ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Линейные асинхронные двигатели (лад) (Спец. Аид). Линейный асинхронный двигатель


Линейные асинхронные двигатели (лад) (Спец. Аид)

Во многих производственных механизмах, транспортных средствах и приборных устройствах рабочий орган совершает поступательное или возвратно-поступательное движение. Для привода этих устройств и механизмов используют двигатели с вращательным движением ротора и промежуточным кинематическим звеном для преобразования вращательного движения в линейное. Такое звено усложняет привод, вызывает дополнительные потери мощности, снижает КПД и надежность.

Кинематика привода указанных устройств упрощается, если использовать линейный электродвигатель, у которого подвижная часть совершает поступательное или возвратно-поступательное движение. Наибольшее применение получили линейные асинхронные двигатели (ЛАД).

Принцип действия ЛАД основан на способности многофазной (трехфазной) системы токов создавать бегущее магнитное поле. Если в обычном асинхронном двигателе статор цилиндрической формы разрезать вдоль его оси и развернуть в плоскость, то получим статор линейного двигателя, называемый индуктором 1.

Если обмотку индуктора соединить звездой или треугольником и включить в трехфазную сеть, то возникает магнитное поле, ось которого будет перемещаться вдоль развернутой поверхности сердечника индуктора с синхронной скоростью v1. Такое магнитное поле называют бегущим.

Синхронная скорость бегущего поля пропорциональна частоте тока f1 и длине индуктора L1 и обратно пропорциональна числу пар полюсов в обмотке индуктора р.

Вблизи индуктора, параллельно ему, расположен вторичный элемент, состоящий из магнитопровода 2, в пазы которого заложены алюминиевые или медные стержни 3 короткозамкнутой обмотки. Бегущее поле индуктора, сцепляясь со стержнями 3 короткозамкнутой обмотки, будет наводить в них ЭДС Е2, которая создаст токи Iа. Взаимодействуя с бегущим магнитным полем, эти токи создают электромагнитные силы Рэм, стремящиеся сместить магнитопроводы индуктора и вторичного элемента относительно друг друга в противоположных направлениях. Если один из магнитопроводов, например индуктора, закрепить неподвижно, то другой магнитопровод, называемый в этом случае бегунком, будет линейно перемещаться относительно первого в направлении движения бегущего поля. В итоге электроэнергия, поступающая в обмотку индуктора из сети, будет преобразовываться в механическую энергию линейного (поступательного) движения.

Если неподвижным сделать вторичный элемент, то бегунком станет индуктор, который будет перемещаться линейно в направлении, противоположном движению создаваемого им бегущего поля.

№ 26

Синхронные реактивные двигатели (Спец. Исд)

Отличительная особенность синхронных реактивных двигателей (СРД) - отсутствие у них возбуждения со стороны ротора. Основной магнитный поток в этом двигателе создается исключительно за счет МДС обмотки статора. В двух- и в трехфазных СРД эта МДС является вращающейся.

Принцип действия СРД заключается в следующем. При включении обмотки статора в сеть возникает вращающееся магнитное поле Как только ось этого поля d'— d' займет положение в пространстве расточки статора, при котором она будет смещена относительно продольной оси невозбужденных полюсов ротора d—d на угол θ в сторону вращения, между полюсами этого поля и выступающими полюсами невозбужденного ротора возникнет реактивная сила магнитного притяжения полюса ротора к полюсу вращающегося поля статора Fy. Вектор этой силы Fp смещен относительно продольной оси ротора также на угол θ, поэтому сила Fpимеет две составляющие: нормальную Fnp, направленную перпендикулярно продольной оси, и тангенциальную Ftp полюсов ротора.

Совокупность тангенциальных составляющих реактивных сил Ftp на всех полюсах невозбуждённого ротора создаст вращающий реактивный момент Мр, который будет вращать ротор с синхронной частотой w1. С ростом механической нагрузки на вал СРД угол θ увеличивается и момент Мр растет.

Однако при значении угла θ = 90° реактивный момент Мр=0. Такая зависимость момента Мр от угла θ является принципиальной для реактивного момента, отличающей его от основной составляющей электромагнитного момента Мосн синхронного двигателя с возбужденным ротором, который при θ = 90° имеет максимальное значение. Из рис.2.9, б видно, что при θ = 90° реактивные силы магнитного притяжения Рмр действующие на каждый полюс невозбужденного ротора, взаимно уравновешиваются и реактивный момент Мр = 0. Максимальное значение реактивного момента Мmах наступает при значении угла θ º=45.

Мощность СРД и развиваемый им момент меньше чем у синхронного двигателя с возбужденными полюсами ротора. Объясняется это тем, что у СРД из-за отсутствия магнитного потока ротора ЭДС Е0=θ, поэтому основная составляющая электромагнитного момента Mосн=0 и электромагнитный момент СРД определяется лишь реактивной составляющей (М=Мр). Следовательно, при одинаковых габаритах синхронного двигателя с возбужденными полюсами ротора и СРД мощность на валу и развиваемый момент у СРД намного меньше.

№ 27

АСИНХРОННЫЕ ДВИГАТЕЛИ С ВНЕШНИМ РОТОРОМ (Спец. АИД)

Статор этих двигателей находится внутри ротора. Такие конструкции называют обращенными.

Асинхронный двигатель с внешним ротором состоит из шихтованного сердечника статора 10, собранного на втулке 9, которая напрессована на стальную не вращающуюся ось 7. Трехфазная обмотка статора 6 имеет три вывода 1, которые проходят через полую часть 2 оси 7. Внешний ротор состоит из шихтованного сердечника 4, в пазах которого расположены стержни обмотки, замкнутые с двух сторон замыкающими кольцами. Наружная поверхность ротора образована ободом 11, форма которого зависит от назначения двигателя, то есть он может быть колесом, шкивом, роликом или просто массивным элементом — маховиком. С двух сторон обод закреплен крышками 3 посредством винтов 5 Крышки 3 сочленяются с подшипниками 8.

Асинхронные двигатели с внешним ротором применяют в электроинструменте, в рольганге на металлургических предприятиях

(внешний ротор двигателя — это вращающийся ролик рольганга), в качестве двигателя-маховика для привода устройств, требующих равномерного вращения при неравномерной нагрузке на вал.

Однако самое широкое применение эти двигатели получили в гироскопических приборах в качестве гиродвигателей. Гироскопические приборы составляют основу навигационной техники в судостроении, авиации и ракетостроении. Основной элемент гироскопического прибора — гироскоп, то есть массивный цилиндрический ротор. Приведенный в быстрое вращение, этот ротор сохраняет неизменным положение в пространстве своей оси вращения. Чем больше частота вращения ротора, тем эффективнее проявляется это свойство.

№ 28

studfiles.net

§ 17.5. Линейные асинхронные двигатели

Подвижная часть линейного двигателя совершает поступательное движение, поэтому применение этих двигателей для привода рабочих машин с поступательным движением рабочего органа позволяет упростить кинематику механизмов, уменьшим потери в передачах и повысить надежность механизма в целом.

