ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

2.12. Пуск асинхронных двигателей с фазным ротором. Пуск асинхронного двигателя с короткозамкнутым ротором


Пуск двигателей с короткозамкнутым ротором

Пуск непосредственным включением в сеть(рис. 15.3). Этот способ пуска, отличаясь простотой, имеет существенный не­достаток: в момент подключения двигателя к сети в обмотке ста­тора возникает большой пусковой ток, в 5—7 раз превышающий номинальный ток двигателя. При небольшой инерционности ис­полнительного механизма частота вращения двигателя быстро достигает установившегося значения и пусковой ток также быстро спадает, не вызывая перегрева обмотки статора. Но такой значи­тельный бросок тока в питающей сети может вызвать в ней замет­ное падение напряжения. Однако этот способ пуска благодаря своей простоте получил наибольшее применение для двигателей

 

 

Рис. 15.3. Схема непосредственного включения в сеть (а) и графики изменения тока и момента при пуске (б) асинхронного двигателя с короткозамкнутым ротором

 

мощностью до 38—50 кВт и более (при достаточном сечении жил токоподводящего кабеля). При необходимости уменьшения пуско­вого тока двигателя применяют какой-либо из способов пуска короткозамкнутых двигателей при пониженном напряжении.

Пуск при пониженном напряжении.В соответствии с (15.1) пусковой ток двигателя пропорционален подведенному напряже­нию U1, уменьшение которого вызывает соответствующее умень­шение пускового тока. Существует несколько способов пониже­ния подводимого к двигателю напряжения. Рассмотрим некоторые из них.

Для асинхронных двигателей, работающих при соединении обмоток статора треугольником, можно применить пуск переключением обмотки статора со звезды на треугольник (рис. 15.4, а). В момент подключения двигателя к сети переключатель ставят в положение «звезда», при котором обмотка статора оказывается соединенной в звезду. При этом фазное напряжение на статоре понижается в раз. Во столько же раз уменьшается и ток в фаз­ных обмотках двигателя (рис. 15.4, б). Кроме того, при соединении обмоток звездой линейный ток равен фазному, в то время как при соединении этих же обмоток треугольником линейный ток больше фазного в

раз. Следовательно, переключив обмотки статора звездой, мы добиваемся уменьшения линейного тока в ( )2 = 3 раза.

 

 

Рис. 15.4. Схема включения (а) и графики изменения мо­мента и тока (фазного) при пуске (б) асинхронного двига­теля с короткозамкнутым ротором переключением обмот­ки статора со звезды на треугольник

 

После того как ротор двигателя разгонится до частоты вра­щения, близкой к установившейся, переключатель быстро перево­дят в положение «треугольник» и фазные обмотки двигателя ока­зываются под номинальным напряжением. Возникший при этом бросок тока до значения I/пΔ является незначительным.

Рассмотренный способ пуска имеет существенный недостаток - уменьшение фазного напряжения в раз сопровождается уменьшением пускового момента в три раза, так как, согласно (13.19), пусковой момент асинхронного двигателя прямо пропор­ционален квадрату напряжения U1. Такое значительное уменьше­ние пускового момента не позволяет применять этот способ пуска для двигателей, включаемых в сеть при значительной нагрузке на валу.

Описанный способ понижения напряжения при пуске приме­ним лишь для двигателей, работающих при соединении обмотки статора треугольником. Более универсальным является способ с понижением подводимого к двигателю напряжения посредством реакторов (реактивных катушек — дросселей). Порядок включения двигателя в этом случае следующий (рис. 15.5, а). При разомкнутом рубильнике 2 включают рубильник 7. При этом ток из сети поступает в обмотку статора через реакторы Р, на которых происходит падение напряжения j хр (где хр — индуктивное сопротивление реактора, Ом). В резуль­тате на обмотку ста­тора подается пони­женное напряжение

После разгона ро­тора двигателя включают рубиль­ник 2 и подводимое к обмотке статора напряжение оказы­вается номиналь­ным.

Недостаток это­го способа пуска состоит в том, что уменьшение напряжения в U/1/ U1ном

 

Рис. 15.5. Схемы реакторного (а) и автотранс­форматорного (б) способов пуска асинхронных двигателей с короткозамкнутым ротором

 

раз сопровождается уменьшением пускового момента Мп в (U/1/ U1ном)2 раз.

