ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Принцип работы трёхфазного асинхронного двигателя. Принцип действия трехфазного асинхронного двигателя


Принцип работы трёхфазного асинхронного двигателя

Наиболее распространённым в промышленности типом двигателя переменного тока является трёхфазный асинхронный двигатель, изобретённый в 1888г. М. О. Доливо-Добровольским.

Рис. 43. Трёхфазный асинхронный двигатель

В пазах статора размещены три катушки, плоскости которых смещены одна относительно другой на 120°. Катушки соединены звездой. При подключении трёхфазной системы ЭДС к зажимам А, В, С в статоре возникает круговое вращающееся магнитное поле. В пазах ротора находятся три замкнутые на себя или на внешние сопротивления катушки (рис. 43).

Круговое вращающееся магнитное поле с угловой скоростью ω пересекает провода катушек неподвижного ротора и наводит в них ЭДС, и в катушках ротора потекут токи. По закону Ленца эти токи стремятся своим магнитным полем ослабить вызывающее их магнитное поле.

Механическое взаимодействие токов ротора с вращающимся магнитным полем приведёт к тому, что ротор начнёт вращаться в ту же сторону, что и магнитное поле (правило левой руки).

Ротор вращается асинхронно, т.е. частота вращения его ωрменьше частоты вращения магнитного поля ω. Отсюда и название двигателя асинхронный.

Разность частот вращения поля и ротора отнесённая к скорости поля, называется скольжением:

(132)

Скольжение не может быть равно нулю, так как при одинаковых частотах вращения поля и ротора прекратилось бы наведение токов в роторе и, следовательно, отсутствовал бы вращающийся момент.

В рабочем режиме асинхронный двигатель находится в динамическом равновесии, когда создаваемый благодаря скольжению вращающий момент уравновешивает тормозящий момент нагрузки на его валу. С увеличением механической нагрузки тормозящий момент становится больше вращающего и скольжение увеличивается. Вследствие этого возрастают индуктированные в обмотке ротора ЭДС и токи, что вызывает увеличение вращающегося момента до нового состояния динамического равновесия (при большем скольжении).

Однако вращающий момент может расти с увеличением скольжения только до определённого предела, так называемого критического значения при критическом скольжении, после чего он падает, а двигатель затормаживается. В этот момент должна сработать максимальная токовая защита, иначе двигатель сгорит.

При нормальной нагрузке скольжение асинхронных двигателей в среднем составляет 2 – 4 %.

Принцип работы трёхфазного синхронного двигателя

Трёхфазный синхронный генератор, как и многие другие типы электрических машин, обладает свойством обратимости: он может работать как синхронный двигатель. Поэтому конструктивно синхронный двигатель мело отличается от синхронного генератора.

Если присоединить обмотку статора к трёхфазной системе ЭДС, а обмотку возбуждения ротора – к источнику постоянного тока, то вращающееся магнитное поле статора будет периодически создавать на валу моменты разных знаков. Поэтому ротор не сможет прийти во вращение – он будет вибрировать.

Для пуска двигателя необходимо сначала (при разомкнутой обмотке ротора) привести ротор во вращение от внешнего двигателя до частоты вращения, близкой к частоте вращения поля. Если после этого включить обмотку возбуждения ротора, то двигатель «втянется в синхронизм». Ротор будет вращаться синхронно с полем статора.

Ротор представляет собой электромагнит постоянного тока с явно выраженными полюсами. При втягивании в синхронизм ось поля ротора стремиться совпасть с результирующим вектором магнитной индукции .

Для пуска синхронного двигателя может быть использована специальная пусковая обмотка, действующая так же, как в асинхронном двигателе.

При строго синхронном вращении ротора имеется угловой сдвиг между осями полей статора и ротора, зависящий от нагрузки (от момента сопротивления на валу). С увеличением нагрузки этот угол увеличивается, благодаря чему момент вращения так же увеличивается. Максимальный вращающий момент получается при угле между ЭДС двигателя и напряжением сети около 90°, после чего дальнейшее увеличение нагрузки приводит к остановке двигателя и «выпадению» его из синхронизма.

