный КПД.

В процессе изотермического расширения (1-2) при температуре Т1 работа совершается за счет изменения внутренней энергии нагревателя, т.е. за счет подведения к газу количество теплоты Q1:

А12=Q1

Охлаждение газа (3-4)  происходит при адиабатном расширении 2-3. Все изменение внутренней энергии дельта U23 при таком процессе (Q=0) преобразуется в механическую работу:

 

А23=-U23

 

Температура  газа в результате адиабатного расширения 2-3 понижается до температуры холодильника T2<T1. В процессе 3-4 газ изотермически сжимается, передавая холодильнику количество теплоты Q2: A34=Aсж=Q2

Цикл завершается процессом адиабатного сжатия 4-1(Q=0), при котором газ нагревается до температуры Т1.

Используя формулу рассмотренную ранее можно найти максимальное значение КПД тепловых двигателей соответствующее циклу Карно:

5.Типы тепловых двигателей

 

Двигатель Стирлинга

Дви́гатель Стирлинга — тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от создания разницы температур его цилиндров.

Поршневой двигатель внутреннего сгорания

Двигатель Внутреннего Сгорания или ДВС, тепловой двигатель, в котором часть химической энергии топлива, сгорающего в рабочей полости, преобразуется в механическую энергию. По роду топлива различают жидкостные и газовые; по рабочему циклу непрерывного действия, 2- и 4-тактные; по способу приготовления горючей смеси с внешним (напр., карбюраторные) и внутренним (напр., дизели) смесеобразованием; по виду преобразователя энергии поршневые, турбинные, реактивные и комбинированные. Коэффициент полезного действия 0,4-0,5.

В наше время чаще встречается автомобильный транспорт, который работает на тепловом двигателе внутреннего сгорания, работающем на жидком топливе. Рабочий цикл в двигателе происходит либо за четыре хода поршня, за четыре такта, либо за два и двигатели делятся на четырёхтактные и двухтактные. Цикл четырёхтактного двигателя состоит из следующих тактов: 1.впуск, 2.сжатие, 3.рабочий ход, 4.выпуск. В цикле двухтактного двигателя такты рабочего хода и сжатия аналогичны четырёхтактному двигателю, а впуск и выпуск осуществляется одновременно в момент нахождения поршня вблизи от нижней мёртвой точки

Роторный (турбинный) двигатель внешнего сгорания

Примером такого устройства является тепловая электрическая станция в базовом режиме. Таким образом колёса локомотива (электровоза) также, как и в 19 веке, вращает энергия пара. Но тут есть два существенных отличия. Первое отличие заключается в том, что паровоз 19 века работал на качественном дорогом топливе, например на антраците. Современные же паротурбинные установки работают на дешевом топливе, например на канско-ачинском угле, который добывается открытым способом шагающими экскаваторами. Но в подобном топливе много пустого балласта, который транспорту приходится возить с собой вместо полезного груза. Электровозу не надо возить не только балласт, но и топливо вообще. Второе отличие заключается в том, что тепловая электрическая станция работает по циклу Ренкина, который близок к циклу Карно. Цикл Карно состоит из двух адиабат и двух изотерм. Цикл Ренкина состоит из двух адиабат, изотермы и изобары с регенерацией тепла, которая приближает этот цикл к идеальному циклу Карно. На транспорте трудно сделать такой идеальный цикл, так как у транспортного средства есть ограничения по массе и габаритам, которые практически отсутствуют у стационарной установки.

Роторный (турбинный) двигатель внутреннего сгорания

Примером такого устройства является тепловая электрическая станция в пиковом режиме. Порой в качестве газотурбинной установки используют списанные по технике безопасности воздушно-реактивные двигатели.

Реактивные и ракетные двигатели

Идея реактивного и ракетного двигателя состоит в том, чтобы тяга создавалась не винтом, а отдачей выхлопных газов двигателя.

Турбовинтовой двигатель

Турбовинтовой двигатель часть тяги создаёт за счёт винта, другую часть за счёт отдачи выхлопных газов. По конструкции он представляет собой газовую турбину (роторный двигатель внутреннего сгорания), на вал которой насажен воздушный винт.

Турбореактивный двигатель

Турбореактивный двигатель создаёт тягу за счёт отдачи выхлопных газов. По конструкции он представляет собой газовую турбину (роторный двигатель внутреннего сгорания), на вал которой насажен компрессор, повышающий давление для эффективного сжигания топлива.

 

 

6.Тепловые двигатели и охрана окружающей среды

 

   Как известно, экологическая обстановка на Земле и в нашей стране продолжает ухудшаться: озоновая дыра в Антарктике не уменьшается, а загрязненность Мирового океана и воздушной оболочки планеты повышается.

  Автомобили на сегодняшний день в России - главная причина загрязнения воздуха в городах. Сейчас в мире их насчитывается более полумиллиарда. В России автомобиль имеет каждый десятый житель, а в больших городах - каждый пятый. Выбросы от автомобилей в городах особенно опасны тем, что загрязняют воздух в основном на уровне 60-90 см. от поверхности земли и, особенно на участках автотрасс, где стоят светофоры. Автомобили выбрасывают в атмосферу диоксид и оксид углерода, оксиды азота, формальдегид, бензол, бензопирен, сажу (всего около 300 различных токсичных веществ). При истирании автомобильных шин об асфальт атмосфера загрязняется резиновой пылью, вредной для здоровья человека. Автомобиль расходует огромное количество кислорода. За неделю в среднем легковой автомобиль выжигает столько кислорода, сколько его четыре пассажира расходуют на дыхание в течение года. С ростом числа автомобилей уменьшается площадь, занятая растительностью, которая дает кислород и очищает атмосферу от пыли и газа, все больше места занимают площадки для парковок, гаражи и автомобильные дороги.

Вступая в трудовую жизнь люди должны иметь четкое представление о том, что природные ресурсы не бесконечны и технология любой продукции должна удовлетворять такому основному, с экологической точки зрения, требованию, как минимальное потребление материалов и энергии. Они хорошо должны знать законы природы, понимать взаимосвязь природных явлений, уметь предвидеть и оценивать последствия вмешательства в естественное течение процессов. У них должно быть сознание приоритетности решения экологических проблем при осуществлении любых проектов, создании машин и механизмов, при всяком хозяйственном начинании, а также твердое убеждение в том, что без уверенности в безвредности для окружающей среды того или иного мероприятия оно не должно реализоваться.

 

7.Задачи

 

1)Двигатель работает по циклу Карно. Как изменится КПД теплового двигателя, если при постоянной температуре холодильника 290K температуру нагревателя повысить со 400 до 720K?

2)Определите КПД двигателя трактора, которому для выполнения работы 1,9 · 107Дж потребовалось 1,5 кг топлива с удельной теплотой сгорания 4,2 · 107Дж/кг.

 

8.Опыт 

 

Этот опыт доказывает, что при нагревании жидкости пар расширяется. Внутренняя энергия топлива переходит во внутреннюю энергию пара, а он переходит в механическую работу, то есть газ совершает работу, то есть повышается давление. Под действием давления вылетает пробка. Это является простейшим тепловым двигателем. Устройства, в которых внутренняя энергия топлива превращается в механическую энергию, называются тепловыми двигателями.

 

 

9. Заключение:

Целью данного реферата было рассмотрение работы теплого двигателя, истории его создания, воздействие двигателя на окружающую среду. Работая над этим рефератом, я узнал много новой полезной информации. Научился решать задачи, проводить опыт с тепловым двигателем, узнал, что тепловые двигатели делятся на не сколько типов такие как: ДВС, двигатель Стирленга и Реактивные двигателя.