При пуске двигателя через понижающий автотрансформа­тор (рис. 15.5, б) вначале замыкают рубильник 1, соединяющий обмотки автотрансформатора звездой, а затем включают рубиль­ник 2 и двигатель оказывается подключенным на пониженное напряжение U/1 . При этом пусковой ток двигателя, измеренный на выходе автотрансформатора, уменьшается в КА раз, где КА — ко­эффициент трансформации автотрансформатора. Что же касается тока в питающей двигатель сети, т. е. тока на входе автотрансформатора, то он уменьшается в К2А раз по сравнению с пусковым током при непосредственном включении двигателя в сеть. Дело в том, что в понижающем автотрансформаторе первичный ток меньше вторичного в КА раз и поэтому уменьшение пускового тока при автотрансформаторном пуске составляет КАКА = К2А раз. Например, если кратность пускового тока асинхронного двигателя при непосредственном его включении в сеть составляет Iп/I1ном = 6 , а напряжение сети 380 В, то при автотрансформатор­ном пуске с понижением напряжения до 220 В кратность пусково­го тока в сети I/п/ I1ном = 6/ (380/220)2 = 2 .

После первоначального разгона ротора двигателя рубильник 1 размыкают и автотрансформатор превращается в реактор. При этом напряжение на выводах обмотки статора несколько повышается, но все же остается меньше номинального. Включением ру­бильника 3 на двигатель подается полное напряжение сети. Таким образом, автотрансформаторный пуск проходит тремя ступенями: на первой ступени к двигателю подводится напряжение U1 = (0,50÷0,60)U1ном, на второй — U1 = (0,70÷0,80)U1ном и, наконец, на третьей ступени к двигателю подводится номинальное напря­жение U1ном.

Как и предыдущие способы пуска при пониженном напряже­нии, автотрансформаторный способ пуска сопровождается умень­шением пускового момента, так как значение последнего прямо пропорционально квадрату напряжения. С точки зрения уменьше­ния пускового тока автотрансформаторный способ пуска лучше реакторного, так как при реакторном пуске пусковой ток в пи­тающей сети уменьшается в U/1/ U1ном раз, а при автотрансформа­торном - в (U/1/ U1ном)2 раз. Но некоторая сложность пусковой операции и повышенная стоимость пусковой аппаратуры (пони­жающий автотрансформатор и переключающая аппаратура) не­сколько ограничивают применение этого способа пуска асинхрон­ных двигателей.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

zdamsam.ru

45. Схемы пуска асинхронного двигателя с короткозамкнутым ротором.

Наиболее простым способом пуска двигателя с короткозамкнутым ротором является включение обмотки его статора непосредственно в сеть, на номинальное напряжение обмотки статора (рис. 28-1, а). Такой пуск называется прямым.

Рис. 28-1. Схемы способов пуска двигателей с короткозамкнутым ротором: а — прямой; б — реакторный; в — автотрансформаторный; г — с переключением со звезды на треугольник

46.Пуск двигателя с фазным ротором.

Одной из разновидностей асинхронного двигателя является двигатель с фазным ротором. На практике данный двигатель довольно часто применяется, благодаря улучшенным пусковым свойствам и характеристикам.

Устройство асинхронного двигателя с фазным ротором

Как и у АД с короткозамкнутым ротором, сердечник его статора набирается из листов электротехнической стали, а затем спрессовывается. В пазы сердечника укладываются фазные обмотки, концы которых затем выводятся в коробку, расположенную на корпусе двигателя.

Отличие заключается в роторе двигателя. Он также, как и статор набирается из листов стали, спрессовывается и в него набирается фазная обмотка. Причем число фаз ротора равно числу фаз статора, в то время как у короткозамкнутого, каждый стержень “беличьей клетки” образует отдельную фазу. Отсюда название – фазный ротор.

Концы фаз фазного ротора соединяются с контактными кольцами, которые расположены на валу ротора. В свою очередь, контактные кольца соприкасаются с графитовыми щетками, которые имеют выводы в коробку на корпусе, для возможности подключения дополнительного сопротивления. Это сопротивление в цепи ротора оказывает влияние на токи, протекающие в нем, а как следствие на его характеристики. При увеличении сопротивления цепи ротора, механическая характеристика становится более мягкой.

Влияние сопротивления сказывается и на пуске двигателя, а именно добавочное сопротивление позволяет осуществить более мягкий пуск, снизить пусковые токи и моменты и как следствие, снизить удары в механической части привода в момент пуска.

