ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Комбинированный атомный авиационный двигатель. Атомный авиационный двигатель


Комбинированный атомный форсажный авиационный двигатель

Комбинированный атомный форсажный авиационный двигатель содержит двухкаскадный газотурбинный двигатель с внутренним и внешним валами и компрессорами низкого и высокого давления, камерой сгорания, к которой подведен топливный трубопровод от топливного насоса, турбиной, имеющей систему охлаждения, и сверхзвуковым реактивным соплом с коническим обтекателем внутри него. За турбиной на внутреннем валу двигателя установлен двигатель Стерлинга, который содержит, по меньшей мере один рабочий цилиндр, установленный за турбиной по потоку, и, по меньшей мере, один расширительный цилиндр, установленный за рабочим цилиндром по потоку. Перед рабочим цилиндром установлен теплообменник, соединенный трубопроводами рециркуляции с ядерным реактором. Каждый расширительный цилиндр имеет кожух, образующий с этим цилиндром охлаждающую полость. Вход в охлаждающую полость соединен с выходом воздухоподводящего патрубка, вход которого соединен через регулятор расхода и теплообменник-охладитель с полостью между компрессорами низкого и высокого давлений. Выход из охлаждающей полости соединен с полостью за двигателем Стерлинга. Между двигателем Стерлинга и сверхзвуковым реактивным соплом выполнена форсажная камера, внутри которой установлен форсажный теплообменник, соединенный трубопроводами рециркуляции, в одном из которых установлен насос рециркуляции с форсажным теплообменником. Сверхзвуковое реактивное сопло выполнено регулируемым, с возможностью изменения площади критического сечения. Конический обтекатель частично установлен внутри дозвуковой части реактивного сопла. Изобретение направлено на повышение кпд. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к авиадвигателестроению.

Известен авиационный комбинированный двигатель по заявке РФ на изобретение №2002115896, содержащий ГТД и ракетный двигатель.

Недостаток - очень большой расход топлива, потребляемый ракетным двигателем.

Известен авиационный ГТД по патенту РФ №2211935, прототип, содержащий компрессор, камеру сгорания, турбину и реактивное сопло.

Недостаток - низкий КПД и как следствие большой удельный расход топлива.

Задача создания изобретения - значительное повышение КПД двигателя в широком диапазоне режимов работы.

Решение указанных задач достигнуто в комбинированном атомном форсажном авиационном двигателе, содержащем двухкаскадный газотурбинный двигатель с внутренним и внешним валами и компрессорами низкого и высокого давления, камерой сгорания, к которой подведен топливный трубопровод от топливного насоса, турбиной, имеющей систему охлаждения, и сверхзвуковым реактивным соплом с коническим обтекателем внутри него, отличающийся тем, что за турбиной на внутреннем валу двигателя установлен двигатель Стерлинга, который содержит, по меньшей мере один рабочий цилиндр, установленный за турбиной по потоку и, по меньшей мере, один расширительный цилиндр, установленный за рабочим цилиндром по потоку, при этом перед рабочим цилиндром установлен теплообменник, соединенный трубопроводами рециркуляции с ядерным реактором, каждый расширительный цилиндр имеет кожух, образующий с этим цилиндром охлаждающую полость, вход в охлаждающую полость соединен с выходом воздухоподводящего патрубка, вход которого соединен через регулятор расхода и теплообменник-охладитель с полостью между компрессорами низкого и высокого давлений, выход из охлаждающей полости соединен с полостью за двигателем Стерлинга, между двигателем Стерлинга и сверхзвуковым реактивным соплом выполнена форсажная камера, внутри которой установлен форсажный теплообменник, соединенный трубопроводами рециркуляции, в одном из которых установлен насос рециркуляции с форсажным теплообменником, сверхзвуковое реактивное сопло выполнено регулируемым, с возможностью изменения площади критического сечения, а конический обтекатель частично установлен внутри дозвуковой части реактивного сопла. Второй вход теплообменника-охладителя соединен с полостью за компрессором высокого давления, а второй выход соединен с входным коллектором системы охлаждения турбины. Форсажный теплообменник выполнен кольцевым.

Предложенное техническое решение обладает новизной, изобретательским уровнем и промышленной применимостью, что подтверждается проведенными патентными исследованиями. Для реализации изобретения достаточно применения известных узлов и деталей, ранее разработанных и реализованных в конструкции газотурбинных двигателей и в машиностроении.

Сущность изобретения поясняется на фиг.1…3, где:

на фиг.1 приведена схема авиационного двигателя,

на фиг.2 приведена схема двигателя Стерлинга,

на фиг.3 приведен разрез А-А,

на фиг.4 приведена схема сверхзвукового реактивного сопла, пунктиром показано полностью открытое положение (максимальная площадь критического сечения).

Предложенное техническое решение (фиг.1) содержит газотурбинный двигатель ГТД 1, который выполнен двухвальным и содержит внутренний вал 2 и внешний вал 3, компрессор, состоящий, в свою очередь из компрессор низкого давления 4, и компрессор высокого давления 5. К выходу из компрессора высокого давления 5 трубопроводом 6 подключен теплообменник-охладитель 7, выход из которого соединен с системой охлаждения турбины, описанной далее. За компрессором высокого давления 5 расположены камера сгорания 8, турбина 9, содержащую в свою очередь сопловой аппарат 10 и рабочее колесо 11 и систему охлаждения турбины с входным коллектором системы охлаждения 12 турбины 9. Коллектор системы охлаждения 12 турбины 9 сообщается с внутренними полостями соплового аппарата 10 и рабочего колеса 11 и установлен над сопловым аппаратом 10. Газотурбинный двигатель 1 содержит систему топливоподачи с топливным насосом 13, топливный трубопроводы 14, подсоединенный к камере сгорания 8. Далее по потоку установлена форсажная камера 15, сверхзвуковое реактивное сопло 16 с обтекателем конической формы 17 внутри него.

Отличительной особенностью силовой установки является наличие двигателя Стерлинга 18 за турбиной 9, т.е. за ее рабочим колесом 11.

Двигатель Стирлинга 18 состоит из двух частей: группы рабочих цилиндров 19 и группы расширительных цилиндров 20, которые соединены трубопроводами 21. Группу расширительных цилиндров 20 предпочтительно установить вне газового тракта ГТД, например, полностью или частично в обтекателе 16.

На фиг.2 и 3 приведена схема одного из вариантов исполнения двигателя Стерлинга 18, который содержит группу рабочих цилиндров 19, имеющих оребрение 22 с установленным внутри каждого из них в полости «Б» рабочим поршнем 23, который шатуном 24 соединен с валом двигателя 8, и группу расширительных цилиндров 20 с установленным внутри каждого из них в полости «В» вытеснительным поршнем 25. Каждый расширительный цилиндр 20 оборудован снаружи кожухом 26, образующим полость «Г» для охлаждения расширительного цилиндра 20. Вытеснительный поршень 25 соединен шатуном 27 с валом двигателя 2. Трубопровод 21 соединяет полости «Б» и «В» для перетекания рабочего тела из рабочего цилиндра 19 в расширительный цилиндр 20. К полости «Г» подсоединены выходы воздухоподводящих трубопроводовв 28, а выхлопные трубопроводы 29 соединяют полость «Г» с внутренней полостью «Д» реактивного сопла 15 (фиг.1). Входы воздухоподводящих трубопроводов 28 через регулятор расхода 29, имеющий привод 30, соединены с полостью за компрессором низкого давления 5.

Перед рабочим цилиндром 19 (рабочими цилиндрами 19) установлен теплообменник 31, который трубопроводами рециркуляции 32 и 33, в одном из которых установлен насос рециркуляции 34, соединен с ядерным реактором 35. Внутри форсажной камеры 15 установлен форсажный теплообменник 36, который трубопроводами рециркуляции 37 и 38, в одном из которых установлен насос рециркуляции 39, соединен с ядерным реактором 35. Форсажный теплообменник 36 может быть выполнен кольцевым.

Авиационный двигатель оборудован блоком управления 40 и датчиками частоты вращения внутреннего и внешнего валов, соответственно 41 и 42. С блоком управления 40 электрическими связями 43 соединены датчики частоты вращения 41 и 42 и насос 13 и привод 30.

На фиг.4 приведено сверхзвуковое реактивное сопло 16 с коническим обтекателем 17. Сверхзвуковое реактивное сопло 16 содержит дозвуковую часть 44, критическое сечение 45 и сверхзвуковую часть 46. Конический обтекатель 17 частично расположен внутри дозвуковой части 44 сверхзвукового реактивного сопла 16. Это уменьшает аэродинамические потери на нем. Сверхзвуковое реактивное сопло 16 состоит из отдельных лепестков 47, перекрывающих друг друга и уплотненных между собой (на фиг.1…4 уплотнения не показаны). К критическому сечению 45 присоединен привод (приводы) сопла 48, который (которые) предназначен(ы) для регулирования площади критического сечения 45.

При работе при помощи стартера (на фиг.1…4 не показан) запускается ГТД 1, при этом включается насос 13, который подает топливо по топливному трубопроводу 14 в камеру сгорания 8.

Топливо воспламеняется при помощи электрозапальника (на фиг.1…3 не показано). Выхлопные газы проходят через турбину 9. Рабочее колесо турбины 10, с внешним валом 3 газотурбинного двигателя 1 раскручиваются, т.е. ГТД 1 запускается.

