ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Бестопливные двигатели: обзор, принцип работы. Двигатель на магнитах. Бестопливный двигатель


Бестопливный генератор: видео, двигатели на постоянных магнитах

Тот, кто хочет сделать свое жилье независимым, обращает внимание на устройство, которое называют «бестопливный генератор». Что же это такое, как работает, выгодно ли использовать? Страшно даже представить себе, что будет с жителями современного населенного пункта без электричества. Люди зависят от источников тока в городах и поселках любой страны мира. Холодильники и телевизоры, микроволновки и телефоны, отопление квартир, движение транспорта – все зависит от наличия энергии.

1051154_orig

Зачем изобретать велосипед

Действительно, для чего создавать себе головную боль, подыскивая способы получения тока, когда его вполне хватает в розетках обычной сети? Ответ прост: учеными доказано, что запасы топлива на планете конечны: этих ресурсов с трудом хватит миру на 50-60- лет. Кроме того, строительство гигантских ГЭС, ТЭЦ и водохранилищ способствует глобальному изменению климата, а от отходов атомных станций невозможно избавиться. Огромное количество плодородной земли уничтожено, нечистоты и ядовитые жидкости портят воды рек и родников, промышленными выбросами засоряется атмосфера.

Земля – это наш дом, и люди просто обязаны, в своих же интересах, бережно использовать то, что даром получили при рождении. Существуют технологии выработки тепла и электричества, для которых не нужны ни гигантские сооружения, ни огромные топливные ресурсы. Их называют альтернативными или свободными источниками энергии.

fg1

Солнце, ветер и вода – наши лучшие друзья

Приборы и установки, работающие совсем без топлива известны с давних времен. Ветряные и водяные мельницы обеспечивали мукой окрестные деревни, используя только движение воздуха и речного потока. Используя возобновляемые источники энергии: ветер, солнечное тепло, движение волн и рек, силу магнитных полей, человечество получает независимость от централизованных систем подачи электричества. Бестопливный генератор – устройство, работающее на свободной энергии. Какие же преимущества сулит использование альтернативы?

  1. Полная автономность и мобильность.
  2. Несравнимая с нынешней дешевизна кВт-часов.
  3. Экологичное, безопасное и безвредное производство.
  4. Экономия, сохранение и восстановление природных ресурсов.
  5. Чистый атмосферный воздух.
  6. Повышение комфорта и уровня благосостояния населения планеты.
  7. Доступность и дешевизна получения в любой местности.
  8. Снижения себестоимости производства продуктов питания, одежды, бытовых приборов, мебели.
  9. Отсутствие шлаковых и радиоактивных отходов.

Перечисленные пункты являются только небольшой долей из списка преимуществ от использования населением планеты альтернативной энергетики.

hqdefault (1)

Что такое БТГ

Генераторы – это приборы для выработки электрического тока. Они состоят из статора (неподвижной детали) и вращающегося ротора. Именно для работы этого устройства автомобильные и другие двигатели сжигают в своих камерах бензин или солярку, выделяя ядовитые пары и выхлопные газы, отравляя атмосферу.

Бестопливный генератор не потребляет, а добывает энергию из, так называемых, возобновляющихся и бесплатных природных источников: из ветра, из воды, из земли и воздуха.

003

Разработки в этом направлении велись исследователями еще в 19 веке. Создано несколько десятков отличающихся друг от друга технологий. Среди самых перспективных направлений специалисты называют следующие:

Есть много других разработок, основанных на использовании бестопливных технологий. Наш информационный мир дает огромные возможности для получения знаний. Немного старания – и человечеству перестанут грозить кризисы и истощение топливных запасов. Мировая реформа энергетики не за горами!

Николо Тесла и его знаменитый прибор

Бестопливный генератор, представленный миру в конце 19-го века, работал на энергии эфира, который Н.Тесла называл упругой структурированной материей, космическими лучами. Традиционной физикой отрицается наличие данного вещества. Несмотря на это, эксплуатируя свои установки, Тесла получал и передавал беспроводным способом электричество, выделенное при взаимодействии разноименных зарядов Земли и окружающего пространства. Посредством собственного резонансного трансформатора и турбины Ниагарской ГЭС, изобретатель обеспечил электроэнергией весь штат, применив беспроводной способ передачи тока.

wood

Исследователь создал устройство, работа которого основана на взаимодействии двух потоков энергии. Он объединил положительно заряженное пространство и отрицательный потенциал земной поверхности, получив заряды мощностью в тысячи киловатт. Принцип действия и конструкция запатентованы изобретателем в 1901 году.

На основе схемы трансформатора Тесла уже в наше время грузинским изобретателем Тариэлем Капанадзе изготовлен и продемонстрирован беспроводной бестопливный генератор. Электростанции подобного типа с успехом работают в Турции, так как на родине изобретатель не получил поддержки действующей власти.

скачанные файлы (1)

В приборе задействованы автомобильные аккумуляторы (для первого импульса), понижающие и повышающие трансформаторы, конденсаторы, заземляющий прут. Конечно, не стоит искать в интернете полного и подробного описания конструкции. Желающим повторить данные опыты приходится начинать все с начала и добиваться результатов опытным путем.

Совет: создавая прибор по этому принципу, нужно соблюдать технику безопасности, так как на выходе устройство выдает ток высокого напряжения.

Почему же такой выгодный, с точки зрения получения дешевого электрического тока, прибор не получил распространения после обнародования? Согласно рассекреченной прессой информации, правящая верхушка и финансирующая ее банковская элита США во главе с Морганом, увидели в исследованиях Теслы опасность для монополии на получение и продажу электроэнергии в стране. Полигон и лаборатория исследователя были уничтожены, понятие «эфир» изъято из физики, патенты засекречены и скрыты. Сохранилась лишь информация, напечатанная в газетах и научных журналах.

скачанные файлы

Двигатели на постоянных магнитах

Если взять кулер, отсоединенный от компьютера и приблизить магнит к его контактам, вентилятор начнет вращаться. Полученный электромеханический контур – это образец автономной энергетической системы с устойчивыми электрическими колебаниями. Бестопливный генератор на постоянных магнитах обладает одним из самых необходимых свойств: способностью к непрерывному функционированию. Согласно законам физики, магнитные потоки — это неисчерпаемые источники энергии, они не расходуются. Работоспособность подобного двигателя зависит только от мощности используемого магнита. Концентрируя силовые линии магнитных потоков, а также используя текстолитовый якорь, можно добиться наилучших показателей мощности прибора. Чтобы усилить поле, увеличивают количество силовых магнитных линий. Для этого уменьшают площадь магнитных полюсов и увеличивают их количество. Осталось замкнуть полюса и – готово, можно ехать. Дополнительным плюсом этого источника энергии является независимость от погодных условий, компактные размеры, экологическая безопасность.

images

О малых ветряных установках

Вертикальные, горизонтальные, парусные и лопастные, роторные – все это разновидности ветряков. Большим минусом, над преодолением которого работают энтузиасты, является сложность запуска при малой скорости воздушного потока. Рентабельно использовать бестопливный генератор, крутящийся от движения атмосферы, в местностях с частыми ветрами. При изготовлении подобной установки обязательно учитывают возможность и частоту ураганов. Чтобы лопасти не поломались, они должны складываться при сильном усилении скорости ветра. Ротор устанавливают на открытом участке местности на верхушке мачты, высотой более 3-х метров.