Как правило, используют переменное сопротивление, которое уменьшают с увеличением оборотов двигателя. Так как зачастую оно представляет из себя ступенчатый реостат, то и пуск двигателя осуществляется тоже ступенчато.

Для увеличения КПД двигателя и сохранения целостности щеток в конструкции двигателя предусматривается специальное щеткоснимательное устройство, которое убирает щетки после пуска. КПД повышается за счет того, что на щетках падает часть напряжения.

Таким образом, преимуществом асинхронного двигателя с фазным ротором является возможность пуска под нагрузкой, но недостатком является более сложная конструкция, а также его дороговизна по сравнению с двигателем с короткозамкнутым ротором. Короткозамкнутый кроме того, является более простым и надежным, не требует дополнительных устройств.

47. Регулирование скорости вращения асинхронного двигателя с фазным ротором.

Частота вращения ротора равна

При этом, синхронная частота вращения зависит от частоты напряжения и числа пар полюсов

Исходя из этого, можно сделать вывод, что регулировать скорость АД можно с помощью изменения скольжения, частоты и числа пар полюсов.

Рассмотрим основные способы регулировки.

 Регулирование скорости с помощью изменения активного сопротивления в цепи ротора

Этот способ регулирования скорости применим в двигателях с фазным ротором. При этом в цепь обмотки ротора включается реостат, которым можно плавно увеличивать сопротивление. С увеличением сопротивления, скольжение двигателя растёт, а скорость падает. Таким образом, обеспечивается регулировка скорости вниз от естественной характеристики.

Недостатком данного способа является его неэкономичность, так как при увеличении скольжения, потерив цепи ротора растут, следовательно, КПД двигателя падает. Плюс к этому,механическая характеристикадвигателя становится более пологой и мягкой, из-за чего небольшое изменение момента нагрузки на валу, вызывает большое изменение частоты вращения.

Регулирование скорости данным способом не эффективно, но, несмотря на это применяется в двигателях с фазным ротором.

 Регулирование скорости двигателя с помощью изменения напряжения питания

Данный способ регулирования можно осуществить, если включить в цепь автотрансформатор, перед статором, после питающих проводов. При этом, если снижать напряжение на выходе автотрансформатора, то двигатель будет работать на пониженном напряжении. Это приведёт к снижению частоты вращения двигателя, при постоянном моменте нагрузки, а также к снижению перегрузочной способности двигателя. Это связано с тем, что при уменьшении напряжения питания, максимальный момент двигателя уменьшается в квадрат раз. Кроме того, этот момент уменьшается быстрее, чем ток в цепи ротора, а значит, растут и потери, с последующим нагревом двигателя.

Способ регулирования изменением напряжения, возможен только вниз от естественной характеристики, так как увеличивать напряжение выше номинального нельзя, потому что это может привести к большим потерям в двигателе, перегреву и выходу его из строя.

Кроме автотрансформатора, можно использовать тиристорный регулятор напряжения.

Регулирование скорости с помощью изменения частоты питания

При данном способе регулирования, к двигателю подключается преобразователь частоты (ПЧ). Чаще всего это тиристорный преобразователь частоты. Регулирование скорости осуществляется изменением частоты напряжения f, так как она в данном случае влияет на синхронную скорость вращения двигателя.

При снижении частоты напряжения, перегрузочная способность двигателя будет падать, чтобы этого не допустить, требуется повысить величину напряжения U1. Значение на которое нужно повысить, зависит от того какой привод. Если регулирование производится с постоянным моментом нагрузки на валу, то напряжение нужно изменять пропорционально изменению частоты (при снижении скорости). При увеличении скорости этого делать не следует, напряжение должно оставаться на номинальном значении, иначе это может причинить вред двигателю.

Если регулирование скорости производится с постоянной мощностью двигателя (например, в металлорежущих станках), то изменение напряжения U1необходимо производить пропорционально квадратному корню изменения частоты f1.

При регулировании установок с вентиляторной характеристикой, необходимо изменять подводимое напряжение U1 пропорционально квадрату изменения частоты f1.

Регулирование с помощью изменения частоты, является наиболее приемлемым вариантом для асинхронных двигателей, так как при нем обеспечивается регулирование скорости в широком диапазоне, без значительных потерь и снижения перегрузочных способностей двигателя.

