Практически нет в эксплуатации техники, где не использовался бы электродвигатель. Этот вид электромеханических приводов самой разной конфигурации применяется повсеместно. С конструктивной точки зрения, электромотор – оборудование несложное, вполне понятное и простое. Однако работа электродвигателя сопровождается значительными нагрузками разного характера. Именно поэтому на практике применяются реле защиты двигателя, функциональность которых также носит разносторонний характер. Степень же эффективности защиты электромотора, определяется схемными решениями внедрения реле и датчиков контроля.
Содержимое публикации
Существуют различные типы защитных реле, предназначенных исключить сбои двигателя при работе. Этими реле определяется рабочие состояние мотора, выходящее за рамки нормы, что в конечном итоге приводит к срабатыванию автоматического выключателя.
Комплексная защита двигателя обеспечивает контроль:
Основная характеристика защитных реле двигателя — это зависимость уменьшения времени срабатывания от увеличения магнитуды тока повреждения.
Устройства из серии приборов, гарантирующих целостность моторов при работе электрических двигателей в тяжелых эксплуатационных условияхРассмотрим различные варианты защиты, применяемые к традиционным электрическим двигателям, находящимся в эксплуатации.
Список часто применяемых защитных решений состоит из шести реализуемых функций:
Прежде чем подробнее рассмотреть отмеченные схемы защиты, логичным видится разделить двигатели на две группы эксплуатационного статуса – значимые и малозначимые.
Это основной функционал защиты, направленный на предотвращение короткого замыкания обмоток статора. Здесь предохранители и элементы прямого действия используются для защиты статорных обмоток двигателя.
Применительно к малозначимым сервисным моторам, для автоматического отключения используется мгновенное реле с обратно-зависимым временем реагирования на фазные перегрузки по току.
Схема защиты двигателя от перегрузки по току и замыканий на землю: 1, 2, 3 — трансформаторы тока; 4, 5, 6 — устройства отсечки по току; Ф1, Ф2, Ф3 — линейные фазы; 7 — земляРеле чередования фаз обычно настраиваются на 3,5-4 кратное превышение рабочего тока двигателя, с учётом достаточной задержки по времени, чтобы исключить срабатывание в моменты запуска мотора.
Для сервисных двигателей высокой значимости реле тока с обратно-зависимым временем срабатывания, как правило, не используются. Причиной тому является задействованный автоматический выключатель непосредственно в цепи двигателя.
Критичное состояние, в основном обусловленное непрерывной перегрузкой, торможением ротора или дисбалансом тока статора. Для полной защиты, в данном случае, трёхфазный двигатель необходимо оснастить элементами контроля перегрузки на каждой фазе.
Здесь для защиты малозначимых сервисных двигателей обычно используется защита от перегрузки по току либо прямое срабатывание на отключение от источника питания в случае перегрузки.
Если номинальная мощность двигателя превышает 1000 кВт, вместо одиночного реле с резистивным датчиком температуры, как правило, используется реле обратно-зависимого времени срабатывания по току.
Термисторы предельной температуры для статора двигателя: 1 — залуженная часть проводника 7-10 мм; 2 — размер длины 510 — 530 мм; 3 — длина термистора 12 мм; 4 — диаметр термистора 3 мм; Дуговые соединения длиной 200 ммЗащита от перегрева ротора часто встречается в двигателях с раневым (фазным) ротором. Увеличение тока ротора отражается на токе статора, что требует включения защиты от превышения тока статора.
Настройка реле защиты статора по току в целом составляет величину, равную току полной нагрузки, увеличенному в 1,6 раза. Этого значения вполне достаточно, чтобы определить перегрев фазного ротора и включить блокировку.
Электродвигатель потребляет чрезмерный ток при работе под напряжением ниже установленной нормы. Поэтому защита от недостатка напряжения или перенапряжения должна обеспечиваться датчиками перегрузки или чувствительными температурными элементами.
Чтобы избежать перегрева, двигатель необходимо обесточить на 40-50 минут даже в случае небольших перегрузок, превышающих 10 — 15% норматива.
Защитное реле следует использовать для контроля нагрева ротора двигателя из-за токов обратной последовательности, возникающих в статоре по причине дисбаланса напряжения питания.