 

                                                                                                                                                     Выполнил:  Чурилов Сергей

 

 

 

 

 

 

 

 

 

 

 

 

fizik-school11.ucoz.ru

Вечный двигатель | Физика

Среди детских игрушек можно встретить забавный прибор под названием «птичка Хоттабыча» (рис. 68). Птичка периодически наклоняется, опускает клюв в воду и поднимает его. Кое-кто, увидев эту игрушку впервые, может воскликнуть: «Вечный двигатель!» Но... не будем торопиться. Разберем секрет птички. Ее голова и клюв покрыты ватой. Если эту вату слегка увлажнить, то при испарении воды голова птички будет охлаждаться. В нижней ампуле прибора налит эфир или другая легко испаряющаяся жидкость, пары которой заполняют все пространство. При охлаждении головы давление этих паров уменьшается. Тогда под избыточным давлением паров эфира в нижней ампуле эфир поднимается по трубочке, голова птички оказывается тяжелее и наклоняется к стаканчику. Как только жидкость достигнет конца трубочки, пары эфира из нижней ампулы прорвутся в верхнюю (головку), давление паров сравняется, жидкость потечет вниз, птичка вновь поднимет клюв. Не будь испарения влаги, не происходили бы все описанные явления. При испарении затрачивается энергия, которая берется от воды комнатной температуры и из окружающего воздуха. А вечный двигатель должен работать без затраты энергии. Поэтому «птичка Хоттабыча» не является вечным двигателем.

Виды вечных двигателей

Все заводные игрушки и механизмы работают до тех пор, пока имеют запас потенциальной энергии закрученной пружины. Потенциальная энергия закрученной пружины в процессе работы превращается в другие виды энергии и передается другим частям механизма.

Великий закон природы — закон сохранения и превращения энергии — был открыт в середине XIX века. Но не сразу этот закон получил всеобщее признание. Уж очень заманчива была мысль построить такую машину, которая работала бы сама собой. Бесчисленные проекты всевозможных «вечных двигателей» предлагались людьми, недостаточно знакомыми с основами физики. Даже в наше время встречаются такие «изобретатели».

Представьте себя в роли конструктора бюро изобретений и выясните, в чем заключается ошибка в приводимых ниже проектах вечных двигателей.

При разборе проектов не забывайте следующее. «Вечный двигатель» должен работать без подвода энергии. Создание «вечного двигателя» было бы чудом, но чудес не бывает. Если механизм, выдаваемый за «вечный двигатель», совершает работу, которая состоит в преодолении трения только в частях этого механизма, значит, он откуда-то получает энергию. Надо выяснить откуда. Все проекты «вечных двигателей» можно разбить на две группы: а) проекты, авторы которых не обнаруживают внешних источников энергии (см. «птичку Хоттабыча») и б) проекты, содержащие ошибки, так как авторы проектов недостаточно хорошо знают законы физики.

Итак, познакомимся с некоторыми проектами «вечных двигателей». Будьте внимательны!

1. Через блок перекинута цепь (рис. 69, а, б). Свешивающаяся правая часть цепи под действием силы тяжести переходит с одного уровня на другой. Изобретатель уверен, что спущенная часть может быть снова поднята вверх, если связать концы цепи. Будет ли правая часть цепи перетягивать левую?

2. Два одинаковых шара уравновешены в воздухе на коромысле весов. Если один шар опустить в сосуд с водой, то вода будет выталкивать его и коромысло наклонится (рис. 69, в). Изобретатель утверждает, что шар, выйдя на поверхность воды, снова приобретет свой вес, снова будет опускаться в воду, а коромысло вечно будет качаться. Проверьте проект на опыте и найдите ошибку в проекте. Подумайте, не совершает ли этот «двигатель» работу по преодолению силы трения и вязкости жидкости.

3. Вытекающая из водопроводного крана вода ( рис. 69, г) должна создать в герметически закрытом водонапорном баке пустоту. Автор убежден, что атмосферное давление будет вечно пополнять убыль воды в баке.

4. Самозаводящиеся часы. При повышении температуры окружающего воздуха жидкость в радиаторе и соединенном с ним цилиндре будет расширяться и поршень, находящийся в цилиндре, придя в движение, поднимет гирю часов. Подъем гири не мешает ходу часов. Часовой механизм приводится в движение опускающейся гирей (рис. 69, д).

5. Магнитный вечный двигатель. Железный шарик, притягиваясь магнитом, поднимается по наклонной плоскости. Если в верхней части наклонной плоскости сделать отверстие (рис. 69, е), то шарик, провалившись через отверстие, упадет на желоб, скатится по нему и, обладая запасом кинетической энергии, снова попадет на наклонную плоскость, и так без конца.

6. Обычный предмет спора школьников, только что приступивших к изучению электричества. Генератор, однажды приведенный в движение, питает током электродвигатель (рис. 70). Оси генератора и электродвигателя соединены между собой ременной передачей, поэтому электродвигатель поддерживает движение якоря генератора. Можно ли установку назвать вечным двигателем? К генератору по желанию можно подключить осветительную сеть или электродвигатель соединить со станком.

Генератор и электродвигатель

Решите задачу:«Мощность генератора 4 кВт. Какой мощности электродвигатель можно соединить с этим генератором, если КПД генератора 80% и КПД двигателя тоже 80%?»

7. Радиометр. В баллон с разреженным воздухом помещена вертушка из легких алюминиевых крылышек. С одной стороны крылышки покрыты черной краской (рис. 71). Если недалеко от этого баллона поставить источник яркого света или сильно нагретый предмет, то вертушка начнет вращаться. Можно ил радиометр назвать вечным двигателем?

Радиометр и спинтарископ

8. Спинтарископ. Дно короткой трубки представляет экран, покрытый сульфидом цинка — веществом, светящимся от удара альфа-частиц (рис. 72). Близ экрана укреплена игла, на острие которой находится небольшое количество вещества, испускающего альфа-частицы. Наблюдатель, смотрящий через окуляр (при полной темноте), увидит на экране частые вспышки. Ни днем, ни ночью не прекращается эффектное зрелище, напоминающее салют в небе. Бесспорно, что описанное явление сопровождается выделением энергии. Но можно ли назвать спинтарископ вечным двигателем?

phscs.ru

Доклад - Рудольф Дизель и дизельный двигатель

РУДОЛЬФ ДИЗЕЛЬ (1858-1913)

В истории техники известны имена таких изобретателей, как Т.А Эдисон, Н. Тесла, В.Г Шухов, которые подарили миру сотни идей и решений. У немецкого изобретателя Рудольфа Дизеля только одно детище, но зато такое, без которого сегодня не мыслим мир машин, — двигатель внутреннего сгорания с воспламенением от сжатия. Этому двигателю изобретатель отдал всю творческую жизнь. Двигатель носит имя своего создателя.

Ещё студентом Мюнхенской высшей политехнической школы Р. Дизель увлёкся идеей повысить кпд паровой машины.

Кпд самой совершенной тогда паровой машины выше 10% поднять не удавалось. Студента целиком захватила эта мысль. Она не оставила Р. Дизеля и тогда, когда он стал инженером. Но путь от теории к воплощению мечты оказался очень труден. На это ушли годы.

И, наконец, долгий мучительный труд увенчался успехом. В 1892 г. он получил патент на изобретённый им двигатель внутреннего сгорания.

Двигатель Дизеля четырёхтактный. Изобретатель установил, что кпд двигателя внутреннего сгорания повышается от увеличения степени сжатия горючей смеси. Но слишком сильно сжимать горючую смесь нельзя: от сжатия она перегревается и вспыхивает раньше времени. Дизель решил сжимать не горючую смесь, а чистый воздух. И только к концу сжатия, когда температура достигла 600 – 650.С в цилиндр под сильным давлением впрыскивалось жидкое топливо. Конечно, оно немедленно воспламенялось, и газы, расширяясь, двигали поршень. Таким образом, Дизелю удалось значительно повысить кпд двигателя. К тому же здесь не нужна была система зажигания. Двигатель Дизеля очень экономичный, он работает на дешёвых видах топлива.

Впервые такой двигатель был построен в 1897 году.

К Дизелю пришла слава. Его двигатель внутреннего сгорания находил всё новое применение. Многие страны приглашали к себе изобретателя. В 1910 году Дизеля восторженно встречала Россия, несколько позже – Америка.

Но на родине изобретателя обвинили в том, что он пользуется незаслуженной славой, что его изобретение не ново. Дизель тяжело переживал эти нападки, стал, мрачен, много болел.

Обстоятельства гибели Дизеля трагичны. Сентябрьским днём 1913 года он сел на пароход, отправляющийся в Лондон. На утро Дизеля не нашли в каюте, он бесследно исчез.

