ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Устройство для питания постоянным током нескольких синхронизированных асинхронных двигателей. Питание асинхронного двигателя постоянным током


Способ питания постоянным током ротора синхронизированного асинхронного двигателя

 

Класс

ОПИСАНИЕ способа питания постоянным током ротора синхрониэированного асинхронного двигателя.

К авторскому свидетельству И. М. Эдельмана, заявленному

25 июня 1932 года (спр. о перв. № 111602).

0 выдаче авторского свидетельства опубликовано 30 сентября 1933 года.

309

В предлагаемом способе питания постоянным током ротора синхронизированного асинхронного двигателя, с целью питания обмотки ротора током низкого напряжения, указанную обмотку, шунтированную соответственно подобранным сопротивлением, как изображено на прилагаемой схеме, последовательно включают в цепь потребления генераторапостоянного тока.

Обычный асинхронный двигатель, вращающий генератор постоянного тока, может быть синхронизирован, вследствие чего его cos q приблизится к единице и даже может стать емкостным. Синхронизация двигателя способами, применяемыми обычно, черезвычайно затруднительна, так как напряжение не должно превышать 10 — 20 V, а токи требуются большей силы, в предлагаемой же схеме ротор асинхронного двигателя включается последовательно с потребителем постоянного тока нормального напряжения.

Необходимый для синхронизации ток ответвляется посредством шунта. Этим предполагается достигнуть: а) высокого коз фициента мощности (cos у может быть емкостным), 6) питания ротора от генератора постоянного тока нормального напряжения без добавочного устройства, в) автоматичности регулировки

cos >.

Указанный способ может быть применен только в некоторых отраслях промышленности, например, химической, алюминиевой и т. д.

Предмет изобретения.

Способ питания постоянным током ротора синхронизированного асинхронного двигателя, отличающийся тем, что с целью питания обмотки ротора током низкого напряжения указанную обмотку, шунтирова иную соответственно подобранным сопротивлением, последовательно включают в цепь потребления генератора постоянного тока.

Способ питания постоянным током ротора синхронизированного асинхронного двигателя Способ питания постоянным током ротора синхронизированного асинхронного двигателя 

Похожие патенты:

Изобретение относится к электротехнике, а именно к двухскоростным многофазным машинам переменного тока, и может быть использовано для привода различных машин и механизмов, требующего двухступенчатого регулирования скорости

Изобретение относится к области электротехники, касается выполнения многофазных электрических машин переменного тока и может быть использовано для турбомеханизмов ступенчатого регулирования скорости

Изобретение относится к области электротехники и может быть использовано в электрических двигателях переменного тока общепромышленного исполнения, работающих в длительном режиме с редкими пусками

Изобретение относится к синхронному электродвигателю с постоянными магнитами и пуском от сети, в частности к ротору синхронного электродвигателя с постоянными магнитами и пуском от сети

Изобретение относится к области электротехники и может быть использовано в устройствах управления пуском и синхронизацией синхронных машин, главным образом двигателя специальной конструкции

Изобретение относится к области электроники и может быть использовано в приводе турбомеханизмов и иных машин средней и большой единичной мощности, не требующих регулирования частоты вращения

Изобретение относится к области электротехники и может быть использовано в устройствах управления пуском синхронных двигателей специальной конструкции

Изобретение относится к электромашиностроению, а именно к конструкциям роторов асинхронных торцевых двигателей, и может найти применение в механизмах с плоским конструктивным исполнением, например в подкассетных узлах лентопротяжных механизмов, работающих в пусковых и старт-стопных режимах

Изобретение относится к электротехнике, в частности к электрическим машинам

Изобретение относится к электротехнике и может быть использовано в электроприводах, где требуется глубокое регулирование скорости, высокая перегрузочная способность, обеспечение тяжелого пуска из стопорного режима и эксплуатация в загрязненных, влажных и агрессивных средах (электрическая тяга, шахтные подъемные механизмы и др.)