Несбалансированное трехфазное питание также вызывает протекание тока обратной последовательности в обмотках статора двигателя. Подобное состояние вызывает перегрев обмотки статора и ротора (фазного).
Несбалансированное состояние, кратковременно передаваемое двигателю, необходимо контролировать и поддерживать на таком уровне, чтобы избежать появления непрерывного состояния дисбаланса.
Рекомендуется применять реле защиты двигателя, чувствительное на отказ обмотки статора. Например, на межфазное замыкание или короткое замыкание на землю.
Предпочтительно реле контроля межфазного замыкания питать от положительной фазы, а для защиты от замыканий на землю использовать дифференциальное реле мгновенной отсечки, подключенное в цепь контура трансформатора тока.
В некоторых случаях реверс фазы видится опасным явлением для мотора. Например, такое состояние может негативно отражаться на работе лифтового оборудования, кранов, подъемников, некоторых видов общественного транспорта.
Здесь обязательно следует предусматривать защиту от реверса фаз – специализированное реле. Работа реле реверса фазы основана на электромагнитном принципе. Прибор содержит дисковый двигатель, приводимый в движение магнитной системой.
Плата и схема устройства реверса фазы: 1 — автоматический выключатель или плавкая вставка; 2 — защита от перегрузки; 3 — фаза текущая; 4 — реверс фазы; 5 — электродвигательЕсли отмечается правильная последовательность фаз, диск формирует крутящий момент в положительном направлении. Следовательно, вспомогательный контакт удерживается в закрытом положении.
Когда фиксируется реверс фазы, крутящий момент диска изменяется на противоположное направление. Следовательно, вспомогательный контакт переключается в открытое положение.
Эта система коммутации используется для защиты, в частности – для управления автоматическим выключателем.
Схема защиты трехфазных асинхронных двигателей небольшой мощности показана на рисунке ниже. Магнитный контактный пускатель содержит группу кнопок пуска и останова, связанных соответствующими вспомогательными контактами, защитными устройствами перегрузки или недогрузки.
Стартовая кнопка (КН1) представляет собой обычный прямой контактный переключатель, который обычно удерживается в нормально открытом состоянии усилием пружины. В свою очередь кнопка останова (КН2) удерживается в состоянии нормально закрытом также посредством пружины.
Стоит нажать кнопку пуска (замкнуть линию), рабочая катушка контактора получает питание через контакты (ВК) реле перегрузки (Р1-Р3). Образованное магнитное поле катушки притягивает металлический сердечник контактора.
В результате замыкаются три главных контакта (К1-К3) магнитного пускателя, через которые электродвигатель (М) соединяется с трёхфазным источником питания.
Пока кнопка «пуск» (КН1) замкнута, цепь питания проходит через контакты кнопки «стоп» (КН2) и катушку магнитного пускателя (КП). Между тем, цепь питания катушки индуктивности теперь уже поддерживается иной схемой.
Поддержка осуществляется вспомогательными контактами (ВК) реле с токовым управлением (Р1-Р3), поэтому возврат кнопки «пуск» в исходное положение ситуацию не изменит. Контактор останется замкнутым, а двигатель в работе.
Обычно двигатели мощностью до 20 кВт рассматриваются как маломощные аппараты. Максимум защиты таких моторов обеспечивается:
Все эти элементы защиты собраны, как правило, в структуре магнитного пускателя.
Чаще всего выгорание линейных предохранителей защиты двигателя отмечается на одной фазе. Этот обрыв может оставаться не обнаруженным, даже если двигатель защищён обычным биметаллическим реле.
Обнаружение обрыва фазы зачастую не дают и реле напряжения, подключенные на каждой линии. Несмотря на обрыв одной фазы, схемой обмоток электродвигателя поддерживается значительная обратная ЭДС на клемме фазы, находящейся в обрыве.
Поэтому уровень напряжения на реле остаётся достаточно высоким, что не приводит к срабатыванию. Однако сложности обнаружения подобных дефектов вполне преодолимы.
Достаточно использовать дополнительный набор из трех реле, управляемых по току. Подключение наглядно демонстрирует схема защиты двигателя, показанная выше.
