Асинхронный конденсаторный двигатель имеет на статоре две обмотки, занимающие одинаковое число пазов и сдвинутые в пространстве относительно друг друга на 90 эл. град. Одну из обмоток — главную — включают непосредственно в однофазную сеть, а другую — вспомогательную — включают в эту же сеть, но через рабочий конденсатор Сра6 (рис. 16.7, а).
В отличие от рассмотренного ранее однофазного асинхронного двигателя в конденсаторном двигателе вспомогательная обмотка после пуска не отключается и остается включенной в течение всего периода работы, при этом емкость Сраб создает фазовый сдвиг между токами и
Таким образом, если однофазный асинхронный двигатель по окончании процесса пуска работает с пульсирующей МДС статора, то конденсаторный двигатель - с вращающейся. Поэтому конденсаторные двигатели по своим свойствам приближаются к трехфазным двигателям.
Необходимая для получения кругового вращающегося поля емкость (мкФ)
Cраб = 1,6105 IA sin φA / (f1UA k2), (16.4)
при этом отношение напряжений на главной UА и на вспомогательной UB обмотках должно быть
UA /UB = tg φA ≠ 1.
Здесь φA - угол сдвига фаз между током и напряжением при круговом поле;k = ωBkB/ (wAkA) - коэффициент трансформации, представляющий собой отношение
Рис. 16.7. Конденсаторный двигатель:
а — с рабочей емкостью, б — с рабочей и пусковой емкостями, в — механические характеристики; 1 — при рабочей емкости, 2 — при рабочей и пусковой емкостях
эффективных чисел витков вспомогательной и главной обмоток; kA и kB — обмоточные коэффициенты обмоток статора.
Анализ (16.4) показывает, что при заданных коэффициенте трансформации k и отношении напряжений UA/ UB емкость Сра6 обеспечивает получение кругового вращающегося поля лишь при одном, вполне определенном режиме работы двигателя. Если же и изменится режим (нагрузка), то изменятся и ток IA и фазовый угол φA, а следовательно, и Сраб, соответствующая круговому полю. Таким образом, если нагрузка двигателя отличается от расчетной, то вращающееся поле двигателя становится эллиптическим и рабочие свойства двигателя ухудшаются. Обычно расчет Сраб ведут для номинальной нагрузки или близкой к ней.
Обладая сравнительно высокими КПД и коэффициентом мощности (соs φ1 = 0,80 ÷ 0,95), конденсаторные двигатели имеют неудовлетворительные пусковые свойства, так как емкость Сраб обеспечивает круговое поле лишь при расчетной нагрузке, а при пуске двигателя поле статора эллиптическое. При этом пусковой момент обычно не превышает 0,5МНОМ.
Для повышения пускового момента параллельно емкости Сраб включают емкость Спуск, называемую пусковой (рис. 16.7, б). Величину Спуск выбирают, исходя из условия получения кругового поля статора при пуске двигателя, т. е. получения наибольшего пускового момента. По окончании пуска емкость Спуск следует отключать, так как при небольших скольжениях в цепи обмотки статора, содержащей емкость С и индуктивность L, возможен резонанс напряжений, из-за чего напряжение на обмотке и на конденсаторе может в два-три раза превысить напряжение сети.
При выборе типа конденсатора следует помнить, что его рабочее напряжение определяется амплитудным значением синусоидального напряжения, приложенного к конденсатору Uc. При круговом вращающемся поле это напряжение (В) превышает напряжение сети U1 и определяется выражением
Uc = U1
Рис 16.8. Схемы включения двухфазного двигателя в трехфазную сеть
Конденсаторные двигатели иногда называют двухфазными, так как обмотка статора этого двигателя содержит две фазы. Двухфазные двигатели могут работать и без конденсатора или другого ФЭ, если к фазам обмотки статора подвести двухфазную систему напряжений (два напряжения, одинаковые по значению и частоте, но сдвинутые по фазе относительно друг друга на 90°). Для получения двухфазной системы напряжений можно воспользоваться трехфазной линией с нулевым проводом, включив обмотки статора так, как показано на рис. 16.8, а: одну обмотку — на линейное напряжение UAB, а другую — на фазное напряжение Uc через автотрансформатор AT (для выравнивания значения напряжений на фазных обмотках двигателя). Возможно включение двигателя и без нулевого провода (рис. 16.8, б), но в этом случае напряжения на обмотках двигателя будут сдвинуты по фазе на 120°, что приведет к некоторому ухудшению рабочих свойств двигателя.
studfiles.net
Асинхронный конденсаторный двигатель имеет на статоре две обмотки, занимающие одинаковое число пазов и сдвинутые в пространстве относительно друг друга на 90 эл. град. Одну из обмоток — главную — включают непосредственно в однофазную сеть, а другую — вспомогательную — включают в эту же сеть, но через рабочий конденсатор Сра6 (рис. 16.7, а).