 Регулирование скорости АД изменением числа пар полюсов

Такой способ регулирования возможен только в многоскоростных асинхронных двигателях с короткозамкнутым ротором, так как число полюсов этого ротора, всегда равно количеству полюсов статора.

В соответствии с формулой, которая рассматривалась выше, скорость двигателя можно регулировать изменением числа пар полюсов. Причём, изменение скорости происходит ступенчато, так как количество полюсов принимают только определённые значения – 1,2,3,4,5.

Изменение количества полюсов достигается переключением катушечных групп статорной обмотки. При этом катушки соединяются различными схемами соединения, например “звезда - звезда” или “звезда – двойная звезда”. Первая схема соединения даёт изменение количества полюсов в соотношении 2:1. При этом обеспечивается постоянная мощность двигателя при переключении. Вторая схема изменяет количество полюсов в таком же соотношении, но при этом обеспечивает постоянный момент двигателя.

Применение данного способа регулирования оправдано сохранением КПД и коэффициента мощности при переключении. Минусом же является более сложная и увеличенная конструкция двигателя, а также увеличение его стоимости.

studfiles.net

2.12. Пуск асинхронных двигателей с фазным ротором

Пусковые свойства двигателя определяются главным образом значением пускового тока и моментаили их кратностямии. Двигатель с хорошими пусковыми свойствами развивает значительный пусковой момент при сравнительно небольшом пусковом токе, но такое сочетание пусковых параметров сопряжено с определенными трудностями. Помимо этого пусковые свойства двигателей оцениваются по продолжительности и плавности пуска, сложности пусковой операции, ее экономичности.

В асинхронных двигателях с фазным ротором можно влиять на пусковые характеристики введением в цепь ротора на время пуска пускового реостата. Тогда сопротивление фазы ротора складывается собственного сопротивления обмотки и пускового реостата:

.Максимальное значение сопротивление пускового реостата выбирают соответствующим максимальному моменту при пуске:

, откуда.

На рисунке показана схема включения пускового реостата ПР в цепь фазного ротора и график изменения пускового момента при трех ступенях пускового реостата.

Рис. Схема включения пускового реостата и построение графика пускового момента асинхронного двигателя с фазным ротором.

Характеристика при номинальных параметрах без добавочного сопротивления называется естественной механической характеристикой. В асинхронных двигателях с фазным ротором обеспечивается наиболее благоприятное соотношение между пусковым моментом и пусковым током: большой пусковой момент при небольшом пусковом токе (в 2–3 раза больше номинального). Недостатками пусковых свойств двигателей с фазным ротором являются некоторая сложность, продолжительность и неэкономичность пусковой операции.

2.13. Пуск асинхронных двигателей с короткозамкнутым ротором

Асинхронные двигатели с короткозамкнутым ротором обычно пускаются в ход прямым включением в сеть с номинальным напряжением . Процессразбега ротора двигателя от неподвижного состояния до номинальной частоты вращения определяется его механической характеристикойи механической характеристикой нагрузкисогласно уравнению механического движения:

, гдеJ – момент инерции вращающихся частей, приведенный к ротору.

Время пуска определяется путем интегрирования:

.

Требования к механическим характеристикам асинхронных двигателей регламентируются стандартами. Для двигателей общепромышленного применения в зависимости от их мощности и частоты вращения предъявляются следующие требования: максимальный вращающий момент должен находиться в пределах 1,7–2,2;пусковой момент – в пределах 0,7–2;минимально допустимый вращающий момент при пуске – впределах 0,6 – 1.

Время пуска невелико и лежит в пределах от долей секунд до нескольких секунд, но сопровождается значительными пусковыми токами и может вызвать падение напряжения сети. При необходимости уменьшения пускового тока двигателя применяют пуск при пониженном напряжении. Этот способ реализуется переключением на время пуска обмоток с треугольника на звезду, либо пуском через реактор или автотрансформатор.

2.14. Асинхронные короткозамкнутые двигатели с улучшенными пусковыми свойствами

В короткозамкнутую обмотку ротора нельзя ввести во время пуска дополнительное сопротивление, но пусковые характеристики двигателя можно улучшить, если использовать для увеличения активного сопротивления обмотки ротора поверхностный эффект в стержнях обмотки. Поверхностный эффект наиболее выражен в начале пуска, когда частота тока в роторе близка к частоте сети.

В асинхронных двигателях с глубокими пазами на роторе высота стержней из алюминия составляет 40–60 мм, что позволяет получить при частоте 50 Гц 3–4-кратное увеличение сопротивления.