Если изменять постоянный ток в цепи возбуждения ротора, то можно в широких пределах регулировать cosϕ двигателя. Так, при «недовозбуждённом» двигателе уголϕ положительный, т.е. ток отстаёт от напряжения, а при «перевозбуждённом» двигателе уголϕ отрицательный – ток опережает напряжение. Это свойство синхронных двигателей весьма ценно и широко используется в промышленности для повышенияcosϕэлектроустановок.

Синхронные двигатели выполняются обычно для номинальных режимов работы про cos= 1 иcos= 0,8 (опережающем).

studfiles.net

Глава 16

• Однофазные и конденсаторные асинхронные двигатели

§16.1. Принцип действия и пуск однофазного асинхронного двигателя

По своему устройству однофазный асинхронный двигатель аналогичен трехфазному и состоит из ста­тора, в пазах которого уложена однофазная обмотка (см. рис. 8.8), и короткозамкнутого ротора. Особен­ность работы однофазного асинхронного двигателя заключается в том, что при включении однофазной обмотки статора С1—С2 в сеть (рис. 16.1) МДС ста­тора создает не вращающийся, а пульсирующий маг­нитный поток (см. § 9.4) с амплитудой Фmах, изме­няющейся от + Фmах до – Фmах При этом ось магнитного потока остается неподвижной в про­странстве.

Для объяснения принципа действия однофаз­ного двигателя пульсирующий поток Фmах разло­жим на два вращающихся в противоположные стороны потока Фпр и Фобр (рис. 16.2), каждый из которых равен 0,5Фmax и вращается с частотой (об/мин)

nпр = nобр = f160/ p = n1

Условимся считать поток Фпр вращающийся в на­правлении вращения ротора, прямым, а поток Фо6р -обратным. Допустим, что ротор двигателя вращает­ся против часовой стрелки, т. е. в направлении пото­ка Фпр.

Частота вращения ротора n2 меньше частоты вращения магнитного поля статора n1, поэтому скольжение ротора относительно вращающегося по­тока Фпр будет

sпр = (n1 – n2)/ n1 = s(16.1)

Обратный поток Фобр вращается противополож­но ротору, поэтому частота вращения ротора n2 от­носительно Фобр - отрицательная. В этом случае скольжение ротора относительно Фобр определится выражением

sобр = (16.2)

Прямое поле наводит в обмотке ротора ЭДС Е2пр, а обратное по­ле — ЭДС Е2обр. Эти ЭДС создают в обмотке ротора токи I/2пр и I/2обр.

Известно, что частота тока в роторе пропор­циональна скольжению (f2 = sf1). Так как snp < sобр, то частота тока I/2обр намного больше частоты тока I/2пр. Так, для однофазного двигателя с n1 = 1500 об/мин, n2 = 1450 об/мин и f1 = 50 Гц получим:

snp = (1500 - 1450)/ 1500 = 0,033;

f2пр= 0,033 - 50 = 1,8 Гц;

sобр = (1500 +1450)/ 1500 = 1,96;

f2о6р = 1,96 - 50 = 98 Гц.

Рис.16.1 Схема включения однофазного

асинхронного двигателя

Индуктивное сопротивление обмотки ротора току I/2обр во много раз больше ее активного сопротивления (потому что f2обр >>f2пр). Ток I/2о6р являет­ся почти чисто индуктивным, оказывающим силь­ное размагничивающее действие на обратное поле Фобр. В результате обратное поле и обусловленный им момент Мобр оказываются зна­чительно ослабленными и ротор однофазного двигателя вращается и направлении прямого поля под действием момента

М = Мпр - М06р, (16.3)

где Мпр — электромагнитный момент, обусловленный прямым полем.

Рис. 16.2. Разложение пульсирующего магнитного потока на два вра­щающихся

На рис. 16.3 представлен график зависимости вращающего момента М в функции скольжения s = sпр. Этот график получен путем наложения графиков Мпр = f(snp) и Мо6р = f(sобр)- При малых значениях скольжения s, что соответствует работе двигателя в пределах номинальной нагрузки, вращающий момент М создается главным образом моментом Мпр.