Изобретение относится к области электротехники и может быть использовано для возбуждения синхронных машин с преобразователем с двухсторонней проводимостью

Изобретение относится к области электротехники и может быть использовано в электрических двигателях переменного тока общепромышленного исполнения, работающих в длительном режиме с редкими пусками

Изобретение относится к области электротехники и может быть использовано в устройствах управления пуском и синхронизацией синхронных машин, главным образом двигателя специальной конструкции

Изобретение относится к области электроники и может быть использовано в приводе турбомеханизмов и иных машин средней и большой единичной мощности, не требующих регулирования частоты вращения

Изобретение относится к области электротехники и может быть использовано в устройствах управления пуском синхронных двигателей специальной конструкции

Изобретение относится к области электротехники, а именно - к синхронным машинам, более конкретно - к синхронным двигателям и силовым блокам "трасформатор-двигатель" и предназначено для использования в приводе турбомеханизмов и иных машин средней и большой единичной мощности, не требующих регулирования частоты вращения

Изобретение относится к электротехнике, в частности к устройствам управления синхронными двигателями

Изобретение относится к электротехнике и может быть использовано в системах управления током возбуждения преимущественно электрических машин

Изобретение относится к области электротехники и может быть использовано для управления пуском синхронных двигателей, а более конкретно для синхронизации синхронных двигателей с двойной якорной обмоткой

Способ питания постоянным током ротора синхронизированного асинхронного двигателя

www.findpatent.ru

Упрощение схемы подключения многофазного асинхронного двигателя к источнику питания с батарейным питанием или от сети постоянного тока. :: ПВ.РФ Международный промышленный портал

Схема пoдключения мнoгoфазнoгo аcинхрoнного двигателя к иcточнику поcтоянного тока Схема подключения многофазного аcинхронного двигателя к иcточнику поcтоянного тока

Автор: Попов Андрей Викторович

Изобретение отноcитcя к облаcти электротехники и может быть иcпользовано в уcтройcтвах c батарейным питанием или питанием от cети поcтоянного тока. Техничеcким результатом являетcя упрощение схемы подключения асинхронного двигателя к источнику питания. Указанный технический результат достигают тем, что схема подключения многофазного асинхронного двигателя к источнику постоянного тока содержит параллельные резонансные LC-контуры по числу обмоток двигателя. Каждый контур образован конденсатором и первичной обмоткой двухобмоточного дросселя, ко вторичной обмотке которого, индуктивно связанной с первой, подключена соответствующая обмотка, двигателя. Первичные обмотки дросселей контуров последовательно подключены к источнику постоянного тока через управляемый ключ, размыкающий цепь с заданной периодичностью. Каждый резонансный контур с включенной в него обмоткой двигателя настроен на собственную резонансную частоту. Значение резонансной частоты от контура к контуру вдоль цепи изменяется последовательно. 2 ил.

Уровень техники

Асинхронный двигатель (АД) относится к электрическим машинам переменного тока. Принцип работы такого двигателя основан на использовании вращающегося магнитного поля, которое образуется в статоре после подключения его обмоток к трехфазной сети переменного тока (основная схема включения АД). Вращающееся магнитное поле статора, пересекая проводники обмотки ротора, индуцирует в них электродвижущую силу (ЭДС), создающую в обмотке ротора ток. Взаимодействие этого тока с вращающимся магнитным полем статора вызывает электромагнитный момент, приводящий ротор во вращение.

Для создания вращающегося магнитного поля статора необходимо выполнение двух условий, а именно: статорные обмотки должны быть смещены в пространстве друг относительно друга, что обычно обеспечивается конструкцией двигателя, и второе - токи в обмотках должны быть сдвинуты по фазе.

Известны решения, когда двух- или трехфазную обмотку статора включают в однофазную сеть переменного тока. В этом случае для создания начального (пускового) момента и приведения ротора во вращение используют фазосдвигающий элемент, преимущественно конденсатор, подключаемый к одной из обмоток статора, т.н. пусковой обмотке (например, см. кн. И.И.Алиев. Асинхронные двигатели в трехфазном и однофазном режимах. Изд-во: РадиоСофт, Москва, 2004 г., стр.83-87).

Для работы от сетей и источников постоянного тока обычно используют электродвигатели постоянного тока. Однако асинхронные двигатели более просты в обслуживании и надежны в эксплуатации, что объясняется отсутствием коллекторно-щеточного механизма, имеющего место в электродвигателях постоянного тока. Упомянутые качества делают привлекательным использование асинхронных двигателей в электроприводах с питанием от сетей постоянного тока.

Известен электропривод транспортного средства, содержащий асинхронный двигатель, подключенный к источнику постоянного напряжения через преобразователь постоянного напряжения в трехфазное напряжение с регулируемой амплитудой, частотой и изменяемым порядком чередования фаз (см. патент на полезную модель 57990, МПК Н02К 17/34, опубл. 2006.10.27).