В отличие от рассмотренного ранее однофазного асинхронного двигателя в конденсаторном двигателе вспомогательная обмотка после пуска не отключается и остается включенной в течение всего периода работы, при этом емкость Сраб создает фазовый сдвиг между токами и .
Таким образом, если однофазный асинхронный двигатель по окончании процесса пуска работает с пульсирующей МДС статора, то конденсаторный двигатель - с вращающейся. Поэтому конденсаторные двигатели по своим свойствам приближаются к трехфазным двигателям.
Необходимая для получения кругового вращающегося поля емкость (мкФ)
Cраб = 1,6105 IA sin φA / (f1UA k2), (16.4)
при этом отношение напряжений на главной UА и на вспомогательной UB обмотках должно быть
UA /UB = tg φA ≠ 1.
Здесь φA - угол сдвига фаз между током и напряжением при круговом поле;k = ωBkB/ (wAkA) - коэффициент трансформации, представляющий собой отношение
Рис. 16.7. Конденсаторный двигатель:
а — с рабочей емкостью, б — с рабочей и пусковой емкостями, в — механические характеристики; 1 — при рабочей емкости, 2 — при рабочей и пусковой емкостях
эффективных чисел витков вспомогательной и главной обмоток; kA и kB — обмоточные коэффициенты обмоток статора.
Анализ (16.4) показывает, что при заданных коэффициенте трансформации k и отношении напряжений UA/ UB емкость Сра6 обеспечивает получение кругового вращающегося поля лишь при одном, вполне определенном режиме работы двигателя. Если же и изменится режим (нагрузка), то изменятся и ток IA и фазовый угол φA, а следовательно, и Сраб, соответствующая круговому полю. Таким образом, если нагрузка двигателя отличается от расчетной, то вращающееся поле двигателя становится эллиптическим и рабочие свойства двигателя ухудшаются. Обычно расчет Сраб ведут для номинальной нагрузки или близкой к ней.
Обладая сравнительно высокими КПД и коэффициентом мощности (соs φ1 = 0,80 ÷ 0,95), конденсаторные двигатели имеют неудовлетворительные пусковые свойства, так как емкость Сраб обеспечивает круговое поле лишь при расчетной нагрузке, а при пуске двигателя поле статора эллиптическое. При этом пусковой момент обычно не превышает 0,5МНОМ.
Для повышения пускового момента параллельно емкости Сраб включают емкость Спуск, называемую пусковой (рис. 16.7, б). Величину Спуск выбирают, исходя из условия получения кругового поля статора при пуске двигателя, т. е. получения наибольшего пускового момента. По окончании пуска емкость Спуск следует отключать, так как при небольших скольжениях в цепи обмотки статора, содержащей емкость С и индуктивность L, возможен резонанс напряжений, из-за чего напряжение на обмотке и на конденсаторе может в два-три раза превысить напряжение сети.
При выборе типа конденсатора следует помнить, что его рабочее напряжение определяется амплитудным значением синусоидального напряжения, приложенного к конденсатору Uc. При круговом вращающемся поле это напряжение (В) превышает напряжение сети U1 и определяется выражением
Uc = U1 (16.5)
Рис 16.8. Схемы включения двухфазного двигателя в трехфазную сеть
Конденсаторные двигатели иногда называют двухфазными, так как обмотка статора этого двигателя содержит две фазы. Двухфазные двигатели могут работать и без конденсатора или другого ФЭ, если к фазам обмотки статора подвести двухфазную систему напряжений (два напряжения, одинаковые по значению и частоте, но сдвинутые по фазе относительно друг друга на 90°). Для получения двухфазной системы напряжений можно воспользоваться трехфазной линией с нулевым проводом, включив обмотки статора так, как показано на рис. 16.8, а: одну обмотку — на линейное напряжение UAB, а другую — на фазное напряжение Uc через автотрансформатор AT (для выравнивания значения напряжений на фазных обмотках двигателя). Возможно включение двигателя и без нулевого провода (рис. 16.8, б), но в этом случае напряжения на обмотках двигателя будут сдвинуты по фазе на 120°, что приведет к некоторому ухудшению рабочих свойств двигателя.
Рис. 1. Схема (а) и векторная диаграмма (б) конденсаторного асинхронного двигателя: U, UБ, UC — напряжения; IA, IБ — токи; А и Б — обмотки статора; В — центробежный выключатель для отключения С1 после разгона двигателя; C1 и C2 — конденсаторы.