При sпр = sобр = 1 моменты Мпр и Мо6р равны, а поэтому пуско­вой момент однофазного двигателя равен нулю. Следовательно, однофазный асинхронный двигатель не может самостоятельно прийти во вращение при подключении его к сети, а нуждается в первоначальном толчке, так как лишь при s ≠ 1 на ротор двигателя действует вращающий момент М = Мпр - Мобр

Рис. 16.3. Механические характе- Рис. 16.4. Схема однофазного ристики однофазного асинхронного асинхронного двигателя с пусковой двигателя обмоткой

Приведенные на рис. 16.3 зависимости моментов показывают, что однофазный асинхронный двигатель не создает пускового мо­мента. Чтобы этот момент появился, необходимо во время пуска двигателя создать в нем вращающееся магнитное поле. С этой целью на статоре двигателя помимо рабочей обмотки А применяют еще одну обмотку — пусковую В. Эти обмотки располагают на статоре обычно так, чтобы их оси были смещены относительно друг друга на 90 эл. град. Кроме того, токи в обмот­ках статора и

должны быть сдвинуты по фазе относительно друг друга. Для этого в цепь пусковой обмотки включают фазосмещающий элемент (ФЭ), в качестве которого могут быть применены активное сопротивление, индуктивность или ем кость (рис. 16.4). По достижении частотой вращения значения близкого к номинальному, пусковую обмотку В отключают с по мощью реле. Таким образом, во время пуска двигатель является двухфазным, а во время работы — однофазным.

Для получения вращающегося магнитного поля посредством двух обмоток на статоре, смещенных относительно друг друга на 90 эл. град, необходимо соблюдать следующие условия (рис. 16.5):

а) МДС рабочей и пусковой обмоток идолжны быть и равны и сдвинуты в пространстве относительно друг друга на 90 эл. град;

б) токи в обмотках статора

и должны быть сдвинуты по фазе относительно друг друга на 90°.

При строгом соблюдении указанных условий вращающееся поле статора является круговым, что соответствует наибольшему вращающему моменту. При частичном нарушении какого-либо из условий поле статора становится эллиптическим, содержащим об­ратную составляющую (см. рис. 9.5, б). Обратная составляющая поля создает тормоз­ной момент и ухудшает пусковые свой­ства двигателя.

Из векторных диа­грамм, приведенных на рис. 16.6, видно, что активное сопротивле­ние и индуктивность в качестве ФЭ не обес­печивают получения фазового сдвига между токами в 90°. Лишь только емкость С в качестве ФЭ обеспе­чивает фазовый сдвиг ψ = 90°. Значение этой емкости выбирают та­ким, чтобы ток пусковой обмотки в мо­мент пуска (s = 1) опережал по фазе напря­жение

, на угол φв, дополняющий угол φА до 90°:

Рис. 16.5. Получение вращающегося магнитного

поля двухфазной системой токов

Если при этом обе обмотки создают одинаковые по значению МДС, то в начальный период пуска вращающееся поле окажется круговым и двигатель будет развивать значительный начальный пусковой момент. Однако применение емкости в качестве ФЭ часто ограничивается значительными габаритами конденсаторов, тем более что для получения кругового поля требуются конденсаторы значительной емкости. Например, для однофазного двигателя мощностью 200 Вт необходима емкость 30 мкФ при рабочем на­пряжении 300—500 В.

Получили распространение однофазные двигатели с активным сопротивлением в качестве ФЭ. При этом повышенное активное сопротивление пусковой обмотки достигается тем, что она выполняется проводом уменьшенного сечения (по сравнению с проводом рабочей обмотки). Так как эта обмотка включена на непро­должительное время (обычно несколько секунд), то такая ее кон­струкция вполне допустима. Пусковой момент таких двигателей обычно не превышает номинального, но это вполне приемлемо при пуске двигателей при небольшой нагрузке на валу.