Известна схема подключения трехфазного асинхронного двигателя к источнику постоянного тока через трехфазный мостовой инвертор (см. патент SU 1830178, МПК Н02Р 7/42, опубл. 23.07.93 г.).

Во всех известных заявителю решениях, в том числе вышеупомянутых, между асинхронным двигателем и источником постоянного тока непременно включается инвертор - преобразователь постоянного тока в m-фазный переменный либо коммутирующее вентильное устройство, поочередно подключающее фазы двигателя к источнику постоянной ЭДС. Однако все упомянутые схемы отличаются сложностью, наличием большого количества коммутирующих элементов, что отрицательно сказывается на надежности его работы.

В качестве ближайшего аналога для заявляемого решения принята схема включения асинхронного двигателя, примененная в приводе электроподвижного состава с питанием от тяговой сети (см. патент на полезную модель 39763, МПК Н02Р 1/26, опубл. 2004.08.10). Схема содержит источник постоянного тока и соединенный с ним асинхронный двигатель с трехфазной обмоткой статора. Соединение АД с источником питания в упомянутом решении осуществлено через входные фильтры, однофазные инверторы, понижающие трансформаторы, мостовой выпрямитель с LC-фильтром и трехфазный коммутатор напряжения, к которому подключены статорные обмотки асинхронного двигателя. Трехфазный коммутатор напряжения выполнен на базе 6-ти электронных ключей. Недостатком известного решения является сложность схемы подключения, наличие большого числа коммутирующих элементов.

Раскрытие изобретения

Задачей заявляемого изобретения является разработка более простой схемы подключения асинхронного двигателя к источнику постоянного тока, использующей минимальное количество коммутирующих элементов.

Поставленная задача решена тем, что в схеме подключения многофазного асинхронного двигателя к источнику постоянного тока согласно заявляемому изобретению для каждой обмотки статора асинхронного двигателя сформирован параллельный резонансный LC-контур, образованный конденсатором и первичной обмоткой двухобмоточного дросселя, ко вторичной обмотке которого, индуктивно связанной с первой, подключена соответствующая обмотка двигателя, первичные обмотки дросселей контуров последовательно подключены к источнику постоянного тока через управляемый ключ, размыкающий цепь с заданной периодичностью, при этом каждый резонансный контур с включенной в него обмоткой двигателя настроен на собственную резонансную частоту с соблюдением условия последовательного изменения (возрастания или убывания) значения резонансной частоты от контура к контуру.

В отличие от прототипа и других известных решений, в заявляемом решении предложена принципиально новая схема питания асинхронного двигателя от источника постоянного тока, предполагающая последовательное подключение статорных обмоток двигателя к источнику постоянного тока с использованием одного ключа, размыкающего и замыкающего цепь с заданной периодичностью.

Для включения каждой обмотки двигателя использован обычный параллельный LC-контур, настроенный на собственную резонансную частоту. Собственная резонансная частота контуров и «разбег частот» между контурами во многом определяются конструктивным исполнением двигателя. Настройка контура на заданную частоту обеспечивается подбором номиналов индуктивности и емкости контура.

В качестве резонансных индуктивностей в заявляемой схеме использованы первичные обмотки двухобмоточных дросселей, которые обеспечивают накопление энергии с последующей отдачей ее в цепь без каких-либо преобразований. Ко вторичным обмоткам упомянутых дросселей в качестве нагрузки подключены соответствующие обмотки двигателя.

В замкнутом положении ключа в последовательной цепи через первичные обмотки дросселей протекает постоянный ток, происходит процесс насыщения резонансных индуктивностей и накопление энергии в магнитопроводах дросселей. В момент размыкания цепи на каждой резонансной индуктивности возникает импульс самоиндукции, и они начинают отдавать накопленную энергию через конденсатор. В каждом резонансном контуре возникает колебательный процесс, и в цепи контура начинает протекать переменный ток. Благодаря тому, что каждый контур настроен на индивидуальную резонансную частоту, возникшие в контурах токи изменяются с разной частотой, в результате чего между контурами образуется сдвиг фаз.

Переменный ток в первичных обмотках дросселей наводит переменный магнитный поток и переменную ЭДС во вторичных обмотках, в результате чего во вторичной цепи каждого контура возникает переменный ток, аналогичный протекающему в первичной обмотке. Через статорные обмотки, подключенные ко вторичным обмоткам дросселей в качестве нагрузки, также начинает протекать сдвинутый по фазе переменный ток. Таким образом, обеспечивается выполнение 2-го условия возникновения вращающегося магнитного поля: пропускание через обмотки асинхронного двигателя переменного тока, сдвинутого по фазе. Первое условие, как упоминалось выше, обеспечивается конструкцией двигателя, т.е. расположением статорных обмоток со смещением в пространстве. Выполнение обоих условий приводит к созданию в статоре асинхронного двигателя вращающегося магнитного поля, возникает вращающий момент, приводящий ротор двигателя во вращение.