Двигатель Стерлинга 18 запускается значительно позже из-за его инерционности. Шатуны 24 и 27 и поршни 23 и 25 двигателя Стерлинга приводятся в действие при помощи внутреннего вала 2 газотурбинного двигателя 1 от компрессора первого каскада 4, который раскручивается в режиме авторотации воздухом, проходящим через него. Механизм преобразования вращательного движения в возвратно-поступательное (этот механизм на фиг.1…3 детально не показан, но он может быть выполнен в виде коленчатого вала с шатунами) преобразует вращательное движение внутреннего вала 2 в возвратно-поступательное движение поршней 23 и 26 двигателя Стирлинга 18. Выхлопные газы нагревают через оребрение 22 рабочее тело внутри рабочих цилиндров 19. Для работы двигателя Стирлинга достаточно иметь разницу температур на двух группах цилиндров 19 и 20. Первоначально двигатель Стирлинга работает принудительно и не выдает мощность, а наоборот ее потребляет. Примерно через 5…10 мин по мере прогрева рабочего тела внутри рабочих цилиндров 19 двигателя Стирлинга он выходит на расчетный режим работы. Медленный выход двигателя Стирлинга на расчетный режим работы является одним из его недостатков, но высокий КПД, надежность и хорошие экологические свойства в сочетании с ГТД, имеющим хорошие характеристики запуска, делает предложенный двигатель чрезвычайно интересным по всем показателям одновременно, т.к. позволит частично утилизировать тепло в реактивном сопле и применить вместо 4-х…5 ступеней турбины только одну ступень.

Воздух, отбираемый из-за компрессора низкого давления 4, по трубопроводу 6 поступает в теплообменник-охладитель 7, где охлаждается и поступает во входной коллектор системы охлаждения 12 турбины 9. Это позволило увеличить температуру газов перед турбиной и повысить его КПД. Воздух, отбираемый воздухоподводящим трубопроводом 28, проходит теплообменник 7, регулятор расхода 29 и поступает в полость «Г» внутри кожуха 26 для охлаждения расширительного (расширительных) цилиндров 20.

После выхода на режим газотурбинной части авиационного двигателя запускают ядерный реактор 35, включают насос теплоносителя 34 и теплоноситель по трубопроводу рециркуляции 33 подается в теплообменник 31, где подогревает продукты сгорания на входе в двигатель Стирлинга 18. Мощность двигателя увеличивается примерно в 2 раза, также возрастает его экономичность за счет увеличения температуры, при которой подводится тепло в цикле.

Второй особенностью комбинированного атомного авиационного двигателя является наличие его системы регулирования при помощи регулятора расхода. Регулирование расхода теплоносителя, подаваемого в теплообменник 31 посредством насоса теплоносителя 34, недостаточно эффективно и приводит к ухудшению экомичности двигателя в целом из-за подвода тепла при относительно низком давлении и низкой эффективности расширительных цилиндров 20, в которые поступает небольшой расход воздуха, имеющий достаточно высокую температуру. Регулятором расхода 29 можно увеличить расход охлаждающего воздуха, поступающего на охлаждение расширительных цилиндров 20. Регулирование режима работы двигателя Стирлинга необходимо для того, чтобы обеспечить его работу вместе с первым каскадом компрессора (компрессором низкого давления) в режиме оптимальных КПД (на расчетном режиме). Это необходимо потому, что в отличие от стационарных газотурбинных установок авиационные двигатели эксплуатируются в широком диапазоне температур окружающего воздуха (от +40 до -76°C) и при давлении от 1 кгс/см2 практически до вакуума на высоте полета самолета от 10000 м до 25000 м.

Для значительного увеличения силы тяги (примерно в 2,0…2,5 раза насосом теплоносителя подают теплоноситель в форсажный теплообменник 36, который подогревает продукты сгорания перед сверхзвуковым реактивным соплом до 1500…2200°C. Одновременно увеличивают (примерно пропорционально температуре продуктов сгорания) площадь критического сечения 45 реактивного сопла 16 (фиг.4). Если этого не сделать, то в связи с ростом температуры продуктов сгорания уменьшается плотность газа (продуктов сгорания). Это приведет к росту давления в форсажной камере 15 и снижению перепада давления, а следовательно, реализуемой мощности на турбине 9. Двигатель будет работать в режиме с низким КПД, а реактивная тяга возрастет незначительно.

Таким образом, двигатель может работать, как минимум, в четырех режимах:

- ядерный реактор не работает, топливная система работает;

- работает только ядерный реактор,

- работают ядерный реактор и топливная система одновременно,

- работает ядерный реактор, топливная система и форсажный теплообменник 36.

В результате использования утилизации тепла выхлопных газов в двигателе Стерлинга КПД авиационного двигателя возрастает примерно на 10…17%.

Применение изобретения позволило:

1. Получить значительную силу тяги на форсажном режиме за счет использования форсажного теплообменника и одновременного увеличения критического сечения сверхзвукового реактивного сопла.

2. Значительно повысить мощность и КПД авиационного двигателя за счет использования для получения энергии на валу нагрузки, кроме ГТД двигателя Стерлинга, ядерного реактора и регулирования работы двигателя Стерлинга, для обеспечения его работы в режиме максимальных КПД и согласования работы газотурбинной части комбинированного двигателя и двигателя Стерлинга. Расположение конического обекателя частично в дозвуковой части сверхзвукового реактивного сопла уменьшает аэродинамические потери на нем за счет более низких скоростей газового потока (продуктов сгорания)

3. Согласовать работу ГТД и двигателя Стирлинга, имеющих разную инерционность, за счет применения двухкаскадного двухвального ГТД.

4. Обеспечить регулирование режима работы двигателя Стирлинга двумя способами: подачей теплоносителя в теплообменник 31 и управлением расходом охлаждающего воздуха регулятором 29.

5. Повысить надежность двигателя за счет его работы в четырех режимах, в зависимости от использования ядерного реактора, топливной системы и форсажной камеры, что позволяет при отказе одной из систем сохранить около 50% максимально возможной тяги двигателя и продолжить длительный полет и посадить самолет.

6. Облегчить запуск комбинированного авиационного двигателя за счет применения двухвальной схемы и запуска только одного, например, второго каскада.

7. Уменьшить количество ступеней турбины за счет того, что их функцию берет на себя в основном двигатель Стирлинга.

8. Снизить эмиссию токсичных веществ в атмосферу за счет того, что двигатель Стирлинга имеет значительно лучшие экологические показатели по сравнению с другими типами двигателей.

9. Снизить стоимость авиационного двигателя за счет уменьшения количества дорогостоящих ступеней турбины, лопатки и диски которых выполняются из жаропрочных сплавов, и упрощения схемы охлаждения турбины.

10. Уменьшить вес авиационного двигателя, что особенно важно в авиации.

11. Повысить надежность авиационного двигателя за счет отказа от нескольких ступеней турбины, рабочие лопатки которых являются самыми нагруженными деталями двигателя, ограничивающими его ресурс и в первую очередь влияющими на надежность двигателя, самолета и безопасность авиаперевозок.

1. Комбинированный атомный форсажный авиационный двигатель, содержащий двухкаскадный газотурбинный двигатель с внутренним и внешним валами и компрессорами низкого и высокого давления, камерой сгорания, к которой подведен топливный трубопровод от топливного насоса, турбиной, имеющей систему охлаждения, и сверхзвуковым реактивным соплом с коническим обтекателем внутри него, отличающийся тем, что за турбиной на внутреннем валу двигателя установлен двигатель Стерлинга, который содержит, по меньшей мере один рабочий цилиндр, установленный за турбиной по потоку и, по меньшей мере, один расширительный цилиндр, установленный за рабочим цилиндром по потоку, при этом перед рабочим цилиндром установлен теплообменник, соединенный трубопроводами рециркуляции с ядерным реактором, каждый расширительный цилиндр имеет кожух, образующий с этим цилиндром охлаждающую полость, вход в охлаждающую полость соединен с выходом воздухоподводящего патрубка, вход которого соединен через регулятор расхода и теплообменник-охладитель с полостью между компрессорами низкого и высокого давлений, выход из охлаждающей полости соединен с полостью за двигателем Стерлинга, между двигателем Стерлинга и сверхзвуковым реактивным соплом выполнена форсажная камера, внутри которой установлен форсажный теплообменник, соединенный трубопроводами рециркуляции, в одном из которых установлен насос рециркуляции с форсажным теплообменником, сверхзвуковое реактивное сопло выполнено регулируемым с возможностью изменения площади критического сечения, а конический обтекатель частично установлен внутри дозвуковой части реактивного сопла.

2. Комбинированный атомный форсажный авиационный двигатель по п.1, отличающийся тем, что второй вход теплообменника-охладителя соединен с полостью за компрессором высокого давления, а второй выход соединен с входным коллектором системы охлаждения турбины.

3. Комбинированный атомный форсажный авиационный двигатель по п.1 или 2, отличающийся тем, что форсажный теплообменник выполнен кольцевым.

www.findpatent.ru

Атомный авиационный двигатель Вики

Convair NB-36H — самолёт-лаборатория для испытания атомных реакторов в полёте, США Ядерный ПВРД Tory-IIC, США. О размерах можно судить по фигурам двух людей, находящихся сверху

Атомолёт — атмосферное летательное устройство (самолёт) с ядерной силовой установкой. Разработки данного класса летательных аппаратов велись в СССР и США в середине XX века, однако завершены не были, так как решить основные проблемы атомолёта не удалось.

История создания[ | код]

В процессе разработки должны были быть решены следующие инженерно-конструкторские задачи:

В СССР

Сверхдальний барражирующий бомбардировщик на базе Ту-95 (прорабатывались и варианты на основе машин от КБ Мясищева).

Ан-22ПЛО — сверхдальний маловысотный самолёт противолодочной обороны с ядерной силовой установкой. Разрабатывался согласно постановлению ЦК КПСС и СМ СССР от 26/10/1965 в ОКБ Антонова на базе Ан-22. Его силовая установка включала разработанный под руководством А. П. Александрова малогабаритный реактор с биозащитой, распределительный узел, систему трубопроводов и специальные ТВД конструкции H. Д. Кузнецова. Hа взлёте и посадке использовалось обычное топливо, а в полете работу СУ обеспечивал реактор. Расчётную продолжительность полета определили в 50 ч., а дальность полета — 27 500 км. В 1970 г. Ан-22 № 01-06 был оборудован точечным источником нейтронного излучения мощностью 3 кВт и многослойной защитной перегородкой. Позже, в августе 1972 г., на самолёте № 01-07 установили небольшой атомный реактор в свинцовой оболочке.