Асинхронные двигатели с двойной беличьей клеткой обладают еще более высокими пусковыми свойствами. На роторе двигателя имеются две короткозамкнутые обмотки, стержни которых расположены в полузакрытых пазах на различной глубине, отделенные друг от друга узким шлицем

Широкое распространение имеют также обмотки со стержнями колбообразного 6 и трапецеидального 4 профиля, особенно для быстроходных и мощных двигателей.

На рисунке для сравнения показаны механические характеристики асинхронных двигателей с короткозамкнутыми роторами различного исполнения.

Рис. Механические характеристики короткозамкнутых асинхронных двигателей с улучшенными пусковыми свойствами: 1 – двигатель с фазным ротором; 2 – короткозамкнутая обмотка с круглыми стержнями; 3 – прямоугольные стержни в глубоких пазах; 4 – стержни трапецеидального профиля; 5 – двойная беличья клетка; 6 – стержни колбообразного профиля.

Увеличение пускового момента в короткозамкнутых двигателях с улучшенными пусковыми свойствами сопровождается снижением максимального момента на 15–25 % и коэффициента мощности на 4–6 % по сравнению с двигателями с круглыми пазами на роторе по причине связи с возрастания индуктивного сопротивления рассеянияобмотки ротора.

studfiles.net

Пуск двигателей с короткозамкнутым ротором

⇐ ПредыдущаяСтр 77 из 111Следующая ⇒

Пуск непосредственным включением в сеть(рис. 15.3). Этот способ пуска, отличаясь простотой, имеет существенный не­достаток: в момент подключения двигателя к сети в обмотке ста­тора возникает большой пусковой ток, в 5—7 раз превышающий номинальный ток двигателя. При небольшой инерционности ис­полнительного механизма частота вращения двигателя быстро достигает установившегося значения и пусковой ток также быстро спадает, не вызывая перегрева обмотки статора. Но такой значи­тельный бросок тока в питающей сети может вызвать в ней замет­ное падение напряжения. Однако этот способ пуска благодаря своей простоте получил наибольшее применение для двигателей

 

 

Рис. 15.3. Схема непосредственного включения в сеть (а) и графики изменения тока и момента при пуске (б) асинхронного двигателя с короткозамкнутым ротором

 

мощностью до 38—50 кВт и более (при достаточном сечении жил токоподводящего кабеля). При необходимости уменьшения пуско­вого тока двигателя применяют какой-либо из способов пуска короткозамкнутых двигателей при пониженном напряжении.

Пуск при пониженном напряжении.В соответствии с (15.1) пусковой ток двигателя пропорционален подведенному напряже­нию U1, уменьшение которого вызывает соответствующее умень­шение пускового тока. Существует несколько способов пониже­ния подводимого к двигателю напряжения. Рассмотрим некоторые из них.

Для асинхронных двигателей, работающих при соединении обмоток статора треугольником, можно применить пуск переключением обмотки статора со звезды на треугольник (рис. 15.4, а). В момент подключения двигателя к сети переключатель ставят в положение «звезда», при котором обмотка статора оказывается соединенной в звезду. При этом фазное напряжение на статоре понижается в раз. Во столько же раз уменьшается и ток в фаз­ных обмотках двигателя (рис. 15.4, б). Кроме того, при соединении обмоток звездой линейный ток равен фазному, в то время как при соединении этих же обмоток треугольником линейный ток больше фазного в раз. Следовательно, переключив обмотки статора звездой, мы добиваемся уменьшения линейного тока в ( )2 = 3 раза.

 

 

Рис. 15.4. Схема включения (а) и графики изменения мо­мента и тока (фазного) при пуске (б) асинхронного двига­теля с короткозамкнутым ротором переключением обмот­ки статора со звезды на треугольник

 

После того как ротор двигателя разгонится до частоты вра­щения, близкой к установившейся, переключатель быстро перево­дят в положение «треугольник» и фазные обмотки двигателя ока­зываются под номинальным напряжением. Возникший при этом бросок тока до значения I/пΔ является незначительным.

Рассмотренный способ пуска имеет существенный недостаток - уменьшение фазного напряжения в раз сопровождается уменьшением пускового момента в три раза, так как, согласно (13.19), пусковой момент асинхронного двигателя прямо пропор­ционален квадрату напряжения U1. Такое значительное уменьше­ние пускового момента не позволяет применять этот способ пуска для двигателей, включаемых в сеть при значительной нагрузке на валу.