Сдвиг фаз между контурами определяется значениями резонансных частот контуров и разбегом частот между ними. Следует отметить, что сдвиг фаз между токами контуров не имеет постоянной величины и увеличивается с течением времени, что объясняется затухающим характером колебательного процесса в контуре.

После затухания колебаний ключ замыкает цепь, и в контурах снова происходит накопление энергии. Процесс размыкания цепи и возникновение колебательных процессов повторяется периодически. По сути, в обмотках двигателя создается пульсирующее вращающееся магнитное поле, обеспечивающее раскрутку и вращение ротора.

Изменением периода времени, когда цепь разомкнута, можно влиять на скорость вращения двигателя.

Благодаря подключению статорных обмоток ко вторичным обмоткам дросселей практически полностью исключается прохождение через обмотки двигателя постоянной составляющей тока, вызывающей торможение ротора.

Таким образом, упомянутая выше совокупность существенных признаков заявляемого решения позволяет получить новый положительный технический результат, заключающийся в создании в обмотках асинхронного двигателя пульсирующих, т.е. периодически возникающих после размыкания цепи, переменных токов, сдвинутых по фазе друг относительно друга. Пока цепь замкнута, в последовательной цепи контуров течет постоянный ток, после размыкания цепи накопленная в контурах энергия преобразуется в переменный m-фазный (по числу фаз двигателя) ток.

Такое решение позволило исключить из схемы питания двигателя инвертор как самостоятельное устройство. В схеме использован всего один ключ на все фазы двигателя, что значительно упрощает схему питания, повышает надежность ее работы.

В известных решениях с автономными инверторами преобразованный из постоянного переменный m-фазный ток, имеющий фиксированный (неизменный) сдвиг между фазами, постоянно подается на обмотки двигателя. В заявляемом решении переменный ток проходит через обмотки двигателя периодически (импульсами) в период времени, когда цепь разомкнута, причем сдвиг между фазами - величина непостоянная.

В отличие от вентильного подключения, основанного на поочередном подключении обмоток асинхронного двигателя к питающей сети, в заявляемом решении подключение и отключение всех обмоток двигателя от сети питания осуществляется одновременно.

Предлагаемая схема подключения асинхронного двигателя к источнику постоянного тока может быть применена к любому многофазному двигателю: двух-, трех-, четырехфазному и т.д. Причем схема обеспечивает преобразование постоянного тока в переменный m-фазный, т.е. разделение тока происходит на столько фаз, сколько фаз имеет конкретный двигатель.

Краткое описание чертежей

Заявляемое решение поясняется чертежами, где схема устройства, общий вид на фиг.1 изображена схема устройства, общий вид; временные графические зависимости тока на фазах двигателя на фиг.2 показаны временные графические зависимости тока на фазах двигателя.

Осуществление изобретения

Схема была реализована для подключения стандартного асинхронного двигателя, заводского изготовления, с 3-фазной статорной обмоткой LA LB LC.

Схема подключения АД, представленная на фиг.1, содержит последовательную цепь из m (по числу обмоток двигателя, в конкретном примере - трех) резонансных параллельных контуров, каждый из которых образован конденсатором С и первичной обмоткой дросселя D, ко вторичной обмотке которого подключена соответствующая обмотка двигателя. Первичные обмотки (L1, L2, L3) дросселей последовательно подключены к источнику постоянного тока через управляемый ключ К. Ключ может быть реализован на базе транзистора, коммутируемого блоком управления. В простейшем случае в качестве такого блока можно использовать независимый генератор частоты.

Каждый резонансный LC-контур настроен на свою частоту, определяемую параметрами емкости и индуктивности контура по формуле: =1/LC.

Значения резонансных частот последовательно изменяются от контура к контуру вдоль цепи: A>B>C либо в обратном порядке: ABC. Направление изменения значений частот определяет направление вращения двигателя. Вращение двигателя осуществляется в направлении убывания частоты.

Схема работает следующим образом.