Рис. 16.6. Сравнение свойств фазосмещающих элементов:

а — активное сопротивление, б — индуктивность, в — емкость, г — механиче­ские характеристики двигателя при различных фазосмещающих элементах; 1 — активное сопротивление; 2 — емкость

Применение емкости в качестве ФЭ позволяет получить пус­ковой момент Мп = (1,6÷2,0) Мном. На рис. 16.6, г приведены меха­нические характеристики однофазного асинхронного двигателя при различных ФЭ. Для большей наглядности значения момента даны в относительных единицах.

studfiles.net

54) Асинхронные трёхфазные двигатели. Устройство и принцип действия

а) ОБЩИЕ СВЕДЕНИЯ

Из числа различных видов современных электрических машин самой распространенной в наши дни является асинхронная бескол­лекторная машина, применяемая обычно в качестве двигателя. Асин­хронная машина — это машина, в которой при работе возбуждается вращающееся магнитное поле, но ротор вращается асинхронно, т. е. с угловой скоростью, отличной от угловой скорости поля. Она была изобретена М. О. Доливо-Добровольским в 1888 г., но до настоящего времени сохранила в основном ту простую форму, которую ей придал талантливый русский изобретатель. Причины исключительно широ­кого распространения асинхронного двигателя (а вместе с ним и трех­фазной системы) — его простота и дешевизна. Можно сказать, что в основном асинхронная машина состоит из трех неподвижных кату­шек (точнее, обмоток), размещенных на общем сердечнике, и помещен­ной между ними четвертой вращающейся катушки. В машине отсутст­вуют какие-либо легко повреждающиеся или быстро изнашивающиеся электрические части (например, коллектор).

Асинхронные машины малой мощности часто выполняются одно­фазными, что позволяет использовать их в устройствах, питающихся от двухпроводной сети. Такие машины находят широкое применение в бытовой технике.

Общим недостатком асинхронных машин является относительная сложность и неэкономичность регулирования их эксплуатационных характеристик.

б) УСТРОЙСТВО ТРЕХФАЗНОЙ АСИНХРОННОЙ МАШИНЫ

Трехфазная асинхронная машина состоит из двух главных частей: неподвижного статора и вращающегося ротора.

Конструкция статора.Статор асинхронной машины представляет собой полый цилиндр, собранный из пластин электротехнической стали,изолированных друг от друга слоем лака (рис. 14.1, а). Три фазные обмотки, возбуждающие вращающееся магнитное поле машины, раз­мещены в пазах на внутренней стороне статора. Чтобы лучше исполь­зовать окружность статора, каж­дая из фазных обмоток распола­гается по нескольким пазам (рас­пределенная обмотка). На рис. 14.1, б показано расположение в пазах статора одной фазной обмот­ки. Здесь А — начало, а X — ко­нец обмотки. Распределение обмот­ки по пазам обусловливает соот­ветствующее распределение маг­нитного поля вдоль окружности статора. Для того чтобы распре­делить многовитковую фазную об­мотку по нескольким пазам, ее раз­деляют на соответствующее число соединенных последовательно сек­ций (рис. 14.1, б), каждая из кото­рых состоит из нескольких витков.

Секции обмотки укладываются в пазы. В асинхронных машинах сердечник статора изготовляется с полуоткрытыми (рис. 14.2, б) илиоткрытыми (рис. 14.2, а) пазами. На стороне полуоткрытых пазов преимущество меньшего магнитного сопротивления, следовательно, в двигателе с такими пазами меньше намагничивающий ток. С другой стороны, при открытых пазах проще осуществляется укладка секцийобмотки и надежнее условия для изоляции, что весьма важно для дви­гателей высокого напряжения.

Минимальное число фазных обмоток в трехфазной асинхронной машине т = 3. Каждая обмотка содержит одну или несколько катушеч­ных групп, соединенных последовательно, например на рис. 14.1, б — две группы. Расположение каждой из обмоток с одной катушечной группой сдвинуто по окружности статора относительно катушечной группы соседней фазной обмотки на угол 120°. В общем случае число фазных обмоток в трехфазной асинхронной машине может быть любым, но кратным трем.

Конструкция ротора. Асинхронные машины в основном разли­чаются устройством ротора. Ротор асинхронной машины представляет собой цилиндрический сердечник (рис. 14.3, а), собранный из пластин электротехнической стали, изолированных друг от друга лаком. Сердечник ротора насажен на вал, закрепленный в подшипниках. В пазах ротора располагаются витки обмотки ротора.