Рис. 2. Схема включения в однофазную сеть трёхфазного асинхронного двигателя с обмотками статора, соединёнными по схеме «звезда» (а) или «треугольник» (б): B1 и В2 — выключатели; Ср — рабочий конденсатор; Cп — пусковой конденсатор; АД — асинхронный электродвигатель.
Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.
конденсаторный асинхронный двигатель — конденсаторный двигатель Двигатель с расщепленной фазой, у которого в цепь вспомогательной обмотки постоянно включен конденсатор. [ГОСТ 27471 87] Тематики машины электрические вращающиеся в целом Синонимы конденсаторный двигатель … Справочник технического переводчика
КОНДЕНСАТОРНЫЙ АСИНХРОННЫЙ ДВИГАТЕЛЬ — однофазный асинхронный электродвигатель, у к рого на статоре расположено две сдвинутые на 90° (электрич.) обмотки, одна из к рых непосредственно включается в сеть, а другая последовательно с электрич. конденсатором, благодаря чему создаётся… … Большой энциклопедический политехнический словарь
конденсаторный двигатель — Однофазный асинхронный двигатель, снабженный вспомогательной обмоткой, в цепь которой включается емкость … Политехнический терминологический толковый словарь
Двигатель — У этого термина существуют и другие значения, см. Двигатель (значения). Двигатель, мотор (от лат. motor приводящий в движение) устройство, преобразующее какой либо вид энергии в механическую. Этот термин используется с конца XIX века… … Википедия
Двухфазный двигатель — Двухфазный двигатель электрический двигатель с двумя обмотками, сдвинутыми в пространстве на 90°. При подаче на двигатель двухфазного напряжения, сдвинутого по фазе на 90°, образуется вращающееся магнитное поле. Короткозамкнутый ротор… … Википедия
Однофазный двигатель — электродвигатель, конструктивно предназначенный для подключения к однофазной сети переменного тока. Фактически является двухфазным, но вследствие того, что рабочей является только одна обмотка, двигатель называют однофазным. Однофазный… … Википедия
Трёхфазный двигатель — Трёхфазный синхронный двигатель Трёхфазный двигатель электродвигатель, который конструктивно предназначен для питания от трехфазной сети переменного тока. Представляет собой машину переменного тока, состоящую из статора с тремя обмотками,… … Википедия
Электрический двигатель — Основная статья: Электрическая машина Электродвигатели разной мощности (750 Вт, 25 Вт, к CD плееру, к игрушке, к дисководу). Батарейка «Крона» дана для сравнения Электрический двигатель … Википедия
Линейный двигатель — Лабораторный синхронный линейный двигатель. На заднем плане статор ряд индукционных катушек, на переднем плане подвижный вторичный элемент, содержащий постоянный магнит … Википедия
Переменного тока электродвигатель — машина переменного тока, предназначенная для работы в режиме двигателя (см. Переменного тока машина). П. т. э. подразделяют на синхронные и асинхронные. Синхронные электродвигатели (См. Синхронный электродвигатель) применяют в… … Большая советская энциклопедия
dic.academic.ru
Асинхронный конденсаторный двигатель имеет на статоре две обмотки, занимающие одинаковое число пазов и сдвинутые в пространстве относительно друг друга на 90 эл. град. Одну из обмоток — главную — включают непосредственно в однофазную сеть, а другую — вспомогательную — включают в эту же сеть, но через рабочий конденсатор Сра6 (рис. 16.7, а).
В отличие от рассмотренного ранее однофазного асинхронного двигателя в конденсаторном двигателе вспомогательная обмотка после пуска не отключается и остается включенной в течение всего периода работы, при этом емкость Сраб создает фазовый сдвиг между токами и .
Таким образом, если однофазный асинхронный двигатель по окончании процесса пуска работает с пульсирующей МДС статора, то конденсаторный двигатель - с вращающейся. Поэтому конденсаторные двигатели по своим свойствам приближаются к трехфазным двигателям.
Необходимая для получения кругового вращающегося поля емкость (мкФ)
Cраб = 1,6105 IA sin φA / (f1UA k2), (16.4)
при этом отношение напряжений на главной UА и на вспомогательной UB обмотках должно быть
UA /UB = tg φA ≠ 1.