Лётные испытания[ | код]

В СССР и США проводились лётные испытания самолётов с размещённым на борту ядерным реактором, который не был подключён к двигателям: Ту-95 (Ту-95ЛАЛ) и B-36 (NB-36) соответственно. Лётные испытания предварялись серией наземных испытаний, в ходе которых изучалось влияние радиоактивного излучения на бортовое оборудование.

В СССР работу проводили совместно Лётно-исследовательский институт (ЛИИ) и Институт атомной энергии (ИАЭ). На Ту-95ЛАЛ была проведена серия лётных испытаний с работающим реактором, в ходе которых изучалось управление реактором в полёте и эффективность биологической защиты. В дальнейшем предполагалось создание двигателей, работающих от ЯСУ, однако, по причине остановки программы, такие двигатели не были созданы.[1][2].

Программы разработки атомолётов в США и СССР были закрыты в середине 1960-х годов. Развитие получили более дешёвые технологии: дозаправка в воздухе лишила этот проект преимущества неограниченного полёта, а баллистические ракеты большой дальности и высокой точности — идею большого бомбардировщика.

Уже в 2003 году военно-исследовательская лаборатория ВВС США профинансировала разработку атомного двигателя для беспилотного самолёта-разведчика Global Hawk с целью увеличить продолжительность полёта до нескольких месяцев[3]

Недостатки[ | код]

Доктор Герберт Йорк (англ. Herbert York), директор Defense Research (Rtd), один из руководителей программы атомолётов в США[4]:

Практически, я бы свёл всё к трём моментам, тесно связанным друг с другом:

Во-первых, самолёты иногда, бывает, падают. И сама по себе мысль о том, что где-то летает ядерный реактор, который вдруг может упасть, была неприемлемой.

Во-вторых, все эти прямоточные системы, прямоточные реакторы, непосредственная передача тепла, неизбежно приводили бы к выбросам радиоактивных частиц из хвоста самолёта.

И в-третьих — это сами лётчики. Вопрос их защиты стоял очень серьёзно.

См. также[ | код]

Ссылки[ | код]

Примечания[ | код]

ru.wikibedia.ru

Комбинированный атомный авиационный двигатель

Комбинированный атомный авиационный двигатель содержит двухкаскадный газотурбинный двигатель с внутренним и внешним валами и двумя каскадами компрессора, камерой сгорания, к которой подведен топливный трубопровод от топливного насоса, турбиной и реактивным соплом. За турбиной на внутреннем валу двигателя установлен двигатель Стирлинга, который содержит, по меньшей мере, один рабочий цилиндр, установленный за турбиной по потоку, и, по меньшей мере, один расширительный цилиндр, установленный за рабочим цилиндром по потоку. Перед рабочим цилиндром установлен теплообменник, соединенный трубопроводами рециркуляции с ядерным реактором. Каждый расширительный цилиндр имеет кожух, образующий с этим цилиндром охлаждающую полость. Вход в охлаждающую полость соединен с выходом воздухоподводящего патрубка, вход которого соединен через регулятор расхода с полостью компрессора. Выход из охлаждающей полости соединен с полостью внутри реактивного сопла. Все расширительные цилиндры частично или полностью установлены внутри обтекателя реактивного сопла. Изобретение направлено на повышение КПД авиационного двигателя при снижении его веса, стоимости и повышении надежности. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к авиадвигателестроению.

Известен авиационный комбинированный двигатель по заявке РФ на изобретение № 2002115896, содержащий ГТД и ракетный двигатель.

Недостаток - очень большой расход топлива, потребляемый ракетным двигателем.

Известен авиационный ГТД по патенту РФ № 2211935, прототип, содержащий компрессор, камеру сгорания, турбину и реактивное сопло.

Недостатки - низкий КПД и, как следствие, большой удельный расход топлива.

Задача создания изобретения, значительное повышение КПД двигателя.

Решение указанных задач достигнуто в комбинированном атомном авиационном двигателе, содержащем двухкаскадный газотурбинный двигатель с внутренним и внешним валами и двумя каскадами компрессора, камерой сгорания, к которой подведен топливный трубопровод от топливного насоса, турбиной и реактивным соплом, тем, что за турбиной на внутреннем валу двигателя установлен двигатель Стирлинга, который содержит, по меньшей мере, один рабочий цилиндр, установленный за турбиной по потоку, и, по меньшей мере, один расширительный цилиндр, установленный за рабочим цилиндром по потоку, при этом перед рабочим цилиндром установлен теплообменник, соединенный трубопроводами рециркуляции с ядерным реактором, каждый расширительный цилиндр имеет кожух, образующий с этим цилиндром охлаждающую полость, вход в охлаждающую полость соединен с выходом воздухоподводящего патрубка, вход которого соединен через регулятор расхода с полостью компрессора, выход из охлаждающей полости соединен с полостью внутри реактивного сопла. Все расширительные цилиндры частично или полностью установлены внутри обтекателя реактивного сопла.

Предложенное техническое решение обладает новизной, изобретательским уровнем и промышленной применимостью, что подтверждается проведенными патентными исследованиями. Для реализации изобретения достаточно применения известных узлов и деталей, ранее разработанных и реализованных в конструкции газотурбинных двигателей и в машиностроении.

Сущность изобретения поясняется на фиг.1…3, где:

на фиг.1 приведена схема авиационного двигателя,

на фиг.2 приведена схема двигателя Стирлинга,

на фиг.3 приведен разрез А-А.

Предложенное техническое решение (фиг.1) содержит газотурбинный двигатель ГТД 1, который выполнен двухвальным и содержит внутренний вал 2 и внешний вал 3, компрессор 4, состоящий в свою очередь из первого и второго каскадов компрессора соответственно 5 и 6, далее расположены камера сгорания 7, турбина 8, содержащая в свою очередь сопловой аппарат 9 и рабочее колесо 10. Валы 2 и 3 установлены на опорах 11. Газотурбинный двигатель 1 содержит систему топливоподачи с топливным насосом 12 и приводом топливного насоса 13, топливный трубопровод 14, кольцевой коллектор 15, к которому подключен топливный трубопровод 14, и далее камера сгорания 4. Далее по потоку установлено реактивное сопло 15 с обтекателем конической формы 16 внутри него, закрепленным ребрами 17.

Отличительной особенностью силовой установки является наличие двигателя Стирлинга 18 за турбиной 8, т.е. за ее рабочим колесом 10.

Двигатель Стирлинга 18 состоит из двух частей: группы рабочих цилиндров 19 и группы расширительных цилиндров 20, которые соединены трубопроводами 21. Группу расширительных цилиндров 20 предпочтительно установить вне газового тракта ГТД, например полностью или частично в обтекателе 16.

На фиг.2 и 3 приведена схема одного из вариантов исполнения двигателя Стирлинга 18, который содержит группу рабочих цилиндров 19, имеющих оребрение 22 с установленным внутри каждого из них в полости «Б» рабочим поршнем 23, который шатуном 24 соединен с валом 2 двигателя, и группу расширительных цилиндров 20 с установленным внутри каждого из них в полости «В» вытеснительным поршнем 25. Каждый расширительный цилиндр 20 оборудован снаружи кожухом 26, образующим полость «Г» для охлаждения расширительного цилиндра 20. Вытеснительный поршень 25 соединен шатуном 27 с валом 2 двигателя. Трубопровод 21 соединяет полости «Б» и «В» для перетекания рабочего тела из рабочего цилиндра 19 в расширительный цилиндр 20. К полости «Г» подсоединены выходы воздухоподводящих патрубков 28, а выхлопные трубопроводы 29 соединяют полость «Г» с внутренней полостью «Д» реактивного сопла 15 (фиг.1). Входы воздухозаборных патрубков 28 через регулятор расхода 40, имеющий привод 30, соединены с полостью компрессора 4.

Перед рабочим цилиндром 19 (рабочими цилиндрами 19) установлен теплообменник 31, который трубопроводами рециркуляции 32 и 33, в одном из которых установлен насос рециркуляции 34, соединен с ядерным реактором 35.

Авиационный двигатель оборудован блоком управления 36 и датчиками частоты вращения внутреннего и внешнего валов соответственно 37 и 38. С блоком управления 36 электрическими связями 39 соединены датчики частоты вращения 37 и 38 и приводы 13 и 30.

При работе при помощи стартера (на фиг.1…3 не показан) запускается ГТД 1, при этом включается привод насоса 13, топливный насос 12 подает топливо по топливному трубопроводу 14 в кольцевой коллектор 15 и далее в камеру сгорания 7.

Топливо воспламеняется при помощи электрозапальника (на фиг.1…3 не показано). Выхлопные газы проходят через турбину 8. Рабочее колесо турбины 9 с внешним валом 3 газотурбинного двигателя 1 раскручиваются, т.е. ГТД 1 запускается.

Двигатель Стирлинга запускается значительно позже из-за его инерционности. Шатуны 24 и 27 и поршни 23 и 25 двигателя Стирлинга приводятся в действие при помощи внутреннего вала 2 газотурбинного двигателя 1 от компрессора первого каскада 4, который раскручивается в режиме авторотации воздухом, проходящим через него. Механизм преобразования вращательного движения в возвратно-поступательное (этот механизм на фиг.1…3 детально не показан, но он может быть выполнен в виде коленчатого вала с шатунами) преобразует вращательное движение внутреннего вала 2 в возвратно-поступательное движение поршней 23 и 26 двигателя Стирлинга 18. Выхлопные газы нагревают через оребрение 22 рабочее тело внутри рабочих цилиндров 19. Для работы двигателя Стирлинга достаточно иметь разницу температур на двух группах цилиндров 19 и 20. Первоначально двигатель Стирлинга работает принудительно и не выдает мощность, а, наоборот, ее потребляет. Примерно через 5…10 мин по мере прогрева рабочего тела внутри рабочих цилиндров 19 двигателя Стирлинга он выходит на расчетный режим работы. Медленный выход двигателя Стирлинга на расчетный режим работы является одним из его недостатков, но высокий КПД, надежность и хорошие экологические свойства в сочетании с ГТД, имеющим хорошие характеристики запуска, делает предложенный двигатель чрезвычайно интересным по всем показателям одновременно, т.к. позволит частично утилизировать тепло в реактивном сопле и применить вместо 4-5 ступеней турбины только одну ступень.

