ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Сравнение синхронных и асинхронных двигателей. Сравнение асинхронных и синхронных двигателей


Сравнение синхронных и асинхронных двигателей

Чтобы остановить выбор на синхронном или асинхронном двигателе для приведения во вращение того или иного производственного механизма, необходимо иметь в виду следующее.

Обмотки статора обоих двигателей получают питание от сети трехфазного переменного тока. Для питания обмотки возбуждения синхронного двигателя требуется, кроме того, источник электрической энергии постоянного тока, правда, относительно небольшой мощности.

Асинхронный пуск синхронных двигателей несколько сложнее пуска асинхронных двигателей с короткозамкнутым ротором. В отношении пусковых свойств асинхронные двигатели с фазным ротором имеют весьма существенные преимущества перед синхронными двигателями.

Частота вращения синхронных двигателей остается постоянной при изменении нагрузки, тогда как у асинхронных двигателей даже при их работе на естественной характеристике она несколько изменяется.

Асинхронные двигатели дают возможность регулировать частоту вращения различными способами, рассмотренными в гл. 10. Использование некоторых из этих способов для регулирования частоты вращения синхронных двигателей в принципе невозможно, а некоторых связано с большими конструктивными и эксплуатационными трудностями. Учитывая это, следует иметь в виду, что синхронные двигатели относятся к двигателям с нерегулируемой частотой вращения.

Воздействуя на ток возбуждения синхронного двигателя, можно в широких пределах изменять его коэффициент мощности. Можно, в частности, заставить синхронный двигатель работать с cos φ = 1, а также с опережающим током. Последнее может быть использовано для улучшения коэффициента мощности других потребителей, питающихся от той же сети. В отличие от этого асинхронный двигатель представлет собой активно-индуктивную нагрузку и имеет всегда  cos φ < 1.

Из-за малых потерь мощности в роторе, а также в обмотке статора при работе с высоким cos φ КПД синхронных двигателей оказывается больше, а масса и габаритные размеры меньше, чем у асинхронных двигателей.

Учитывая указанные достоинства синхронных двигателей, стараются везде, где это возможно, вместо асинхронных двигателей применять синхронные. Они применяются обычно в установках средней и большой мощности при редких пусках, в случаях, когда не требуется электрического регулирования частоты вращения. Синхронные двигатели используются, например, для привода насосов, компрессоров, вентиляторов, генераторов постоянного тока преобразовательных установок.

Электропривод, выбор двигателя, аппаратура управления, электроснабжение, вопросы техники безопасности общие сведения об электроприводе

Электропривод определяется как электромеханическая система, состоящая из электродвигательного, преобразовательного, передаточного и управляющего устройств, предназначенная для приведения в движение исполнительных органов рабочей машины и управления этим движением. В отдельных случаях в этой системе могут отсутствовать преобразовательное и передаточное устройства. Благодаря преимуществам по сравнению с другими видами приводов он нашел наибольшее распространение в промышленности и является основным средством механизации и автоматизации производственных машин и процессов. Степень совершенства электропривода определяет в конечном счете производительность труда.

Теория электропривода охватывает многие вопросы, знание которых позволяет рассчитать и выбрать элементы электропривода, а также разработать схему автоматического управления как двигателем, так и всем производственным процессом в соответствии с технологическими требованиями.

К этим вопросам относятся:

а)  механические характеристики электроприводов в двигательном и тормозных режимах;

б)  регулирование частоты вращения электроприводов;

в)  переходные процессы в электроприводах;

г)   расчет пусковых тормозных и регулировочных резисторов;

д)  определение мощности электродвигателя и выбор его по каталогу;

е)  разработка схемы управления двигателем и всем производственным процессом;

ж)  выбор электрической аппаратуры управления.