Управляемые током реле — устройства простые, но обладающие эффектом мгновенной отсечки. Конструктивно прибор состоит из следующих деталей:
Механизм движения контактов управляются ЭДС катушки тока. Традиционно токовые реле подключаются на каждой фазе последовательно с плавкими защитными предохранителями.
Когда срабатывает магнитный пускатель, электродвигатель запускается, ток питания течёт через катушку. Магнитодвижущая сила катушки (ЭДС) воздействует на механику и замыкает контакты реле. Цепь питания мотора замыкается.
Блокиратор токовой перегрузки: 1 — электрические коннекторы; 2 — индикатор отключения; 3 — тест; 4 — клеммы для проводников двигателя; 5 — сигнальный контакт; 6 — кнопка сброса; 7 — селектор «авто» или «ручной»; 8 — кнопка останова; 9 — шкала установки тока; 10 — механическая защёлкаЕсли, вдруг, случится обрыв фазы, ток катушки индуктивности снижается, контакты соответствующего реле переключаются в нормально-открытое положение.
Учитывая, что контакты всех трех защитных реле соединяются последовательно, цепь питания мотора разомкнётся.
Все классические конструкции моторов предполагают использование опорных и упорных подшипников. В зависимости от мощности электродвигателей, может устанавливаться тот или иной вид подшипников, либо оба вида вместе.
Неисправность подшипника любого вида нередко приводит к полной остановке вращения ротора. Внезапное механическое заклинивание, в свою очередь, провоцирует резкий подъём тока статорной обмотки двигателя и последующий перегрев.
Здесь токовая защита не способна удовлетворительно реагировать на событие. Как правило, этот вид защиты настроен с учётом стартового тока двигателя и короткой временной составляющей. Проблема клина может быть решена только путём внедрения защиты от тепловой перегрузки.
Также защиту в данном случае допустимо обеспечить индивидуальным модулем, настроенным на определенное время срабатывания по току. В случае применения тепловой отсечки, разумно ставить датчик температуры, встроенный непосредственно в подшипниковый узел.
zetsila.ru
Некоторыеособенностисинхронныхэлектродвигателей
Прирассмотрении РЗ синхронных электродвигателей необходимо учитыватьихособенности:
Пуск большинства синхронных электродвигателей производится при отсутствии возбуждения прямым включением в сеть. Для этой цели на роторе синхронного электродвигателя предусматривается дополнительная короткозамкнутая обмотка, выполняющая во время пуска ту же роль, что и в короткозамкнутом роторе асинхронного электродвигателя. Когда скольжение электродвигателя приближается к нулю, включается возбуждение, и электродвигатель втягивается в синхронизм под влиянием появляющегося при этомсинхронного момента.
Во время пуска синхронный электродвигатель потребляет из сети повышенный ток, который по мереуменьшенияскольжения затухает, так же как и у асинхронного электродвигателя.
Для уменьшения понижения напряжения и пусковых токов мощные синхронные электродвигатели пускаются через реактор, который затем шунтируется. Защиты синхронных электродвигателей, как и РЗ асинхронных электродвигателей, должны быть отстроены от токов, возникающих при их пуске или самозапуске, имеющем место при восстановлении напряжениявсети.
Момент синхронного электродвигателя зависит от напряжения сети Uд, ЭДС электродвигателяEd и угла сдвигаδ междуUд иEd. Безучетапотерьвстатореироторе
Mд= UдEdsin δ Xd | (9.28) |
где
Xd – синхронное сопротивление двигателя.
При постоянных значениях Uд иEd каждой нагрузке электродвигателя соответствует определенное значение углаδ.В случае понижения напряжения в сети, как следует из выражения (9.14), момент Мд
уменьшается. Если при этом он окажется меньше момента сопротивленияМс механизма, то устойчивая работа синхронного электродвигателя нарушается, возникают качания и электродвигатель выходит из синхронизма. Нарушение устойчивости возможно также при перегрузке электродвигателя (увеличениеδ) или снижении возбуждения (уменьшениеEd).