Созданный Дизелем двигатель продолжает работать и совершенствуется. Дизели приводят в действие суда, тепловозы, автомобили, тракторы… и т.п. Эти двигатели используют также для привода электрогенераторов на тепловых электростанциях,

в качестве тяговых двигателей газо-турбовозов, большегрузных автомобилей и других

транспортных средств, в том числе кораблей, катеров и подводных лодок.

В1903 году К.Э Циолковский в своей статье «Исследование мировых пространств

реактивными приборами» впервые в мире описал основные элементы ракетных двигателей, которые являются разновидностью реактивного двигателя.

В1909 году русский инженер Н.Герасимов разработал схему первого в мире турбореактивного двигателя. Ныне большинство военных и гражданских самолётов называются реактивными потому, что на них установлены турбореактивные двигатели; эти двигатели устанавливают также и на больших вертолётах

Принцип действия реактивного двигателя основан на использовании силы реакции (отдачи) струи газов, вытекающий из сопла двигателя. Сила отдачи газовой струи заставляет двигатель перемещаться в пространстве в сторону, противоположную

истечению струи. В кинетическую (скоростную) энергию реактивной струи в реактивном двигателе могут преобразовываться в разные виды энергии (химическая, ядерная, электрическая, солнечная).

Реактивный двигатель сочетает в себе собственно двигатель с движителем, т.е. движет себя сам без участия промежуточных механизмов. Основная часть любого реактивного двигателя – камера сгорания. В ней в результате сгорания топлива образуют горячие газы. Вырываясь с большой скоростью из сопла, горячие газы создают реактивную струю, которая вызывает тягу двигателя и приводит в движение аппарат, на котором этот двигатель установлен.

Различают воздушно-реактивные двигатели и ракетные двигатели. В воздушно-реактивных двигателях в камеру сгорания кроме топлива подаётся воздух. Поэтому такие двигатели можно использовать лишь там, где плотность атмосферы достаточна, чтобы двигатель не «задохнулся». Ракетный двигатель не нуждается в воздухе: все необходимые компоненты топлива он несёт с собой. Поэтому такие двигатели хорошо работают в безвоздушном пространстве, т.е. в космосе. Их устанавливают главным образом на боевых ракетах и ракетах-носителях космических кораблей. Отсюда и название – ракетный двигатель. Для достижения нужной скорости на космических ракетах устанавливают 2, 3, а иногда и больше двигателей; такие многодвигательные ракеты называются двухступенчатыми и трёхступенчатыми. Отработает одна ступень со своим двигателем и отделяется от ракеты. Тотчас включается двигатель следующей ступени. Так продолжается до тех пор, пока ракета не достигнет заданной скорости полёта.

История развития техники, и особенно машинного производства, тесно связанно с созданием и совершенствованием двигателей. И каков бы не был двигатель – водяное колесо или газовая турбина, электродвигатель или дизель, он является машиной, преобразующий какой-либо вид энергии в механическую работу. Те двигатели, которые для получения механической работы используют природные энергетические ресурсы (топливо, поток воды, ветер и др.), называют первичными (например, паровая машина, гидротурбина, ветродвигатель.). Двигатели, преобразующие в механическую работу энергию первичных двигателей, называют вторичными (электрические, пневматические и др.). К двигателям относятся также устройства, способные накапливать механическую энергию, а затем по мере надобности отдавать её (инерционные, или маховиковые, пружинные и гиревые механизмы).

ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ.

Один из самых распространённых двигателей – двигатель внутреннего сгорания (ДВС). Его устанавливают на автомобили, корабли, тракторы, моторные лодки и т.д., во всём мире насчитываются сотни миллионов таких двигателей. Существуют два типа двигателей внутреннего сгорания — бензиновые и дизели.

Бензиновые двигатели внутреннего сгорания работают на жидкостном топливе (бензине, керосине и т.п.) или на горючем газе (сохраняемом в сжатом виде в стальных баллонах или добываемом сухой перегонкой из дерева). Проектируют двигатели, где горючим будет водород.

Основная часть ДВС – один или несколько цилиндров, внутри которых происходит сжигание топлива. Отсюда и название двигателя.

Внутри цилиндра скользит поршень – металлический стакан, опоясанный пружинящими кольцами (поршневыми кольцами), вложенные в канавки на поршне. Поршневые кольца не пропускают газов, образующихся при сгорании топлива, в промежутки между поршнем и стенками цилиндра.

Поршень снабжён металлическим стержнем – пальцем, он соединяет поршень с шатуном. Шатун передаёт движение поршня коленчатому валу.

Верхняя часть цилиндра сообщается с двумя каналами, закрытыми клапанами. Через один из клапанов – впускной подаётся горючая смесь, через другой выпускной удаляются продукты сгорания. В верхней части цилиндра помещается свеча – приспособление для зажигания горючей смеси посредством электрической искры.

Наибольшее распространение в технике получил четырёхтактный двигатель. Рассмотрим его работу. 1-й такт – впуск (всасывание). Открывается впускной клапан. Поршень, двигаясь вниз, засасывает в цилиндр горючую смесь. 2-й такт – сжатие. Впускной клапан закрывается. Поршень двигаясь в верх, сжимает горючую смесь, при сжатии она нагревается. 3-й такт – рабочий ход. Поршень достигает верхнего положения. Смесь поджигается электрической искрой свечи. Сила давления газов – раскалённых продуктов горения – толкает поршень вниз. Движение поршня передаётся коленчатому валу, вал поворачивается, производится тем самым полезная работа. Производя работу и расширяясь, продукты сгорания охлаждаются, давление в цилиндре падает почти до атмосферного. 4-й такт – выпуск (выхлоп). Открывается выпускной клапан, отработанные продукты сгорания выбрасываются через глушитель в атмосферу.

Из 4 тактов двигателя только один, третий – рабочий. Поэтому двигатель снабжён маховиком, за счёт которых вал вращаются в течение остальных тактов. Отменим, что одноцилиндровые двигатели устанавливают главным образом на мотоциклах. На автомобилях, тракторах и т.п. для более равномерной работы ставят 4,6,8 и более цилиндров на общем валу. Двигатели с цилиндрами, установленными в виде звезды вокруг одного вала, получили название — звездообразных. Мощность звездообразных двигателей достигает 4 МВт. Используют их главным образом в авиации.

ДИЗЕЛЬ – другой тип двигателя внутреннего сгорания. В отличие от бензинового воспламенения в его цилиндрах происходит при впрыскивание топлива в воздух, предварительно сжатый поршнем и, следовательно, нагретый до высокой температуры.

Этот двигатель назвали по имени немецкого инженера Р. ДИЗЕЛЯ, построившего в 1897г. первый двигатель с воспламенением от сжатия – в этом и заключается его отличие от бензинового двигателя внутреннего сгорания, использующего особое устройство для воспламенения топлива.

Конструктивно дизель мало, чем отличается от бензинового двигателя внутреннего сгорания. На рисунке видно, что у него есть цилиндр, поршень, клапаны. Да и принцип действия дизеля такой же. Но есть и отличия: в головке цилиндра находится топливный клапан – форсунка. Назначение её – в определённые фазы вращения коленчатого вала впрыскивать топливо в цилиндр. Клапаны, топливный насос, питающий форсунку, получают движение от распределительного вала, который, в свою очередь, приводится в движение от коленчатого вала двигателя.

Пусть начальным положением поршня будет верхняя мёртвая точка. При движении поршня вниз (первый такт) открывается впускной клапан, через который в цилиндр засасывает воздух. Впускной клапан при обратном ходе поршня закрывается и в продолжение всего второго такта остаётся закрытым.

В цилиндре дизеля происходит сжатие воздуха (в бензиновом двигателе внутреннего сгорания на этой фазе сжимается горючая смесь). Степень сжатия в дизелях в 2 – 2,5 раза больше, вследствие чего температура воздуха в конце сжатия поднимается до температуры, достаточной для воспламенения топлива. В момент подхода поршня в верхнюю мёртвую точку начинается подача топлива в цилиндр из форсунки. Попадая в горячий воздух, мелко распылённое топливо само возгорается. Сгорание топлива (в третьем такте) происходит не сразу, как в бензиновых двигателях внутреннего сгорания, а постепенно, в продолжение некоторой части хода поршня вниз; объём пространства в цилиндре, где топливо сгорает, увеличивается. Поэтому давление газа во время работы форсунки остаётся постоянным.