Совет: мощность установки зависит от произведения ометаемой площади рабочего колеса и среднего значения скорости ветра в кубе.

Некоторые конструкции вентиляторов закрепляют на крышах домов. Для малых, индивидуальных электростанций рентабельно установить комплекс из ветряка и солнечных батарей. Это позволит получать энергию в солнечную и дождливую погоду, независимо от штиля или наличия туч на небе. Остаточные мощности накапливаются в аккумуляторах и используются по мере необходимости.

hqdefault (2)

В последние 15-20 лет энтузиасты данного вида получения энергии активно используют парусные ветряные колеса. Среди их плюсов называют такие как:

Жаль, что такие агрегаты громоздки, а то бы нашлись умельцы, которые оборудовали бы ими свои автомобили! Установил на крыше – и пользуйся бесплатной энергией. Сам едет – сам и вырабатывает, мечта, а не машина. Ни тебе выхлопных газов, ни бесконечной зависимости от автозаправочных станций.

Опасны ли новые технологии

Кое-кто из особо осторожных ученых считает, бестопливный генератор небезопасным. Мол, излучение, высоковольтные разряды, размеры могут повлиять на здоровье человека. В противовес таким утверждениям достаточно напомнить, что Николо Тесла, работая с тысячеватными показателями напряжения, дожил до 86 лет.

Разве кто-то прекратил пользоваться сотовыми телефонами? А ведь уже доказано учеными, что есть вред и от такого маленького излучения. Неужели население планеты предпочтет ходить пешком, а не передвигаться на автомобилях, испугавшись печальной хроники бесконечных аварий на дорогах? Нет смысла отвечать на такие вопросы. Но во имя сохранения планеты Земля, природных ресурсов, да и собственных финансов, все большее количество граждан старается перевести свои жилища на использование источников альтернативной энергии.

couo.ru

БТГ и «вечные двигатели» | Проект Заряд

Новый бестопливный генератор на постоянных магнитах в роторе и бифилярных катушках в статоре. Генератор выполнен и показан в двух вариантах, мощностью на 1 кВт и мощностью на 10 кВт. Автор изобретения Андрей Владимирович Слободян. На видео демонстрируется, не только запуск и … Читать далее →

Отличное видео, в котором рассказывается о текущем положении вещей на рынке холодного ядерного синтеза.   В ролике приводятся конкретные примеры, с указанием абсолютно реальных имен компаний, которые осуществляли сделки по покупке и продаже генератора холодного ядерного синтеза Росси. Речь в … Читать далее →

Тема получения электроэнергии из земли уже неоднократно поднималась на нашем ресурсе и в виде разнообразных теорий, и в виде вполне законченных и рабочих устройств. Много опытов на данную тему было проведено и участниками проекта, причем результаты многих опытов были весьма … Читать далее →

Рады представить Вам новое видео,  которое демонстрирует полностью автономную работу бестопливного генератора энергии. Автор видео проводит демонстрацию работы в лесу, где нет ни жилых домов, ни людей, ни электричества и электросетей. Для работы генератора необходимо лишь хорошее заземление. В приведенном … Читать далее →

Продолжение очень интересных опытов, начатых еще несколько лет назад по получению СЕ.  Кто захочет повторить — схема опыта в конце видео. Задумка очень перспективная, поэтому те, кто подойдут к ней серьезно вряд ли будут разочарованы…

Обсуждение данных экспериментов на нашем форуме.

19.05.2015, Вячеслав Васильев

   Ну вот и кончилось веселое первое апреля, где злобная марсианская разведка опять помешала в одночасье осчастливить весь мир! :-) А значит шутки  и розыгрыши в сторону, так как говорить сегодня мы будем, о действительно серьезных вещах. Вчера, как не … Читать далее →

Из писем участников проекта… Предлагаем Вам ознакомиться с генератором Джона Бедини, который по словам его автора работает в режиме самозапитки, посредством коммутации аккумуляторов с помощью  таймера.. Основная суть данной конструкции заключается в том, что через определенный промежуток времени заряжающий аккумулятор становится … Читать далее →

В данной статье будет подробно рассказано о проведенных опытах по получению в домашних условиях альтернативной и свободной энергии, описано, как самостоятельно построить бестопливный генератор свободной и альтернативной энергии, а также показаны новые, совершенно удивительные свойства электрического тока. Хотя электрического ли!? … Читать далее →

Всем здравствуйте. Соскучились!? Мы то же!… Но пока без сантиментов. Они возможно будут немного позже, где мы вернемся и к праздникам и к нелегким будням альтернативной энергии и к прочим событиям произошедшим за это время на проекте Заряд. Сегодня мы … Читать далее →

Зная, сколько писем приходит Вам перед новым годом от всяких магазинов, “дружеских” компаний и других “друзей”, основной целью которых является не пожелать Вам успехов, здоровья и счастья, а  ненавязчиво о себе напомнить и попытаться, что то Вам продать. Мы решили … Читать далее →

zaryad.com

Бестопливные генераторы помогают обогатиться мошенникам

На сайт поступает много вопросов о возможностях т.н. бестопливных генераторов (БТГ) электричества. Работают они на некой «свободной энергии», «энергии земли», эфире и всевозможных тайных знаниях, известных со времен Николо Теслы. Разнообразие таких поделок ограничивается только фантазией их создателей. Здесь и БТГ с мощностью одной батарейки и мощные генераторы на 20 киловатт. Давайте разберемся, что же это такое.

Генератор с лампочкой

Бестопливный генератор с лампочкой

Сборка бестопливного генератора

Это не промышленный образец, тем не менее, он поддерживает стойкую уверенность некоторых людей в возможность получения дармового электричества или освещения. Как видно из рисунка, есть две «магические» катушки, конденсатор, транзистор, лампочка и все паяется прямо при нас, на видео. Затем подносится провод 220 Вольт для «старта» и дальше лампочка горит сама по себе.

БТГ с лампочкой

Лампочка горит бесплатно!

 

Становится понятным, что даже если в катушках и спрятана батарейка – ее не хватит для того, чтобы лампочка горела в полный накал. Не захочешь – поверишь в возможность бестопливного генератора! Но разгадка в двух тоненьких проводах, незаметно подходящих к лампочке с другой стороны:

Секрет фокуса БТГ

Секретные провода к лампочке

Генератор Адамса

В отличие от других поделок – это устройство действительно работает, но не совсем так, как его позиционируют всевозможные мошенники – продавцы. Обманывать они начинают уже с самого названия устройства. На самом деле оно называется «Двигатель Адамса» и изначально придумывался изобретателем для эмпирического (опытным путем) подтверждения своих предположений, что с движущейся части системы можно взять больше электричества, чем затрачивается на изготовление постоянных магнитов, входящих в него.

Двигатель Адамса

Выдержка из патента на двигатель Адамса 1969г

И это реально работает! Двигатель вращается очень эффектно, без подключения к сети, аккумулятору и т.д. Да вот только бестопливным генератором это устройство назвать никак нельзя. С двигателем Адамса проводилось множество исследований, как в лабораториях, так и энтузиастами – любителями. Максимальный КПД, полученный в лабораторных условиях – 15%.