Ключ К замкнут. Под действием ЭДС источника в последовательно включенных индуктивностях контуров ток нарастает до определенного значения. Происходит процесс насыщения резонансных дросселей. До момента насыщения практически все питающее напряжение приложено к обмоткам. В момент насыщения происходит скачкообразный скачок (падение) напряжения, который может быть использован в качестве управляющего сигнала на размыкание цепи.

Ключ размыкают, при этом индуктивные выбросы тока резонансных дросселей L1, L2, и L3 приводят к возникновению в резонансных LC-контурах колебательных процессов.

Благодаря настройке контуров на разные частоты колебательный процесс в каждом контуре имеет собственную частоту, в результате чего токи изменяются с разной скоростью, что ведет к образованию между ними сдвига фаз.

Во вторых обмотках дросселей, индуктивно связанных с первыми, также наводятся переменные токи, и через обмотки статора LA, LB, и LC начинает протекать сдвинутый по фазе переменный ток.

Сдвиг фаз токов в обмотках статора, возникающий после размыкания цепи (момент T1), иллюстрирован на временной зависимости фиг.2. Ток i1 - соответствует току, протекающему через фазу А, токи i2 и i3 соответствуют фазам В и С соответственно.

В статорных обмотках АД возникает вращающееся магнитное поле, индуцирующее в обмотке ротора ЭДС и обеспечивающее возникновение электромагнитного момента, приводящего ротор во вращение.

После затухания в контурах колебательных процессов электронный ключ К замыкает цепь. На графике этому моменту соответствует время Т2. Процесс накопления энергии повторяется.

Созданное в обмотках двигателя пульсирующее вращающееся магнитное поле обеспечивает вращение двигателя. Испытанный образец в течение нескольких секунд вышел на номинальную частоту вращения. Предлагаемое схемное решение отличается простотой реализации и экономичностью.

На базе предлагаемой схемы возможно изготовление электропривода вращательного и поступательного перемещения.

promvest.info

Пуск двигателя постоянного тока

Как и в случае с асинхронными двигателями, пуск двигателей постоянного тока осложнен возникающими при пуске большими значениями пусковых токов и моментов. Но в отличие от асинхронных двигателей, в ДПТ пусковые токи превышают номинальные в 10-40 раз. Такое громадное превышение может привести к выводу двигателя из строя, повреждению связанных с двигателем механизмов и большим просадкам напряжения в сети, что может сказаться на других потребителях. Поэтому пусковые токи стараются ограничить до значений (1,5…2) Iн.

Для маломощных двигателей (до 1 кВт) при условии отсутствия нагрузки на валу, можно применить прямой пуск, то есть непосредственно от сети. Это связано с тем что масса движущихся частей двигателя не велика, а сопротивление обмотки относительно большое. При прямом пуске таких двигателей пусковые токи не превышают значений (3…5) Iн, что для таких двигателей не критично.

Когда двигатель работает при постоянном напряжении и сопротивлении обмотки якоря, ток в якоре можно найти с помощью формулы

В этой формуле U – напряжение питающей сети, Епр – противоЭДС, ∑r – сопротивление обмоток якоря. ПротивоЭДС Епр возникает при вращении якоря в магнитном поле статора, при этом в двигателе, она направлена против якоря. Но когда якорь не движется, Епр не возникает, а значит, выражение для тока примет следующий вид

Это и есть выражение для определения пускового тока.

Глядя на формулу можно прийти к выводу, что снижения пускового тока возможно либо снижением напряжения, либо увеличением сопротивления якорной обмотки.

Пуск двигателя снижением напряжения применяется, если питание двигателя организовано от независимого источника энергии, который можно регулировать. На практике такой пуск используется для двигателей средней и большой мощности.

Мы рассмотрим более подробно способ пуска двигателя постоянного тока с помощью введения дополнительного сопротивления в цепь якоря. При этом пусковой ток будет равен

Таким образом, можно добиться величины пускового тока, в нужном диапазоне, безопасном для двигателя. Добавочное сопротивление может быть как в виде реостата, так и в виде нескольких резисторов. Это нужно для того, чтобы в процессе запуска двигателя, менять сопротивление в якорной цепи.

Следует знать, что с дополнительным сопротивлением в обмотке якоря двигатель работает не на естественной, а на более мягкой искусственной характеристике, которая не подходит для нормальной работы двигателя.

Пуск двигателя осуществляется в несколько ступеней. После некоторого разгона двигателя, Епр ограничит ток, а следовательно пусковой момент, чтобы поддержать его на прежнем уровне, нужно уменьшить сопротивление, то есть переключить реостат или шунтировать резистор.