Когда поршень возвращается в нижнюю мёртвую точку, открывается впускной клапан и давление газов сразу падает, после чего заканчивается четвёртый такт, поршень возвращается в верхнюю мёртвую точку.

Дизель экономичней бензинового двигателя внутреннего сгорания, он работает на дешёвых видах топлива. Дизель относится к наиболее экономичным тепловым двигателям; его КПД достигает 44%. Сконструированы и построены двигатели мощностью до 30 тысяч кВТ. Дизели используются главным образом в качестве главных и вспомогательных судовых двигателей, на передвижных электростанциях, на тепловозах, тракторах, грузовиках.

Дизель. Двигатель этого типа работают на тракторах, автомобилях, танках и т.п. 1-патрубок выпускных газов. 2-форсунка. 3-охлаждающая вода. 4-поршень. 5-воздушный фильтр. 6-нагнетатель воздуха. 7-цилидр. 8-шатун. 9-коленчатый вал.10-малянная ванна.

Будете ли вы трактористом, машинистом, шофёром или просто автолюбителем, вы обязательно познакомитесь с работой двигателей внутреннего сгорания. Но уже более детально.

www.ronl.ru

Реферат - Работа электродвигателя и двигателя внутреннего сгорания

Работа электродвигателя и двигателя внутреннего сгорания

Двигатель внутреннего сгорания

Сегодня мы не можем обойтись без автомобилей. Однако все они разные по внешнему виду, размеру и мощности но принцип работы двигателя в основном одинаков. Именно сегодня речь пойдёт о работе двигателя. Ведь, наверное, многие интересовались принципом его работы. Двигатель – это сложный механизм, но мы разберёмся в основных, главных его элементах.

Существует два основных типа двигателей: двухтактные и четырехтактные. В двухтактных двигателях все рабочие циклы (процессы впуска топливной смеси, выпуска отработанных газов, продувки) происходят в течении одного оборота коленвала за два основных такта. У двигателей такого типа отсутствуют клапаны (как в четырехтактных ДВС), их роль выполняет поршень, который при своем перемещении закрывает впускные, выпускные и продувочные окна. Поэтому они более просты в конструкции.

Мощность двухтактного двигателя при одинаковых размерах цилиндра и частоте вращения вала теоретически в два раза больше четырехтактного за счет большего числа рабочих циклов. Однако неполное использование хода поршня для расширения, худшее освобождение цилиндра от остаточных газов и затраты части вырабатываемой мощности на продувку приводят практически к увеличению мощности только на 60...70%.

Итак, рассмотрим конструкцию двухтактного ДВС, показанную на рисунке 1:

Двигатель состоит из картера, в который на подшипниках с двух сторон установлен коленчатый вал и цилиндра. Внутри цилиндра движется поршень — металлический стакан, опоясанный пружинящими кольцами (поршневые кольца), вложенными в канавки на поршне. Поршневые кольца не пропускают газов, образующихся при сгорании топлива, в промежутке между поршнем и стенками цилиндра. Поршень снабжен металлическим стержнем — пальцем, он соединяет поршень с шатуном. Шатун передаёт прямолинейное возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Далее уже, в частности на мотороллере, вращательное движение передается на вариатор.

Смазка всех трущихся поверхностей и подшипников внутри двухтактных двигателей происходит с помощью топливной смеси, в которое подмешано необходимое количество масла. Из рисунка 1 видно, что топливная смесь (желтый цвет) попадает и в кривошипную камеру двигателя (это та полость, где закреплен и вращается коленчатый вал), и в цилиндр. Смазки там нигде нет, а если бы и была, то смылась топливной смесью. Вот по этой причине масло и добавляют в определенной пропорции к бензину. Тип масла используется специальный, именно для двухтактных двигателей. Оно должно выдерживать высокие температуры и сгорая вместе с топливом оставлять минимум зольных отложений. Теперь о принципе работы. Весь рабочий цикл в двигателе осуществляется за два такта.

1. Такт сжатия. Поршень перемещается от нижней мертвой точки поршня (в этом положении поршень находится на рис. 2, далее это положение называем сокращенно НМТ) к верхней мертвой точке поршня (положение поршня на рис.3, далее ВМТ), перекрывая сначала продувочное 2, а затем выпускное 3 окна. После закрытия поршнем выпускного окна в цилиндре начинается сжатие ранее поступившей в него горючей смеси. Одновременно в кривошипной камере 1 вследствие ее герметичности и после того как поршень перекрывает продувочные окна 2, под поршнем создается разряжение, под действием которого из карбюратора через впускное окно и открывающийся клапан поступает горючая смесь в кривошипную камеру.

2. Такт рабочего хода. При положении поршня около ВМТ сжатая рабочая смесь (1 на рис. 3) воспламеняется электрической искрой от свечи, в результате чего температура и давление газов резко возрастают. Под действием теплового расширения газов поршень перемещается к НМТ, при этом расширяющиеся газы совершают полезную работу. Одновременно, опускаясь вниз, поршень создает высокое давление в кривошипной камере (сжимая топливовоздушную смесь в ней). Под действием давления клапан закрывается, не давая таким образом горючей смеси снова попасть во впускной коллектор и затем в карбюратор.

Когда поршень дойдет до выпускного окна (1 на рис. 4), оно открывается и начнется выпуск отработавших газов в атмосферу, давление в цилиндре понижается. При дальнейшем перемещении поршень открывает продувочное окно (1 на рис. 5) и сжатая в кривошипной камере горючая смесь поступает по каналу (2 на рис. 5), заполняя цилиндр и осуществляя продувку его от остатков отработавших газов.

Далее цикл повторяется.

Стоит упомянуть о принципе зажигания. Так как топливной смеси нужно время для воспламенения, искра на свече появляется чуть раньше, чем поршень достигает ВМТ. В идеале, чем быстрей движения поршня, тем раньше должно быть зажигание, потому что поршень от момента искры быстрее доходит до ВМТ. Существуют механические и электронные устройства, меняющие угол зажигания в зависимости от оборотов двигателя. Практически у мотороллеров до 2000 г.в. таких систем не было и угол опережения зажигания был установлен в расчете на оптимальные обороты. На некоторых же скутерах, например Honda Dio ZX AF35, установлен электронный коммутатор с динамическим опережением. С ним двигатель развивает больше мощности.

Преимущества четырёхтактных двигателей

* Больший ресурс.

* Большая экономичность.

* Более чистый выхлоп.

* Не требуется сложная выхлопная система.

* Меньший шум. * Не нужно предварительно смешивать масло с бензином

Преимущества двухтактных двигателей

* Отсутствие громоздких систем смазки и газораспределения у бензиновых вариантов.

* Большая мощность в пересчёте на 1 литр рабочего объёма.

* Проще и дешевле в изготовлении

Электродвигатель

История создания

В 1821 г., исследуя взаимодействие проводников с током и магнитов, Фарадей установил, что электрический ток, проходящий по проводнику, может заставить этот проводник совершать вращение вокруг магнита или вызывать вращение магнита вокруг проводника. Этот опыт доказал принципиальную возможность построения электродвигателя.

Возможность превращения электрической энергии в механическую была показана и во многих других экспериментах. Так, в книге П. Барлоу «Исследование магнитных притяжений», опубликованной в 1824 г., описывалось устройство, известное под названием «колёса Барлоу».

Колесо Барлоу по принципу действия представляло собой однополярную электрическую машину, работавшую в двигательном режиме: в результате взаимодействия магнитного поля постоянных магнитов и тока, проходящего через оба медных зубчатых колеса, сидящих на одной оси, колеса начинают быстро вращаться в одном и том же направлении. Барлоу установил, что перемена контактов или перемена положения полюсов магнитов немедленно вызывает перемену направления вращения колес.