Вопросы, отмеченные в пп. а, б, г, были затронуты в достаточном для данного курса объеме в гл. 9—11 и здесь рассматриваться не будут.

studfiles.net

СРАВНЕНИЕ СИНХРОННЫХ И АСИНХРОННЫХ ДВИГАТЕЛЕЙ

Чтобы остановить выбор на синхронном или асинхронном двигателе для приведения во вращение того или иного производственного механизма, необходимо иметь в виду следующее.

Обмотки статора обоих двигателей получают питание от сети трехфазного переменного тока. Для питания обмотки возбуждения синхронного двигателя требуется, кроме того, источник электрической энергии постоянного тока, правда, относительно небольшой мощности.

Асинхронный пуск синхронных двигателей несколько сложнее пуска асинхронных двигателей с короткозамкнутым ротором. В отношении пусковых свойств асинхронные двигатели с фазным ротором имеют весьма существенные преимущества перед синхронными двигателями.

Частота вращения синхронных двигателей остается постоянной при изменении нагрузки, тогда как у асинхронных двигателей даже при их работе на естественной характеристике она несколько изменяется.

Асинхронные двигатели дают возможность регулировать частоту вращения различными способами, рассмотренными в гл. 10. Использование некоторых из этих способов для регулирования частоты вращения синхронных двигателей в принципе невозможно, а некоторых связано с большими конструктивными и эксплуатационными трудностями. Учитывая это, следует иметь в виду, что синхронные двигатели относятся к двигателям с нерегулируемой частотой вращения.

Воздействуя на ток возбуждения синхронного двигателя, можно в широких пределах изменять его коэффициент мощности. Можно, в частности, заставить синхронный двигатель работать с cos φ = 1, а также с опережающим током. Последнее может быть использовано для улучшения коэффициента мощности других потребителей, питающихся от той же сети. В отличие от этого асинхронный двигатель представлет собой активно-индуктивную нагрузку и имеет всегда cos φ < 1.

Из-за малых потерь мощности в роторе, а также в обмотке статора при работе с высоким cos φ КПД синхронных двигателей оказывается больше, а масса и габаритные размеры меньше, чем у асинхронных двигателей.

Учитывая указанные достоинства синхронных двигателей, стараются везде, где это возможно, вместо асинхронных двигателей применять синхронные. Они применяются обычно в установках средней и большой мощности при редких пусках, в случаях, когда не требуется электрического регулирования частоты вращения. Синхронные двигатели используются, например, для привода насосов, компрессоров, вентиляторов, генераторов постоянного тока преобразовательных установок.

 

ЭЛЕКТРОПРИВОД, ВЫБОР ДВИГАТЕЛЯ, АППАРАТУРА УПРАВЛЕНИЯ, ЭЛЕКТРОСНАБЖЕНИЕ, ВОПРОСЫ ТЕХНИКИ БЕЗОПАСНОСТИ

 

refac.ru

U – образные и рабочие характеристики синхронного двигателя

 

U – образные характеристики. В процессе работы синхронно­го двигателя в его обмотке статора наводятся ЭДС, сумма которых [см. (20.29)] приблизительно равна подведенному к обмотке статора напряжению сети . Эта сумма ЭДС эквивалентна ре­зультирующему магнитному полю, вызванному действием двух магнитодвижущихся сил: возбуждения и статора .

При неизменном напряжении сети резуль­тирующее магнитное поле постоянно. Поэтому при изменении МДС возбуждения

(изменении тока возбуждения ) МДС ста­тора изменяется таким образом, чтобы их совместное действие оставалось неизменным, т. е. чтобы оставалось неизменным ре­зультирующее магнитное поле синхронного двигателя. Это изме­нение МДС может происходить только за счет изменения вели­чины и фазы тока статора , т. е. за счет изменения реактивной составляющей тока статора .

Например, при увеличении тока возбуждения , начиная от наименьшего его значения возрастает МДС ротора, при этом МДС статора уменьшается. Это уменьшение МДС происхо­дит при уменьшении индуктивной (по отношению к напряжению сети

) составляющей тока статора , которая оказывает на маг­нитную систему подмагничивающее влияние.