В большинстве двигателей применяется короткозамкнутый ротор. Он значительно дешевле, и, что очень существенно, обслуживание двигателя с короткозамкнутым ротором значительно проще. Обмотка короткозамкнутого ротора выполняется в виде цилиндрической клетки (рис. 14.3,6) из медных или алюминиевых стержней, которые без изоляции вставляются в пазы сердечника ротора. Торцевые концы стержней замыкаются накоротко кольцами из того же материала, что и стержни (так называемое «беличье колесо»). Часто короткозамкнутая обмотка изготовляется путем заливки пазов ротора расплавлен­ным алюминием.

Обмотка фазного ротора, называемого также ротором с контакт­ными кольцами (рис. 14.3, в), выполняется изолированным проводом. В большинстве случаев она трехфазная, с тем же числом катушек, что и обмотка статора данного двигателя. Три фазные обмотки ротора соединяются на самом роторе в звезду, а свободные концы их соеди­няются с тремя контактными кольцами, укрепленными на валу ма­шины, но изолированными от этого вала. На кольца наложены щетки, установленные в неподвижных щеткодержателях. Через кольца и щетки обмотка ротора замыкается на трехфазный реостат.

Обмотка статора такого двигателя включается непосредственно в трехфазную сеть (рис. 14.4). Включение реостата в цепь ротора дает возможность ' существенно улучшить пусковые условия двигателя — уменьшитьпусковой ток и увеличить начальный пусковой момент, кроме того, с помощью реостата, включенного в цепь ротора, можно плавно регу­лировать скорость двигателя. На рис. 14.5 приведены условные обозначения асинхронных ма­шин с короткозамкнутым (а) и фазным (б) ротором на принципиальных электрических схемах.

Общий вид корпуса асинхронной машины с укрепленным на нем, но необмотанным сердечником статора приведен на рис. 14.6.

РЕЖИМЫ РАБОТЫ ТРЕХФАЗНОЙ АСИНХРОННОЙ МАШИНЫ

Режим работы трехфазной асинхронной машины определяется ре­жимом электромагнитного взаимодействия токов в обмотках статора и ротора.

Взаимбдействие вращающегося магнитного поля, создаваемого то­ками в обмотках статора, с токами ротора вынуждает ротор вращаться по направлению вращения поля. Но чем быстрее вращается ротор, тем меньше индуктируемые в его обмотке ЭДС, а следовательно, и токи. Если частота вращения поля пи а частота вращения ротора п, то режим работы асинхронного двигателя можно характеризовать скольжением

.

На рис. 14.11 приведена зависимость частоты вращения ротора от скольженияп (s).

В зависимости от значения скольжения трехфазная асинхронная машина может работать в режимах двигателя, генератора и электро­магнитного тормоза.

В режиме двигателя (0 < s < 1) трехфазная асинхронная машина является преобразователем электрической энергии в механическую. Ротор двигателя должен вращаться асинхронно-медленнее поля, с та­кой частотой вращения, при которой токи в обмотке ротора, взаимодействуя с вращающимся магнитным полем, создаваемым токами в обмотках статора, создают вращающий момент, уравновешивающий тормозной момент от сил трения и нагрузки на валу.

В режиме генератора (s < 0) трехфазная асинхронная машина является преобразователем механической энергии в электрическую. Ротор генератора вращается в направлении вращения магнитного поля, создаваемого токами в обмотках статора, с частотой вращения большей, чем частота вращения поля.

В режиме электромагнитного тормоза (s> 1) ротор трехфазной асинхронной машины вращается в направлении, противоположном направлению вращения магнитного поля, создаваемого токами в об­мотках статора. В режиме электромагнитного тормоза в трехфазной асинхронной машине рассеивается значительная энергия в обмотках, на гистерезис и вихревые токи.

studfiles.net

Принцип действия трехфазного асинхронного двигателя.