Описанный способ понижения напряжения при пуске приме­ним лишь для двигателей, работающих при соединении обмотки статора треугольником. Более универсальным является способ с понижением подводимого к двигателю напряжения посредством реакторов (реактивных катушек — дросселей). Порядок включения двигателя в этом случае следующий (рис. 15.5, а). При разомкнутом рубильнике 2 включают рубильник 7. При этом ток из сети поступает в обмотку статора через реакторы Р, на которых происходит падение напряжения j хр (где хр — индуктивное сопротивление реактора, Ом). В резуль­тате на обмотку ста­тора подается пони­женное напряжение

После разгона ро­тора двигателя включают рубиль­ник 2 и подводимое к обмотке статора напряжение оказы­вается номиналь­ным.

Недостаток это­го способа пуска состоит в том, что уменьшение напряжения в U/1/ U1ном

 

Рис. 15.5. Схемы реакторного (а) и автотранс­форматорного (б) способов пуска асинхронных двигателей с короткозамкнутым ротором

 

раз сопровождается уменьшением пускового момента Мп в (U/1/ U1ном)2 раз.

При пуске двигателя через понижающий автотрансформа­тор (рис. 15.5, б) вначале замыкают рубильник 1, соединяющий обмотки автотрансформатора звездой, а затем включают рубиль­ник 2 и двигатель оказывается подключенным на пониженное напряжение U/1 . При этом пусковой ток двигателя, измеренный на выходе автотрансформатора, уменьшается в КА раз, где КА — ко­эффициент трансформации автотрансформатора. Что же касается тока в питающей двигатель сети, т. е. тока на входе автотрансформатора, то он уменьшается в К2А раз по сравнению с пусковым током при непосредственном включении двигателя в сеть. Дело в том, что в понижающем автотрансформаторе первичный ток меньше вторичного в КА раз и поэтому уменьшение пускового тока при автотрансформаторном пуске составляет КАКА = К2А раз. Например, если кратность пускового тока асинхронного двигателя при непосредственном его включении в сеть составляет Iп/I1ном = 6 , а напряжение сети 380 В, то при автотрансформатор­ном пуске с понижением напряжения до 220 В кратность пусково­го тока в сети I/п/ I1ном = 6/ (380/220)2 = 2 .

После первоначального разгона ротора двигателя рубильник 1 размыкают и автотрансформатор превращается в реактор. При этом напряжение на выводах обмотки статора несколько повышается, но все же остается меньше номинального. Включением ру­бильника 3 на двигатель подается полное напряжение сети. Таким образом, автотрансформаторный пуск проходит тремя ступенями: на первой ступени к двигателю подводится напряжение U1 = (0,50÷0,60)U1ном, на второй — U1 = (0,70÷0,80)U1ном и, наконец, на третьей ступени к двигателю подводится номинальное напря­жение U1ном.

Как и предыдущие способы пуска при пониженном напряже­нии, автотрансформаторный способ пуска сопровождается умень­шением пускового момента, так как значение последнего прямо пропорционально квадрату напряжения. С точки зрения уменьше­ния пускового тока автотрансформаторный способ пуска лучше реакторного, так как при реакторном пуске пусковой ток в пи­тающей сети уменьшается в U/1/ U1ном раз, а при автотрансформа­торном - в (U/1/ U1ном)2 раз. Но некоторая сложность пусковой операции и повышенная стоимость пусковой аппаратуры (пони­жающий автотрансформатор и переключающая аппаратура) не­сколько ограничивают применение этого способа пуска асинхрон­ных двигателей.

§16.1. Принцип действия и пуск однофазного асинхронного двигателя

По своему устройству однофазный асинхронный двигатель аналогичен трехфазному и состоит из ста­тора, в пазах которого уложена однофазная обмотка (см. рис. 8.8), и короткозамкнутого ротора. Особен­ность работы однофазного асинхронного двигателя заключается в том, что при включении однофазной обмотки статора С1—С2 в сеть (рис. 16.1) МДС ста­тора создает не вращающийся, а пульсирующий маг­нитный поток (см. § 9.4) с амплитудой Фmах, изме­няющейся от + Фmах до – Фmах При этом ось магнитного потока остается неподвижной в про­странстве.