Возможны линейные двигатели четырех видов: электромагнитные (соленоидные), магнитоэлектрические (с применением постоянного магнита), электродинамические и асинхронных. Асинхронные (индукционные) линейные двигатели благодаря простоте конструкции и высокой надежности получили наибольшее применение.

Для объяснения принципа работы линейного асинхронного двигателя обратимся к асинхронному двигателю с вращательным движением ротора. Если статор этого двигателя (рис. 17.10, а) мысленно «разрезать» и «развернуть» так, чтобы он образовал дугу с углом α (рис. 17.10, б), то диаметр ротора увеличится. При этом мы получим асинхронный двигатель с дуговым статором Частота вращения (об/мин) магнитного поля статора этого двигателя (синхронная частота)

n1 = n01 α /(2π) (17.6)

где n01 — синхронная частота вращения обычного (до «разрезания») асинхронного двигателя, об/мин; α — угол дуги статора, рад.

Из (17.6) следует, что, изменяя угол α, можно получить дуговой асинхронный двигатель на любую синхронную частоту меньше частоты вращения n01. Дуговые двигатели применяют для безредукторного привода устройств, требующих небольших частот вращения, исключив применение сложного и трудоемкого редуктора.

Рис. 17.10. К понятиям о дуговом и ли­нейном двигателях

Если же «разрезанный» статор развернуть в плоскость, то получим асинхронный линейный двигатель (рис. 17.10, в). Принципиальное конструктивное отличие линейного асинхронного двигателя от асинхронного двигателя с вращательным движением ротора

состоит в том, что первичный элемент линейного двигателя (индуктор) создает не вращающееся, а бегущее магнитное поле и нижняя часть двигателя с короткозамкнутой обмоткой (или без нее) называемая вторичным элементом, перемещается вдоль своей оси. Скорость бегущего поля в линейном двигателе (м/с)

v1 = 2τf1 = f1Lc /p (17.7)

где f1 — частота тока в обмотке статора, Гц; τ — полюсное деление; Lc — длина статора (индуктора), м.

Принцип действия линейного асинхронного двигателя основан на том, что бегущее поле индуктора, сцепляясь с короткозамкнутой обмоткой вторичного элемента двигателя, наводит в ней ЭДС. Возникающие в стержнях этой обмотки токи взаимодействуют с бегущим полем индуктора и создают на индукторе и вторичном элементе электромагнитные силы, стремящиеся линейно переместить подвижную часть двигателя относительно неподвижной. В некоторых конструкциях линейных двигателей подвижной частью является индуктор, а в некоторых — вторичный элемент, называемый в этом случае бегунком. Если вторичный элемент линейного двигателя невозможно изготовить с короткозамкнутой обмоткой, то применяют вторичные элементы в виде полосы из меди, алюминия или ферромагнитной стали. Наиболее удовлетворительными получаются характеристики линейного двигателя при составном вторичном элементе, например выполненном в виде полосы из ферромагнитной стали, покрытой слоем меди.

Основной недостаток асинхронных двигателей с разомкнутым статором — дуговых и линейных — явление краевого эффекта, представляющего собой комплекс электромагнитных процессов, обусловленных разомкнутой конструкцией статора. К нежела­тельным последствиям краевого эффекта в первую очередь следу­ет отнести появление «паразитных» тормозных усилий, направ­ленных против движения подвижной части двигателя, и возникновение поперечных сил, стремящихся сместить подвиж­ную часть двигателя в поперечном направ­лении. Кроме того, краевой эффект вызывает ряд других нежелательных явлений, ухуд­шающих рабочие характеристики линейных двигателей.

Линейные асинхронные двигатели при­меняют для привода заслонок, ленточных конвейеров, подъемно-транспортных меха­низмов. На рис. 17.11 показано устройство линейного асинхронного двигателя привода тележки подъемного крана. На тележке 3 расположен индуктор линейного двигателя, состоящий из шихтованного сердечника 6, в пазах которого расположена обмотка 5. На­правляющая для колес 2 представляет собой стальную балку 7, к нижней части которой прикреплена стальная полоса 4. Бегущее магнитное поле индуктора наводит в стальной полосе 4 вихревые токи. Электромаг­нитные силы, возникающие в результате взаимодействия этих токов с магнитным полем индуктора, перемещают индуктор (тележку) вдоль стальной полосы 4.

Рис. 17.11. Линей­ный асинхронный двигатель

привода тележки подъемного крана

Линейные асинхронные двигатели значительной мощности применяют на транспорте в качестве тяговых двигателей. Один из вариантов такого двигателя показан на рис. 17.12. Здесь индуктор 2 двигателя подвешен к транспортному средству 1, а стальная полоса 3 установлена вертикально на основании пути между рельсами. Из этой конструкции поперечная сила Fп вызванная краевым эффектом используется полезно, так как она уменьшает силу давления на несущие оси и колеса и, как следствие, уменьшает трение качения.

Рис 17.12. Линейный асинхронный двигатель

привода железнодорожного транспортного средства

Контрольные вопросы

1.В чем различие между схемами соединения индукционного регулятора на­пряжения и фазорегулятора?

2.Сколько раз напряжение на выходе ИР достигнет наибольшего значения за один оборот ротора, если обмотка имеет 2р = 6?

3.В каком направлении следует вращать ротор АПЧ, чтобы на выходе полу­чить ЭДС частотой, большей частоты тока в сети?

4.Какую долю мощности на выходе АПЧ составит мощность приводного дви­гателя, если частота тока на входе АПЧ равна 50 Гц, а на выходе — 100 Гц?

5.Объясните работу сельсинов в индикаторной системе передачи. Чем вызвана ошибка в воспроизведении угла поворота?

6.Чем обеспечивается отсутствие самохода в асинхронном исполнительном двигателе?

7.Объясните принцип работы асинхронного линейного двигателя.

8.Что такое краевой эффект и каковы его нежелательные действия в линейном асинхронном двигателе?

studfiles.net

Линейные асинхронные двигатели

 

Подвижная часть линейного двигателя совершает поступательное движение, поэтому применение этих двигателей для привода рабочих машин с поступательным движением рабочего органа позволяет упростить кинематику механизмов, уменьшим потери в передачах и повысить надежность механизма в целом.

Возможны линейные двигатели четырех видов: электромагнитные (соленоидные), магнитоэлектрические (с применением постоянного магнита), электродинамические и асинхронных. Асинхронные (индукционные) линейные двигатели благодаря простоте конструкции и высокой надежности получили наибольшее применение.

Для объяснения принципа работы линейного асинхронного двигателя обратимся к асинхронному двигателю с вращательным движением ротора. Если статор этого двигателя (рис. 17.10, а) мысленно «разрезать» и «развернуть» так, чтобы он образовал дугу с углом α (рис. 17.10, б), то диаметр ротора увеличится. При этом мы получим асинхронный двигатель с дуговым статором Частота вращения (об/мин) магнитного поля статора этого двигателя (синхронная частота)

n1 = n01 α /(2π) (17.6)

где n01 — синхронная частота вращения обычного (до «разрезания») асинхронного двигателя, об/мин; α — угол дуги статора, рад.