Схема бестопливного генератора

Схема генератора Адамса

Т.е. если посчитать количество электроэнергии, необходимое для намагничивания постоянных магнитов в устройстве, то только 15% из них может вернуться нам в виде электричества. Не очень разумный аккумулятор, не правда ли?

Но это в лабораторных условиях. В реальности все обстоит еще хуже. При подключении минимальной нагрузки (например лампы накаливания) к «коммерческому образцу» - тот замедляет обороты или вовсе перестает вращаться, т.к. силы тока, вырабатываемого им, явно недостаточно для такой работы.

Видео тестирования генератора

На видео четко видна попытка подключить "генератор" к нагрузке и что из этого вышло. Мошенники при этом не сдаются и говорят, что скоро все будет отлично... Приходите завтра...

Бестопливный генератор «Тесла»

К сожалению, точного изображения мы предоставить не можем, т.к. мошенники постоянно «изобретают» все новые виды этих «генераторов». Вот несколько наиболее знаменитых:

Схемы могут быть самыми разными, самыми нелепыми и сложными, но объединяет их две вещи:

  1. Все они безграмотные с точки зрения электроники;
  2. Все они не работают.

Как продают эти и прочие БТГ

Отсутствие совести у мошенников позволяет им придумывать все новые и новые околонаучные названия своих поделок, придумывать способы, как доказать, что именно их продукт является уникальным «квантово – ультра – квази» разработкой, не имеющей аналогов нигде в мире. Пишут на своих сайтах истории о всемирном заговоре энергетиков о том, чтобы не пропускать бестопливные технологии в массы, т.к. это нарушит какой-то там мировой порядок и т.д.

Продаются бестопливные генераторы на сайтах с кривым дизайном, сделанных за 1 час. Такой сайт можно без сожаления «слить» и тут же сделать новый. Контакты на таких сайтах представлены только в виде электронной почты. Например на вот этом сайте: mes50hz.ru поделка продается в виде экспериментального образца, который «требует доработок» а вот тут btg16.ru уже готовые образцы, которые уже завтра могут давать халявное электричество всем желающим. Изображения на этом сайте – это вовсе не бестопливные генераторы. Вот это, например:

Это не БТГ!

Преобразователь фаз

а вот это:

Это не БТГ!

Генератор для выработки постоянного тока из переменного

Если вы продолжаете верить этим ресурсам – предложите им встретиться и продать вам рабочий образец из рук в руки. Смело предлагайте цену в 2-3 раза выше, чтобы «заинтересовать» в личной встрече. Никто никогда с вами не встретится и ничего в работе не покажет, т.к. ни одного из заявленных на сайте устройств у мошенников попросту нет, да и не работают они так, как заявлено

Как противостоять?

Для того, чтобы наказать мошенников есть два пути:

  1. Поделиться этой публикацией в соцсети (кнопки внизу), чтобы друзья узнали, куда нельзя тратить деньги.
  2. Никогда не покупать подобные изделия, подвергать сомнению каждый такой товар.
Загрузка...

Facebook

Вконтакте

Одноклассники

Google+

Ветрогенератор савониуса Какой ветрогенератор лучше выбрать, вертикальный или горизонтальный Схема подключения фотоэлементов в солнечной батарее Собрать своими руками солнечную батарею из подручных средств Power Bank с солнечной панелью Power Bank со встроенной солнечной батареей - зря потраченные деньги Ветровая электростанция Справится ли ветряк с электроснабжением частного дома

electricadom.com

обзор, принцип работы. Двигатель на магнитах

Возможность получения свободной энергии для многих учёных в мире является одним из камней преткновения. На сегодняшний день получение такой энергии осуществляется за счёт альтернативной энергетики. Природная энергия преобразовывается альтернативными источниками энергии в привычную для людей тепловую и электрическую. При этом такие источники обладают основным недостатком — зависимостью от погодных условий. Подобных недостатков лишены бестопливные двигатели, а именно — двигатель Москвина.

Двигатель Москвина

Бестопливный двигатель Москвина представляет собой механическое устройство, которое преобразует энергию наружной консервативной силы в кинетическую энергию, которая вращает рабочий вал, без потребления электроэнергии или какого-либо вида топлива. Такие устройства являют собой фактически вечные двигатели, работающие бесконечно долго до тех пор, пока прилагается усилие к рычагам, а детали не изнашиваются в процессе преобразования свободной энергии. В процессе работы бестопливного двигателя образуется бесплатная свободная энергия, потребление которой при подключении генератора является законным.

Новые бестопливные двигатели представляют собой универсальные и экологически чистые приводы для различных механизмов и устройств, которые работают без вредных выбросов в окружающую среду и атмосферу.

Изобретение в Китае безтопливного двигателя сподвигло учёных-скептиков на проведение экспертизы по существу. Несмотря на то, что многие аналогичные запатентованные изобретения находятся под сомнением по причине того, что их работоспособность в силу определённых причин не была проверена, модель бестопливного двигателя полностью работоспособна. Образец устройства позволил получить свободную энергию.

бестопливные двигатели

Бестопливный двигатель на магнитах

Работа различных предприятий и оборудования, как и каждодневный быт современного человека, зависит от наличия электрической энергии. Инновационные технологии позволяют практически полностью отказаться от использования подобной энергии и устранить привязку к определённому месту. Одна из подобных технологий позволила создать бестопливный двигатель на постоянных магнитах.

Принцип работы магнитного электрогенератора

Вечные двигатели делятся на две категории: первого и второго порядка. Под первым типом подразумевают оборудование, способное вырабатывать энергию из воздушного потока. Двигателям второго порядка для работы требуется поступление природной энергии, — воды, солнечных лучей или ветра — которая преобразуется в электрический ток. Несмотря на существующие законы физики, учёные смогли создать вечный бестопливный двигатель в Китае, который функционирует за счёт производимой магнитным полем энергии.

Разновидности магнитных двигателей

На данный момент выделяют несколько видов магнитных двигателей, для работы каждого из которых требуется магнитное поле. Единственное различие между ними — конструкция и принцип работы. Двигатели на магнитах не могут существовать вечно, поскольку любые магниты теряют свои свойства спустя несколько сотен лет.

Самая простая модель - двигатель Лоренца, который реально собрать в домашних условиях. Для него характерно антигравитационное свойство. Конструкция двигателя строится на двух дисках с разным зарядом, которые соединены посредством источника питания. Устанавливают её в полусферический экран, который начинает вращаться. Такой сверхпроводник позволяет легко и быстро создать магнитное поле.

Более сложной конструкцией является магнитный двигатель Серла.

китайский двигатель

Асинхронный магнитный двигатель

Создателем асинхронного магнитного двигателя был Тесла. Его работа строится на вращающемся магнитном поле, что позволяет преобразовывать получаемый поток энергии в электрический ток. На максимальной высоте крепится изолированная металлическая пластина. Аналогичная пластина зарывается в почвенный слой на значительную глубину. Через конденсатор пропускается провод, который с одной стороны проходит через пластину, а с другой — крепится к её основанию и соединяется с конденсатором с другой стороны. В такой конструкции конденсатор выполняет роль резервуара, в котором накапливаются отрицательные энергетические заряды.