После выхода на режим газотурбинной части авиационного двигателя запускают ядерный реактор 35, включают насос теплоносителя 34 и теплоноситель по трубопроводу рециркуляции 33 подается в теплообменник 31, где подогревает продукты сгорания на входе в двигатель Стирлинга 18. Мощность двигателя увеличивается примерно в 2 раза, также возрастает его экономичность за счет увеличения температуры, при которой подводится тепло в цикле.

Второй особенностью комбинированного атомного авиационного двигателя является наличие его системы регулирования при помощи регулятора расхода. Проектирование такой системы вызвало затруднения, т.к. отсутствует система подачи топлива в двигатель Стирлинга, а регулирование расхода продуктов сгорания перед рабочими цилиндрами 19 затруднительно и приводит к ухудшению экономичности двигателя в целом из-за загромождения его газового тракта. Регулирование режима работы двигателя Стирлинга необходимо для того, чтобы обеспечить его работу вместе с первым каскадом компрессора в режиме оптимальных КПД (на расчетном режиме). Это необходимо потому, что в отличие от стационарных газотурбинных установок авиационные двигатели эксплуатируются в широком диапазоне температур окружающего воздуха (от +40 до -76°C) и при давлении от 1 кгс/см2 практически до вакуума на высоте полета от 10000 м до 25000 м.

Двигатель может работать в трех режимах:

- ядерный реактор не работает, топливная система работает,

- работает только ядерный реактор,

- работают ядерный реактор и топливная система одновременно.

В результате использования утилизации тепла выхлопных газов в двигателе Стирлинга КПД авиационного двигателя возрастает примерно на 10…17%.

Применение изобретения позволило:

1. Значительно повысить мощность и КПД авиационного двигателя за счет использования для получения энергии на валу нагрузки кроме ГТД двигателя Стирлинга и ядерного реактора.

2. Согласовать работу ГТД и двигателя Стирлинга, имеющих разную инерционность, за счет применения двухкаскадного двухвального ГТД.

3. Обеспечить регулирование режима работы двигателя Стирлинга.

4. Повысить надежность двигателя за счет его работы в трех режимах в зависимости от использования ядерного реактора и топливной системы.

5. Облегчить запуск комбинированного авиационного двигателя за счет применения двухвальной схемы и запуска только второго каскада.

6. Уменьшить количество ступеней турбины за счет того, что их функцию берет на себя в основном двигатель Стирлинга.

7. Снизить эмиссию токсичных веществ в атмосферу за счет того, что двигатель Стирлинга имеет значительно лучшие экологические показатели по сравнению с другими типами двигателей.

8. Снизить стоимость авиационного двигателя за счет уменьшения количества дорогостоящих ступеней турбины, лопатки и диски которых выполняются из жаропрочных сплавов и упрощения схемы охлаждения турбины.

9. Уменьшить вес авиационного двигателя, что особенно важно в авиации.

10. Повысить надежность авиационного двигателя за счет отказа от нескольких ступеней турбины, рабочие лопатки которых являются самыми нагруженными деталями двигателя, ограничивающими его ресурс и в первую очередь влияющими на надежность двигателя, самолета и безопасность авиаперевозок.

1. Комбинированный атомный авиационный двигатель, содержащий двухкаскадный газотурбинный двигатель с внутренним и внешним валами и двумя каскадами компрессора, камерой сгорания, к которой подведен топливный трубопровод от топливного насоса, турбиной и реактивным соплом, отличающийся тем, что за турбиной на внутреннем валу двигателя установлен двигатель Стирлинга, который содержит, по меньшей мере, один рабочий цилиндр, установленный за турбиной по потоку, и, по меньшей мере, один расширительный цилиндр, установленный за рабочим цилиндром по потоку, при этом перед рабочим цилиндром установлен теплообменник, соединенный трубопроводами рециркуляции с ядерным реактором, каждый расширительный цилиндр имеет кожух, образующий с этим цилиндром охлаждающую полость, вход в охлаждающую полость соединен с выходом воздухоподводящего патрубка, вход которого соединен через регулятор расхода с полостью компрессора, выход из охлаждающей полости соединен с полостью внутри реактивного сопла.

2. Комбинированный атомный авиационный двигатель по п.1, отличающийся тем, что все расширительные цилиндры частично или полностью установлены внутри обтекателя реактивного сопла.

www.findpatent.ru

атомный газотурбинный авиационный двигатель - патент РФ 2379532

Атомный газотурбинный авиационный двигатель содержит первый и второй контуры, внешний и внутренний валы с вентилятором, установленным на внутреннем валу, и компрессор, установленный на внешнем валу, а также, по меньшей мере, одно рабочее колесо турбины, установленное на внешнем валу, камеру сгорания между компрессором и турбиной, воздухозаборник, турбину и реактивное сопло с центральным обтекателем. За турбиной в центральном обтекателе реактивного сопла установлен двигатель Стирлинга, соединенный с внутренним валом и трубопроводами циркуляции теплоносителя с ядерным реактором, а воздушным каналом между валами - с полостью за вентилятором. Перед камерой сгорания и во втором контуре установлены теплообменники, соединенные трубопроводами рециркуляции с ядерным реактором. Двигатель Стирлинга выполнен из двух групп цилиндров: рабочих и расширительных, при этом рабочие цилиндры размещены в первом контуре, а расширительные - во втором. Изобретение направлено на повышение КПД и надежности двигателя. 2 з.п. ф-лы, 4 ил. атомный газотурбинный авиационный двигатель, патент № 2379532

Рисунки к патенту РФ 2379532

Изобретение относится к двигателестроению, в том числе к авиационным и стационарным газотурбинным двигателям ГТД, и может найти применение в авиастроении, судостроении, на газоперекачивающих станциях и для пиковых энергетических установок в качестве привода для электрогенератора, предназначенного для выработки электроэнергии.

Известен ядерный синтезный двигатель по заявке РФ на изобретение № 94036369, опубл. 10.07.1996 г. Этот двигатель содержит компрессор, турбину, ядерный реактор и теплообменник вместо камеры сгорания, соединенный с ядерным реактором.

Недостатки: длительное время запуска двигателя и плохая приемистость на переходных режимах, которая объясняется инерционностью теплообменника, контура рециркуляции теплоносителя и самого ядерного реактора.

Известен авиационный комбинированный двигатель по заявке РФ на изобретение № 2002115896, содержащий ГТД и ракетный двигатель.

Недостаток: очень большой расход топлива, потребляемого ракетным двигателем.

Известен авиационный ГТД по патенту РФ № 2211935, прототип, содержащий компрессор, камеру сгорания, турбину и реактивное сопло.

Недостатки: повышенный расход топлива, плохая приемистость на переходных режимах и низкая надежность

Задачи создания изобретения: повышение КПД и надежности двигателя.

Решение указанных задач достигнуто в атомном газотурбинном авиационном двигателе, содержащем первый и второй контуры, внешний и внутренний валы с вентилятором, установленным на внутреннем валу, и компрессор, установленный на внешнем валу, а также, по меньшей мере, одно рабочее колесо турбины, установленное на внешнем валу, камеру сгорания между компрессором и турбиной, воздухозаборник, турбину и реактивное сопло с центральным обтекателем, тем, что за турбиной в центральном обтекателе реактивного сопла установлен двигатель Стирлинга, соединенный с внутренним валом и трубопроводами циркуляции теплоносителя с реактором, а воздушным каналом между валами - с полостью за вентилятором. Перед камерой сгорания и во втором контуре могут быть установлены теплообменники, соединенные трубопроводами рециркуляции с ядерным реактором. Двигатель Стирлинга может быть выполнен из двух групп цилиндров: рабочих и расширительных, при этом рабочие цилиндры размещены в первом контуре, а расширительные - во втором.

Сущность изобретения поясняется на фиг.1атомный газотурбинный авиационный двигатель, патент № 2379532 4, где

на фиг.1 приведена схема двигателя,

на фиг.2 приведена схема охлаждения двигателя Стирлинга,

на фиг.3 приведена схема двигателя Стирлинга,

на фиг.4 показано сечение А-А фиг.3.

Предложенное техническое решение (фиг.1) содержит два контура: первый 1 и второй 2, соответственно два вала: внутренний 3 и наружный 4, т.е. двигатель выполнен двухконтурным по двухвальной схеме. Кроме того, двигатель содержит воздухозаборник 5, вентилятор 6, компрессор 7, камеру сгорания 8 и турбину 9. Турбина 9 может содержать одну или несколько ступеней. Далее конструкция двигателя описывается на примере одноступенчатой турбины. Турбина 9 содержит рабочее колесо 10. На выходе из обоих контуров 1 и 2 выполнено реактивное сопло 11, внутри которого установлен внутренний обтекатель 12.

Атомный газотурбинный авиационный двигатель содержит систему топливоподачи с топливопроводом низкого давления 13, подключенным к входу в топливный насос 14, имеющий привод 15, топливопровод высокого давления 16, вход которого соединен с топливным насосом 14, а выход соединен с кольцевым коллектором 17, кольцевой коллектор 17 соединен с форсунками 18 камеры сгорания 8.

Компрессор 7 содержит ротор компрессора 19 с внешним валом 4. На внешнем валу 4 установлено рабочее колесо турбины 10.