Для объяснения принципа действия однофаз­ного двигателя пульсирующий поток Фmах разло­жим на два вращающихся в противоположные стороны потока Фпр и Фобр (рис. 16.2), каждый из которых равен 0,5Фmax и вращается с частотой (об/мин)

nпр = nобр = f160/ p = n1

Условимся считать поток Фпр вращающийся в на­правлении вращения ротора, прямым, а поток Фо6р -обратным. Допустим, что ротор двигателя вращает­ся против часовой стрелки, т. е. в направлении пото­ка Фпр.

Частота вращения ротора n2 меньше частоты вращения магнитного поля статора n1, поэтому скольжение ротора относительно вращающегося по­тока Фпр будет

sпр = (n1 – n2)/ n1 = s (16.1)

Обратный поток Фобр вращается противополож­но ротору, поэтому частота вращения ротора n2 от­носительно Фобр - отрицательная. В этом случае скольжение ротора относительно Фобр определится выражением

sобр = (16.2)

 

Прямое поле наводит в обмотке ротора ЭДС Е2пр, а обратное по­ле — ЭДС Е2обр. Эти ЭДС создают в обмотке ротора токи I/2пр и I/2обр.

Известно, что частота тока в роторе пропор­циональна скольжению (f2 = sf1). Так как snp < sобр, то частота тока I/2обр намного больше частоты тока I/2пр. Так, для однофазного двигателя с n1 = 1500 об/мин, n2 = 1450 об/мин и f1 = 50 Гц получим:

snp = (1500 - 1450)/ 1500 = 0,033;

f2пр = 0,033 - 50 = 1,8 Гц;

sобр = (1500 +1450)/ 1500 = 1,96;

f2о6р = 1,96 - 50 = 98 Гц.

Рис.16.1 Схема включения однофазного

асинхронного двигателя

Индуктивное сопротивление обмотки ротора току I/2обр во много раз больше ее активного сопротивления (потому что f2обр >>f2пр). Ток I/2о6р являет­ся почти чисто индуктивным, оказывающим силь­ное размагничивающее действие на обратное поле Фобр. В результате обратное поле и обусловленный им момент Мобр оказываются зна­чительно ослабленными и ротор однофазного двигателя вращается и направлении прямого поля под действием момента

М = Мпр - М06р, (16.3)

где Мпр — электромагнитный момент, обусловленный прямым полем.

 

 

Рис. 16.2. Разложение пульсирующего магнитного потока на два вра­щающихся

 

На рис. 16.3 представлен график зависимости вращающего момента М в функции скольжения s = sпр. Этот график получен путем наложения графиков Мпр = f(snp) и Мо6р = f(sобр)- При малых значениях скольжения s, что соответствует работе двигателя в пределах номинальной нагрузки, вращающий момент Мсоздается главным образом моментом Мпр.

При sпр = sобр = 1 моменты Мпр и Мо6р равны, а поэтому пуско­вой момент однофазного двигателя равен нулю. Следовательно, однофазный асинхронный двигатель не может самостоятельно прийти во вращение при подключении его к сети, а нуждается в первоначальном толчке, так как лишь при s≠ 1 на ротор двигателя действует вращающий момент М = Мпр- Мобр

 

 

Рис. 16.3. Механические характе- Рис. 16.4. Схема однофазного ристики однофазного асинхронного асинхронного двигателя с пусковой двигателя обмоткой

 

Приведенные на рис. 16.3 зависимости моментов показывают, что однофазный асинхронный двигатель не создает пускового мо­мента. Чтобы этот момент появился, необходимо во время пуска двигателя создать в нем вращающееся магнитное поле. С этой целью на статоре двигателя помимо рабочей обмотки Априменяют еще одну обмотку — пусковую В. Эти обмотки располагают на статоре обычно так, чтобы их оси были смещены относительно друг друга на 90 эл. град. Кроме того, токи в обмот­ках статора и должны быть сдвинуты по фазе относительно друг друга. Для этого в цепь пусковой обмотки включают фазосмещающий элемент (ФЭ), в качестве которого могут быть применены активное сопротивление, индуктивность или ем кость (рис. 16.4). По достижении частотой вращения значения близкого к номинальному, пусковую обмотку Вотключают с по мощью реле. Таким образом, во время пуска двигатель является двухфазным, а во время работы — однофазным.