Двигатель Лазарева

Единственным работающим на сегодняшний день ВД2 является мощный роторный кольцар — двигатель, созданный Лазаревым. Изобретение учёного отличается простой конструкцией, благодаря чему его можно собрать в домашних условиях при помощи подручных средств. Согласно схеме бестопливного двигателя, используемую для его создания ёмкость делят на две равные части посредством специальной перегородки — керамического диска, к которому крепят трубку. Внутри ёмкости должна находиться жидкость — бензин либо обычная вода. Работа электрогенераторов такого типа основывается на переходе жидкости в нижнюю зону ёмкости через перегородку и её постепенном поступлении наверх. Движение раствора осуществляется без воздействия окружающей среды. Обязательное условие конструкции — под капающей жидкостью должно размещаться небольшое колёсико. Данная технология легла в основу самой простой модели электродвигателя на магнитах. Конструкция такого двигателя подразумевает наличие под капельницей колёсика с закреплёнными на его лопастях маленькими магнитами. Магнитное поле возникает только в том случае, если жидкость перекачивается колёсиком на большой скорости.

двигатель на магнитах принцип работы

Двигатель Шкондина

Немалым шагом в эволюции технологий стало создание Шкондиным линейного двигателя. Его конструкция представляет собой колесо в колесе, которая широко применяется в транспортной промышленности. Принцип работы системы строится на абсолютном отталкивании. Такой двигатель на неодимовых магнитах может быть установлен в любом автомобиле.

Двигатель Перендева

Альтернативный двигатель высокого качества был создан Перендевым и представлял собой устройство, которое для производства энергии использовало только магниты. Конструкция такого двигателя включает в себя статичный и динамичный круги, на которые устанавливаются магниты. Внутренний круг беспрерывно вращается за счёт самооталкивающей свободной силы. В связи с этим бестопливный двигатель на магнитах такого типа считается наиболее выгодным в эксплуатации.

Создание магнитного двигателя в домашних условиях

Магнитный генератор можно собрать в домашних условиях. Для его создания используются три вала, соединённых друг с другом. Расположенный в центре вал обязательно поворачивается к остальным двум перпендикулярно. К середине вала крепится специальный люцитовый диск диаметром четыре дюйма. К другим валам крепятся аналогичные диски меньшего диаметра. На них размещают магниты: восемь посередине и по четыре с каждой стороны. Основанием конструкции может выступить алюминиевый брусок, который ускоряет работу двигателя.

двигатель на неодимовых магнитах

Преимущества магнитных двигателей

К основным достоинствам подобных конструкций относят следующее:

  1. Экономия топлива.
  2. Полностью автономная работа и отсутствие необходимости в источнике электроэнергии.
  3. Можно использовать в любом месте.
  4. Высокая выходная мощность.
  5. Использование гравитационных двигателей до их полного износа с постоянным получением максимального количества энергии.

Недостатки двигателей

Несмотря на имеющиеся преимущества, у бестопливных генераторов есть и свои минусы:

  1. При длительном нахождении рядом с работающим двигателем человек может отмечать ухудшение самочувствия.
  2. Для функционирования многих моделей, в том числе и китайского двигателя, требуется создание специальных условий.
  3. Готовый двигатель подключить в некоторых случаях довольно сложно.
  4. Высокая стоимость бестопливных китайских двигателей.

изобретение бестопливного двигателя в китае

Двигатель Алексеенко

Патент на бестопливный двигатель Алексеенко получил в 1999 году от Российского агентства по товарным знакам и патентам. Для работы двигателю не требуется топливо — ни нефть, ни газ. Функционирование генератора строится на энергии магнитных полей, создаваемых постоянными магнитами. Обычный килограммовый магнит способен притягивать и отталкивать порядка 50–100 килограммов массы, в то время как оксидно-бариевые аналоги могут воздействовать на пять тысяч килограммов массы. Изобретатель бестопливного магнита отмечает, что настолько мощные магниты для создания генератора не требуются. Лучше всего подойдут обычные — один к ста либо один к пятидесяти. Магнитов такой мощности достаточно для работы двигателя на 20 тысячах оборотов в минуту. Мощность будет гаситься за счёт передающего устройства. На нём и располагаются постоянные магниты, энергия которых приводит двигатель в движение. Благодаря собственному магнитному полю ротор отталкивается от статора и приходит в движение, которое постепенно ускоряется из-за воздействия магнитного поля статора. Такой принцип действия позволяет развить огромную мощность. Аналог двигателя Алексеенко можно применять, к примеру, в стиральной машине, где его вращение будет обеспечиваться маленькими магнитами.

бестопливный двигатель алексеенко

Создатели бестопливных генераторов

Специальное оборудование к автомобильным двигателям, которое позволяет машинам передвигаться только на воде без использования углеводородных добавок. Подобными приставками сегодня оснащаются многие российские автомобили. Использование подобного оборудования позволяет автомобилистам сэкономить на бензине и снизить количество вредных выбросов в атмосферу. Для создания приставки Бакаеву понадобилось открыть новый тип расщепления, который и использовался в его изобретении.

Болотов — учёный XX века — разработал автомобильный двигатель, которому для запуска требуется буквально одна капля топлива. Конструкция такого двигателя не подразумевает цилиндров, коленчатого вала и любых других трущихся деталей — они заменены двумя дисками на подшипниках с небольшими зазорами между ними. Топливом является обычный воздух, который расщепляется на азот и кислород на высоких оборотах. Азот под воздействием температуры в 90оС сгорает в кислороде, что позволяет двигателю развить мощность в 300 лошадиных сил. Русские учёные, помимо схемы бестопливного двигателя, разработали и предложили модификации многих других двигателей, для функционирования которых требуются принципиально новые источники энергии — к примеру, энергия вакуума.

двигатель на постоянных магнитах

Мнение учёных: создание бестопливного генератора невозможно

Новые разработки инновационных бестопливных двигателей получили оригинальные наименования и стали обещанием революционных перспектив в будущем. Создатели генераторов сообщали о первых успехах на ранних этапах тестирования. Несмотря на это, в научной среде до сих пор скептически относятся к идее бестопливных двигателей, и многие учёные высказывают свои сомнения на этот счёт. Одним из противников и главных скептиков является учёный из Калифорнийского университета, физик и математик Фил Плейт.

Учёные из противоборствующего лагеря придерживаются мнения о том, что сама концепция двигателя, не требующего для работы топлива, противоречит классическим законам физики. Баланс сил внутри двигателя должен сохраняться всё то время, что создаётся тяга внутри него, а согласно закону импульса, такое невозможно без использования горючего. Фил Плейт не раз отмечал, что для ведения разговоров о создании подобного генератора придётся опровергнуть весь закон сохранения импульса, что нереально сделать. Проще говоря, для создания бестопливного двигателя требуется революционный прорыв в фундаментальной науке, а уровень современных технологий не оставляет и шанса на то, чтобы сама концепция генератора такого типа рассматривалась всерьёз.