Эффективным средством повышения устойчивости электродвигателя является форсировка возбуждения, увеличивающая его ЭДС. Опыт показывает, что при глубоких понижениях напряжения (до нуля) синхронные электродвигатели, работающие с номинальной нагрузкой, выходят из синхронизма, если перерыв питания превосходит 0,5 с.
При нарушении синхронизма частота вращения электродвигателя уменьшается, и он переходит в асинхронный режим. При этом в пусковой обмотке и цепи ротора появляются токи, создающие дополнительный асинхронный момент, под влиянием которого синхронный электродвигатель может остаться в работе с некоторым скольжением.
Токи, появляющиеся в статоре, роторе и пусковой обмотке электродвигателя при асинхронном режиме, вызывают повышенный нагрев их, поэтому длительная работа синхронных электродвигателей в асинхронном режиме с нагрузкой более 0,4-0,5номинальной недопустима.
В связи с этим, появляется необходимость в специальной РЗ от асинхронного режима, которая должна реализовать мероприятия, обеспечивающие ресинхронизацию электродвигателя, или отключить его. Ресинхронизация состоит в том, что с электродвигателя снимается возбуждение (при этом его асинхронный момент повышается и скольжение уменьшается), через некоторое время включается возбуждение, и электродвигатель вновь втягивается в синхронизм. Признаком нарушения синхронизма электродвигателя является появление колебаний тока в статоре и переменного тока в роторе.
Исследования и опыт эксплуатации показывают, что после отключения КЗ или включения резервного источника питания многие синхронные электродвигатели могут самозапускаться, т. е. вновь (сами) втягиваться в синхронизм. Самозапуск синхронных электродвигателей возможен, если после восстановления напряжения под влиянием возросшего асинхронного момента скольжение электродвигателя настолько уменьшится, что онсможетснова втянутьсяв синхронизм.
Защиты, применяемые на синхронных электродвигателях
На синхронных электродвигателях устанавливаются следующие РЗ: от междуфазных повреждений в статоре; от замыканий обмотки статора на землю; от перегрузки; от асинхронного хода; от понижения напряжения в сети.
Защита от междуфазных повреждений выполняется мгновенной в виде токовой отсечки или продольной дифференциальной защиты по такой же схеме, как у асинхронных электродвигателей. Отличие заключается в том, что РЗ синхронного электродвигателя одновременно с выключателем отключает АГП. При применении тиристорного возбуждения и отсутствии АГП защита действует на инвертирование возбудителя. Ток срабатывания отсечки отстраивается от пусковых токов и токов самозапуска электродвигателя. Крупные электродвигатели оборудуются продольной дифференциальной РЗ в двухфазном исполнении. Защита от замыканий обмотки статора на землю применяется при токах замыкания на землю более 5 -10А. Защита от перегрузки обычно выполняется совмещенной с РЗ от асинхронного хода (см. рис.9.11).
15
| + |
| KA1 | KL1 | - | I | ||||||
|
|
|
|
| KL1.1 |
|
|
|
|
| ||
|
|
|
|
|
|
|
|
|
| |||
|
|
|
|
| KT |
|
| |||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
KA | KT1 | Kh2 | KL2 |
|
|
|
|
|
| KL4.1 |
| воз |
|
|
|
|
| cp |
| |
| KT2 | Kh3 | KL3 | I | I |
|
|
|
| ||||
M |
|
|
| |||
|
|
|
| t | t | |
a) |
|
|
|
| ||
| KL2.1 |
| На |
|
|
|
| + |
|
|
|
| |
| ресинхронизацию |
|
|
| ||
| KL3.1 |
|
|
|
|
|
+ | На отключение |
|
KL3.2 |
| |
+ | выключателя и АГП |
|
|
| |
б) |
|
|
Рис.9.11 Схема защиты синхронного электродвигате- | Рис.9.12 Изменение тока статора син- | |
ля от асинхронного режима: на электромеханических | хронного электродвигателя при асинхронном | |
реле. |
| режиме. |
а – цепи тока;
б– цепи постоянного оперативного тока
Вкачестве пускового органа в схеме РЗ от асинхронного режима и перегрузки используется токовое реле КА типаРТ-40.Это реле воздействует при срабатывании на промежуточное релеKL1 контакты которогоKL1.1 в цепи реле времениКТ замыкаются мгновенно, а размыкаются с замедлением. При асинхронном режиме реле времениКТ не успевает возвратиться за время∆t спада тока между циклами качаний (рис. 9.12) и постепенно, за несколько периодов качаний набирает время и срабатывает на отключение.