Допустим, что ступени у нас четыре, тогда механическая характеристика будет выглядеть следующим образом

Механическая диаграмма пуска

На первой ступени, когда добавочное сопротивление максимально и равно R1+R2+R3 двигатель начинает свой разгон. После достижения определенной точки, которую получают с помощью расчетных данных, сопротивление R3 шунтируют. При этом двигатель переходит на новую характеристику, и разгоняется на ней все до той же точки. Таким образом, двигатель выходит на естественную характеристику, не пострадав от действия больших пусковых токов и моментов.

electroandi.ru

Устройство для питания постоянным током нескольких синхронизированных асинхронных двигателей

 

¹ гав

Класс 21сРв, 17

БИИКМ 333lgkifIlhl 1 33 И 10РНБЙ

ОПИСАЛИ устройства для питания постоянным током нескольких синхронизированных асинхронных двигателей.

К зависимому авторскому свидетельству А. С. Чарного, заявленному

17 февраля 1932 года (спр. о перв. № 103586) Основное авторское свидетельство на имя М. А. Нагана от 31 января

1933 года Ы 28960.

0 выдаче зависимого авторского свидетельства опубликозаио 31 октября 1934 года. (455) Среди способов повышения косинуса асинхронных двигателей известен метод питания ротора нормального асинхронного двигателя постоянным током, причем двигатель работает, как синхронный, у которого косинус может быть доведен до 1 регулированием силы постоянного тока.

Однако, этот метод не нашел широкого применения в промышленности вследствие того, что требуется постоянный ток низкого напряжения (около 10 — 15 вольт) и большой силы. При желании таким способом компенсировать ряд двигателей сила тока возрастает до громадных размеров, что делает этот способ повышения косинуса неприемлемым.

Предлагаемый способ питания ротора асинхронных двигателей постоянным током последовательно через ряд дзигателей устраняет этот недостаток, позволяя обойтись, как источником постоянного тока, нормальной динамо-машиной постоянного тока в 120 или 220 вольт (в зависимости от числа двигателей, подлежащих синхронизированию), причем сила тока этой машины должна быть равна амплитудному значению роторного тока лишь одного наибольшего двигателя. При этом при отключении двигателя последовательно в цепь включается сопротивление, равное сопротивлению ротора выключенного двигателя.

В основном авторском свидетельстве № 28960 эти сопротивления включены параллельно обмоткам роторов двигателей и тем самым увеличивают силу тока в цепи питания ротороз.

На прилагаемом чертеже изображена схема согласно изобретению.

Динамо-машина постоянного тока 1 питает замкнутук> сеть 6, состоящую из ряда реостатов 2, устанавливаемых у каждого двигателя, намеченного к синхронизированию, причем сопротивление каждого реостата выбирается равным омическому сопротивлению обмотки ротора соответствующего двигателя (при питании постоянным током в одно кольцо и в два других кольца). Кроме того, у каждого двигателя установлен добавочный регулируемый реостат 3, включаемый параллельно реостату 2. У каждого двигателя устанавливается трехполюсныи переключатель 4, помощью которою ротор двигателя может быть включен или на пусковой реостат 5 двигателя, когда переключатель 4 замкнут на нижние клеммы, или на линию постоянного тока, когда переключатель замкнут на верхние клеммы, причем реостат 2 выключается, а реостат 3 остается включенным параллельно ротору двигателя.

Меняя сопротивление этого реостата, можно регулировать силу тока в роторе данного двигателя, не меняя силы тока в главной цепи и в других уже синхронизированных двигателях, включаемых в эту сеть.

Сила тока в главной цспи устанавливается на постоянную величину (как сказано было выше), равную амплитудному значению роторногo ToRQ B pBHId теле, имеющем наибольший роторный ток, и поддерживается на этой величине все время (автоматически или вручную).

У двигателей, требующих меньшего роторного тока, часть тока ответвляется в шунтирующий мотор реостата 3. В случае наличия двигателей, имеющих роторный ток в несколько раз меньший, чем сила тока в цепи постоянного тока б, роторы этих двигателей могут быть включены в сеть постоянного тока параллельно с тем, чтобы общая сила тока этих роторов не превышала силы тока цепи 6. В этом случае у каждого двигателя также устанавливаются реостаты 2 и 3, рассчитанные на соответствующие двигателям сопротивления, и переключатель 4.