На аналогичное мнение наводит и общая ситуация, касающаяся подобного типа двигателя. Рабочей модели генератора на сегодняшний день не существует, а теоретические выкладки и характеристики экспериментального устройства не несут никакой существенной информации. Проведённые замеры показали, что тяга составляет порядка 16 миллиньютонов. При следующих измерениях данный показатель увеличился до 50 миллиньютонов.

Британец Роджер Шоер ещё в 2003 году представил экспериментальную модель бестопливного двигателя EmDrive, разработчиком которой он и являлся. Для создания микроволн генератору требовалось электричество, добываемое посредством использования солнечной энергии. Данная разработка вновь всколыхнула в научной среде разговоры о вечном двигателе.

Разработка учёных была неоднозначно оценена в NASA. Специалисты отметили уникальность, инновационность и оригинальность конструкции двигателя, но при этом утверждали, что добиться значимых результатов и эффективной работы можно только в том случае, если генератор будет эксплуатироваться в условиях квантового вакуума.

загрузка...

meetmarket.ru

Бестопливный генератор

В конце девятнадцатого века была изобретена система переменного тока, которая используется по сей день. Это бестопливный генератор. Его автор - Никола Тесла. Конструкция работает без какого-либо топлива. Задачей Тесла было конденсирование энергии, находящейся между Землей и верхним атмосферным слоем. Далее - превращение полученной энергии в электрический ток.

Генератор имеет высокий коэффициент трансформации, от десяти до пятидесяти раз превышающий соотношение имеющегося числа витков обмотки вторичной к количеству витков обмотки первичной. Выходное напряжение прибора может достигать при этом нескольких миллионов вольт. Соответствующее резонансной частоте напряжение способно создавать в воздухе сильные электрические разряды (до нескольких метров в длину).

Простейший бестопливный генератор Тесла доступно сделать самостоятельно. В его комплектацию входит пара катушек без общего сердечника. Первичная обмотка включает от трех до десяти витков толстого провода. В обмотке же вторичной имеется примерно одна тысяча витков. При решении создать бестопливный генератор своими руками, необходимо знать, что самое сложное заключается в цепи питания обмотки первичной. Сделать такой генератор сравнительно просто, но затратно. Для начала необходимо взять любой источник напряжения (не менее полутора киловольт). Его следует подключить к конденсатору на требующееся напряжение. Бестопливный генератор такого варианта имеет очень простую схему. Порядок работ следующий:

1. Подключить выбранный источник на необходимое напряжение к любому имеющемуся конденсатору.

2. Обеспечить диодный мост в связи с большой емкостью конденсатора. Однако сначала рекомендуется поэкспериментировать с малыми емкостями.

3. Подключить все это через искровой промежуток к первичной обмотке катушки.

Оголенные концы провода направлены в одну сторону. Зазор между ними следует регулировать путем загибания проволоки провода. В пике напряжение всегда выше изначального, так как ток переменный. Поэтому для создания вторичной обмотки достаточно ста пятидесяти витков. При правильно выполненном процессе работ получится разряд в один сантиметр (если выводы катушек сближены). Если же выводы развести в стороны, то получится заметная дуга. Нижний вывод катушки необходимо заземлить.

В связи с фиксированной емкостью конденсатора, настройка схемы производится путем коррекции сопротивления обмотки первичной. При этом меняется точка подключения к ней. Если настройки выполнены правильно, то верхняя часть обмотки вторичной будет иметь достаточно высокое напряжение. Это вызовет большие разряды в воздухе. Если сравнивать обычные трансформаторы, то можно сделать такой вывод: соотношение витков обмоток (первичной и вторичной) не оказывает влияние на напряжение.

Бестопливный генератор можно собрать по схеме, предложенной в техническом справочнике. В интернете также можно найти полезную информацию. Новичкам процесс поначалу покажется сложным. Рабочую катушку можно получить, сделав небольшие расчеты. Помогут также инструкции специалистов.

Бестопливный генератор также можно собрать, используя следующие детали: фольгу алюминиевую, конденсатор с напряжением 160 — 400 Вольт, резистор, штырь металлический, провода, лист ДВП или картона. Процесс изготовления заключается в следующем:

1. Забить в землю металлический штырь.

2. Прикрепить один конец провода к штырю.

3. Прикрепить второй конец провода к конденсатору.

4. Прикрепить лист фольги к листу картона или ДВП и подсоединить к нему провод, идущий к конденсатору.

5. Припаять к конденсатору ограничительный резистор во избежание пробоя диэлектрика.

Прежде чем изготавливать бестопливный генератор Тесла самостоятельно, рекомендуется ознакомиться с техникой безопасности при работе с высоким напряжением.

fb.ru

Бестопливный двигатель | Банк патентов

Использование: в качестве привода вращения. Двигатель состоит из диска (маховика), закрепленного на оси. На нем закреплены один или несколько постоянных магнитов ротора, которые вместе с диском (маховиком) могут свободно вращаться вокруг оси. Параллельно рабочему диску (маховику) двигателя на штоке закреплен неподвижно цилиндрический постоянный магнит стопора, который вместе со штоком может перемещаться в зону действия магнитных полей постоянных магнитов ротора, расположенных на рабочем диске. Все магниты обращены друг к другу одноименными полюсами. Одноименные полюса отталкиваются и заставляют рабочий диск двигателя вращаться вокруг оси. Двигатель работает от энергии сильных магнитных полей постоянных магнитов за счет разницы потенциалов магнитной энергии на полюсах магнитов ротора и их нейтральных зонах. Технический результат заключается в том, что для создания вращения потребление топлива минимально. 2 ил.