Для надежной работы РЗ время возврата tB03 якоря промежуточного релеKL1 должно быть больше времени∆t (рис. 9.12), в течение которого ток качаний недостаточен для действия реле, т. е.tB03 > ∆t . Выдержка времени РЗ выбирается большей времени затухания пусковых токов электродвигателя. Устройство защиты двигателя. Реле времени КТ имеет две выдержки времени. По истечении первой выдержки времени замыкается контактКТ1, после чего промежуточное релеKL2 подает команды на осуществление ресинхронизации.
Вслучае, если ресинхронизация не происходит и качания тока продолжаются, замыкаются контакты реле времени КТ2, после чего промежуточное реле KL3, замкнув свои контакты, подает команды на отключение выключателя иАГП.
Для предотвращения срабатывания РЗ при форсировке возбуждения, когда увеличивается ток статора, цепь обмотки реле времени размыкается контактом KL4.1. На синхронных двигателях большой мощности в качестве защиты от асинхронного режима возможно применение реле сопротивления, как на генераторах. Защита минимального напряжения выполняется так же, как на асинхронных электродвигателях.
Уставка по току такой комбинированной защиты выбирается так же как обычная защита от перегрузки: ток срабатывания по формуле (9.28), выдержка времени отстраивается от времени пуска двигателя с учетом времени возврата реле KL1.
tс.з. = tсам+ tвозKL1 + t | (9.29) |
Учитывая возможность затягивания процесса разворота, время запаса (tз) принимается равным2-3с. Время возврата реле KL1 должно перекрывать время возврата токового реле в период асинхронного
режима: tвозKL1 > ∆t
Можно принять tвозKL1 равным0,5-0,7с.
В устройстве MiCOM Р241 имеется защита, предназначенная для выявления асинхронного режима, действующая по величине сos ϕ. Эта защита способна четко выявить отключение возбуждения и переход двигателя в асинхронный режим без возбуждения. При асинхронном режиме с возбуждением эта защита может не действоватьиз-заколебаний мощности и периодического возврата измерительного органа. Для того чтобы она действовала и в этом режиме требуется уменьшить выдержку времени защиты таким образом, чтобы при асинхронном режиме она успевала срабатывать в зоне пониженногосos ϕ. Пока отсутствуют результаты испытаний такой защиты на реальных двигателях. Поэтому, при внедрении такой защиты, необходимо провести испытания и уточнить уставки. Для начала можно принять уставки равными:сos ϕ=0,7;t = 0,5 с.
Выбор защиты минимального напряжения для отделения синхронных двигателей
Как правило, синхронный двигатель, не допускает подачи несинхронного напряжения в случае, если возбуждение его включено. Поэтому при исчезновении напряжения или его посадке, синхронные двигатели должны отключаться от сети, а после восстановления напряжения могут включаться вновь, если их включение необходимо, и они имеют схему автоматического пуска. Возможен также их перевод в асинхронный режим отключением возбуждения, и подачей возбуждения после появления напряжения.
С целью предотвращения подачи напряжения на возбужденные синхронные двигатели, автоматика, которая подает напряжение на шины, должна выполняться с контролем отсутствия напряжения. Недопустимо, например, выполнение АВР только по признаку отключения питающего ввода.
Защита минимального напряжения для синхронного двигателя выбирается как 1-яступень минимального напряжения для асинхронных двигателей.
U <= 0,7Uном | (9.30) |
t = 0,5с |
|
Примечание. Для обеспечения устойчивой работы двигателя и связанного с ним механизма, необходимо не допускать подключения к секции шин, откуда питаются синхронные двигатели, посторонней нагрузки. Если это невозможно, то посторонние фидера должны иметь отсечку без выдержки времени. В ряде случаев применяется специальная отсечка по напряжению, с уставкой, равной уставке защиты минимального напряжения, без выдержки времени. Уставка по напряжению отсечки и защиты минимального напряжения в этом случае обычно принимается равной0,6 Uном.