Из (17.6) следует, что, изменяя угол α, можно получить дуговой асинхронный двигатель на любую синхронную частоту меньше частоты вращения n01. Дуговые двигатели применяют для безредукторного привода устройств, требующих небольших частот вращения, исключив применение сложного и трудоемкого редуктора.

 

Рис. 17.10. К понятиям о дуговом и ли­нейном двигателях

 

Если же «разрезанный» статор развернуть в плоскость, то получим асинхронный линейный двигатель (рис. 17.10, в). Принципиальное конструктивное отличие линейного асинхронного двигателя от асинхронного двигателя с вращательным движением ротора

состоит в том, что первичный элемент линейного двигателя (индуктор) создает не вращающееся, а бегущее магнитное поле и нижняя часть двигателя с короткозамкнутой обмоткой (или без нее) называемая вторичным элементом, перемещается вдоль своей оси. Скорость бегущего поля в линейном двигателе (м/с)

v1 = 2τf1 = f1Lc /p (17.7)

где f1 — частота тока в обмотке статора, Гц; τ — полюсное деление; Lc — длина статора (индуктора), м.

Принцип действия линейного асинхронного двигателя основан на том, что бегущее поле индуктора, сцепляясь с короткозамкнутой обмоткой вторичного элемента двигателя, наводит в ней ЭДС. Возникающие в стержнях этой обмотки токи взаимодействуют с бегущим полем индуктора и создают на индукторе и вторичном элементе электромагнитные силы, стремящиеся линейно переместить подвижную часть двигателя относительно неподвижной. В некоторых конструкциях линейных двигателей подвижной частью является индуктор, а в некоторых — вторичный элемент, называемый в этом случае бегунком. Если вторичный элемент линейного двигателя невозможно изготовить с короткозамкнутой обмоткой, то применяют вторичные элементы в виде полосы из меди, алюминия или ферромагнитной стали. Наиболее удовлетворительными получаются характеристики линейного двигателя при составном вторичном элементе, например выполненном в виде полосы из ферромагнитной стали, покрытой слоем меди.

Основной недостаток асинхронных двигателей с разомкнутым статором — дуговых и линейных — явление краевого эффекта, представляющего собой комплекс электромагнитных процессов, обусловленных разомкнутой конструкцией статора. К нежела­тельным последствиям краевого эффекта в первую очередь следу­ет отнести появление «паразитных» тормозных усилий, направ­ленных против движения подвижной части двигателя, и возникновение поперечных сил, стремящихся сместить подвиж­ную часть двигателя в поперечном направ­лении. Кроме того, краевой эффект вызывает ряд других нежелательных явлений, ухуд­шающих рабочие характеристики линейных двигателей.

Линейные асинхронные двигатели при­меняют для привода заслонок, ленточных конвейеров, подъемно-транспортных меха­низмов. На рис. 17.11 показано устройство линейного асинхронного двигателя привода тележки подъемного крана. На тележке 3 расположен индуктор линейного двигателя, состоящий из шихтованного сердечника 6, в пазах которого расположена обмотка 5. На­правляющая для колес 2 представляет собой стальную балку 7, к нижней части которой прикреплена стальная полоса 4. Бегущее магнитное поле индуктора наводит в стальной полосе 4 вихревые токи. Электромаг­нитные силы, возникающие в результате взаимодействия этих токов с магнитным полем индуктора, перемещают индуктор (тележку) вдоль стальной полосы 4.

 

Рис. 17.11. Линей­ный асинхронный двигатель

привода тележки подъемного крана

 

Линейные асинхронные двигатели значительной мощности применяют на транспорте в качестве тяговых двигателей. Один из вариантов такого двигателя показан на рис. 17.12. Здесь индуктор 2 двигателя подвешен к транспортному средству 1, а стальная полоса 3 установлена вертикально на основании пути между рельсами. Из этой конструкции поперечная сила Fп вызванная краевым эффектом используется полезно, так как она уменьшает силу давления на несущие оси и колеса и, как следствие, уменьшает трение качения.

Рис 17.12. Линейный асинхронный двигатель

привода железнодорожного транспортного средства

Контрольные вопросы

1.В чем различие между схемами соединения индукционного регулятора на­пряжения и фазорегулятора?

2.Сколько раз напряжение на выходе ИР достигнет наибольшего значения за один оборот ротора, если обмотка имеет 2р = 6?

3.В каком направлении следует вращать ротор АПЧ, чтобы на выходе полу­чить ЭДС частотой, большей частоты тока в сети?

4.Какую долю мощности на выходе АПЧ составит мощность приводного дви­гателя, если частота тока на входе АПЧ равна 50 Гц, а на выходе — 100 Гц?

5.Объясните работу сельсинов в индикаторной системе передачи. Чем вызвана ошибка в воспроизведении угла поворота?

6.Чем обеспечивается отсутствие самохода в асинхронном исполнительном двигателе?

7.Объясните принцип работы асинхронного линейного двигателя.

8.Что такое краевой эффект и каковы его нежелательные действия в линейном асинхронном двигателе?

 

ГЛАВА 18

• Конструктивные формы исполнения электрических машин

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

zdamsam.ru

Линейный двигатель - это... Что такое Линейный двигатель?

Лабораторный синхронный линейный двигатель. На заднем плане статор - ряд индукционных катушек, на переднем плане - подвижный вторичный элемент, содержащий постоянный магнит.

Лине́йный дви́гатель — электродвигатель, у которого один из элементов магнитной системы разомкнут и имеет развёрнутую обмотку, создающую магнитное поле, а другой взаимодействует с ним и выполнен в виде направляющей, обеспечивающей линейное перемещение подвижной части двигателя. Сейчас разработано множество разновидностей (типов) линейных электродвигателей, например, линейные асинхронные электродвигатели (ЛАД), линейные синхронные электродвигатели, линейные электромагнитные двигатели, линейные магнитоэлектрические двигатели, линейные магнитострикционные двигатели, линейные пьезоэлектрические (электрострикционные) двигатели и др.

Многие типы линейных двигателей, такие как асинхронные, синхронные или постоянного тока, повторяют по принципу своего действия соответствующие двигатели вращательного движения, в то время как другие типы линейных двигателей (магнитострикционные, пьезоэлектрические и др.) не имеют практического исполнения как двигатели вращательного движения. Неподвижную часть линейного электродвигателя, получающую электроэнергию из сети, называют статором, или первичным элементом, а часть двигателя, получающая энергию от статора, называют вторичным элементом или якорем (название "ротор" к деталям линейного двигателя не применяется, т.к. слово "ротор" буквально означает "вращающийся", а в линейном двигателе вращения нет). Наибольшее распространение в транспорте и для больших линейных перемещений получили асинхронные и синхронные линейные двигатели, но применяются также линейные двигатели постоянного тока и линейные электромагнитные двигатели. Последние чаще всего используются для получения небольших перемещений рабочих органов и обеспечения при этом высокой точности и значительных тяговых усилий.