,

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Наиболее близким по технической сущности к предлагаемому решению является магнитный двигатель (вибратор), включающий статор в виде кольцевого постоянного магнита и ротор (якорь) в виде стержневого постоянного магнита, размещенного внутри статора в одной с ним плоскости, с возможностью взаимодействия между ними одноименными полюсами (а. с. СССР N 1658310, H 02 K 33/00, 1988 г.). Его недостаток в том, что ему нужен подвод электроэнергии. Целью предлагаемого изобретения является создание экологически чистого, без выхлопных газов двигателя, не требующего потребления топлива и подвода энергии извне, не загрязняющего атмосферу воздуха и окружающую среду. Двигатель будет работать от энергии сильных магнитных полей постоянных магнитов, расположенных на двигателе. Постоянные магниты длительное время сохраняют свои сильные магнитные поля и могут многократно намагничиваться. Стабильность магнитных полей постоянных магнитов сохраняется и при работе двигателя благодаря непрерывному вращению, т.е. движению отрицательно заряженных электронов по своим замкнутым орбитам вокруг ядра атома вещества, из которого построены магниты. При своем вращении по замкнутым орбитам электроны создают круговые электрические токи, вокруг которых по закону магнетизма и возникает магнитное поле, являющееся неотделимым спутником всякого тока. А вследствие этого и происходит непрерывное преобразование и пополнение магнитной энергией в постоянных магнитах. Вот почему и сохраняется стабильность магнитных полей и при работе двигателя. Поэтому бестопливному двигателю и не требуется топливо и подвода энергии извне. Бестопливный двигатель может быть различной мощности, которая определяется тремя факторами: 1. Увеличение рабочего плеча двигателя. Достигается это за счет увеличения диаметра статора и соответственно с ним диаметра ротора двигателя. 2. Использование постоянных магнитов с более мощными магнитными полями. 3. Увеличение массы диска, который является еще и маховиком двигателя. А так как диск двигателя способен развивать до двадцати тысяч оборотов в минуту, то даже при небольшом увеличении массы диска (маховика) вращающий его момент будет соответственно усиливаться, одновременно с этим будет увеличиваться и мощность двигателя. Экологически чистый бестопливный двигатель может быть широко использован в автомобилестроении, тракторостроении, авиации, космосе, в подводном транспорте, в энергетике, в коммунальном хозяйстве и во многих других отраслях народного хозяйства. Работа двигателя. На схеме 1 изображен общий вид рабочего диска двигателя, закрепленного на рабочей оси (вид сверху). На плоскости диска может быть установлен и закреплен один или несколько постоянных магнитов. В данном варианте, как показано на схеме, на плоскости диска закреплены неподвижно два постоянных магнита (N 2, N 3), которые вместе с диском могут свободно вращаться на оси диска. Параллельно рабочему диску двигателя на штоке закреплен неподвижно постоянный магнит N 1, который вместе со штоком может перемешаться в зону действия магнитных полей магнитов (N 2, N 3). Все магниты (N 1, N 2, N 3) обращены друг к другу одноименными полюсами. Поэтому при введении магнита N 1 при помощи штока в зону действия магнитов (N 2, N 3) их магнитные поля полюсов N вступают во взаимодействия. Они складываются, а их результирующий отталкивающий момент усиливается. При этом возникают в горизонтальной плоскости силы отталкивания у магнита N 1 (статора), направленные радиально к поверхностям конических торцов полюсов N магнитов N 2 и N 3 (ротора). А так как диск с магнитами N 2 и N 3 имеет степень свободы и может свободно вращаться вокруг оси, то под влиянием отталкивающей силы магнита N 1 (статора), действующей на поверхности конических торцов полюсов N (ротора) и заставляет диск поворачиваться по кругу. Вследствие этого и происходит непрерывное вращение диска, т.е. (ротора) вокруг оси. Вращение диска с магнитами N 2 и N 3 происходит, как показано на схеме, по направлению часовой стрелки. Выключение работы бестопливного двигателя происходит при выводе магнита N 1 из зоны действия магнитного поля магнитов N 2 и N 3. При конструировании магнитов диска необходимо иметь ввиду то, что длина магнита должна быть такой, чтобы в центре его нейтральной зоны оставалась намагниченность, близкая к нулю. Это позволит соблюдать разницу потенциалов магнитной энергии (намагниченности) между полюсами магнита и его нейтральной зоны, так как за счет этой разницы потенциала магнитной энергии и происходит непрерывное вращение рабочего диска двигателя. На схеме 2 изображен второй вариант магнитного двигателя, где показан манит N 1 (статор), имеющий форму круга закрепленного на опоре. Параллельно магниту N 1 расположен подковообразный магнит N 2 (ротор), который закреплен на диске со штоком. Полюса N и S магнита N 2 имеют конусообразную форму под углом 40-45 градусов. Диск с магнитом N 2 при помощи штока может подыматься и опускаться к поверхности торца полюса N магнита N 1. Магниты N 1 и N 2 направлены друг к другу одноименными полюсами. При опускании магнита N 2 при помощи штока к поверхности торца полюса N магнита N 1 на близкое расстояние их магнитные поля полюсов N вступают во взаимодействия. Они складываются, их результирующий отталкивающий момент усиливается. При этом возникают силы отталкивания у торца полюса N магнита N 1 (статора) в вертикальном направлении, вдоль оси, направленные к поверхности конического торца полюса N магнита N 2 (статора). А так как диск с магнитом N 2 имеет степень свободы и может свободно вращаться вокруг оси, то под влиянием отталкивающей силы торца полюса N магнит N 1 (статора), действующей на коническую поверхность торца полюса N (ротора) и заставляет диск поворачиваться по кругу. Вследствие этого и происходит непрерывное вращение диска двигателя, т.е. (ротора) вокруг оси по направлению часовой стрелки. Включение работы бестопливного двигателя происходит при выводе магнита N 2 из зоны действия магнитного поля магнитов N 1 при помощи штока. Использование экологически чистого бестопливного двигателя избавит от загрязнения выхлопными газами и другими вредными веществами атмосферу воздуха и окружающую среду нашей планеты.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Двигатель для получения вращательного движения, содержащий закрепленный параллельно постоянному магниту ротора постоянный магнит статора, имеющий возможность перемещаться в зону действия магнитного поля постоянного магнита ротора, отличающийся тем, что постоянный магнит статора неподвижно закреплен на штоке, при помощи которого он вводится в зону действия магнитных полей постоянных магнитов ротора, выполненного в виде диска (маховика), на котором установлен один или несколько, обращенных одноименными полюсами к постоянному магниту статора подковообразных магнитов ротора, длина которых выбрана такой, чтобы в центре нейтральной зоны оставалась намагниченность, близкая к нулю, что обеспечит отталкивание одноименных полюсов статора и ротора при введении постоянного магнита статора, неподвижно закрепленного на штоке в зону действия постоянного магнита ротора, и в результате взаимодействия магнитного поля постоянного магнита ротора с магнитным полем одноименного полюса постоянного магнита статора именно за счет их отталкивания обеспечено вращение ротора.

bankpatentov.ru

автомобиль и самолет могут работать... на воздухе

 

Бестопливный двигатель: автомобиль и самолет могут работать... на воздухе

Энергетика и промышленность России - избранные материалы. ВЫПУСК 148.

http://subscribe.ru/archive/media.news.press.epr/200505/27060944.html

Б. М. КОНДРАШОВ

В прошлом номере газеты мы опубликовали анонс статьи Б. М. Кондрашова (см. выпуск 145 настоящей рассылки), посвященной давно открытому, но так и не нашедшему применения способу получения энергии воздушной среды. В отличие от традиционных ветродвигателей, устройства, основанные на струйных энергетических технологиях, значительно экономичнее и проще. Некоторые из этих устройств можно применять не только для генерации энергии на электростанциях, но и в различных транспортных средствах. Анонс вызвал недоумение у некоторых читателей. Мы получили отклики с просьбой объяснить, на каких принципах основан предложенный автором способ получения энергии. Мы выполняем просьбу, заранее извиняясь за, может быть, слишком сложную подачу текста. Увы, специфика материала такова, что передать его более простыми словами не представляется возможным. И тем не менее мы уверены, что он будет крайне интересен не только энергетикам, но и специалистам других отраслей: область применения струйных энергетических технологий необычайно широка.

Неравномерный нагрев газов, сжатых под действием гравитации, вызывает изменения давления в атмосфере, что нарушает ее равновесное состояние. При восстановлении его потенциальная и тепловая энергия воздуха преобразуются в кинетическую энергию воздушных потоков, доступную для использования. На этом принципе основано действие ветродвигателей, которые выполняют механическую работу без потребления кислорода и выработки продуктов сгорания. Однако у таких двигателей есть недостатки - низкая плотность энергии на единицу рабочей площади и неуправляемость процесса.