В качестве примера другой конструкции электродвигателя может служить прибор, описанный в 1833 г. английским ученым У. Риччи. Магнитное поле в этом двигателе создавалось постоянным неподвижным подковообразным магнитом. Между этими полюсами на вертикальной оси помещался электромагнит, по обмотке которого пропускался ток. Направление тока периодически изменялось коммутатором. Взаимодействие полюсов постоянного магнита и электромагнита приводило к вращению электромагнита вокруг оси. Однако этот электродвигатель вследствие своей примитивной конструкции и незначительной мощности не мог иметь практического значения.

В приборе американского физика Дж. Генри изменение полярности электромагнита происходило за счет перемены направления протекающего по его обмотке тока. Оно приводило электромагнит в равномерное качательное движение. В модели, построенной самим Генри, электромагнит совершал 75 качаний в минуту. Мощность двигателей подобного типа была очень небольшой, примерно 0,05 Вт.

В 1834—1860 гг. появлялись конструкции с вращательным движением явно полюсного якоря. Вращающий момент на валу таких двигателей обычно был резко пульсирующим.

Наиболее важные работы по конструированию электродвигателей принадлежат русскому ученому Б. С. Якоби. Изучая конструкции электродвигателей своих предшественников, в которых было осуществлено возвратно-поступательное или качательное движение якоря, Якоби отозвался об одном из них: «такой прибор будет не больше, чем забавной игрушкой для обогащения физических кабинетов» и что «его нельзя будет применять в большом масштабе с какой-нибудь экономической выгодой». Поэтому он направил свое внимание на построение более мощного электродвигателя с вращательным движением якоря.

В 1834 г. Якоби построил и описал электродвигатель, который действовал на принципе притяжения и отталкивания между электромагнитами. Этот двигатель имел две группы П-образных электромагнитов, одна из которых располагалась на неподвижной раме, а другая аналогичная группа — на вращающемся диске. В качестве источника тока для питания электромагнитов была применена батарея гальванических элементов. Для попеременного изменения полярности подвижных электромагнитов служил коммутатор.

Первый свой электродвигатель Якоби построил в мае 1834 г., а в ноябре того же года он представил Парижской академии наук сообщение об этом устройстве. Оно было прочитано на заседании Академии в декабре 1834 г. и сразу же опубликовано.

В 1837 г. американский техник Т. Девенпорт также построил электродвигатель с непосредственным вращением якоря, где взаимодействовали подвижные электромагниты с неподвижными постоянными магнитами.

Принцип работы

Электродвигатели постоянного тока применяют в тех электроприводах, где требуется большой диапазон регулирования скорости, большая точность поддержания скорости вращения привода, регулирования скорости вверх от номинальной.

Как устроены электродвигатели постоянного тока

Работа электрического двигателя постоянного тока основана на явлении электромагнитной индукции. Из основ электротехники известно, что на проводник с током, помещенный в магнитное поле, действует сила, определяемая по правилу левой руки:

F = BIL,

где I — ток, протекающий по проводнику, В — индукция магнитного поля; L — длина проводника.

При пересечении проводником магнитных силовых линий машины в нем наводится электродвижущая сила, которая по отношению к току в проводнике направлена против него, поэтому она называется обратной или противодействующей (противо-э. д. с). Электрическая мощность в двигателе преобразуется в механическую и частично тратится на нагревание проводника.

Конструктивно все электрические двигатели постоянного тока состоят из индуктора и якоря, разделенных воздушным зазором.

Индуктор электродвигателя постоянного тока служит для создания неподвижного магнитного поля машины и состоит из станины, главных и добавочных полюсов. Станина служит для крепления основных и добавочных полюсов и является элементом магнитной цепи машины. На главных полюсах расположены обмотки возбуждения, предназначенные для создания магнитного поля машины, на добавочных полюсах — специальная обмотка, служащая для улучшения условий коммутации.

Якорь электродвигателя постоянного тока состоит из магнитной системы, собранной из отдельных листов, рабочей обмотки, уложенной в пазы, и коллектора служащего для подвода к рабочей обмотке постоянноготока.

Коллектор представляет собой цилиндр, насаженный на вал двигателя и избранный из изолированных друг от друга медных пластин. На коллекторе имеются выступы-петушки, к которым припаяны концы секций обмотки якоря. Съем тока с коллектора осуществляется с помощью щеток, обеспечивающих скользящий контакт с коллектором. Щетки закреплены в щеткодержателях, которые удерживают их в определенном положении и обеспечивают необходимое нажатие щетки на поверхность коллектора. Щетки и щеткодержатели закреплены на траверсе, связанной с корпусом электродвигателя.

Коммутация в электродвигателях постоянного тока

В процессе работы электродвигателя постоянного тока щетки, скользя по поверхности вращающегося коллектора, последовательно переходят с одной коллекторной пластины на другую. При этом происходит переключение параллельных секций обмотки якоря и изменение тока в них. Изменение тока происходит в то время, когда виток обмотки замкнут щеткой накоротко. Этот процесс переключения и явления, связанные с ним, называются коммутацией.

В момент коммутации в короткозамкнутой секции обмотки под влиянием собственного магнитного поля наводится э. д. с. самоиндукции. Результирующая э. д. с. вызывает в короткозамкнутой секции дополнительный ток, который создает неравномерное распределение плотности тока на контактной поверхности щеток. Это обстоятельство считается основной причиной искрения коллектора под щеткой. Качество коммутации оценивается по степени искрения под сбегающим краем щетки и определяется по шкале степеней искрения.

Способы возбуждения электродвигателей постоянного тока

Под возбуждением электрических машин понимают создание в них магнитного поля, необходимого для работы электродвигателя.

По способу возбуждения электрические двигатели постоянного тока делят на четыре группы:

1. С независимым возбуждением, у которых обмотка возбуждения НОВ питается от постороннего источника постоянного тока.

2. С параллельным возбуждением (шунтовые), у которых обмотка возбуждения ШОВ включается параллельно источнику питания обмотки якоря.

3. С последовательным возбуждением (сериесные), у которых обмотка возбуждения СОВ включена последовательно с якорной обмоткой.

4. Двигатели со смешаным возбуждением (компаундные), у которых имеется последовательная СОВ и параллельная ШОВ обмотки возбуждения.

Пуск двигателей постоянного тока

В начальный момент пуска двигателя якорь неподвижен и противо-э. д. с. инапряжение в якоре равна нулю, поэтому Iп = U / Rя.

Сопротивление цепи якоря невелико, поэтому пусковой ток превышает в 10 — 20 раз и более номинальный. Это может вызвать значительные электродинамические усилия в обмотке якоря и чрезмерный ее перегрев, поэтому пуск двигателя производят с помощью пусковых реостатов — активных сопротивлений, включаемых в цепь якоря.

Двигатели мощностью до 1 кВт допускают прямой пуск.

Величина сопротивления пускового реостата выбирается по допустимому пусковому току двигателя. Реостат выполняют ступенчатым для улучшения плавности пуска электродвигателя.

В начале пуска вводится все сопротивление реостата. По мере увеличения скорости якоря возникает противо-э. д. с, которая ограничивает пусковые токи. Постепенно выводя ступень за ступенью сопротивление реостата из цепи якоря, увеличивают подводимое к якорю напряжение. Частоту вращения электродвигателя постоянного тока можно регулировать тремя путями: изменением потока возбуждения электродвигателя, изменением подводимого к электродвигателю напряжения и изменением сопротивления в цепи якоря.

Наиболее широкое применение получили первые два способа регулирования, третий способ применяют редко: он неэкономичен, скорость двигателя при этом значительно зависит от колебаний нагрузки.Механические характеристики электродвигателя постоянного тока при различных способах регулирования частоты вращения

Жирная прямая — это естественная зависимость скорости от момента на валу, или, что то же, от тока якоря. Прямая естественной механической характеристики несколько отклоняется от горизонтальном штриховой линии. Это отклонение называют нестабильностью, нежесткостью, иногда статизмом. Группа непаралельных прямых I соответствует регулированию скорости возбуждением, параллельные прямые II получаются в результате изменения напряжения якоря, наконец, веер III — это результат введения в цепь якоря активного сопротивления.