Внутренний вал 3 проходит внутри внешнего вала и установлен на опорах 20, внешний вал 4 установлен на опорах 21. Внутренний вал 3 соединен с одной стороны с вентилятором 6, а с другой с двигателем Стирлинга 22. Двигатель Стирлинга 22 установлен внутри внутреннего обтекателя 12, что позволяет уменьшить его диаметральные габариты и центробежные нагрузки на детали двигателя Стирлинга, а также уменьшить загромождение газодинамического тракта ГТД за турбиной, что повысит КПД двигателя в целом. К двигателю Стирлинга 22 подсоединен воздушный канал 23, другой конец которого выходит в полость «Б» за вентилятором 6. Выхлопные патрубки 24 предназначены для выброса подогретого воздуха из двигателя Стирлинга 22 и выходят внутрь реактивного сопла 11 в полость «В» через осевое отверстие «Г», выполненное вдоль оси внутреннего обтекателя 12.

Отличительной особенностью двигателя является наличие двигателя Стирлинга 22 за турбиной 9, конкретно за рабочим колесом турбины 10 и его размещение внутри внутреннего обтекателя 12, чтобы не загромождать затурбинный газодинамический тракт.

Двигатель Стирлинга 22 состоит из двух частей: группы рабочих цилиндров 25 и группы расширительных цилиндров 26, которые соединены трубопроводами 27. Число рабочих цилиндров 25 равно числу расширительных цилиндров 26. По объему расширительные цилиндры 26 больше, чем рабочие цилиндры 25.

Атомный газотурбинный двигатель содержит (фиг.1) ядерный реактор 28, соединенный трубопроводами рециркуляции теплоносителя: соответственно подводящим 29 и отводящим 30, с двигателем Стирлинга 22, точнее с полостями нагрева «Г» рабочих цилиндров 25 (фиг.2). Над подводящим трубопроводом рециркуляции теплоносителя 29 установлен насос теплоносителя 31 с приводом 32, а отводящий трубопровод рециркуляции теплоносителя 30 соединяет двигатель Стирлинга 22 с ядерным реактором 28 для отвода теплоносителя. В качестве теплоносителя предпочтительно использовать жидкий натрий.

Перед камерой сгорания 8 установлен теплообменник 33, а во втором контуре 2 - теплообменник 34, подключенные к подводящему и отводящему трубопроводам рециркуляции: соответственно 29 и 30.

На фиг.3 и 4 приведена схема одного из вариантов исполнения двигателя Стирлинга 22, который содержит группу рабочих цилиндров 25, имеющих оребрение и заключенных в рабочие кожухи 35, имеющих наружное оребрение 36 с образованием между ними полости нагрева «Д», заполненной теплоносителем. Внутри каждого рабочего цилиндра 25 установлен рабочий поршень 37, который шатуном 38 соединен с внутренним валом двигателя 3. Между рабочим цилиндром 25 и рабочим поршнем 37 образуется рабочая полсть «Е», заполненная рабочим телом, например гелием.

Также двигатель Стирлинга 22 содержит группу расширительных цилиндров 26, которые могут быть установлены в кожухи охлаждения 39. Между кожухом охлаждения 39 и расширительным цилиндром 26 образуется полость охлаждения «Ж». При установке расширительных цилиндров 26 во втором контуре 2 кожух охлаждения 39 не нужен.

Внутри каждого расширительного цилиндра в полости «И» установлен расширительный поршень 40. Расширительный поршень 40 соединен шатуном 41 с внутренним валом двигателя 3. Трубопровод(ы) 27 соединяет(ют) полости «Е» и «И» для перетекания рабочего тела из рабочих цилиндров 25 в расширительные цилиндры 26. К полости «Д» подсоединены воздушные патрубки 23, а выхлопные трубы 24 соединяют полость «Д» с внутренней полостью «В» реактивного сопла 11 (фиг.1).

При работе ГТД осуществляют его запуск стартером (не показан). Потом включают привод топливного насоса 15, и топливный насос 14 подает топливо в камеру сгорания 8 к форсункам 28, где оно воспламеняется при помощи электрозапальника (не показано). В результате продукты сгорания проходят через рабочее колесо турбины 10 и раскручивают его и внешний вал 4, а также ротор компрессора 18. Через 5атомный газотурбинный авиационный двигатель, патент № 2379532 7 мин тепло выхлопных газов и одновременно теплоноситель, подаваемый по подводящим трубопроводам рециркуляции теплоносителя 29, прогревает рабочие цилиндры 25 двигателя Стирлинга 22. В результате двигатель запущен и готов к работе. Отключение двигателя производится в обратном порядке. Управление двигателем по режимам не отличается от управления традиционными ГТД.

При работе атомного авиационного газотурбинного двигателя по его контурам температуры распределяются следующим образом:

- Т0 - температура воздуха на входе в двигатель,

- T1 - температура воздуха во втором контуре,

- Т2 - температура воздуха во втором контуре после расширительных цилиндров,

- Т3 - температура продуктов сгорания на выходе из камеры сгорания,

- Т4 - температура продуктов сгорания на выходе из теплообменника,

- Т5 - температура продуктов сгорания на выходе из двигателя Стирлинга,

- Т6 - температура смеси на выходе из реактивного сопла.

Применение изобретения позволило:

1. Улучшить запуск и приемистость двигателя на переходных режимах за счет применения углеводородного топлива и тепловой энергии, вырабатываемой ядерным реактором одновременно.

2. Повысить надежность двигателя за счет того, что при отказе одной энергетической системы: ядерной или углеводородной, двигатель может продолжать работу, не снижая своей мощности или тяги, что особенно важно в авиации.

3. Повысить КПД газотурбинного двигателя за счет более рациональной компоновки двигателя, второго контура, дающего дополнительную тягу, отсутствия жесткой кинематической связи между двумя валами. Это позволило спроектировать оптимальные компрессор и турбину и двигатель Стирлинга с вентилятором.

4. Улучшить надежность силовой установки за счет уменьшения числа ступеней турбины и распределения большей части нагрузки на двигатель Стирлинга.

5. Создать благоприятные условия для работы вентилятора и двигателя Стерлинга, согласовав оптимальные расчетные угловые скорости вращения вентилятора. Кроме того, применение двухвальной схемы двигателя позволит развязать механически рабочее колесо и ротор турбины и компрессора с одной стороны от вентилятора и двигателя Стирлинга, работа которых при запуске и на переходных режимах значительно различается, например, по частоте вращения валов и по приемистости.

6. Обеспечить оптимальную работу двигателя на переходных режимах вследствие того, что основная составляющая тяги на взлете, если двигатель используется в авиации, создается углеводородным топливом, а ядерный реактор вступает в работу на крейсерском режиме и может обеспечить нахождение самолета в воздухе до одного года непрерывно. Несмотря на плохую приемистость двигателя Стерлинга при резком изменении расхода топлива через камеру сгорания суммарная тяга двигателя будет изменяться практически мгновенно за счет реактивной составляющей. Через 5атомный газотурбинный авиационный двигатель, патент № 2379532 7 мин мощности, развиваемые вентилятором и газогенератором, перераспределятся, например, при форсировании основную тяговую нагрузку будет нести вентилятор, имеющий хороший КПД на дозвуковых скоростях, в результате экономичность двигателя на крейсерском режиме полета значительно возрастет.

7. Значительно уменьшить расход топлива при эксплуатации самолета. Это имеет важное значение в связи с исчерпанием ресурсов углеводородного топлива, его удорожанием и отсутствием альтернативы этому виду топлива. Применение водорода, имеющего стоимость в сотни раз большую, чем стоимость керосина, в ближайшие 100 лет бесперспективно, а использование сжиженного природного газа из-за его плохих энергетических характеристик и сложности в эксплуатации криогенной техники пока весьма ограничено.

8. Облегчить условия работы вентилятора за счет его нежесткой связи с валом компрессора и возможности их взаимного проскальзывания и рассогласования оборотов ротора компрессора и ротора вентилятора.

9. Облегчить запуск и останов двигателя за счет применения двухвальной схемы.

10. Уменьшить вес и габариты двигателя и общий вес энергетической установки или самолета за счет компактности ядерного топлива.

11. Снизить стоимость двигателя за счет отказа от дорогостоящих материалов, используемых при изготовлении турбины, и решить проблему охлаждения турбины, во-первых, снизив температуру перед ней, во-вторых, направив весь охлаждающий воздух на охлаждение только одной ступени турбины вместо 4атомный газотурбинный авиационный двигатель, патент № 2379532 5 ступеней, применяемых ранее на мощных газотурбинных двигателях.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Атомный газотурбинный авиационный двигатель, содержащий первый и второй контуры, внешний и внутренний валы с вентилятором, установленным на внутреннем валу, и компрессор, установленный на внешнем валу, а также, по меньшей мере, одно рабочее колесо турбины, установленное на внешнем валу, камеру сгорания между компрессором и турбиной, воздухозаборник, турбину и реактивное сопло с центральным обтекателем, отличающийся тем, что за турбиной в центральном обтекателе реактивного сопла установлен двигатель Стерлинга, соединенный с внутренним валом и трубопроводами циркуляции теплоносителя с ядерным реактором, а воздушным каналом между валами - с полостью за вентилятором.

2. Атомный газотурбинный авиационный двигатель по п.1, отличающийся тем, что перед камерой сгорания и во втором контуре установлены теплообменники, соединенные трубопроводами рециркуляции с ядерным реактором.

3. Атомный газотурбинный авиационный двигатель по п.1 или 2, отличающийся тем, что двигатель Стерлинга выполнен из двух групп цилиндров - рабочих и расширительных, при этом рабочие цилиндры размещены в первом контуре, а расширительные - во втором.

www.freepatent.ru

Атомный авиационный двигатель - это... Что такое Атомный авиационный двигатель?

 Атомный авиационный двигатель

Wikimedia Foundation. 2010.