Но нарушать равновесное состояние атмосферы для преобразования потенциальной энергии воздушных масс в кинетическую можно и за счет управляемых воздействий. Например - в эжекторных устройствах. При воздействии пульсирующей активной струей в эжекторном насадке периодически создается разрежение, при котором за счет неуравновешенной силы атмосферного давления вслед за каждым импульсом активной струи ускоряется воздух.

О. И. Кудриным, одним из авторов открытия «Явление аномально высокого прироста тяги в газовом эжекционном процессе с пульсирующей активной струей», зарегистрированного в 1951 г., проведены экспериментальные исследования, показавшие эффективность этого процесса. К сожалению, открытие не получило широкого применения. Вероятно, - потому, что изначально исследования были направлены на получение реактивной тяги (дополнительной к тяге винтовых движителей поршневых авиационных двигателей).

Следует отметить, что если процесс присоединения дополнительных масс применяется для увеличения тяги реактивного движителя, то большая часть дополнительно полученной энергии не может быть использована для выполнения полезной работы - она неизбежно рассеивается в атмосфере.

Это стало препятствием для его внедрения в других отраслях, где кинетическую энергию воздушной массы, получаемую в результате управляемого преобразования энергии атмосферы, можно использовать более эффективно.

Рассмотрим четыре основных способа преобразования низкопотенциальной энергии внешней среды с использованием процесса последовательного присоединения.

Первый способ. Низкопотенциальная энергия атмосферы преобразуется в струйном двигателе с эжекторным сопловым аппаратом и рабочим телом, получаемым при сгорании топлива в камере периодического сгорания. В данном случае процесс присоединения состоит из повторяющихся с заданной периодичностью двух последовательных термодинамических циклов. В каждом цикле имеется свой источник энергии и рабочее тело. В первом цикле (при сгорании топлива в постоянном объеме камеры) энергия продуктов сгорания, истекающих из реактивного сопла, преобразуется в кинетическую энергию первой части реактивной массы, которая движется в эжекторном насадке как газовый поршень и создает вслед за собой разрежение, а при истечении воздействует на лопатки турбины, создавая момент на валу.

За счет полученного в насадке разрежения источником энергии во втором цикле становится потенциальная и тепловая энергия сжатого силой гравитации атмосферного воздуха. Он под действием разности давлений втекает в насадок, расширяясь, охлаждаясь и ускоряясь как и в природном атмосферном процессе, но - в заданном направлении. При истечении из эжекторного насадка он образует вторую часть реактивной массы с расчетными термодинамическими параметрами, также воздействующую на лопатки.

В результате преобразования энергии низкопотенциального источника в предыдущем периоде создаются условия для повышения эффективности преобразования энергии высокопотенциального источника в следующем периоде.

Таким образом, периодическое нарушение равновесного состояния атмосферы в эжекторном насадке воздействием пульсирующей активной струи создает в нем с заданной частотой разность потенциалов давлений, обеспечивающую, при восстановлении равновесного состояния, ускорение присоединяемых воздушных масс и увеличение скорости активной струи. А в результате объединенная масса воздействует на лопатки турбины с возросшей (по сравнению с кинетической энергией активной струи) кинетической энергией, увеличивая момент на ее валу без дополнительных затрат топлива.

Эксперименты показали, что кинетическая энергия объединенной реактивной массы значительно больше, чем кинетическая энергия активной струи. При эжектировании атмосферного воздуха пульсирующей струей продуктов сгорания О. И. Кудриным был получен прирост реактивной силы до 140%, т.е. тяга увеличилась в 2,4 раза. Кинетическая энергия объединенной реактивной массы при этом может быть увеличена более чем в 10 раз по сравнению с кинетической энергией активной струи, так как в зависимости от параметров процесса присоединения может увеличиваться не только реактивная масса, но и ее скорость. Причем полученная кинетическая энергия не рассеивается в атмосфере, как при создании реактивной тяги движителя, а практически полностью используется для воздействия на лопатки турбины. Следовательно, большая часть мощности получается за счет преобразования потенциальной энергии и низкопотенциальной теплоты сжатых под действием гравитации газов в кинетическую энергию воздушной массы, создающей момент на силовом валу.

Сегодня возможности повышения эффективности традиционных ГТД (со сгоранием топлива при постоянном давлении) практически исчерпаны. А комбинированные двигатели могут быть на порядок экономичнее традиционных (с соответствующим уменьшением выброса в атмосферу продуктов сгорания).

Второй способ. Проведенные эксперименты показали, что оптимальное значение скорости активной струи продуктов сгорания, необходимое для увеличения кинетической энергии объединенной массы в процессе присоединения, находится в диапазоне скоростей, которые можно получать, не используя для сжатого рабочего тела дополнительный подогрев (сжигание топлива) перед его расширеним в реактивном сопле.

Следовательно, продукты сгорания можно заменить сжатым воздухом, а камеру сгорания -пневмоаккумулятором. Кинетическая энергия объединенной массы и в этом случае будет больше кинетической энергии активной струи не менее чем 2,4 раза и, - соответственно закону сохранения энергии, - больше потенциальной энергии, необходимой для получения рабочего тела - сжатого воздуха, образующего эту пульсирующую активную струю при расширении.

Совершенно очевидно, что такой баланс энергии позволяет сжимать атмосферный воздух в компрессоре за счет мощности, полученной в результате процессов преобразований энергии атмосферы в предыдущих периодах, т. е. использовать обратный цикл Карно (цикл воздушного теплового насоса - холодильной машины), осуществляя привод компрессора за счет преобразованной энергии атмосферы.

При этом суммарные технологичекие энергозатраты и потери при процессе преобразований в турбине и сжатия воздуха в компрессоре, а также прочие потери энергии не превышают 25% от получаемой кинетической энергии объединенной реактивной массы. В основном величина этих потерь зависит от КПД турбины и может составлять 15-20%, а удельный вес потерь в компрессоре незначителен.

Для компенсации технологических энергозатрат и потерь достаточно увеличить кинетическую энергию в результате процесса присоединения дополнительных масс на 44%. Т.е. для самоподдержания этого процесса кинетическая энергия объединенной массы должна быть больше кинетической энергии активной струи лишь в 1,44 раза. Полученная сверх этого энергия может быть использована внешними потребителями.

Согласно второму началу термодинамики, не вся энергия одного неисчерпаемого источника преобразуется в работу – часть превращается в теплоту. А при механическом сжатии рабочего тела - в высокопотенциальную теплоту, температуру которой можно регулировать в зависимости от степени сжатия и охлаждения рабочего тела перед расширением и использовать, например, в системах отопления. Температура высокопотенциального рабочего тела, а также низкопотенциального воздуха при расширении и выполнении работы понижается. Управляя количеством атмосферного и холодного отработавшего воздуха, возвращаемого в эжекторные насадки в качестве присоединяемых масс следующих периодов, можно получать отработавшую воздушную массу необходимой температуры - например, для использования в системах кондиционирования. Если отработавший в одном устройстве присоединения или эжекторном сопловом аппарате воздух направлять в качестве присоединяемых масс в другое устройство или следующий сопловой аппарат, то его можно охлаждать до сверхнизких температур, используемых в криогенной технике.