Асинхронный линейный двигатель

Представление об устройстве линейного асинхронного двигателя можно получить, если мысленно разрезать статор и ротор с обмотками обычного асинхронного двигателя вдоль оси по образующей и развернуть в плоскость. Образовавшаяся плоская конструкция представляет собой принципиальную схему линейного двигателя. Если теперь обмотки статора такого двигателя подключить к сети трехфазного переменного тока, то образуется магнитное поле, ось которого будет перемещаться вдоль воздушного зазора со скоростью V, пропорциональной частоте питающего напряжения f и длине полюсного деления t: V = 2tf. Это перемещающееся вдоль зазора магнитное поле пересекает проводники обмотки ротора и индуцирует в них ЭДС, под действием которой по обмотке начнут протекать токи. Взаимодействие токов с магнитным полем приведет к появлению силы, действующей, по правилу Ленца, в направлении перемещения магнитного поля. Ротор — в дальнейшем будем называть его уже вторичным элементом — под действием этой силы начнет двигаться. Как и в обычном асинхронном двигателе, перемещение элемента происходит с некоторым скольжением относительно поля S = (V - v)/V, где v - скорость движения элемента. Номинальное скольжение линейного двигателя равно 2-6%. [1] Вторичный элемент линейного двигателя не всегда снабжается обмоткой. Одно из достоинств линейного асинхронного двигателя заключается в том, что в качестве вторичного элемента может использоваться обычный металлический лист. Вторичный элемент при этом может располагаться также между двумя статорами, или между статором и ферромагнитным сердечником. Вторичный элемент выполняется из меди, алюминия или стали, причем использование немагнитного вторичного элемента предполагает применение конструктивных схем с замыканием магнитного потока через ферромагнитные элементы. Принцип действия линейных двигателей со вторичным элементом в виде полосы повторяет работу обычного асинхронного двигателя с массивным ферромагнитным или полым немагнитным ротором. Обмотки статора линейных двигателей имеют те же схемы соединения, что и обычные асинхронные двигатели, и подключаются обычно к сети трехфазного переменного тока. Линейные двигатели очень часто работают в так называемом обращенном режиме движения, когда вторичный элемент неподвижен, а передвигается статор. Такой линейный двигатель, получивший название двигателя с подвижным статором, находит, в частности, широкое применение на электрическом транспорте. Например, статор неподвижно закреплен под полом вагона, а вторичный элемент представляет собой металлическую полосу между рельс, а иногда вторичным элементом служат сами рельсы. Одной из разновидностей линейных асинхронных двигателей являются трубчатый (коаксиальный) двигатель. Статор такого двигателя имеет вид трубы, внутри которой располагаются перемежающиеся между собой плоские дисковые катушки (обмотки статора) и металлические шайбы, являющиеся частью магнитопровода. Катушки двигателя соединяются группами и образуют обмотки отдельных фаз двигателя. Внутри статора помещается вторичный элемент также трубчатой формы, выполненный из ферромагнитного материала. При подключении к сети обмоток статора вдоль его внутренней поверхности образуется бегущее магнитное поле, которое индуцирует в теле вторичного элемента токи, направленные по его окружности. Взаимодействие этих токов с магнитным полем двигателя создает на вторичном элементе силу, действующую вдоль трубы, которая и вызывает (при закрепленном статоре) движение вторичного элемента в этом направлении. Трубчатая конструкция линейных двигателей характеризуется аксиальным направлением магнитного потока во вторичном элементе в отличие от плоского линейного двигателя, в котором магнитный поток имеет радиальное направление.

Синхронный линейный двигатель

Схема синхронного линейного двигателя.

Основной областью применения синхронных двигателей, где их преимущества проявляются особенно сильно, является высокоскоростной электрический транспорт. Дело в том, что по условиям нормальной эксплуатации такого транспорта необходимо иметь сравнительно большой воздушный зазор между подвижной частью и вторичным элементом. Асинхронный линейный двигатель имеет при этом очень низкий коэффициент мощности (cosφ), и его применение оказывается экономически невыгодным. Синхронный линейный двигатель, напротив, допускает наличие относительно большого воздушного зазора между статором и вторичным элементом и работает при этом с cosφ, близким к единице, и высоким КПД, достигающем 96%. Применение синхронных линейных двигателей в высокоскоростном транспорте сочетается, как правило, с магнитной подвеской вагонов и применением сверхпроводящих магнитов и обмоток возбуждения, что позволяет повысить комфортабельность движения и экономические показатели работы подвижного состава.

Применение линейных двигателей

Линейные двигатели высокого и низкого ускорения

Все линейные двигатели их можно разделить на две категории:

Двигатели низкого ускорения используются в общественном транспорте (маглев, монорельс, метрополитен) как тяговые, а также в станках (лазерных, водорезных, сверлильно-фрезерных) и другом технологическом оборудовании в промышленности. Двигатели высокого ускорения весьма небольшие по длине, и обычно применяются, чтобы разогнать объект до высокой скорости, а затем выпустить его (см. пушка Гаусса). Они часто используются для исследований гиперскоростных столкновений, а также в специальных устройствах, таких, как оружие[источник не указан 308 дней] или пусковые установки космических кораблей[каких?].

Линейные двигатели широко используются также в приводах подачи металлорежущих станков и в робототехнике. Для повышения точности позиционирования часто используются линейные датчики положения.

Источники

  1. ↑ Линейные асинхронные двигатели - Принцип действия
  2. ↑ Линейные электродвигатели

Ссылки

dic.academic.ru

Линейные асинхронные двигатели

1. Введение.2. Линейный асинхронный двигатель.   2.1 Конструкция и принцип действия.   2.2 Разновидности.     2.2.1 Конструктивные параметры.     2.2.2 Дуговой двигатель.     2.2.3 Трубчатый двигатель.   2.3 Применение.3. Линейный двигатель постоянного тока.   3.1 Конструкция и принцип действия.   3.2 Применение.4. Линейный синхронный двигатель.4.1 Применение.5. Вывод.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Введение.

   Интересные и широкие перспективы развития электропривода связаны с применением так называемых линейных двигателей.    Большое число производственных механизмов и устройств имеют поступательное или возвратно-поступательное движение рабочих органов (подъёмно-транспортные машины, механизмы подач различных станков, прессы, молоты и т.д.). В качестве привода этих механизмов и устройств использовались обычные электродвигатели в сочетании со специальными видами механических передач (кривошипно-шатунный механизм, передача винт-гайка), преобразовавших вращательное движение рабочего органа.   Линейные двигатели могут быть асинхронными, синхронными и постоянного тока, повторяя по принципу своего действия соответствующие двигатели вращательного движения.