Величину тока возбуждения двигателя постоянного тока можно регулировать с помощью реостата или любого устройства, активное сопротивление которого можно изменять по величине, например транзистора. При увеличении сопротивления в цепи ток возбуждения уменьшается, частота вращения двигателя увеличивается. При ослаблении магнитного потока механические характеристики располагаются выше естественной (т. е. выше характеристики при отсутствии реостата). Повышение частоты вращения двигателя вызывает усиление искрения под щетками. Кроме того, при работе электродвигателя с ослабленным потоком уменьшается устойчивость его работы, особенно при переменных нагрузках на валу. Поэтому пределы регулирования скорости таким способом не превышают 1,25 — 1,3 от номинальной.

Регулирование изменением напряжения требует источника постоянного тока, например генератора или преобразователя. Такое регулирование используют во всех промышленных системах электропривода: генератор — двигатель постоянного тока (Г — ДПТ), электромашинный усилитель — двигатель постоянного тока (ЭМУ — ДПТ), магнитный усилитель — двигатель постоянного тока (МУ — ДПТ), тиристорный преобразователь — двигатель постоянного тока (Т — ДПТ).

Торможение электродвигателей постоянного тока

В электроприводах с электродвигателями постоянного тока применяют три способа торможения: динамическое, рекуперативное и торможение противовключением.

Динамическое торможение электродвигателя постоянного тока осуществляется путем замыкания обмотки якоря двигателя накоротко или через резистор. При этом электродвигатель постоянного тока начинает работать как генератор, преобразуя запасенную им механическую энергию в электрическую. Эта энергия выделяется в виде тепла в сопротивлении, на которое замкнута обмотка якоря. Динамическое торможение обеспечивает точный останов электродвигателя.

Рекуперативное торможение электродвигателя постоянного тока осуществляется в том случае, когда включенный в сеть электродвигатель вращается исполнительным механизмом со скоростью, превышающей скорость идеального холостого хода. Тогда э. д. с, наведенная в обмотке двигателя, превысит значение напряжения сети, ток в обмотке двигателя изменяет направление на противоположное. Электродвигатель переходит на работу в генераторном режиме, отдавая энергию в сеть. Одновременно на его валу возникает тормозной момент. Такой режим может быть получен в приводах подъемных механизмов при опускании груза, а также при регулировании скорости двигателя и во время тормозных процессов в электроприводах постоянного тока.

Рекуперативное торможение двигателя постоянного тока является наиболее экономичным способом, так как в этом случае происходит возврат в сеть электроэнергии. В электроприводе металлорежущих станков этот способ применяют при регулировании скорости в системах Г — ДПТ и ЭМУ — ДПТ.

Торможение противовключением электродвигателя постоянного тока осуществляется путем изменения полярности напряжения и тока в обмотке якоря. При взаимодействии тока якоря с магнитным полем обмотки возбуждения создается тормозной момент, который уменьшается по мере уменьшения частоты вращения электродвигателя. При уменьшении частоты вращения электродвигателя до нуля электродвигатель должен быть отключен от сети, иначе он начнет разворачиваться в обратную сторону.

www.ronl.ru

двигатель « Учи физику!

Двигатель (рис. 49) представляет собой колесо, снабженное откидными стержнями с грузами на концах. По мысли изобретателя, колесо должно непрерывно вращаться по часовой стрелке, так как грузы на правой стороне будут все время откинуты дальше от центра, чем грузы на левой стороне. Почему расчет изобретателя не оправдывается?

Подробнее…

Ещё ни кто не комментировал

Работа двигателя внутреннего сгорания

Ещё ни кто не комментировал

Вибрации машин и механизмов нередко приводят к различным неприятностям. Самопроизвольно отвинчиваются гайки, расширяются трещины в деталях, ползут по гладкому полу тяжелые ящики… Но эти же явления используют для транспортировки сыпучих материалов по трубам, вибрационной обработки материалов, бурения и даже для подъема воды. На их же основе работает занимательная игрушка, которую можно сделать за несколько минут. Предложил ее в свое время читатель К. Мосолов из Ленинграда (см. “Наука и жизнь” № 3, 1965 г.).

Подробнее…

Ещё ни кто не комментировал

Школьник из Перми Андрей Чистяков придумал тепловой двигатель. Взгляните на рисунок. На концы дюралюминиевой трубки диаметром 8 мм и длиной 650 мм Андрей надел стальные диски весом по 120 г. В каждом из них он просверлил 4 отверстия и нарезал резьбу. В отверстия завинтил винты — ими он провел статическую балансировку трубки, служащей ротором двигателя. Ротор опирается на две линейки, поставленные на ребро. Между линейками взад-вперед передвигается подставка с горящей свечой. То, что свеча — тепловой источник энергии, понятно каждому. А вот над тем, как же используется тепловая энергия, еще придется подумать.Подробнее…

Ещё ни кто не комментировал

Двигатель Стирлинга — это двигатель внешнего сгорания, в котором тепловая энергия подводится к рабочему телу (в нашем случае — к воздуху) извне — через стенку цилиндра. Принцип действия его основан на известном физическом законе — расширении и сжатии воздуха при нагревании и охлаждении. Поэтому стирлинг называют еще воздушно-тепловым двигателем. Понять работу двигателя, который Стирлинг разработал еще в 1816 году, нам поможет модель, описанная в книге С. Баранова «Действующие модели тепловых машин» (год издания 1936-й).

Сначала о том, как устроена модель стирлинга.Подробнее…

Прокомментировали 3 раз

uchifiziku.ru

принцип действия двигателя внутреннего сгорания физика

Гипермаркет знаний>>Физика и астрономия>>Физика 8 класс>>Физика: Двигатель внутреннего сгорания

Двигатель внутреннего сгорания был изобретен в 1860 г. французским механиком Э. Ленуаром. Свое название он получил из-за того, что топливо в нем сжигалось не снаружи, а внутри цилиндра двигателя. Аппарат Ленуара имел несовершенную конструкцию, низкий КПД (около и через несколько лет был вытеснен более совершенными двигателями.

Наибольшее распространение среди них получил четырехтактный двигатель внутреннего сгорания, сконструированный в 1878 г. немецким изобретателем Н. Отто. Каждый рабочий цикл этого двигателя включал в себя четыре такта: впуск горючей смеси, ее сжатие, рабочий ход и выпуск продуктов сгорания. Отсюда и название двигателя - четырехтактный.

Двигатели Ленуара и Отто работали на смеси воздуха со светильным газом. Бензиновый двигатель внутреннего сгорания был создан в 1885 г. немецким изобретателем Г. Даймлером. Примерно в это же время бензиновый двигатель был разработан и О. С. Кос- товичем в России. Горючая смесь (смесь бензина с воздухом) приготовлялась в этом двигателе с помощью специального устройства, называемого карбюратором.

Современный четырехцилиндровый двигатель внутреннего сгорания изображен на рисунке 88. Поршни, находящиеся внутри цилиндров двигателя, соединены с коленчатым валом 1. На этом валу укреплен тяжелый маховик 2. В верхней части каждого цилиндра имеется два клапана: один из них называется впускным, другой - выпускным. Через первый из них горючая смесь попадает в цилиндр, а через второй продукты сгорания топлива уходят наружу.

Принцип действия одноцилиндрового двигателя внутреннего сгорания иллюстрирует рисунок 89.1 -    й    такт - впуск. Открывается клапан 1. Клапан 2 закрыт. Движущийся вниз поршень 3 засасывает в цилиндр горючую смесь.2 -    й    такт - сжатие. Оба клапана закрыты Движущийся вверх поршень сжимает горючую смесь. Смесь при сжатии нагревается.3 -    й    такт - рабочий ход. Оба клапана закрыты. Когда поршень оказывается в верхнем положении, смесь поджигается электрической искрой свечи 4. В результате сгорания смеси образуются раскаленные газы, давление которых составляет 3-6 МПа, а температура достигает 1600-2200 °С. Сила давления этих газов толкает поршень вниз. Движение поршня передается коленчатому валу с маховиком. Получив сильный толчок, маховик будет вращаться дальше по инерции, обеспечивая тем самым перемещение поршня и при последующих тактах.4 -    й    такт - выпуск. Открывается клапан 2. Клапан 1 закрыт. Поршень движется вверх. Продукты сгорания топлива уходят из цилиндра и через глушитель (на рисунке не показан) выбрасываются в атмосферу

Мы видим, что в одноцилиндровом двигателе полезная работа совершается лишь во время третьего такта В четырехцилиндровом двигателе (см. рис. 88) поршни укреплены таким образом, что во время каждого из четырех тактов один из них находится в стадии рабочего хода. Благодаря этому коленчатый вал получает энергию в 4 раза чаще. При этом увеличивается мощность двигателя и в лучшей степени обеспечивается равномерность вращения вала.