Для получения вращающегося магнитного поля посредством двух обмоток на статоре, смещенных относительно друг друга на 90 эл. град, необходимо соблюдать следующие условия (рис. 16.5):

а) МДС рабочей и пусковой обмоток и должны быть и равны и сдвинуты в пространстве относительно друг друга на 90 эл. град;

б) токи в обмотках статора и должны быть сдвинуты по фазе относительно друг друга на 90°.

При строгом соблюдении указанных условий вращающееся поле статора является круговым, что соответствует наибольшему вращающему моменту. При частичном нарушении какого-либо из условий поле статора становится эллиптическим, содержащим об­ратную составляющую (см. рис. 9.5, б). Обратная составляющая поля создает тормоз­ной момент и ухудшает пусковые свой­ства двигателя.

Из векторных диа­грамм, приведенных на рис. 16.6, видно, что активное сопротивле­ние и индуктивность в качестве ФЭ не обес­печивают получения фазового сдвига между токами в 90°. Лишь только емкость С в качестве ФЭ обеспе­чивает фазовый сдвиг ψ = 90°. Значение этой емкости выбирают та­ким, чтобы ток пусковой обмотки в мо­мент пуска (s = 1) опережал по фазе напря­жение , на угол φв, дополняющий угол φА до 90°:

Рис. 16.5. Получение вращающегося магнитного

поля двухфазной системой токов

Если при этом обе обмотки создают одинаковые по значению МДС, то в начальный период пуска вращающееся поле окажется круговым и двигатель будет развивать значительный начальный пусковой момент. Однако применение емкости в качестве ФЭ часто ограничивается значительными габаритами конденсаторов, тем более что для получения кругового поля требуются конденсаторы значительной емкости. Например, для однофазного двигателя мощностью 200 Вт необходима емкость 30 мкФ при рабочем на­пряжении 300—500 В.

Получили распространение однофазные двигатели с активным сопротивлением в качестве ФЭ. При этом повышенное активное сопротивление пусковой обмотки достигается тем, что она выполняется проводом уменьшенного сечения (по сравнению с проводом рабочей обмотки). Так как эта обмотка включена на непро­должительное время (обычно несколько секунд), то такая ее кон­струкция вполне допустима. Пусковой момент таких двигателей обычно не превышает номинального, но это вполне приемлемо при пуске двигателей при небольшой нагрузке на валу.

 

 

Рис. 16.6. Сравнение свойств фазосмещающих элементов:

а— активное сопротивление, б— индуктивность, в— емкость, г— механиче­ские характеристики двигателя при различных фазосмещающих элементах; 1 — активное сопротивление; 2— емкость

 

Применение емкости в качестве ФЭ позволяет получить пус­ковой момент Мп= (1,6÷2,0) Мном. На рис. 16.6, г приведены меха­нические характеристики однофазного асинхронного двигателя при различных ФЭ. Для большей наглядности значения момента даны в относительных единицах.

 

22. Синхронные машины – конструкция, принцип действия, область применения.

 

Синхронные машины — это бесколлекторные машины пе­ременного тока. По своему устройству они отличаются от асинхронных машин лишь конструкцией ротора, который может быть явнополюсным или неявнополюсным. Что же касается свойств, то синхрон­ные машины отличаются син­хронной частотой вращения ротора (n2 = n1 = const) при любой нагрузке, а также воз­можностью регулирования ко­эффициента мощности, уста­навливая такое его значение, при котором работа синхрон­ной машины становится наи­более экономичной. Синхрон­ные машины обратимы и могут работать как в режиме генератора, так и в режиме двигателя. Синхронные гене­раторы составляют основу электротехнического оборудо­вания электростанций, т. е. практически вся электроэнер­гия вырабатывается синхрон­ными генераторами. Единич­ная мощность современных синхронных генераторов дос­тигает миллиона киловатт и более. Синхронные двигатели применяются главным обра­зом для привода устройств большой мощности. Такие двигатели по своим технико-экономическим показателям превосходят двигатели других типов. В крупных электроэнер­гетических установках синхронные машины иногда исполь­зуются в качестве компенса­торов — генераторов реак­тивной мощности, позволяю­щих повысить коэффициент мощности всей установки. В данном разделе рассмотрены главным образом трехфазные синхронные машины. Приве­дены также сведения по неко­торым типам синхронных дви­гателей весьма малой мощ­ности, применяемым в уст­ройствах автоматики и при­борной техники.

mykonspekts.ru


Смотрите также