Отключение синхронных двигателей при понижении частоты
Для ускорения подачи напряжения, работой АВР или АПВ целесообразно отключать двигатели также автоматикой понижения частоты. После отключения питающего напряжения двигатель быстро тормозится, и частота напряжения, которое синхронный двигатель генерирует на шины, быстро падает. При быстром его отключении, сразу исчезает напряжение подпитки и пускается схема АВР (АПВ).
При выборе уставки по частоте, следует иметь в виду другую автоматику, которая установлена в питающей системе – автоматическая частотная разгрузка (АЧР). Поэтому, уставка отключения СД по частоте должна быть отстроена от самой низкой уставки быстродействующей АЧР, которая в настоящее время равна 46,5Гц и 0.5с. Если двигатель сам подключен к какой то очереди АЧР, в качестве уставки можно принять уставку этой очереди. Если нет, можно принять уставку по частоте равной: 46 Гц и 0,5с.
9.10. ЗАЩИТЫ ЭЛЕКТРОДВИГАТЕЛЕЙ НЕКОТОРЫХ ЗАРУБЕЖНЫХ ФИРМ
Фирма GE.
MIG - содержит токовую отсечку, максимальную защиту, защиту от замыканий на землю с выдержкой и без выдержки времени, защиту от перегрузки, от несимметрии по фазам, защиту от длительного пуска и застревания ротора.
M60 - содержит дифзащиту, токовую отсечку, защиту от замыканий на землю с выдержкой и без выдержки времени, защиту от перегрузки, по току обратной последовательности, защиту от повышения и понижения напряжения. повышения напряжения обратной последовательности.
Фирма АВВ
REM 543 может включать в себя 3 ступени токовой защиты, 2 ступени токовой защиты с блокировкой по напряжению, 3 ступени направленной или ненаправленной токовой защиты от замыканий на землю, дифференциальную защиту, защиту от перегрузки и несимметричного режима, 2 ступенчатую защиту от повышения и понижения напряжения, 2 ступенчатую защиту от повышения напряжения обратной последовательности, защиту пусковых режимов двигателя, защиту от реверса фаз. Перечень функций, входящих в конкретное устройство выбирается в каждом случае, т.к. вместить их все одновременно невозможно по загрузке процессора.
SPAC 802 содержит токовую отсечку, максимальную защиту, защиту от замыканий на землю с выдержкой времени, защиту от перегрузки, от несимметрии по фазам, сброса нагрузки, защиту пусковых режимов двигателя, защиту от реверса фаз. Имеется модификация SPAC 802104 для защиты двухскоростного двигателя.
Фирма SIEMENS
7SJ551 - содержит токовую отсечку, максимальную защиту, защиту от замыканий на землю с выдержкой и без выдержки времени, защиту от перегрузки, от сброса нагрузки, по току обрат-
ной последовательности, защиту пусковых режимов двигателя, защиту от повышения и понижения напряжения.
7SJ60 - содержит токовую отсечку, максимальную защиту, защиту от замыканий на землю с выдержкой и без выдержки времени, защиту от перегрузки, от сброса нагрузки, по току обратной последовательности, защиту пусковых режимов двигателя.
7UT512 / 513 - содержит дифзащиту, токовую отсечку, защиту от замыканий на землю с выдержкой и без выдержки времени, защиту от перегрузки, 7UT513 имеет также чувствительную защиту от замыканий на землю на принципе сравнения токов нулевой последовательности.
SEL
SEL 501 - содержит токовую защиту, защиту от замыканий на землю, защиту от перегрузки симметричным током и током обратной последовательности, защиту обратной последовательности.
SEL 387А - содержит дифзащиту, токовую защиту, защиту от замыканий на землю, защиту по току обратной последовательности.
studfiles.net
9 ЗАЩИТА ЭЛЕКТРОДВИГАТЕЛЕЙ
Согласно правилам устройства электроустановок (ПУЭ), на двигателях напряжением выше 1000 В должны устанавливаться следующие устройства релейной защиты:
−защита от междуфазных коротких замыканий;
−защита от замыканий на землю;
−защита от двойных замыканий на землю;
−защита от перегрузки.