Смотреть что такое "Атомный авиационный двигатель" в других словарях:

dic.academic.ru

Атомный газотурбинный авиационный двигатель | Банк патентов

Изобретение относится к газотурбинным двигателям. Атомный газотурбинный авиационный двигатель содержит первый и второй контуры, воздухозаборник, внешний и внутренний валы с вентилятором, установленным на внутреннем валу, и компрессор, установленный на внешнем валу, по меньшей мере, одно рабочее колесо турбины, установленное на внешнем валу, а также реактивное сопло. Камера сгорания расположена между компрессором и турбиной. За турбиной установлен двигатель Стирлинга, связанный кинематически с внутренним валом и соединенный трубопроводами циркуляции теплоносителя с ядерным реактором. Перед камерой сгорания и во втором контуре установлены теплообменники, соединенные трубопроводами рециркуляции с ядерным реактором. Двигатель Стирлинга выполнен из двух групп цилиндров: рабочих и поршневых, при этом рабочие цилиндры размещены в первом контуре, а расширительные - во втором. К двигателю Стирлинга присоединены воздушные патрубки. Концы воздушных патрубков выходят в атмосферу, или подсоединены к воздухозаборнику, или присоединены к выходу из первых ступеней компрессора. Изобретение позволяет повысить КПД и надежность двигателя. 5 з.п. ф-лы, 6 ил.

Изобретение относится к двигателестроению, в том числе к авиационным и стационарным газотурбинным двигателям ГТД, и может найти применение в авиастроении, судостроении, на газоперекачивающих станциях и для пиковых энергетических установок в качестве привода для электрогенератора, предназначенного для выработки электроэнергии.

Известен ядерный синтезный двигатель по заявке РФ на изобретение №94036369, опубл. 10.07.1996 г. Этот двигатель содержит компрессор, турбину, ядерный реактор и теплообменник вместо камеры сгорания, соединенный с ядерным реактором.

Недостатки: длительное время запуска двигателя и плохая приемистоть на переходных режимах, которая объясняется инерционностью теплообменника, контура рециркуляции теплоносителя и самого ядерного реактора.

Известен авиационный комбинированный двигатель по заявке РФ на изобретение №2002115896, содержащий ГТД и ракетный двигатель.

Недостаток: очень большой расход топлива, потребляемый ракетным двигателем.

Известен авиационный ГТД по патенту РФ №2211935, прототип, содержащий компрессор, камеру сгорания, турбину и реактивное сопло.

Недостатки: повышенный расход топлива, плохая приемистость на переходных режимах и низкая надежность

Задачи создания изобретения: повышение КПД и надежности двигателя. Атомный газотурбинный авиационный двигатель, содержащий винт, воздухозаборник, компрессор, камеру сгорания, турбину и реактивное сопло, отличается тем, что двигатель выполнен по двухвальной схеме, за турбиной установлен двигатель Стирлинга, соединенный внутренним валом через редуктор или мультипликатор с винтом, а перед камерой сгорания и во втором контуре установлены теплообменники, соединенные трубопроводами рециркуляции с ядерным реактором. К двигателю Стирлинга присоединены воздушные патрубки. Концы патрубков выходят в атмосферу. Концы патрубков подсоединены к воздухозаборнику или к выходу из первых ступеней компрессора.

Предложенное техническое решение обладает новизной, изобретательским уровнем и промышленной применимостью, что подтверждается проведенными патентными исследованиями. Для реализации изобретения достаточно применения известных узлов и деталей, ранее разработанных и реализованных в конструкции газотурбинных двигателей и в машиностроении.

Сущность изобретения поясняется на фиг.1...6, где:

на фиг.1 приведена схема двигателя,

на фиг.2 - схема охлаждения двигателя Стирлинга,

на фиг.3 и 4 - схема двигателя Стирлинга,

на фиг.5 и 6 - схема двигателя с вытеснительным цилиндром внутри второго контура.

Предложенное техническое решение (фиг.1) содержит два контура: первый (наружный) 1 и второй 2, соответственно два вала: внутренний 3 и наружный 4, т.е. двигатель выполнен двухконтурным по двухвальной схеме. Кроме того, двигатель содержит воздухозаборник 5, вентилятор 6, компрессор 7, камеру сгорания 8 и турбину 9. Турбина 8 может содержать одну или несколько ступеней. Далее конструкция двигателя описывается на примере одноступенчатой турбины. Турбина 9 содержит рабочее колесо 10. На выходе из обоих контуров 1 и 2 выполнено реактивное сопло 11, внутри которого установлен смеситель 12 для перемешивания потоков первого и второго контуров.

Атомный газотурбинный авиационный двигатель содержит систему топливоподачи с топливопроводом низкого давления 13, подключенным к входу в топливный насос 14, имеющий привод 15, топливопровод высокого давления 16, вход которого соединен с топливным насосом 14, а выход соединен с кольцевым коллектором 17, кольцевой коллектор 17 соединен с форсунками 18 камеры сгорания 8.

Компрессор 7 содержит ротор компрессора 19 с внешним валом 4. На внешнем валу 4 установлено рабочее колесо турбины 10.

Внутренний вал 3 проходит внутри внешнего вала и установлен на опорах 20, внутренний вал 3 установлен на опорах 21. Внутренний вал 3 соединен с одной стороны с вентилятором 6, а с другой - с двигателем Стирлинга 22. К двигателю Стирлинга 22 подсоединен воздушный патрубок 23 (или несколько воздушных патрубков 23), другой конец которого выходит либо в атмосферу, либо в воздухозаборник 5, либо к первым ступеням компрессора 7, либо выходит во второй контур 2. Выхлопные патрубки 24 предназначены для выброса подогретого воздуха из двигателя Стирлинга 22 и выходят внутрь реактивного сопла 11 в полость «В».

Отличительной особенностью двигателя является наличие двигателя Стирлинга 22 за турбиной 9, конкретно за рабочим колесом турбины 10.

Двигатель Стирлинга 22 состоит из двух частей: группы рабочих цилиндров 25 и группы вытеснительных цилиндров 26, которые соединены трубопроводами 27. Группу вытеснительных цилиндров 26 предпочтительно теплоизолировать от газового тракта газотурбинного двигателя ГТД. Число рабочих цилиндров 25 равно числу вытеснительных цилиндров 26. По объему вытеснительные цилиндры 26 больше, чем рабочие цилиндры 25.

Атомный газотурбинный двигатель содержит (фиг.1) ядерный реактор 28 и два теплообменника 29, один из которых установлен перед камерой сгорания 8, а другой - теплообменник 29 установлен во втором контуре 2. Ядерный реактор 28 соединен трубопроводами рециркуляции теплоносителя 30 с двигателем Стирлинга 22, точнее с полостями нагрева «Г» рабочих цилиндров 25 и с теплообменниками 29 (фиг.2). Между ядерным реактором 28 и подводящим трубопроводом рециркуляции теплоносителя 29 установлен насос теплоносителя 31 с приводом 32, а отводящий трубопровод рециркуляции теплоносителя 30 соединяет двигатель Стирлинга 22 с ядерным реактором 28, для отвода теплоносителя. В качестве теплоносителя предпочтительно использовать жидкий натрий.

В одном из вариантов исполнения возможно подсоединение воздушного патрубка 23 (воздушных патрубков 23) к воздухозаборнику 5 или к первым ступеням компрессора 6 посредством одного или нескольких трубопроводов 33 (фиг.2).

Возможна установка расширительных цилиндров 26 во втором контуре 2 (фиг.5 и 6), в этом случае охлаждение производится воздухом второго контура, имеющим температуру около 100°С, что значительно ниже температуры теплоносителя ядерного реактора.

На фиг.3 и 4 приведена схема одного из вариантов исполнения двигателя Стирлинга 22, который содержит группу рабочих цилиндров 25, имеющих оребрение и заключенных в рабочие кожуха 35, имеющие наружное оребрение 36 с образованием между ними полости нагрева «Г», заполненной теплоносителем. Внутри каждого рабочего цилиндра 25 установлен рабочий поршень 37, который шатуном 38 соединен с внутренним валом двигателя 3. Между рабочим цилиндром 25 и рабочим поршнем 37 образуется рабочая полсть «Д», заполненная рабочим телом, например гелием.

Также двигатель Стирлинга 22 содержит группу вытеснительных цилиндров 26, которые могут быть установлены в кожуха охлаждения 39 или установлены без них во втором контуре 2 двигателя (фиг.5 и 6). Между кожухом охлаждения 39 и вытеснительным цилиндром 26 образуется полость охлаждения «Е». При установке вытеснительных цилиндров 26 во втором контуре 2 кожух охлаждения 39 не нужен.

Внутри каждого вытеснительного цилиндра в полости «Ж» установлен вытеснительный поршень 40. Вытеснительный поршень 40 соединен шатуном 41 с внутренним валом двигателя 3. Трубопровод (ы) 27 соединяет (ют) полости «Д» и «Ж» для перетекания рабочего тела из рабочих цилиндров 25 в вытеснительные цилиндры 26. К полости «Г» подсоединены воздушные патрубки 23, а выхлопные трубы 24 соединяют полость «Г» с внутренней полостью «В» реактивного сопла 11 (фиг.1).

При работе ГТД осуществляют его запуск стартером (стартер на фиг.1...4 не показан). Потом включают привод топливного насоса 15, и топливный насос 14 подает топливо в камеру сгорания 8 к форсункам 28, где оно воспламеняется при помощи электрозапальника (на фиг.1 не показано). В результате продукты сгорания проходят через рабочее колесо турбины 10 и раскручивают его и внешний вал 4, а также ротор компрессора 18. Через 5...7 мин тепло выхлопных газов и одновременно теплоноситель, подаваемый по подводящим трубопроводом рециркуляции теплоносителя 29, прогревает рабочие цилиндры 25 двигателя Стирлинга 22. Двигатель Стирлинга 22 приводится в действие и через внутренний вал 3 и редуктор 3 раскручивает винт 1. Подогретое рабочее тело расширяется в расширительных цилиндрах 26. В результате двигатель запущен и готов к работе. Отключение двигателя производится в обратном порядке. Управление двигателем по режимам не отличается от управления традиционными ГТД.

Особенностью двигателя является то, что:

1. Благодаря наличию теплообменника 29 перед камерой сгорания он может работать только на ядерном реакторе 28, при этом камера сгорания 18 не работает.

2. Благодаря наличию теплообменника 29 во втором контуре 2 на выходе из второго контура можно получить температуру воздуха, практически одинаковую с температурой газов на выходе из первого контура, а это увеличит тягу двигателя.