При этом полный ток статора уменьшается, а ко­эффициент мощности двигателя , увеличивается. При неко­тором значении тока возбуждения индуктивная составляющая тока статора падает до нуля. При этом ток статора достигнет ми­нимального (при данной нагрузке) значения, так как станет чисто активным , а коэффициент мощности .

Увеличение тока возбуждения сверх значения

, т. е. пере­возбуждение двигателя, вызовет увеличение тока , но те­перь этот ток будет опережающим (емкостным) по отношению к напряжению . Таким образом, при недовозбуждении синхронный двигатель работает с отстающим током, а при пе-ревозбуждении – с опережающим. Зависимость тока статора от тока возбуждения для синхронного двигателя представлена U – образными характеристиками (рис. 103).

То есть, синхронный двигатель является генератором реактивного тока: индуктивного по отношению к напряжению сети при недовозбуждении и емкостного при перевозбуждении. Указанная способность синхронных двигателей является их цен­ным качеством, которое используют для повышения коэффициен­та мощности электрических установок.

Аналогично синхронному генератору, включенному на парал­лельную работу с сетью, синхронный двигатель имеет предел устойчивости при минимальном токе возбуждения (штри­ховая линия в левой части рис. 103).

Рабочие характеристики. Рабочие характеристики синхрон­ного двигателя представляют собой зависимость частоты враще­ния ротора , потребляемой мощности полезного момента , коэффициента мощности и тока в обмотке статора от по­лезной мощности двигателя (рис. 104). Частота вращения рото­ра всегда равна синхронной частоте , поэтому гра­фик имеет вид прямой, параллельной оси абсцисс, Полезный момент на валу синхронного двигателя

. Так как рабочие характеристики снимают при условии , то график имеет вид прямой, выходящей из начала координат. Мощность на входе двигателя . С ростом нагрузки на валу двигателя увеличиваются также и потери поэтому потребляемая мощность растет быстрее полезной мощ­ности и график имеет несколько криволинейный вид.

Вид графика зависит от вида настройки тока возбуждения: если в режиме х.х. ток возбуждения установлен та­ким, что , то с ростом нагрузки коэффициент мощности снижается, если же установить при номинальной на­грузке, то при недогрузке двигатель будет забирать из сети реак­тивный опережающий ток, а при перегрузке – отстающий. Обыч­но устанавливают ток возбуждения таким, чтобы при средней нагрузке (рис. 22.6). В этом случае коэффициент мощно­сти во всем диапазоне нагрузок остается достаточно высоким. Ес­ли же установить ток в обмотке возбуждения синхронного двига­теля таким, чтобы был при нагрузке несколько превышающей номинальную, то при номинальной нагрузке и двигатель будет потреблять из сети опережающий по отношению к напряжению сети ток, что приведет к повышению коэффициента мощности этой сети. В этом отношении синхрон­ные двигатели выгодно отличаются от асинхронных, работающих с отстающим по фазе током (особенно при недогрузке двигателя) и снижающих энергетические показатели питающей сети.

 

Рис. 103. U – образные характери­стики Рис. 104. Рабочие характеристики

синхронного двигателя синхронного двигателя

 

 

Ток в обмотке статора двигателя . Из этого выражения видно, что ток с увеличением нагрузки на валу дви­гателя растет быстрее, чем потребляемая мощность , вследствие уменьшения .

Так как ротор синхронного двигателя вращается в ту же сторону, что и поле статора, то направление вращения ротора определяется порядком следования фаз линейных проводов, подведенных к обмотке статора, и порядком расположения фаз обмотки статора. Для изменения направления вращения трехфазного синхронного двигателя необходимо переключить два линейных привода, подведенных из сети к выводам обмотки статора.