 

2. Линейный асинхронный двигатель.

   2.1 Конструкция и принцип действия.

0170-1

Рис. 1

 

  Наибольшее распространение получили асинхронные линейные двигатели. Представление об устройстве линейного асинхронного двигателя можно получить, если мысленно разрезать (рис. 1) статор 1 и ротор 4 с обмотками 2 и 3 обычного асинхронного двигателя вдоль оси по образующей и развернуть в плоскость, как это показано на рисунке. Образовавшаяся «плоская» конструкция представляет собой принципиальную схему линейного двигателя. Если теперь обмотки 2 статора такого двигателя подключить к сети переменного тока, то образуется магнитное поле, ось которого будет перемещаться вдоль воздушного зазора со скоростью, пропорциональной частоте питающего напряжения и длине полюсного деления. Это перемещающееся вдоль зазора магнитное поле пересекает проводники обмотки 3 ротора и индуктирует в них ЭДС, под действием которой по обмотке начнут протекать токи. Взаимодействие токов с магнитным полем приведёт к появлению силы, действующей, по известному правилу Ленца, в направлении перемещения магнитного поля. Ротор – в дальнейшем будем называть его уже вторичным элементом – под действием этой силы начнёт двигаться с некоторым отставанием (скольжением) от магнитного поля, как и в обычном асинхронном двигателе.  

 

   2.2 Разновидности.    2.2.1 Конструктивные параметры.

0170-2

Рис. 2

  Представленная на рис. 2 конструкция представляет собой линейный двигатель с одинаковыми размерами статора и вторичного элемента. Помимо такой конструкции, в зависимости от назначения линейного двигателя вторичный элемент может быть длиннее статора (рис. 2а) или короче его (рис. 2б). Такие двигатели получили соответственно название двигателей с коротким статором и коротким вторичным элементом.  Вторичный элемент линейного двигателя не всегда снабжается обмоткой. Часто – и в этом одно из достоинств линейного асинхронного двигателя – в качестве вторичного элемента используется металлический лист (полоса), как показано на рис. 2д. Вторичный элемент при этом может располагаться также между двумя статорами (рис. 2в) или между статором и ферромагнитным сердечником (рис. 2г).  Двигатель с конструктивной схемой, приведённой на рис. 2д, получил название двигателя с односторонним статором, со схемой по рис. 2в – с двусторонним статором и со схемой по рис. 2г – с односторонним статором и сердечником. Вторичный элемент выполняется из меди, алюминия или стали, причём использование не магнитного вторичного элемента предполагает применение конструктивных схем с замыканием магнитного потока через ферромагнитные элементы, как, например, на рис. 2в, г. Некоторое распространение получили сложные составные вторичные элементы с прилегающими друг к другу полосами из немагнитного и ферромагнитного материала, при этом ферромагнитная полоса выполняет роль части магнитопровода. Принцип действия линейных двигателей с вторичным элементом в виде полосы повторяет работу обычного асинхронного двигателя с массивным ферромагнитным или полым немагнитным ротором. Обмотки статора линейных двигателей имеют те же схемы соединения, что и обычные асинхронные двигатели, и подключаются обычно к сети трёхфазного переменного тока. Отметим, что линейные двигатели очень часто работают в так называемом обращённом режиме движения, когда вторичный элемент неподвижен, а передвигается статор. Такой линейный двигатель, получивший название двигателя с подвижным статором, находит, в частности, широкое применение на электрическом транспорте.

    2.2.2 Дуговой двигатель.     Дуговой двигатель характеризуется расположением обмотки на части окружности, как это показано на рис. 3.Особенностью этого двигателя является зависимость частоты вращения его статора 1 от длины дуги, на которой располагаются обмотки 2 статора 3.

0170-3

Рис. 3

   Пусть обмотки статора располагаются на дуге, длина которой соответствует центральному углу α = 2τр, где τ - длина полюсного деления и p – число пар полюсов. Тогда за один период тока вращающееся поле статора совершит поворот на угол 2τр/р = α/р, а в течение одной минуты поле повернётся на  n =  α/p*60f/2π оборотов, т. е. будет иметь частоту вращения n, об/мин.      Выбирая различные α, можно выполнять дуговые двигатели с различными частотами вращения ротора.

    2.2.3 Трубчатый двигатель.    Конструкция трубчатого линейного двигателя представлена на рис. 4.

0170-4

Рис.4

   Статор двигателя 1 имеет вид трубы, внутри которой располагаются перемежающиеся между собой плоские дисковые катушки 2 (обмотки статора) и металлические шайбы 3, являющиеся частью магнитопровода. катушки двигателя соединяются группами и образуют обмотки отдельных фаз двигателя. Внутри статора помещается вторичный элемент 4 также трубчатой формы, выполненный из ферромагнитного материала.     При подключении к сети обмоток статора вдоль его внутренней поверхности образуется бегущее магнитное поле, которое индуктирует в теле вторичного элемента токи, направленные по его окружности. Взаимодействие этих токов с магнитным полем двигателя создаёт на вторичном элементе силу, действующую вдоль трубы, которая и вызывает (при закрепленном статоре) движение вторичного элемента в этом направлении. Трубчатая конструкция линейных двигателей характеризуется аксиальным направлением магнитного потока в отличие от плоского линейного двигателя, в котором магнитный поток имеет радиальное направление.

   2.3 Применение.

   Широкое применение линейные двигатели нашли в электрическом транспорте, чему способствовал целый ряд преимуществ этих двигателей. Одно из них, уже отмеченное выше, определяется прямолинейностью движения вторичного элемента (или статора), что естественно сочетается с характером движения транспортных средств.    Другое, не менее важное обстоятельство связанно с независимостью силы тяги от силы сцепления колёс с рельсовым путём, что недостижимо длят обычных систем электрической тяги. Поэтому ускорения и скорости движения средств транспорта при использовании линейных двигателей могут быть сколь угодно высокими и ограничиваться только комфортабельностью движения, допустимой скоростью качения колёс по рельсовому пути и дороге, динамической устойчивостью ходовой части транспорта и пути. Исключается при использовании линейных двигателей и буксование колёс электрического транспорта.

0170-5

Одна из возможных конструктивных схем сочленения линейного двигателя с рельсовым транспортным средством показана на рис. 5.

   Линейный двигатель, укреплённый на тележке 3 подвижного состава, имеет конструкцию с двусторонним статором 1. Вторичным элементом является укреплённая между рельсами полоса 2. Напряжение на статор двигателя подаётся с помощью скользящих контактов. Известны также конструкции линейных двигателей, где вторичным элементом являются рельс и элементы несущей конструкции. Такие схемы характерны, в частности, для монорельсовых пассажирских и грузовых дорог и механизмов передвижения кранов. На рис. 6 в качестве примера показаны отечественный линейный двигатель, сконструированный для монорельсовой дороги. Этот двигатель имеет двусторонний статор 1 с обмоткой 2, внутри которого находится вторичный элемент в виде полосы 3. Статор двигателя перемещается по полосе с помощью несущих роликов 5. Ролики 4 служат для взаимной фиксации статора и вторичного элемента в горизонтальном направлении.