Частота вращения вала у большинства двигателей внутреннего сгорания лежит в пределах от 3000 до 7000 оборотов в минуту, а в некоторых случаях достигает 15 000 оборотов в минуту и более.

В 1897 г. немецкий инженер Р. Дизель сконструировал двигатель внутреннего сгорания, в котором сжималась не горючая смесь, а воздух. В процессе этого сжатия температура воздуха поднималась настолько, что при попадании в него топлива оно самовозгоралось. Специального устройства для воспламенения топлива в этом двигателе уже не требовалось; не нужен был и карбюратор. Новые двигатели стали называть дизелями.

Двигатели Дизеля являются наиболее экономичными тепловыми двигателями: они работают на дешевых видах топлива и имеют КПД 31-44 % (в то время как КПД карбюраторных двигателей составляет обычно В настоящее время они применяются на тракторах, тепловозах, теплоходах, танках, грузовиках, передвижных электростанциях.

Судьба самого изобретателя нового двигателя оказалась трагической. 29 сентября 1913 г. он сел на пароход, отправлявшийся в Лондон. Наутро его в каюте не нашли. Талантливый инженер бесследно исчез. Считается, что он покончил с собой, бросившись ночью в воды Ла-Манша.

Изобретение двигателя внутреннего сгорания сыграло огромную роль в автомобилестроении. Первый автомобиль с бензиновым двигателем внутреннего сгорания был создан в 1886 г. Г. Даймлером. Одновременно с этим Даймлер запатентовал установку своего двигателя на моторной лодке и мотоцикле. В том же году, но чуть позже появился трехколесный автомобиль К. Бенца. Громоздкие и трудноуправляемые паровые автомобили стали вытесняться новыми машинами. Последующие годы явились началом промышленного производства автомобилей.

В 1892 г. свой первый автомобиль построил Г. Форд (США). Через 11 лет его автомобили(рис. 90) были запущены в массовое производство.

В 1908 г. автомобили начали производить на Русско-Балтийском заводе в Риге. Один из первых русских автомобилей "Руссо- Балт" показан на рисунке 91.

Важную роль в развитии и распространении нового вида транспорта сыграли автомобильные гонки, которые стали устраиваться с 1894 г. В первой из них средняя скорость автомобилей составляла лишь 24 км/ч. Однако уже через пять лет она достигла 70 км/ч, а еще через пять лет - 100 км/ч.

После 1900 г. началось производство специальных гоночных автомобилей. С каждым годом их скорость возрастала. В 60-х гг. скорость автомобилей с поршневым двигателем превысила 600 км/ч, а после установки на автомобиле газотурбинного двигателя она перевалила за 900 км/ч. Наконец, в 1997 г. Э. Грин (Великобритания) на своем ракетном автомобиле "Траст 55С" достиг скорости 1227,985 км/ч, что превысило скорость звука в воздухе! ??? 1. Опишите принцип действия четырехтактного двигателя внутреннего сгорания. Из каких тактов состоит каждый его рабочий цикл? 2. Какую роль в двигателе играет маховик? 3. Чем отличается дизельный двигатель внутреннего сгорания от карбюраторного? 4. Кто создал первые автомобили с двигателем внутреннего сгорания?С.В. Громов, Н.А. Родина, Физика 8 класс

Отослано читателями из интернет-сайтов

Материалы с физики 8 класс, календарно-тематическое планирование уроков физики, все для учителя в подготовке к урокам, задание и ответы с физики по классам, планы конспектов уроков по физике 8 классСодержание урока

principdejstviya.ru

НЕСКУЧНАЯ ФИЗИКА: Проекты вечных двигателей

Вечный двигатель, проект 2: цепочка шаров на треугольной призме

Идея изобретателя: Через трехгранную призму перекинута цепь из 14 одинаковых шаров. Слева четыре шара, справа — два. Остальные восемь шаров уравновешивают друг друга. Следовательно, цепь придет в вечное движение против часовой стрелки.

Почему двигатель не работает: Грузы приводит в движение только составляющая силы тяжести, параллельная наклонной поверхности. На более длинной поверхности больше грузов, но и угол наклона поверхности пропорционально меньше. Поэтому сила тяжести грузов справа, умноженная на синус угла, равна силе тяжести грузов слева, умноженной на синус другого угла.

Еще в начале XVII века замечательный нидерландский физик и инженер Симон Стевин (1548–1620), видимо первым в истории, сделал всё наоборот. Экспериментируя с трехгранной призмой и цепью из 14 одинаковых шаров, он предположил, что вечный двигатель вообще невозможен (это закон природы), и вывел из этого принципа закон равновесия сил на наклонной плоскости: силы тяжести, действующие на грузы, пропорциональны длинам плоскостей, на которых они лежат. Из этого принципа вырос векторный закон сложения сил и представление о том, что силы нужно описывать новым математическим объектом — вектором.

Кроме этого, Симон Стевин сделал много глубоких, пионерских работ в физике и математике. Он обосновал и ввел в оборот в Европе десятичные дроби, отрицательные корни уравнений, сформулировал условия существования корня в данном интервале и предложил способ его приближенного вычисления. Стевин был, наверное, первым прикладным математиком, который доводил свои вычисления до числа. Для решения конкретных практических задач он постоянно развивал прикладные вычисления. К ним Стевин относил и бухгалтерию, как науку о рациональном хозяйствовании, то есть он стоял у истоков математических методов в экономике. Стевин считал, что «цель бухгалтерского учета — определение всего народного богатства страны». Он был суперинтендантом по военным и финансовым вопросам у великого полководца, создателя современной регулярной армии Морица Оранского. Его должность в современных терминах — «заместитель командующего по тылу».

Вечные двигатели, проект 3. Пьющая птичка (птичка Хоттабыча)

Идея изобретателя: Тонкая стеклянная колбочка с горизонтальной осью посередине впаяна в небольшую емкость. Свободным концом колбочка почти касается ее дна. В нижнюю часть игрушки налито немного эфира, а верхняя, пустая, обклеена снаружи тонким слоем ваты. Перед игрушкой ставят стаканчик с водой и наклоняют ее, заставляя «попить». Птичка начинает два-три раза в минуту наклоняться и окунать головку в стаканчик. Раз за разом, непрерывно, днем и ночью кланяется птичка, пока в стаканчике не кончится вода.

Почему это не вечный двигатель: Голова и клюв птички покрыты ватой. Когда птичка «пьет воду», вата пропитывается водой. При испарении воды температура головы птички снижается. В нижнюю часть туловища птички налит эфир, над которым находятся пары эфира (воздух откачан). При охлаждении головы птички давление паров в верхней части снижается. Но давление в нижней части остается тем же. Избыточное давление паров эфира в нижней части поднимает жидкий эфир по трубочке вверх, голова птички тяжелеет и наклоняется к стакану.

Как только жидкий эфир дотечет до конца трубочки, пары теплого эфира из нижней части попадут в верхнюю, давление паров сравняется и жидкий эфир потечет вниз, а птичка снова поднимет клюв, при этом захватив воду из стакана. Испарение воды начинается снова, голова охлаждается и всё повторяется. Если бы вода не испарялась, то птичка бы и не двигалась. Для испарения из окружающего пространства потребляется энергия (сосредоточенная в воде и окружающем воздухе).

«Настоящий» вечный двигатель должен работать без затраты внешней энергии. Поэтому птичка Хоттабыча в действительности не является вечным двигателем.