В заключение необходимо отметить, что синхронные двигате­ли по сравнению с асинхронными имеют преимущество, заклю­чающееся в том, что они могут работать с , не создавая в питающей сети индуктивных токов, вызывающих дополнительные потери энергии. Более того, при работе с перевозбуждением син­хронные двигатели создают в сети емкостный ток, чем способст­вуют повышению коэффициента мощности энергосистемы в це­лом. Другое достоинство синхронных двигателей состоит в том, что, как это следует из (21.11), основная составляющая электро­магнитного момента пропорциональна напряжению сети , а у асинхронных двигателей электромагнитный момент пропорциона­лен [см. (13.14)]. По этой причине при понижении напряжения в сети синхронные двигатели сохраняют большую перегрузочную способность, чем асинхронные.

К недостаткам синхронных двигателей относятся их более сложная конструкция и повышенная стоимость по сравнению с асинхронными двигателями с короткозамкнутым ротором. Кроме того, для работы синхронного двигателя требуется устройство для питания постоянным током обмотки возбуждения.

Опыт эксплуатации показал, что применение синхронных дви­гателей общего назначения наиболее целесообразно при мощности 200 кВт и более в установках, не требующих частых пусков и ре­гулирования частоты вращения (мощные насосы, вентиляторы, компрессоры и т. п.).

 

 

Похожие статьи:

poznayka.org

СРАВНЕНИЕ СИНХРОННЫХ И АСИНХРОННЫХ ДВИГАТЕЛЕЙ

Чтобы остановить выбор на синхронном или асинхронном двигателе для приведения во вращение того или иного производственного механизма, необходимо иметь в виду следующее.

Обмотки статора обоих двигателей получают питание от сети трехфазного переменного тока. Для питания обмотки возбуждения синхронного двигателя требуется, кроме того, источник электрической энергии постоянного тока, правда, относительно небольшой мощности.

Асинхронный пуск синхронных двигателей несколько сложнее пуска асинхронных двигателей с короткозамкнутым ротором. В отношении пусковых свойств асинхронные двигатели с фазным ротором имеют весьма существенные преимущества перед синхронными двигателями.

Частота вращения синхронных двигателей остается постоянной при изменении нагрузки, тогда как у асинхронных двигателей даже при их работе на естественной характеристике она несколько изменяется.

Асинхронные двигатели дают возможность регулировать частоту вращения различными способами, рассмотренными в гл. 10. Использование некоторых из этих способов для регулирования частоты вращения синхронных двигателей в принципе невозможно, а некоторых связано с большими конструктивными и эксплуатационными трудностями. Учитывая это, следует иметь в виду, что синхронные двигатели относятся к двигателям с нерегулируемой частотой вращения.

Воздействуя на ток возбуждения синхронного двигателя, можно в широких пределах изменять его коэффициент мощности. Можно, в частности, заставить синхронный двигатель работать с cos φ = 1, а также с опережающим током. Последнее может быть использовано для улучшения коэффициента мощности других потребителей, питающихся от той же сети. В отличие от этого асинхронный двигатель представлет собой активно-индуктивную нагрузку и имеет всегда cos φ < 1.

Из-за малых потерь мощности в роторе, а также в обмотке статора при работе с высоким cos φ КПД синхронных двигателей оказывается больше, а масса и габаритные размеры меньше, чем у асинхронных двигателей.

Учитывая указанные достоинства синхронных двигателей, стараются везде, где это возможно, вместо асинхронных двигателей применять синхронные. Они применяются обычно в установках средней и большой мощности при редких пусках, в случаях, когда не требуется электрического регулирования частоты вращения. Синхронные двигатели используются, например, для привода насосов, компрессоров, вентиляторов, генераторов постоянного тока преобразовательных установок.

 

ЭЛЕКТРОПРИВОД, ВЫБОР ДВИГАТЕЛЯ, АППАРАТУРА УПРАВЛЕНИЯ, ЭЛЕКТРОСНАБЖЕНИЕ, ВОПРОСЫ ТЕХНИКИ БЕЗОПАСНОСТИ

 

Дата добавления: 2018-03-20; просмотров: 16;

znatock.org


Смотрите также