Количество просмотров публикации Принцип действия трехфазного асинхронного двигателя. - 82

В асинхронной машинœе одну из обмоток размещают на статоре 1 (рис. 1, а), а вторую - на роторе 3. Между ротором и статором имеется воздушный зазор, который для улучшения магнитной связи между обмотками делают по возможности малым. Обмотка статора 2 представляет собой трехфазную (или в общем случае многофазную) обмотку, катушки которой размещают равномерно по окружности статора. Фазы обмотки статора АХ, BY и CZ соединяют по схеме Υ или Δ и подключают к сети трехфазного тока (рис. 1,6). Обмотку ротора 4 выполняют трехфазной или многофазной и размещают равномерно вдоль окружности ротора. Фазы ее в простейшем случае замыкают накоротко.

 

Рис. 1. Электромагнитная схема асинхронной машины, направления токов и электромагнитного момента при работе в двигательном режиме

При питании обмотки статора трехфазным током создается вращающееся магнитное поле, частота вращения которого (синхронная)

n1 = 60f1 /p.

В случае если ротор неподвижен или частота его вращения меньше синхронной, то вращающееся магнитное поле пересекает проводники обмотки ротора и индуцирует в них ЭДС. На рис. 1, а показано, согласно правилу правой руки, направление ЭДС, индуцированной в проводниках ротора при вращении магнитного потока Ф по часовой стрелке, при этом проводники ротора перемещаются относительно потока Ф против часовой стрелки. Активная составляющая тока ротора совпадает по фазе с индуцированной ЭДС; в связи с этим условные обозначения (крестики и точки) на рис. 1 показывают одновременно и направление активной составляющей тока.

На проводники с током, расположенные в магнитном поле, действуют электромагнитные силы, направление которых определяется правилом левой руки. Суммарное усилие Fрез, приложенное ко всœем проводникам ротора, образует электромагнитный момент М, увлекающий ротор за вращающимся магнитным полем. В случае если данный момент достаточно велик, то ротор приходит во вращение и его установившаяся частота вращения п2 соответствует равенству электромагнитного момента тормозному, создаваемому приводимым во вращение механизмом и внутренними силами трения. Такой режим работы асинхронной машины является двигательными, очевидно, в данном случае 0 ≤ п2 < п1.

Относительную разность частот вращения магнитного поля и ротора называют скольжением:

(1)

s = (п1 - п2)/п1.

Скольжение часто выражают в процентах

(1a)

s = [(п1 - п2 )/п1 ] ‣‣‣ 100.

Очевидно, что при двигательном режиме 1 > s > 0.

В случае если ротор асинхронной машины разогнать с помощью внешнего момента (к примеру, каким-либо двигателœем) до частоты, большей частоты вращения магнитного поля п1 то изменится направление ЭДС в проводниках ротора и активной составляющей тока ротора, т. е. асинхронная машина перейдет в генераторный режим (рис. 2, а). При этом изменит свое направление и электромагнитный момент М, который станет тормозящим. В генераторном режиме асинхронная машина получает механическую энергию от первичного двигателя, превращает ее в электрическую и отдает в сеть, при этом s < 0.

В случае если изменить направление вращения ротора (или магнитного поля) так, чтобы магнитное поле и ротор вращались в противоположных направлениях (рис. 2,6), то ЭДС и активная составляющая тока в проводниках ротора будут направлены аналогично тому, как в двигательном режиме, т. е. машина будет получать из сети активную мощность. При этом в данном режиме электромагнитный момент М направлен против вращения ротора, т. е. является тормозящим. Этот режим работы асинхронной машины называют режимом электромагнитного торможения. Так как ротор вращается в обратном направлении (относительно направления магнитного поля), то n2 < 0, a s > 1.

 

Рис. 2. Электромагнитная схема асинхронной машины, направления токов и электромагнитного момента при работе ее в режимах.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, характерной особенностью асинхронной машины является наличие скольжения, т. е. неравенство частот вращения n1 и п2. Только при указанном условии в проводниках обмотки ротора индуцируется ЭДС и возникает электромагнитный момент. По этой причине машину называют асинхронной (ее ротор вращается несинхронно с полем).

На практике обычно встречается двигательный режим асинхронной машины, в связи с этим теория асинхронных машин изложена здесь применительно к этому режиму с последующим обобщением ее на другие режимы работы.

referatwork.ru


Смотрите также