Проект 4. Цепочка поплавков

Идея изобретателя:Высокая башня наполнена водой. Через шкивы, установленные вверху и внизу башни, перекинут канат с 14 полыми кубическими ящиками со стороной 1 метр. Ящики, находящиеся в воде, под действием силы Архимеда, направленной вверх, должны последовательно всплывать на поверхность жидкости, увлекая за собой всю цепь, а находящиеся слева ящики спускаются вниз под действием силы тяжести. Таким образом ящики попадают попеременно из воздуха в жидкость и наоборот.

Почему двигатель не работает: Ящики, входящие в жидкость, встречают весьма сильное противодействие со стороны жидкости, причем работа на проталкивание их в жидкость не меньше работы, совершаемой силой Архимеда при всплывании ящиков на поверхность.

Проект 5. Архимедов винт и водяное колесо

Идея изобретателя:Архимедов винт, вращаясь, поднимает воду в верхний бак, откуда она вытекает из лотка струей, попадающей на лопатки водяного колеса. Водяное колесо вращает точильный камень и одновременно двигает, с помощью ряда зубчатых колес, тот самый Архимедов винт, который поднимает воду в верхний бак. Винт поворачивает колесо, а колесо — винт! Этот проект, изобретенный еще в 1575 году итальянским механиком Страдою Старшим, затем повторялся в многочисленных вариациях.

Почему двигатель не работает: Большая часть проектов вечных двигателей действительно могла бы работать, если бы не существование силы трения. Если это двигатель — должны быть и движущиеся части, значит, недостаточно двигателю вращать самого себя: нужно вырабатывать еще и избыточную энергию для преодоления силы трения, которую никак не уберешь.

Проект 6. Машина ОрфиреусаИдея изобретателя:Некоторые изобретатели вечных двигателей были просто жуликами, ловко надувавшими легковерную публику. Одним из наиболее выдающихся «изобретателей» был некий доктор Орфиреус(настоящая фамилия — Бесслер). Основным элементом его двигателя было большое колесо, которое будто бы не только вращалось само собой, но и поднимало при этом тяжелый груз на значительную высоту.

Почему двигатель не работает: «Вечный двигатель» оказался далеко не вечным — его приводили в действие брат Орфиреуса и служанка, дергая за искусно спрятанный шнурок.

Проект 7. Магнит и желоба

Идея изобретателя:Сильный магнит помещается на подставке. К ней прислонены два наклонных желоба, один под другим, причем верхний желоб имеет небольшое отверстие в своей верхней части, а нижний на конце изогнут. Если на верхний желоб положить небольшой железный шарик, то вследствие притяжения магнитом он покатится вверх, однако, дойдя до отверстия, провалится в нижний желоб, скатится по нему, поднимется по конечному закруглению и вновь попадет на верхний желоб. Таким образом, шарик будет бегать непрерывно, осуществляя тем самым вечное движение. Проект этого магнитного perpetuum mobile описал в XVII веке английский епископ Джон Вилкенс.

Почему двигатель не работает: Устройство работало бы, если бы магнит действовал на металлический шарик только во время его подъема на подставку по верхнему желобу. Но вниз шарик скатывается замедленно под действием двух сил: тяжести и магнитного притяжения. Поэтому к концу спуска он не приобретет скорость, необходимую для поднятия по закруглению нижнего желоба и начала нового цикла.

Проект 8. «Вечный водопровод»

Идея изобретателя:Давление воды в большом баке должно постоянно выжимать воду по трубе в верхнюю емкость.

Почему двигатель не работает: Автор проекта не понимал, что гидростатический парадокс в том и состоит, что уровень воды в трубе всегда остается таким же, как в баке.

Проект 9. Автоматический подзавод часов

Идея изобретателя: Основа устройства — ртутный барометр крупных размеров: чаша с ртутью, подвешенная в раме, и опрокинутая над ней горлышком вниз большая колба с ртутью. Сосуды укреплены подвижно один относительно другого; при увеличении атмосферного давления колба опускается и чаша поднимается, при уменьшении же давления — наоборот. Оба движения заставляют вращаться небольшое зубчатое колесо всегда в одну сторону и через систему зубчатых колес поднимают гири часов.

Почему это не вечный двигатель: Необходимая для работы часов энергия «черпается» из окружающей среды. По сути это мало чем отличается от ветряного двигателя — разве что исключительно малой мощностью.

 

Проект 10. Масло, поднимающееся по фитилям

Идея изобретателя:Жидкость, налитая в нижний сосуд, поднимается фитилями в верхний сосуд, имеющий желоб для стока жидкости. По стоку жидкость падает на лопатки колеса, приводя его во вращение. Далее стекшее вниз масло снова поднимается по фитилям до верхнего сосуда. Таким образом, струя масла, стекающая по желобу на колесо, ни на секунду не прерывается, и колесо вечно должно находиться в движении.

Почему двигатель не работает: С верхней, загнутой части фитиля жидкость стекать вниз не будет. Капиллярное притяжение, преодолев силу тяжести, подняло жидкость вверх по фитилю — но ведь та же причина удерживает жидкость в порах намокшего фитиля, не давая ей капать с него.

Проект 11. Колесо с откидывающимися грузами

Идея изобретателя: Идея основана на применении колеса с неуравновешенными грузами. К краям колеса прикреплены откидные палочки с грузами на концах. При всяком положении колеса грузы на правой стороне будут откинуты дальше от центра, нежели на левой; эта половина, следовательно, должна перетягивать левую и тем самым заставлять колесо вращаться. Значит, колесо будет вращаться вечно, по крайней мере, до тех пор, пока не перетрется ось.

Почему двигатель не работает: Грузы на правой стороне всегда дальше от центра, однако неизбежно такое положение колеса, при котором число этих грузов меньше, чем на левой. Тогда система уравновешивается — следовательно, колесо не будет вращаться, а, сделав несколько качаний, остановится.

Проект 12. Установка инженера Потапова

Идея изобретателя:Гидродинамическая тепловая установка Потапова с КПД, превышающим 400%. Электродвигатель (ЭД) приводит в движение насос (НС), заставляющий циркулировать воду по контуру (показано стрелками). Контур содержит цилиндрическую колонку (ОК) и батарею отопления (БТ). Окончание трубы 3 можно подключить к колонке (ОК) двумя способами: 1) к центру колонки; 2) по касательной к окружности, образующей стенку цилиндрической колонки. При подключении по способу 1 количество тепла, отдаваемое воде, равно (с учетом потерь) количеству тепла, излучаемому батареей (БТ) в окружающее пространство. Но как только происходит подключение трубы по способу 2, количество излучаемого батареей (БТ) тепла увеличивается в 4 раза! Измерения, проведенные нашими и зарубежными специалистами, показали, что при подводе 1 кВт к электродвигателю (ЭД) батарея (БТ) дает столько тепла, сколько должно было бы получаться при затрате 4 кВт. При подключении трубы по способу 2 вода в колонке (ОК) получает вращательное движение, и именно этот процесс приводит к увеличению количества отдаваемого батареей (БТ) тепла.

Почему двигатель не работает: Описанная установка действительно была собрана в НПО «Энергия» и, по утверждению авторов, работала. Изобретатели не ставили под сомнение правильность закона сохранения энергии, но утверждали, что двигатель черпает энергию из «физического вакуума». Что невозможно, т. к. физический вакуум имеет самый низкий из возможных уровней энергии и черпать из него энергию нельзя.

Наиболее вероятным представляется более прозаическое объяснение: имеет место неравномерный нагрев жидкости по сечению трубы и из-за этого возникают ошибки в измерении температуры. Не исключено также, что энергия помимо воли изобретателей «закачивается» в установку из электрической цепи.

Проект 13. Луна и планеты

Идея изобретателя: Вечное движение Луны вокруг Земли и планет вокруг Солнца.

Почему двигатель не работает: Здесь налицо смешение понятий: «вечный двигатель» и «вечное движение». Полная (потенциальная и кинетическая) энергия Солнечной системы есть величина постоянная, и если мы захотим за ее счет совершить работу (что, в принципе, не исключено), то эта энергия будет уменьшаться. Но вот «бесплатной» работы мы всё равно не получим.

Авторы: Евгений Филатов, Вячеслав Федосеев. Художник: Татьяна Делягтна.

 

ashuninaphysics.blogspot.com


Смотрите также