Указанная схема питания обеспечивает: 1) сравнительно небольшую силу тока в динамо постоянного тока при значительном числе синхронизированных двигателей, при синхронизировании 8 — 10 двигателей, напряжение динамо-машины будет около 100 в 120 вольт; 2) независимую работу синхронизированных двигателей друг от друга, так как при остановке и выключении какого-либо двигателя сила постоянного тока цепи не меняется; 3) простой пуск двигателей обычным способом и переключение их на синхронизированную работу поворотом переключателя.

Предмет изобретения.

Устройство для питания постоянным током нескольких синхронизированных асинхронных двигателей от одного воз| будителя с последовательным соединением обмоток роторов в цепи возбудителя, согласно и. 1 предмета изобретения по авторскому свидетельству ¹ 289б0, отличающееся тем, что, с целью автоматического поддержания постоянства силы тока, гри отключении любого двигателя или при переходе его на работу в качестве асинхронного двигателя, вместо сопротивления отключаемой обмотки ротора включается равное ему по величине сопротивление 2.

Эксперт Д, В. Васильев

Редактор С. А. Злотников

Тип. „Печ. Труд . Зак. 1896 — 400

Устройство для питания постоянным током нескольких синхронизированных асинхронных двигателей Устройство для питания постоянным током нескольких синхронизированных асинхронных двигателей 

www.findpatent.ru

Двигатели переменного тока » Привет Студент!

Если через свободно вращающуюся в магнитном поле катушку с проводами пропускать переменный ток, то вращающий момент не возникнет, так как ток постоянно изменяет направление. По такому принципу работает асинхронный короткозамкнутый двигатель, в котором три раздельные фазные обмотки статора создают вращающееся магнитное поле. Ротор состоит из медных проводников, расположенных по кругу параллельно его оси и закрепленных на концах кольцами для создания клетки. При пуске двигателя вращающееся магнитное поле наводит э. д. с. в клетке и, следовательно, появляется ток. Проводник ротора, по которому протекает ток в магнитном поле, создает вращающий момент для ротора. Частота вращения ротора немного меньше частоты вращения магнитного поля статора.

Частота вращения ротора двигателя зависит от э.д. с., наведенной в роторе, а последняя зависит от скольжения ротора относительно магнитного поля статора. С увеличением нагрузки частота вращения ротора уменьшается, вызывая увеличение индуцируемой э. д. с., следовательно, вращающий момент несколько увеличивается. Двигатель имеет практически постоянную частоту вращения ротора при всех изменениях нагрузки. При пуске двигателя начальный пусковой момент вращения в 2 раза больше номинального, а пусковой ток превышает номинальный в 6 раз. Пусковой ток можно уменьшить, если применить двухклеточную конструкцию ротора: две раздельные клетки одна над другой. В начальный момент вращения через внешнюю высокоомную клетку протекает почти весь ток ротора. Далее после разгона ротора двигателя больший ток будет протекать через внутреннюю низкоомную клетку.

Путем изменения числа пар полюсов можно получить ряд фиксированных частот вращения. Частота вращения асинхронного двигателя пропорциональна частоте питания, деленной на число пар полюсов. Благодаря применению переключателя числа пар полюсов можно получить различные фиксированные частоты вращения. Пусковые характеристики зависят от числа пар полюсов: чем больше пар полюсов, тем меньше отношение начального момента вращения к полному моменту вращения при нагрузке.

Синхронные двигатели — это двигатели другого типа, которые нашли применение в системах электродвижения, но не используются для вспомогательных приводов.

Для пуска асинхронного короткозамкнутого двигателя используются различные способы его включения. Это может быть прямое включение в сеть при помощи переключателя по схеме «звезда» или «треугольник», включение через автотрансформатор и пусковое сопротивление, подключаемое к цепи статора. Непосредственное включение двигателя в цепь обычно применяют там, где распределительная система может выдерживать пусковой ток. При использовании инерционной нагрузки необходимо учитывать время на разгон ротора двигателя, от которого зависит тепловой эффект тока пуска. Переключатель по схеме «звезда» или «треугольник» в начальный момент соединяет обмотки статора по схеме «звезда», а затем, после разгона ротора двигателя, соединяет обмотки по схеме «треугольник». При соединении по схеме «звезда» почти половина линейного напряжения приходится на каждую фазу и уменьшается пусковой ток. Начальный момент вращения также уменьшается до 1/з своего значения по сравнению со значением момента вращения при непосредственном включении в цепь.