При работе атомного авиационного газотурбинного двигателя по его контурам температуры распределяются следующим образом:

Т0 - температура воздуха на входе в двигатель,

Т1 - температура воздуха во втором контуре,

Т2 - температура воздуха во втором контуре после вытеснительных цилиндров,

Т3 - температура продуктов сгорания на выходе из камеры сгорания,

Т4 - температура продуктов сгорания на выходе из теплообменника,

Т5 - температура продуктов сгорания на выходе из двигателя Стирлинга,

Т6 - температура смеси на выходе из реактивного сопла.

Применение изобретения позволило:

1) улучшить запуск и приемистость двигателя на переходных режимах за счет применения углеводородного топлива и тепловой энергии, вырабатываемой ядерным реактором одновременно;

2) повысить надежность двигателя за счет того, что при отказе одной энергетической системы: ядерной или углеводородной, двигатель может продолжать работу, не снижая своей мощности или тяги, что особенно важно в авиации;

3) повысить КПД газотурбинного двигателя за счет более рациональной компоновки двигателя, второго контура, дающего дополнительную тягу, отсутствия жесткой кинематической связи между двумя валами. Это позволило спроектировать оптимальные компрессор, турбину и двигатель Стерлинга с вентилятором;

4) улучшить надежность силовой установки за счет уменьшения числа ступеней турбины до одной ступени и распределения большей части нагрузки на двигатель Стирлинга;

5) создать благоприятные условия для работы вентилятора и двигателя Стирлинга, согласовав их оптимальные расчетные угловые скорости вращения вентилятора. Кроме того, применение двухвальной схемы двигателя позволит развязать механически рабочее колесо и ротор турбины и компрессора с одной стороны от вентилятора и двигателя Стирлинга, работа которых при запуске и на переходных режимах значительно различаются, например, по частоте вращения валов и по приемистоти;

6) обеспечить оптимальную работу двигателя на переходных режимах, вследствие того что основная составляющая тяги на взлете, если двигатель используется в авиации, создается углеводородным топливом, а ядерный реактор вступает в работу на крейсерском режиме и может обеспечить нахождение самолета в воздухе до одного года непрерывно. Несмотря на плохую приемистость двигателя Стирлинга при резком изменении расхода топлива через камеру сгорания суммарная тяга двигателя будет изменяться практически мгновенно за счет реактивной составляющей. Через 5...7 мин мощности, развиваемые винтом и газогенератором, перераспределятся, например, при форсировании основную тяговую нагрузку будет нести вентилятор, имеющий хороший КПД на дозвуковых скоростях, в результате экономичность двигателя на крейсерском режиме полета значительно возрастет;

7) значительно уменьшить расход топлива при эксплуатации самолета. Это имеет важное значение в связи с исчерпанием ресурсов углеводородного топлива, его удорожанием и отсутствием альтернативы этому виду топлива. Применение водорода, имеющего стоимость, в сотни раз большую, чем керосин, в ближайшие 100 лет бесперспективно, а использование сжиженного природного газа из-за его плохих энергетических характеристик и сложности в эксплуатации криогенной техники пока весьма ограничено;

8) облегчить условия работы вентилятора за счет его нежесткой связи с валом компрессора и возможности их взаимного проскальзывания и рассогласования оборотов ротора компрессора и ротора вентилятора;

9) облегчить запуск и останов двигателя за счет применения двухвальной схемы;

10) уменьшить вес и габариты двигателя и общий вес энергетической установки или самолета за счет компактности ядерного топлива;

11) снизить стоимость двигателя за счет отказа от дорогостоящих материалов, используемых при изготовлении турбины и решить проблему охлаждения турбины, во-первых, снизив температуру перед ней; во-вторых, направив весь охлаждающий воздух на охлаждение только одной ступени турбины, вместо 4-х... 5-ти ступеней, применяемых ранее на мощных газотурбинных двигателях;

12) обеспечить работу двигателя только на углеводородном топливе или на ядерном реакторе или одновременно с использованием энергии ядерного реактора и химической энергии углеводородного топлива;

13) значительно увеличить тягу двигателя за счет размещения теплообменника во втором контуре.

Формула изобретения

1. Атомный газотурбинный авиационный двигатель, содержащий первый и второй контуры, внешний и внутренний валы с вентилятором, установленным на внутреннем валу, и компрессор, установленный на внешнем валу, а также, по меньшей мере, одно рабочее колесо турбины, установленное на внешнем валу, и камеру сгорания между компрессором и турбиной, воздухозаборник, турбину и реактивное сопло, отличающийся тем, что за турбиной установлен двигатель Стирлинга, соединенный кинематически с внутренним валом и трубопроводами циркуляции теплоносителя с ядерным реактором, перед камерой сгорания и во втором контуре установлены теплообменники, соединенные трубопроводами рециркуляции с ядерным реактором.

2. Атомный газотурбинный авиационный двигатель по п.1, отличающийся тем, что двигатель Стирлинга выполнен из двух групп цилиндров: рабочих и поршневых, при этом рабочие цилиндры размещены в первом контуре, а расширительные - во втором.

3. Атомный газотурбинный авиационный двигатель по п.1 или 2, отличающийся тем, что к двигателю Стирлинга присоединены воздушные патрубки.

4. Атомный газотурбинный авиационный двигатель по п.3, отличающийся тем. что концы воздушных патрубков выходят в атмосферу.

5. Атомный газотурбинный авиационный двигатель по п.3, отличающийся тем, что концы воздушных патрубков подсоединены к воздухозаборнику.

6. Атомный газотурбинный авиационный двигатель по п.3, отличающийся тем, что концы воздушных патрубков присоединены к выходу из первых ступеней компрессора.

bankpatentov.ru

Атомный газотурбинный авиационный двигатель | Банк патентов

Атомный газотурбинный авиационный двигатель содержит первый и второй контуры, внешний и внутренний валы с вентилятором, установленным на внутреннем валу, и компрессор, установленный на внешнем валу, а также, по меньшей мере, одно рабочее колесо турбины, установленное на внешнем валу, камеру сгорания между компрессором и турбиной, воздухозаборник, турбину и реактивное сопло с центральным обтекателем. За турбиной в центральном обтекателе реактивного сопла установлен двигатель Стирлинга, соединенный с внутренним валом и трубопроводами циркуляции теплоносителя с ядерным реактором, а воздушным каналом между валами - с полостью за вентилятором. Перед камерой сгорания и во втором контуре установлены теплообменники, соединенные трубопроводами рециркуляции с ядерным реактором. Двигатель Стирлинга выполнен из двух групп цилиндров: рабочих и расширительных, при этом рабочие цилиндры размещены в первом контуре, а расширительные - во втором. Изобретение направлено на повышение КПД и надежности двигателя. 2 з.п. ф-лы, 4 ил.

Изобретение относится к двигателестроению, в том числе к авиационным и стационарным газотурбинным двигателям ГТД, и может найти применение в авиастроении, судостроении, на газоперекачивающих станциях и для пиковых энергетических установок в качестве привода для электрогенератора, предназначенного для выработки электроэнергии.

Известен ядерный синтезный двигатель по заявке РФ на изобретение №94036369, опубл. 10.07.1996 г. Этот двигатель содержит компрессор, турбину, ядерный реактор и теплообменник вместо камеры сгорания, соединенный с ядерным реактором.

Недостатки: длительное время запуска двигателя и плохая приемистость на переходных режимах, которая объясняется инерционностью теплообменника, контура рециркуляции теплоносителя и самого ядерного реактора.

Известен авиационный комбинированный двигатель по заявке РФ на изобретение №2002115896, содержащий ГТД и ракетный двигатель.

Недостаток: очень большой расход топлива, потребляемого ракетным двигателем.

Известен авиационный ГТД по патенту РФ №2211935, прототип, содержащий компрессор, камеру сгорания, турбину и реактивное сопло.

Недостатки: повышенный расход топлива, плохая приемистость на переходных режимах и низкая надежность

Задачи создания изобретения: повышение КПД и надежности двигателя.

Решение указанных задач достигнуто в атомном газотурбинном авиационном двигателе, содержащем первый и второй контуры, внешний и внутренний валы с вентилятором, установленным на внутреннем валу, и компрессор, установленный на внешнем валу, а также, по меньшей мере, одно рабочее колесо турбины, установленное на внешнем валу, камеру сгорания между компрессором и турбиной, воздухозаборник, турбину и реактивное сопло с центральным обтекателем, тем, что за турбиной в центральном обтекателе реактивного сопла установлен двигатель Стирлинга, соединенный с внутренним валом и трубопроводами циркуляции теплоносителя с реактором, а воздушным каналом между валами - с полостью за вентилятором. Перед камерой сгорания и во втором контуре могут быть установлены теплообменники, соединенные трубопроводами рециркуляции с ядерным реактором. Двигатель Стирлинга может быть выполнен из двух групп цилиндров: рабочих и расширительных, при этом рабочие цилиндры размещены в первом контуре, а расширительные - во втором.

Сущность изобретения поясняется на фиг.1…4, где

на фиг.1 приведена схема двигателя,

на фиг.2 приведена схема охлаждения двигателя Стирлинга,

на фиг.3 приведена схема двигателя Стирлинга,

на фиг.4 показано сечение А-А фиг.3.

Предложенное техническое решение (фиг.1) содержит два контура: первый 1 и второй 2, соответственно два вала: внутренний 3 и наружный 4, т.е. двигатель выполнен двухконтурным по двухвальной схеме. Кроме того, двигатель содержит воздухозаборник 5, вентилятор 6, компрессор 7, камеру сгорания 8 и турбину 9. Турбина 9 может содержать одну или несколько ступеней. Далее конструкция двигателя описывается на примере одноступенчатой турбины. Турбина 9 содержит рабочее колесо 10. На выходе из обоих контуров 1 и 2 выполнено реактивное сопло 11, внутри которого установлен внутренний обтекатель 12.