Для синхронных двигателей дополнительно требуется защита от асинхронного режима. Применяемые для этой цели виды защиты зависят от мощности электродвигателей:
Вкачестве защиты от междуфазных КЗ при мощности двигателей до 5000 кВт применяется токовая отсечка. Она может применяться и для двигателей большей мощности, не имеющих фазных выводов со стороны нейтрали двигателя. При двигателях большей мощности, а также если токовая отсечка для двигателей меньшей мощности не удовлетворяет требованиям чувствительности, применяется дифференциальная защита при условии, что эти двигатели имеют выводы со стороны нейтрали.
Вкачестве защиты от замыканий на землю при токах замыкания более 5 А для двигателей мощностью более 2000 кВт, и 10 А для двигателей меньшей мощности, применяется токовая защита нулевой последовательности, действующая на отключение. На линиях, питающих двигатели передвижных механизмов, защита от замыканий на землю, по соображениям электробезопасности, должна действовать на отключение независимо от величины тока замыкания на землю. На блоках трансформатор– двигатель защита от замыканий на землю действует на сигнал. Указанная защита входит в состав всех перечисленных ниже устройств.
Вкачестве защиты от двойных замыканий на землю применяется токовая защита нулевой последовательности, действующая на отключение. Она применяется в тех случаях, когда защита от замыканий на землю имеет выдержку времени. Ее применение обязательно, если защита от междуфазных КЗ выполняется в двух фазах.
Защита от перегрузки требуется для двигателей, подверженных перегрузке по технологическим причинам, или с особо тяжелыми условиями пуска. Защиту от перегрузки согласно нормам СНГ, можно выполнять с зависимой или независимой выдержкой времени. Защита от перегрузки может действовать на разгрузку механизма по технологическим цепям или сигнал: – 1-яступень и на отключение –2-яступень. Выдержка времени защиты от перегрузки при токе, равном пусковому току двигателя, выполняется большей времени его пуска. Как правило, при таком выполнении защиты двигателя имеется значительный тепловой запас – обычные двигатели по температуре выдерживают не менее двух пусков подряд. Это дает возможность выполнить действие такой защиты от перегрузки на разгрузку механизма.
Таким образом, согласно ПУЭ, на двигателях мощностью менее 5000 кВт можно иметь токовую отсечку, токовую защиту от замыканий на землю, защиту от перегрузки. Такие защиты можно выполнять на реле УЗА-АТилиУЗА-10А.2,выпускаемых компанией “Энергомашвин”. Существуют специальные защиты от перегрузки с зависимой характеристикой, совпадающей с тепловой, которая определяет тепловое состояние двигателя и позволяет полнее использовать его перегрузочную способность. Параметры этой характеристики зависят от данных самого электродвигателя: системы охлаждения, допустимой температуры для изоляции двигателя, исходной температуры двигателя или помещения. Все эти данные учитывают специальные защиты двигателей (например: MiCOM P220). Поэтому, защиты от перегрузки такого типа имеют обычно 2 ступени: ступень с меньшей выдержкой времени действует на разгрузку, с большей – на отключение. В большинстве случаев применяемые у нас защиты имеют одну уставку с зависимой или независимой выдержкой времени. Согласно ПУЭ защита от перегрузки должна действовать на сигнал, разгрузку механизмы и, лишь в крайнем случае, на отключение. В такой ситуации не требуется значительная выдержка времени, требуется отстроится только от времени самозапуска электродвигателя.
Режим асинхронного хода сопровождается перегрузкой двигателя, и на него реагируют защиты от перегрузки. Поэтому часто защита от перегрузки выполняет одновременно функцию защиты от асинхронного режима. Простые токовые защиты могут срабатывать и возвращаться при колебаниях тока. Поэтому защиты от перегрузки в асинхронном режиме должны накапливать выдержку времени. Такой принцип должен быть заложен в защиту от перегрузки. Так же как и ранее, можно использовать две ступени защиты от перегрузки: ступень с меньшей выдержкой времени действует на ресинхронизацию, с большей на отключение. Поскольку в этом случае невозможно различить режим перегрузки и асинхронный режим, нельзя обеспечить автоматическую ресинхронизацию. При наличии дежурного персонала на объекте, он может это выявить визуально при срабатывании 1-йсигнальной ступени. Специальные защиты от потери возбуждения имеются в устройствах возбуждения крупных двигателей. Эти устройства целесообразно использовать для автоматической ресинхронизации.