Данный бестопливный способ преобразования энергии атмосферы отличается от способа ее преобразования в традиционных ветродвигателях управляемостью процесса создания воздушной струи, воздействующей на лопасти (лопатки), и высокой плотностью энергии на единицу рабочей площади. Устройства для осуществления этого способа - атмосферные бестопливные струйные двигатели. Их эффективность по сравнению с известными ветровыми, солнечными и геотермальными преобразователями энергии не зависит от географических, временных и погодных условий, а удельная мощность значительно выше и сопоставима с удельной мощностью тепловых двигателей традиционных схем. Отсутствие жаростойких материалов и систем, связанных с использованием топлива, упрощает конструкцию и технологию производства, снижает себестоимость получения энергии.

Третий способ. Процесс последовательного присоединения можно использовать для получения мощности, высокопотенциальной теплоты и «холода» вне атмосферных условий, преобразуя низкопотенциальную тепловую энергию внешней среды в замкнутом термодинамическом цикле.

Представим, что атмосферный бестопливный струйный двигатель помещен в изолированный от внешней среды объем, заполненный газом - воздухом или гелием. При работе двигателя за счет охлаждения отработавшей массы в нем понизятся температура и давление. Параметры процесса присоединения изменятся настолько, что в какой-то момент кинетической энергии объединенной массы станет недостаточно для создания расчетной мощности компрессора, сжимающего рабочее тело для образования активной струи. В каждом цикле будет уменьшаться степень сжатия и, соответственно, скорость активной струи. Процесс присоединения постепенно «затухнет» и двигатель, «заморозившись», остановится.

Этого не произойдет, если изолированный объем используется в качестве низкотемпературного теплоприемника для истечения отработавшей газовой массы и соединен с теплообменным устройством, а выход этого устройства соединен с входами устройства присоединения и компрессора, образуя замкнутый контур. Под действием неуравновешенной силы давления газов, возникающей при создании разрежения за газовой массой импульсов активной струи, часть отработавшей газовой массы из этого объема направляется в теплообменное устройство. В нем, получая тепло и понижая температуру внешней среды, она нагревается до температуры, необходимой для выполнения функции присоединяемых масс следующих периодов. Другая часть газовой массы через теплообменное устройство (или минуя его) направляется в компрессор для сжатия и дальнейшего использования в качестве высокопотенциального рабочего тела.

В результате нагрева отработавшей газовой массы в теплообменном устройстве процесс последовательного присоединения в струйных двигателях с замкнутым циклом продолжается сколь угодно долго и независимо от давления внешней среды, которая при этом выполняет функции нагревателя - источника теплоты, преобразуемой в работу.

Отличие бестопливных двигателей с замкнутым от двигателей с разомкнутым циклом заключается в организации теплообмена с внешней средой и возможности варьировать давление и температуру в теплоприемнике. Причем эффективность этих двигателей в значительной степени зависит от разности температур между источником теплоты внешней среды и теплоприемником перед нагревом отработавшей газовой массы, используемой в следующих периодах. Варьируя параметры процесса присоединения, а также давление и температуру в теплоприемнике и перед повторным использованием отработавшей массы, можно управлять мощностью двигателя и расширять диапазон температуры используемых источников теплоты внешней среды до отрицательных температур.

На основе струйных двигателей с замкнутым циклом можно создавать воздухонезависимые бестопливные энергетические системы, способные работать за счет низкопотенциальной теплоты в различных экстремальных условиях.

Четвертый способ. В двух предыдущих бестопливных способах преобразования низкопотенциальной энергии внешней среды рабочее тело для получения активной струи сжимали в механическом компрессоре.

Рассмотрим варианты использования рабочего тела без механического сжатия - при его ускорении в результате нагрева за счет теплоты различных источников энергии. Например, низкопотенциальным теплом внешней среды в замкнутом объеме пневмоаккумулятора. В этом случае необходимое давление в пневмоаккумуляторе может быть получено за счет его заполнения отработавшей в предыдущих периодах низкотемпературной массой, а расчетная разность температур перед ее нагревом теплотой внешней среды достигается за счет многократного использования отработавшей массы в процессе присоединения (в двигателях с замкнутым циклом - без промежуточного подогрева в теплообменнике).

Нагревать отработавшую массу нужно по меньшей мере в двух пневмоаккумуляторах, которые должны поочередно соединяться со струйным устройством после нагрева и отсоединяться для удаления остатков нагретого рабочего тела очередного заполнения низкотемпературной отработавшей массой.

В двигателях с открытым циклом при расширении удаляемых остатков можно выполнять полезную работу.

Для данного варианта нагрева необходимы большой объем пневмоаккумуляторов и большая площадь рабочей поверхности теплообменного устройства. Поэтому он может применяться в энергетических установках, где объем и масса не играют существенной роли, и не может - в двигателях большинства транспортных средств.

В другом варианте - при использовании электрореактивного устройства для образования активной струи - низкотемпературную массу в пневмоаккумуляторе нужно нагревать лишь до минимального уровня давления или использовать иной способ, обеспечивающий поступление рабочего тела в это устройство с целью последующего ускорения за счет электроэнергии, генерируемой в предыдущих периодах. Для ускорения рабочего тела в импульсном электрореактивном устройстве можно применять различные методы (термоэлектрический, электромагнитный и т. д.). При использовании такого устройства в процессе последовательного присоединения увеличивается скорость активной струи и удельная мощность бестопливного бескомпрессорного струйного двигателя.

Если за счет мощности, полученной в результате преобразований низкопотенциальной энергии внешней среды, генерировать электроэнергию для ускорения активной струи и одновременно для внешнего использования, то получается универсальный источник электроэнергии с неограниченной сферой применения. Основное преимущество такого способа - простота конструкции, надежность и высокая удельная мощность двигателей для его реализации – качества, необходимые большинству двигателей транспортных средств, а особенно авиационным двигателям.

В заключение необходимо отметить, что не вся теплота внешних источников преобразуется в работу, часть ее (согласно второму началу термодинамики) в разной степени, но во всех перечисленных способах рассеивается во внешней среде при процессе преобразования энергии. Важно подчеркнуть: реактивная тяга и кинетическая энергия объединенной массы, получаемые в результате процесса последовательного присоединения, больше тяги и кинетической энергии активной струи. Это утверждение подтверждено и экспериментально, и методами численного моделирования. На нем основаны рассмотренные бестопливные способы преобразования низкопотенциальной энергии внешней среды. Принцип увеличения кинетической энергии одинаков во всех способах. Величина прироста кинетической энергии зависит от соотношений основных параметров процесса последовательного присоединения, а также соотношения конструктивных параметров и пропорций эжекторного устройства.

Таким образом, использование процесса последовательного присоединения дополнительных масс в энергетических системах позволяет без ущерба для экологии преобразовывать неисчерпаемую, даровую природную энергию в любом месте и независимо от условий внешней среды в необходимый вид энергии, доступный для потребления непосредственно в местах выработки.

Бестопливные струйные двигатели могут иметь широкий диапазон мощностей и сферы применения. В зависимости от используемых циклов и назначения они способны работать в любых условиях внешней среды: в атмосфере, космосе, под водой. Их производство проще аналогичных традиционных, кроме того, оно возможно на большинстве машиностроительных предприятий.

 

Статьи других авторов

На главную

 

 

vitanar.narod.ru


Смотрите также