0170-12 Рис. 6

 

0170-6 Рис. 7

 

   На рис. 7 показан пример использования линейных асинхронных двигателей для механизмов транспортировки грузов различных изделий.    Конвейер, предназначенный для перемещения сыпучего материала 1 из бункера 2, имеет металлическую ленту 3, укреплённую на барабанах 4. Металлическая лента проходит внутри статоров 5 линейного двигателя, являясь вторичным элементом. Применение линейного двигателя в этом случае позволяет снизить предварительное натяжение ленты и устранить её проскальзывание, повысить скорость и надёжность работы конвейера.    Большой интерес представляет использование линейного двигателя для машин ударного действия, например сваезабивных молотов, применяемых при дорожных работах и строительстве. Конструктивная схема такого молота, показана на рис. 8.Статор линейного двигателя 1 располагается на стреле молота 2 и может перемещаться по направляющим стрелы в вертикальном направлении с помощью лебёдки 3. Ударная часть молота 4 является одновременно вторичным элементом двигателя.     Для подъёма ударной части молота двигатель включается таким образом, чтобы бегущее поле было направленно вверх. При подходе ударной части к крайнему верхнему положению двигатель отключается и ударная часть опускается вниз на сваю под действием силы тяжести. В некоторых случаях двигатель не отключается, а реверсируется, что позволяет увеличить энергию удара. По мере заглубления сваи статор двигателя перемещается вниз с помощью лебёдки.

0170-7 Рис. 8

   Электрический молот, прост в изготовлении, не требует повышенной точности изготовления двигателей, не чувствителен к изменению температуры и может вступать в работу практически мгновенно.

3. Линейный двигатель постоянного тока.

   Наряду с асинхронными линейными двигателями применяются линейные двигатели постоянного тока. Они чаще всего используются для получения небольших перемещений рабочих органов и обеспечения при этом высокой точности и значительных пусковых усилий.

   3.1 Конструкция и принцип действия.

   Линейные электродвигатели постоянного тока состоит из якоря с расположенной на нём обмоткой, служащей одновременно коллектором (направляющий элемент), и разомкнутого магнитопровода с обмотками возбуждения (подвижная часть), расположенными так, что векторы сил, возникающих под полюсами магнитопровода, имеют одинаковое направление. Кроме того, линейные двигатели постоянного тока (как и двигатели вращательного движения) позволяют при необходимости просто регулировать скорость движения рабочих органов.

   3.2 Применение.

   На рис. 9 показана схема линейного двигателя постоянного тока, который применяется для перемещения промышленных изделий. Этот двигатель по существу представляет собой двигатель постоянного тока с полым цилиндрическим якорем, разрезанный по образующей и развёрнутый в плоскость.  

0170-8 Рис. 9

 

 

   Подвижная часть двигателя – якорь - состоит из немагнитного остова 1 и укреплённой на нём обмотки 2 якоря, которая может быть выполнена из изолированного обмоточного провода или изготовлена из медной фольги путём её травления. Ширина витков обмотки в направлении движения, как и в обычных двигателях постоянного тока, близка к полюсному делению (т. е. расстоянию по окружности между полюсами магнитной системы двигателя). Токопровод к обмотке осуществляется с помощью коллектора 3 и щёток 4. На станине двигателя 5 крепится комплект полюсов 6 с обмотками возбуждения 7, размещённых в ряд по направлению движения якоря. Другими частями магнитопровода двигателя являются стальные сердечники 8 и сама станина, выполненная также из ферромагнитного материала. Якорь двигателя вместе со столиком 9 для крепления перемещаемого изделия 10 движется по неподвижным опорам 11 так, что его плоскости с обмотками всё время находятся в зазоре между сердечниками 8 и полюсами 6. На принципе работы линейного двигателя основано действие специальных насосов для перекачки электропроводящих жидкостей и в том числе жидких металлов. Такие насосы, часто называемые магнитогидродинамическими, широко применяются в металлургии для транспортировки, дозировки и перемешивания жидкого металла, а также на атомных электростанциях для перекачки жидкометаллического теплоносителя.    Магнитогидродинамические насосы (МГД - насосы) могут быть постоянного или переменного тока. Рассмотрим схему насоса постоянного тока.

0170-9

Рис. 10.

    Первичным элементом – статором двигателя является С – образный электромагнит 1. В воздушный зазор электромагнита помещается трубопровод 2 с жидким металлом. С помощью электродов 3, приваренных к стенкам трубопровода, через жидкий металл пропускается постоянный ток от внешнего устройства. Часто обмотка возбуждения включается последовательно в цепь электродов 3. При возбуждении электромагнита на металл в зоне прохождения постоянного тока начинает действовать электромагнитная сила. Под действием этой силы металл начнёт перемещаться по трубопроводу, причём направление его движения просто определить по известному правилу левой руки. Преимуществами МГД – насосов являются отсутствие движущихся механических частей, и возможность герметизации канала транспортировки металла.

4. Линейный синхронный двигатель.

   В последние годы всё шире используются синхронные линейные двигатели. Основной областью применения этих двигателей, где их преимущества проявляются особенно сильно, является высокоскоростной электрический транспорт. Дело в том, что по условиям нормальной эксплуатации такого транспорта необходимо иметь сравнительно большой воздушный зазор между подвижной частью и вторичным элементом. Асинхронный линейный двигатель имеет при этом очень низкий коэффициент мощности, и его применение оказывается экономически не выгодным. Синхронный линейный двигатель, напротив, допускает наличие относительно большого воздушного зазора между статором и вторичным элементом и работает при этом с коэффициентом мощности, близким к единице.   Следует отметить, что применение синхронных линейных двигателей в высокоскоростном транспорте сочетается, как правило, с так называемой магнитной подвеской вагонов и применением сверхпроводящих магнитов и обмоток возбуждения, что позволяет повысить комфортабельность движения и экономические показатели работы подвижного состава.

   4.1 Применение.

   На рис. 11 показана схема путепровода и вагона электропоезда со скоростью движения 400 – 500 км/ч, предназначенного для перевозки 100 пассажиров.