Атомный газотурбинный авиационный двигатель содержит систему топливоподачи с топливопроводом низкого давления 13, подключенным к входу в топливный насос 14, имеющий привод 15, топливопровод высокого давления 16, вход которого соединен с топливным насосом 14, а выход соединен с кольцевым коллектором 17, кольцевой коллектор 17 соединен с форсунками 18 камеры сгорания 8.

Компрессор 7 содержит ротор компрессора 19 с внешним валом 4. На внешнем валу 4 установлено рабочее колесо турбины 10.

Внутренний вал 3 проходит внутри внешнего вала и установлен на опорах 20, внешний вал 4 установлен на опорах 21. Внутренний вал 3 соединен с одной стороны с вентилятором 6, а с другой с двигателем Стирлинга 22. Двигатель Стирлинга 22 установлен внутри внутреннего обтекателя 12, что позволяет уменьшить его диаметральные габариты и центробежные нагрузки на детали двигателя Стирлинга, а также уменьшить загромождение газодинамического тракта ГТД за турбиной, что повысит КПД двигателя в целом. К двигателю Стирлинга 22 подсоединен воздушный канал 23, другой конец которого выходит в полость «Б» за вентилятором 6. Выхлопные патрубки 24 предназначены для выброса подогретого воздуха из двигателя Стирлинга 22 и выходят внутрь реактивного сопла 11 в полость «В» через осевое отверстие «Г», выполненное вдоль оси внутреннего обтекателя 12.

Отличительной особенностью двигателя является наличие двигателя Стирлинга 22 за турбиной 9, конкретно за рабочим колесом турбины 10 и его размещение внутри внутреннего обтекателя 12, чтобы не загромождать затурбинный газодинамический тракт.

Двигатель Стирлинга 22 состоит из двух частей: группы рабочих цилиндров 25 и группы расширительных цилиндров 26, которые соединены трубопроводами 27. Число рабочих цилиндров 25 равно числу расширительных цилиндров 26. По объему расширительные цилиндры 26 больше, чем рабочие цилиндры 25.

Атомный газотурбинный двигатель содержит (фиг.1) ядерный реактор 28, соединенный трубопроводами рециркуляции теплоносителя: соответственно подводящим 29 и отводящим 30, с двигателем Стирлинга 22, точнее с полостями нагрева «Г» рабочих цилиндров 25 (фиг.2). Над подводящим трубопроводом рециркуляции теплоносителя 29 установлен насос теплоносителя 31 с приводом 32, а отводящий трубопровод рециркуляции теплоносителя 30 соединяет двигатель Стирлинга 22 с ядерным реактором 28 для отвода теплоносителя. В качестве теплоносителя предпочтительно использовать жидкий натрий.

Перед камерой сгорания 8 установлен теплообменник 33, а во втором контуре 2 - теплообменник 34, подключенные к подводящему и отводящему трубопроводам рециркуляции: соответственно 29 и 30.

На фиг.3 и 4 приведена схема одного из вариантов исполнения двигателя Стирлинга 22, который содержит группу рабочих цилиндров 25, имеющих оребрение и заключенных в рабочие кожухи 35, имеющих наружное оребрение 36 с образованием между ними полости нагрева «Д», заполненной теплоносителем. Внутри каждого рабочего цилиндра 25 установлен рабочий поршень 37, который шатуном 38 соединен с внутренним валом двигателя 3. Между рабочим цилиндром 25 и рабочим поршнем 37 образуется рабочая полсть «Е», заполненная рабочим телом, например гелием.

Также двигатель Стирлинга 22 содержит группу расширительных цилиндров 26, которые могут быть установлены в кожухи охлаждения 39. Между кожухом охлаждения 39 и расширительным цилиндром 26 образуется полость охлаждения «Ж». При установке расширительных цилиндров 26 во втором контуре 2 кожух охлаждения 39 не нужен.

Внутри каждого расширительного цилиндра в полости «И» установлен расширительный поршень 40. Расширительный поршень 40 соединен шатуном 41 с внутренним валом двигателя 3. Трубопровод(ы) 27 соединяет(ют) полости «Е» и «И» для перетекания рабочего тела из рабочих цилиндров 25 в расширительные цилиндры 26. К полости «Д» подсоединены воздушные патрубки 23, а выхлопные трубы 24 соединяют полость «Д» с внутренней полостью «В» реактивного сопла 11 (фиг.1).

При работе ГТД осуществляют его запуск стартером (не показан). Потом включают привод топливного насоса 15, и топливный насос 14 подает топливо в камеру сгорания 8 к форсункам 28, где оно воспламеняется при помощи электрозапальника (не показано). В результате продукты сгорания проходят через рабочее колесо турбины 10 и раскручивают его и внешний вал 4, а также ротор компрессора 18. Через 5…7 мин тепло выхлопных газов и одновременно теплоноситель, подаваемый по подводящим трубопроводам рециркуляции теплоносителя 29, прогревает рабочие цилиндры 25 двигателя Стирлинга 22. В результате двигатель запущен и готов к работе. Отключение двигателя производится в обратном порядке. Управление двигателем по режимам не отличается от управления традиционными ГТД.

При работе атомного авиационного газотурбинного двигателя по его контурам температуры распределяются следующим образом:

- Т0 - температура воздуха на входе в двигатель,

- T1 - температура воздуха во втором контуре,

- Т2 - температура воздуха во втором контуре после расширительных цилиндров,

- Т3 - температура продуктов сгорания на выходе из камеры сгорания,

- Т4 - температура продуктов сгорания на выходе из теплообменника,

- Т5 - температура продуктов сгорания на выходе из двигателя Стирлинга,

- Т6 - температура смеси на выходе из реактивного сопла.

Применение изобретения позволило:

1. Улучшить запуск и приемистость двигателя на переходных режимах за счет применения углеводородного топлива и тепловой энергии, вырабатываемой ядерным реактором одновременно.

2. Повысить надежность двигателя за счет того, что при отказе одной энергетической системы: ядерной или углеводородной, двигатель может продолжать работу, не снижая своей мощности или тяги, что особенно важно в авиации.

3. Повысить КПД газотурбинного двигателя за счет более рациональной компоновки двигателя, второго контура, дающего дополнительную тягу, отсутствия жесткой кинематической связи между двумя валами. Это позволило спроектировать оптимальные компрессор и турбину и двигатель Стирлинга с вентилятором.

4. Улучшить надежность силовой установки за счет уменьшения числа ступеней турбины и распределения большей части нагрузки на двигатель Стирлинга.

5. Создать благоприятные условия для работы вентилятора и двигателя Стерлинга, согласовав оптимальные расчетные угловые скорости вращения вентилятора. Кроме того, применение двухвальной схемы двигателя позволит развязать механически рабочее колесо и ротор турбины и компрессора с одной стороны от вентилятора и двигателя Стирлинга, работа которых при запуске и на переходных режимах значительно различается, например, по частоте вращения валов и по приемистости.

6. Обеспечить оптимальную работу двигателя на переходных режимах вследствие того, что основная составляющая тяги на взлете, если двигатель используется в авиации, создается углеводородным топливом, а ядерный реактор вступает в работу на крейсерском режиме и может обеспечить нахождение самолета в воздухе до одного года непрерывно. Несмотря на плохую приемистость двигателя Стерлинга при резком изменении расхода топлива через камеру сгорания суммарная тяга двигателя будет изменяться практически мгновенно за счет реактивной составляющей. Через 5…7 мин мощности, развиваемые вентилятором и газогенератором, перераспределятся, например, при форсировании основную тяговую нагрузку будет нести вентилятор, имеющий хороший КПД на дозвуковых скоростях, в результате экономичность двигателя на крейсерском режиме полета значительно возрастет.

7. Значительно уменьшить расход топлива при эксплуатации самолета. Это имеет важное значение в связи с исчерпанием ресурсов углеводородного топлива, его удорожанием и отсутствием альтернативы этому виду топлива. Применение водорода, имеющего стоимость в сотни раз большую, чем стоимость керосина, в ближайшие 100 лет бесперспективно, а использование сжиженного природного газа из-за его плохих энергетических характеристик и сложности в эксплуатации криогенной техники пока весьма ограничено.

8. Облегчить условия работы вентилятора за счет его нежесткой связи с валом компрессора и возможности их взаимного проскальзывания и рассогласования оборотов ротора компрессора и ротора вентилятора.

9. Облегчить запуск и останов двигателя за счет применения двухвальной схемы.

10. Уменьшить вес и габариты двигателя и общий вес энергетической установки или самолета за счет компактности ядерного топлива.

11. Снизить стоимость двигателя за счет отказа от дорогостоящих материалов, используемых при изготовлении турбины, и решить проблему охлаждения турбины, во-первых, снизив температуру перед ней, во-вторых, направив весь охлаждающий воздух на охлаждение только одной ступени турбины вместо 4…5 ступеней, применяемых ранее на мощных газотурбинных двигателях.

Формула изобретения

1. Атомный газотурбинный авиационный двигатель, содержащий первый и второй контуры, внешний и внутренний валы с вентилятором, установленным на внутреннем валу, и компрессор, установленный на внешнем валу, а также, по меньшей мере, одно рабочее колесо турбины, установленное на внешнем валу, камеру сгорания между компрессором и турбиной, воздухозаборник, турбину и реактивное сопло с центральным обтекателем, отличающийся тем, что за турбиной в центральном обтекателе реактивного сопла установлен двигатель Стерлинга, соединенный с внутренним валом и трубопроводами циркуляции теплоносителя с ядерным реактором, а воздушным каналом между валами - с полостью за вентилятором.

2. Атомный газотурбинный авиационный двигатель по п.1, отличающийся тем, что перед камерой сгорания и во втором контуре установлены теплообменники, соединенные трубопроводами рециркуляции с ядерным реактором.

3. Атомный газотурбинный авиационный двигатель по п.1 или 2, отличающийся тем, что двигатель Стерлинга выполнен из двух групп цилиндров - рабочих и расширительных, при этом рабочие цилиндры размещены в первом контуре, а расширительные - во втором.

bankpatentov.ru