Для двигателей, работающих в блоке с понижающим трансформатором, может быть выполнена общая защита, если она удовлетворяет требованиям к защите как двигателя, так и трансформатора.
Для облегчения условий самозапуска, а также для предотвращения подачи несинхронного напряжения на возбужденные синхронные двигатели или заторможенные механизмы, двигатели должны быть обо-
studfiles.net
Анализ движения робота для объезда препятствия
На данном этапе, когда объект найден и определен в пространстве, нужно задать его расположение относительно робота для того, чтобы изменять скорость вращения двигателей. Как было замечено в Постановке задачи, возможны 3 ситуации...
Анализ движения робота для объезда препятствия
В этом пункте следует акцентировать внимание на реализации ШИМ-сигнала для изменения скорости вращения двигателей, потому что, как было отмечено в пункте 1.1.4...
Аппроксимация функций методом наименьших квадратов
Поскольку в задании каждая пара значений (,) встречается один раз, то корреляционная таблица примет вид единичной матрицы. Значит условные средние совпадают со значениями . Отсюда следует, что корреляционное отношение равно 1 и, следовательно...
Аппроксимация функций методом наименьших квадратов
Далее аппроксимируем функцию квадратичной функцией . Для определения коэффициентов , и воспользуемся системой (3.2.1) Используя итоговые суммы таблицы 3, расположенные в ячейках B29, C29, D29, E29, F29, G29 и h39, запишем систему (2.1.4) в виде (3.2...
Вариатор скорости вращения асинхронного двигателя
Большинство двигателей переменного тока вращается с угловой скоростью, которая определяется в первую очередь частотой питающего напряжения. Угловая скорость синхронных двигателей зависит только от частоты питания...
Как можно классифицировать информационные системы по степени автоматизации?
...
Математическое обоснование степени уязвимости объекта информационной деятельности на примере предприятия ООО "FitMax"
Для каждого из каналов проводятся расчеты вероятности степени защищенности информации. Акустический канал: Виброакустический канал: Человеческий фактор: Исходя из полученных данных...
Мобильный робот для обезвреживания взрывоопасных объектов
...
Поисковая система
1. Ручные информационные системы характеризуются отсутствием современных технических средств переработки информации и выполнением всех операций человеком. Например, о деятельности менеджера в фирме, где отсутствуют компьютеры...
Программы архиваторы информации
Сжатие информации в архивных файлах производится за счет устранения избыточности различными способами, например за счет упрощения кодов...
Разработка брифа на создание сайта и создание примеров элементов сайта Отель "Веллнесс"
...
Разработка виртуальных лабораторных работ по исследованию асинхронных двигателей
2.1.1 Принцип действия двигателя Асинхронной машиной называется такая машина переменного тока, скорость вращения ротора которой не находится в строгом соответствии с частотой тока сети. Как и все электрические машины...
Разработка виртуальных лабораторных работ по исследованию асинхронных двигателей
Основными частями асинхронного двигателя являются неподвижный статор и вращающийся внутри него ротор, отделенный от статора воздушным зазором. С целью уменьшения вихревых токов сердечники ротора и статора собираются из отдельных листов...
Расчет параметров асинхронного энергосберегающего электродвигателя
Асинхронный двигатель состоит из неподвижной части -- статора и вращающейся - ротора. Статор представляет собой стальной сердечник в виде пустотелого цилиндра, набираемого из отдельных листов электротехнической стали...
САПР "Противокоррозионная защита"
Средства манипулирования данными позволяют получить из РБД САПР "Противокоррозионная защита" необходимую информацию, соответствующую исходным данным: степень агрессивного воздействия среды, способы защиты от коррозии...
prog.bobrodobro.ru