0170-10 Рис. 11

   Тяговый синхронный линейный двигатель имеет электромагнитное возбуждение с использованием сверхпроводящих магнитов. Обмотка возбуждения 1 состоит из ряда катушек, равномерно укреплённых под днищем вагона 5. В криогенной системе охлаждения обмоток используется жидкий гелий. Плоская трёхфазная обмотка переменного инвертора, преобразующего напряжения постоянного тока в трёхфазное напряжение переменного тока.    С помощью инвертора осуществляется пуск, изменение скорости движения и торможение поезда.     Путепровод 6 представляет собой бетонное полотно, плоский характер поверхности которого выбран с целью снижения накопления льда и снега.      Вагон подвешивается над полотном дороги на высоте 15 см с помощью специальной системы магнитной подвески. Эта система состоит из удлинённых сверхпроводящих электромагнитов 3, расположенных по краям днища вагона, из плоских алюминиевых полос 4, укреплённых в полотне дороги. Принцип работы системы магнитной подвески основывается на действии электродинамических сил, возникающих при взаимодействии потоков сверхпроводящих электромагнитов 3 на борту вагона и вихревых токов, наведённых в алюминиевых полосках 4. Расчёты показали, что при использовании магнитной подвески масса вагона оказывается на 20 т меньше, чем при системе подвески на воздушной подушке.    Для обеспечения поперечной устойчивости поезда при его движении применяется специальная система стабилизации. Она предусматривает укладку дополнительной обмотки вдоль оси дорожного полотна и основана на взаимодействии токов в этой обмотке с полем тяговых электромагнитов. Разработанная система электрической тяги с применением описанного выше синхронного линейного двигателя отличается хорошими эксплуатационными показателями, однако для её работы необходима укладка обмоток в полотно дороги, что удорожает изготовление системы и усложняет её обслуживание, особенно при значительной протяжённости дороги. В связи с этим были разработаны конструкции линейных синхронных двигателей, которые не требуют укладки обмоток в железнодорожное полотно. К их числу относятся линейные синхронные двигатели с так называемым униполярным возбуждением и когтеобразными полюсами. Двигатели того и другого исполнения были использованы для привода 50 – тонного состава со скоростью движения 480 км/ч.

0170-11

Рис. 12

 

   На рис. 12 показана схема синхронного линейного двигателя с униполярным возбуждением. Двигатель имеет два статора 1, установленных на подвижной части состава. Бегущее магнитное поле создаётся с помощью обмоток 2, подключаемых к сети переменного тока. Статоры соединяются магнитопроводом 3, на котором расположена обмотка униполярного возбуждения 4. Эта обмотка создаёт постоянный по направлению магнитный поток, который пронизывает ферромагнитный вторичный элемент 5, укладываемый в магнитопровод. Взаимодействие бегущего магнитного поля с намагниченным вторичным элементом создаёт силу тяги подвижного состава.   Сопоставление линейных синхронных двигателей с униполярным возбуждением и когтеобразными полюсами с асинхронным линейным двигателем на то же тяговое усилие показало, что последний имеет худший коэффициент мощности (около 0,6), более низкий КПД (около 80%) и большую массу на единицу мощности двигателя.  

 

 

 

5. Вывод.

   Применение линейных электродвигателей позволяет упростить или полностью исключить механическую передачу, повысить экономичность и надёжность работы привода и производственного механизма в целом.

 

 

 

 

 

6. Список литературы.

1. В.В. Маскаленко, Электрические двигатели специального               назначения, Энергоиздат 1981. 2. Кавалёв Ю.М., Электрические машины, – М.: Энергия, 1989.

znakka4estva.ru

Линейный двигатель — википедия фото

Лабораторный синхронный линейный двигатель. На заднем плане статор - ряд индукционных катушек, на переднем плане - подвижный вторичный элемент, содержащий постоянный магнит.

Лине́йный дви́гатель — электродвигатель, у которого один из элементов магнитной системы разомкнут и имеет развёрнутую обмотку, создающую магнитное поле, а другой взаимодействует с ним и выполнен в виде направляющей, обеспечивающей линейное перемещение подвижной части двигателя. Сейчас разработано множество разновидностей (типов) линейных электродвигателей, например:

Многие типы линейных двигателей, такие как асинхронные, синхронные или постоянного тока, повторяют по принципу своего действия соответствующие двигатели вращательного движения, в то время как другие типы линейных двигателей (магнитострикционные, пьезоэлектрические и др.) не имеют практического исполнения как двигатели вращательного движения. Неподвижную часть линейного электродвигателя, получающую электроэнергию из сети, называют статором, или первичным элементом, а часть двигателя, получающая энергию от статора, называют вторичным элементом или якорем (название «ротор» к деталям линейного двигателя не применяется, так как слово «ротор» буквально означает «вращающийся», а в линейном двигателе вращения нет).

Наибольшее распространение в транспорте и для больших линейных перемещений получили асинхронные и синхронные линейные двигатели, но применяются также линейные двигатели постоянного тока и линейные электромагнитные двигатели. Последние чаще всего используются для получения небольших перемещений рабочих органов и обеспечения при этом высокой точности и значительных тяговых усилий.

Асинхронный линейный двигатель

Представление об устройстве линейного асинхронного двигателя можно получить, если мысленно разрезать статор и ротор с обмотками обычного асинхронного двигателя вдоль оси по образующей и развернуть в плоскость. Образовавшаяся плоская конструкция представляет собой принципиальную схему линейного двигателя. Если теперь обмотки статора такого двигателя подключить к сети трехфазного переменного тока, то образуется магнитное поле, ось которого будет перемещаться вдоль воздушного зазора со скоростью V, пропорциональной частоте питающего напряжения f и длине полюсного деления t: V = 2пf . Это перемещающееся вдоль зазора магнитное поле пересекает проводники обмотки ротора и индуцирует в них ЭДС, под действием которой по обмотке начнут протекать токи. Взаимодействие токов с магнитным полем приведет к появлению силы, действующей, по правилу Ленца, в направлении перемещения магнитного поля. Ротор — в дальнейшем будем называть его уже вторичным элементом — под действием этой силы начнет двигаться. Как и в обычном асинхронном двигателе, перемещение элемента происходит с некоторым скольжением относительно поля S = (V - v)/V, где v — скорость движения элемента. Номинальное скольжение линейного двигателя равно 2-6%.[1] Вторичный элемент линейного двигателя не всегда снабжается обмоткой. Одно из достоинств линейного асинхронного двигателя заключается в том, что в качестве вторичного элемента может использоваться обычный металлический лист. Вторичный элемент при этом может располагаться также между двумя статорами, или между статором и ферромагнитным сердечником. Вторичный элемент выполняется из меди, алюминия или стали, причем использование немагнитного вторичного элемента предполагает применение конструктивных схем с замыканием магнитного потока через ферромагнитные элементы. Принцип действия линейных двигателей со вторичным элементом в виде полосы повторяет работу обычного асинхронного двигателя с массивным ферромагнитным или полым немагнитным ротором. Обмотки статора линейных двигателей имеют те же схемы соединения, что и обычные асинхронные двигатели, и подключаются обычно к сети трехфазного переменного тока. Линейные двигатели очень часто работают в так называемом обращенном режиме движения, когда вторичный элемент неподвижен, а передвигается статор. Такой линейный двигатель, получивший название двигателя с подвижным статором, находит, в частности, широкое применение на электрическом транспорте. Например, статор неподвижно закреплен под полом вагона, а вторичный элемент представляет собой металлическую полосу между рельс, а иногда вторичным элементом служат сами рельсы. Одной из разновидностей линейных асинхронных двигателей являются трубчатый (коаксиальный) двигатель. Статор такого двигателя имеет вид трубы, внутри которой располагаются перемежающиеся между собой плоские дисковые катушки (обмотки статора) и металлические шайбы, являющиеся частью магнитопровода. Катушки двигателя соединяются группами и образуют обмотки отдельных фаз двигателя. Внутри статора помещается вторичный элемент также трубчатой формы, выполненный из ферромагнитного материала. При подключении к сети обмоток статора вдоль его внутренней поверхности образуется бегущее магнитное поле, которое индуцирует в теле вторичного элемента токи, направленные по его окружности. Взаимодействие этих токов с магнитным полем двигателя создает на вторичном элементе силу, действующую вдоль трубы, которая и вызывает (при закрепленном статоре) движение вторичного элемента в этом направлении. Трубчатая конструкция линейных двигателей характеризуется аксиальным направлением магнитного потока во вторичном элементе в отличие от плоского линейного двигателя, в котором магнитный поток имеет радиальное направление.