 

Рис. 14.11. Схема пуска короткозамкнутого асинхронного двигателя:

1 — автотрансформатор; 2 — двигатель; I — пуск; II — работа; III— питание

 

 

Переключение на схему «треугольник» под нагрузкой производят примерно при частоте вращения ротора двигателя, которая составляет 75% номинальной частоты вращения; при этом потребляемый ток будет в 3,5 раза больше тока нагрузки. Автотрансформа торный пуск применяется только для больших двигателей. Автотрансформатор имеет контактные выводы со значениями 40, 60 75% номинального напряжения (рис. 14.11). Двигатель пускается с одним из фиксированных значений, а затем при достижении 75% номинальной частоты вращения быстро переключается на номинальное напряжение. Выбор контактного вывода будет зависеть от требуемого пускового момента. Вывод 60% соответствует 70% номинального вращающего момента при нагрузке. Чем меньше количество делений на контактных выводах, тем меньше начальные моменты вращения, и наоборот.

Для пуска двигателя имеется пусковой реостат с сопротивлением в цепи статора. Таймерное устройство шунтирует цепь с этим сопротивлением при достижении ротором двигателя определенной частоты вращения. В цепи питания двигателя устанавливается защита от обрыва одной из фаз, от перегрузки и от минимального напряжения. При обрыве одной из трех фаз цепь становится однофазной. В результате увеличивается ток во всех обмотках. В случае соединения обмоток по схеме «треугольник» при полной нагрузке через одну обмотку пойдет трехкратный номинальный ток. При обрыве одной из фаз двигатель продолжает работать, но с несбалансированным распределением тока. Устройство защиты от перегрузки может не сработать, если двигатель работает не при полной нагрузке. Для защиты от перегрева обмоток двигателя применяют тепловое реле. Устройства защиты от перегрузок могут быть выполнены как отдельно, так и в комбинации с термочувствительным реле. В своем составе они должны иметь элементы выдержки времени, чтобы не происходило срабатывание защиты от пускового тока. Устройство защиты от уменьшения или исчезновения напряжения обеспечивает правильный пуск двигателя.

Техническое обслуживание. Для безотказной работы оборудования любого типа необходимо содержать его в чистоте. Электрические соединения должны быть надежными и не иметь искрения при работе. Главные наиболее нагруженные элементы необходимо периодически проверять и при необходимости заменять. Оборудование, работающее от сети переменного тока, электрически более опасно, чем оборудование, работающее от сети постоянного тока. Меры безопасности необходимо соблюдать при любой проверке или осмотре оборудования.

При загрязнении деталей электрооборудования может произойти пробой изоляции, утечка тока и даже замыкание на «землю». Высокая влажность и масляные осадки также отрицательна влияют на сопротивление изоляции. При регулярном измерении сопротивления изоляции и своевременной ее регистрации можно найти участок цепи, нуждающийся в ремонте. Вентиляционные отверстия или решетки не должны быть засоренными, иначе нарушается охлаждение, что может привести к перегреву оборудования.

Масляные осадки от дизельного двигателя, который вращает незащищенные генераторы (обычно постоянного тока), могут повредить обмотки генератора, и поэтому необходимо постоянно протирать генератор. Герметичные двигатели следует периодически открывать для профилактических работ, чтобы убрать скопление угольной пыли, осаждающейся внутри корпуса.

Для безаварийной работы электрооборудования необходимо своевременно проверять силу давления угольных щеток и регулировать их пружины. Новые щетки должны быть подогнаны к поверхности коллектора или притерты стеклянной шкуркой. Наличие -искрения указывает на плохую коммутацию. Для устранения искрения необходимо полировать поверхности коллектора. Слюдяную изоляцию между коллекторными пластинами нужно прочистить, если изоляция имеет выступы; следует также очищать коллекторные пластины от загрязнения.

Основное внимание следует уделять устройствам управления, таким как, например, пусковой реостат. Его контакты могут износиться или обгореть под действием электрической дуги. Обычно контакты легко двигаются и могут сниматься. Благодаря этому можно очищать поверхности контактов для обеспечения их хорошего прилегания. Это способствует тому, что не возникает электрическая дуга на последней закрытой позиции пускового реостата. Все рабочие поверхности контактов необходимо периодически осматривать.

 

Используемая литература: "Основы судовой техники" Автор: Д.А. Тейлор

 

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера. КАК ТУТ СКАЧИВАТЬ

Пароль на архив: privetstudent.com

privetstudent.com


Смотрите также