Синхронный линейный двигатель

  Схема синхронного линейного двигателя.

Основной областью применения синхронных двигателей, где их преимущества проявляются особенно сильно, является высокоскоростной электрический транспорт. Дело в том, что по условиям нормальной эксплуатации такого транспорта необходимо иметь сравнительно большой воздушный зазор между подвижной частью и вторичным элементом. Асинхронный линейный двигатель имеет при этом очень низкий коэффициент мощности (cosφ), и его применение оказывается экономически невыгодным. Синхронный линейный двигатель, напротив, допускает наличие относительно большого воздушного зазора между статором и вторичным элементом и работает при этом с cosφ, близким к единице, и высоким КПД, достигающим 96%. Применение синхронных линейных двигателей в высокоскоростном транспорте сочетается, как правило, с магнитной подвеской вагонов и применением сверхпроводящих магнитов и обмоток возбуждения, что позволяет повысить комфортабельность движения и экономические показатели работы подвижного состава.

Применение линейных двигателей

Линейные двигатели высокого и низкого ускорения

Все линейные двигатели можно разделить на две категории:

Двигатели низкого ускорения используются в общественном транспорте (маглев, монорельс, метрополитен) как тяговые, а также в станках (лазерных, водорезных, сверлильно-фрезерных) и другом технологическом оборудовании в промышленности. Двигатели высокого ускорения весьма небольшие по длине, и обычно применяются, чтобы разогнать объект до высокой скорости, а затем выпустить его (см. пушка Гаусса). Они часто используются для исследований гиперскоростных столкновений, а также, гипотетически, может использоваться в специальных устройствах, таких, как оружие или пусковые установки космических кораблей.

Линейные двигатели широко используются также в приводах подачи металлорежущих станков и в робототехнике. Для повышения точности позиционирования часто используются линейные датчики положения.

Источники

Ссылки

org-wikipediya.ru

Линейные электродвигатели. Основные разновидности и их применение | RuAut

Назначение и типы линейных электродвигателей

Ротационные электродвигатели обычно предназначены для реализации вращательного движения рабочего механизма. Иногда эти двигатели осуществляют поступательные или возвратно-поступательные движения. Достигается это при помощи кинематических передач усложняющих конструкцию и снижающих коэффициент полезного действия привода. Применение линейных электродвигателей позволяет устранить эти недостатки.

В ротационных электродвигателях индуктор представляет собой цилиндр, внутри которого вращается ротор. В плоских линейных электродвигателях индуктор развернут на плоскости. Индуктор цилиндрического линейного электродвигателя - цилиндр, внутри которого линейно перемещаются вторичные элементы.

Основные типы линейных электродвигателей: линейные асинхронные электродвигатели, линейные синхронные электродвигатели, линейные электродвигатели постоянного тока, линейные шаговые электродвигатели. Наибольшее применение получили линейные асинхронные электродвигатели. Первичная обмотка асинхронного линейного электродвигателя возбуждает бегущее электромагнитное поле. В результате взаимодействия первичного поля и индуктируемых токов во вторичном элементе возникает тяговое усилие. Вторичный элемент прямолинейно перемещается. В линейных асинхронных электродвигателях имеют место ухудшающие характеристики краевые эффекты. Разомкнутость магнитной цепи в продольном направлении вызывает продольный краевой эффект. Увеличение числа полюсов индуктора снижает продольный краевой эффект. Наличие на краях вторичного элемента продольных составляющих токов, не создающих полезное тяговое усилие - поперечный краевой эффект. Увеличение ширины вторичного элемента снижает влияние поперечного краевого эффекта. Итак, принцип действия как ротационных, так и линейных электродвигателей имеет одну и ту же физическую природу.

Применение линейных электродвигателей

Линейные электродвигатели применяются там, где они упрощают конструкцию, повышают производительность машин и оборудования, или в тех случаях, когда использование ротационных электродвигателей по их характеристикам невозможно. Применение линейных электродвигателей наиболее перспективно в промышленном и пассажирском транспорте. В конвейерных поездах индукторы электропривода расположены вдоль рельсового пути, вторичный элемент электродвигателя находится на подвижном составе. Такие поезда удобны при транспортировке угля, руды и строительных материалов. На примере системы городского эстакадного пассажирского транспорта показан другой вариант исполнения линейного электродвигателя, где вторичный элемент установлен вдоль пути в виде токопроводящей вертикальной полосы. А индукторы установлены в движущемся вагоне. Линейные асинхронные электродвигатели широко применяются в приводах различных исполнительных механизмов и устройств. В приводах разъединителей тяговых подстанций цилиндрический линей электродвигатель существенно упрощает конструкцию, повышает быстродействие и эксплуатационную надежность оборудования.

В ряде случаев, вторичным элементом двигателя может быть и деталь рабочего механизма. Привод поворотного стола манипулятора осуществлен на базе плоских линейных электродвигателей, что обеспечивает высокую точность углового позиционирования стола и существенно упрощает механическую часть устройства. В отдельных случаях, линейные асинхронные электродвигатели могут эффективно выполнять сразу несколько целевых функций. Литейная карусельная машина. Ее привод реализован на линейных электродвигателях плоского исполнения. Он может перемещать и при технологической необходимости подогревать из ложницы. Коэффициент полезного действия таких приводов значительно выше, чем КПД приводов с одной целевой функцией.

Принцип работы линейного асинхронного электродвигателя может быть использован при создании других электромагнитных устройств, например в сепараторах цветных металлов. Линейные электродвигатели успешно применяются в различных системах внутрицехового транспорта. Основными преимуществами линейных электродвигателей являются возможность получения непосредственного прямолинейного движения, больших скоростей и ускорений, простота конструкции, бесшумность и надежность работы. Развитие микропроцессорной техники и разработка новых средств управления позволяют постоянно расширять области эффективного применения линейных электродвигателей.   

ruaut.ru


Смотрите также