Здесь φA - угол сдвига фаз между током и напряжением при круговом поле;k = ωBkB/ (wAkA) - коэффициент трансформации, представляющий собой отношение
Рис. 16.7. Конденсаторный двигатель:
а — с рабочей емкостью, б — с рабочей и пусковой емкостями, в — механические характеристики; 1 — при рабочей емкости, 2 — при рабочей и пусковой емкостях
эффективных чисел витков вспомогательной и главной обмоток; kA и kB — обмоточные коэффициенты обмоток статора.
Анализ (16.4) показывает, что при заданных коэффициенте трансформации k и отношении напряжений UA/ UB емкость Сра6 обеспечивает получение кругового вращающегося поля лишь при одном, вполне определенном режиме работы двигателя. Если же и изменится режим (нагрузка), то изменятся и ток IA и фазовый угол φA, а следовательно, и Сраб, соответствующая круговому полю. Таким образом, если нагрузка двигателя отличается от расчетной, то вращающееся поле двигателя становится эллиптическим и рабочие свойства двигателя ухудшаются. Обычно расчет Сраб ведут для номинальной нагрузки или близкой к ней.
Обладая сравнительно высокими КПД и коэффициентом мощности (соs φ1 = 0,80 ÷ 0,95), конденсаторные двигатели имеют неудовлетворительные пусковые свойства, так как емкость Сраб обеспечивает круговое поле лишь при расчетной нагрузке, а при пуске двигателя поле статора эллиптическое. При этом пусковой момент обычно не превышает 0,5МНОМ.
Для повышения пускового момента параллельно емкости Сраб включают емкость Спуск, называемую пусковой (рис. 16.7, б). Величину Спуск выбирают, исходя из условия получения кругового поля статора при пуске двигателя, т. е. получения наибольшего пускового момента. По окончании пуска емкость Спуск следует отключать, так как при небольших скольжениях в цепи обмотки статора, содержащей емкость С и индуктивность L, возможен резонанс напряжений, из-за чего напряжение на обмотке и на конденсаторе может в два-три раза превысить напряжение сети.
При выборе типа конденсатора следует помнить, что его рабочее напряжение определяется амплитудным значением синусоидального напряжения, приложенного к конденсатору Uc. При круговом вращающемся поле это напряжение (В) превышает напряжение сети U1 и определяется выражением
Uc = U1 (16.5)
Рис 16.8. Схемы включения двухфазного двигателя в трехфазную сеть
Конденсаторные двигатели иногда называют двухфазными, так как обмотка статора этого двигателя содержит две фазы. Двухфазные двигатели могут работать и без конденсатора или другого ФЭ, если к фазам обмотки статора подвести двухфазную систему напряжений (два напряжения, одинаковые по значению и частоте, но сдвинутые по фазе относительно друг друга на 90°). Для получения двухфазной системы напряжений можно воспользоваться трехфазной линией с нулевым проводом, включив обмотки статора так, как показано на рис. 16.8, а: одну обмотку — на линейное напряжение UAB, а другую — на фазное напряжение Uc через автотрансформатор AT (для выравнивания значения напряжений на фазных обмотках двигателя). Возможно включение двигателя и без нулевого провода (рис. 16.8, б), но в этом случае напряжения на обмотках двигателя будут сдвинуты по фазе на 120°, что приведет к некоторому ухудшению рабочих свойств двигателя.
studfiles.net
ГЛАВА 16
• Однофазные и конденсаторные асинхронные двигатели
§16.1. Принцип действия и пуск однофазного асинхронного двигателя
По своему устройству однофазный асинхронный двигатель аналогичен трехфазному и состоит из статора, в пазах которого уложена однофазная обмотка (см. рис. 8.8), и короткозамкнутого ротора. Особенность работы однофазного асинхронного двигателя заключается в том, что при включении однофазной обмотки статора С1—С2 в сеть (рис. 16.1) МДС статора создает не вращающийся, а пульсирующий магнитный поток (см. § 9.4) с амплитудой Фmах, изменяющейся от + Фmах до – Фmах При этом ось магнитного потока остается неподвижной в пространстве.
Для объяснения принципа действия однофазного двигателя пульсирующий поток Фmах разложим на два вращающихся в противоположные стороны потока Фпр и Фобр (рис. 16.2), каждый из которых равен 0,5Фmax и вращается с частотой (об/мин)
nпр = nобр = f160/ p = n1
Условимся считать поток Фпр вращающийся в направлении вращения ротора, прямым, а поток Фо6р -обратным. Допустим, что ротор двигателя вращается против часовой стрелки, т. е. в направлении потока Фпр.
Частота вращения ротора n2 меньше частоты вращения магнитного поля статора n1, поэтому скольжение ротора относительно вращающегося потока Фпр будет
sпр = (n1 – n2)/ n1 = s (16.1)
Обратный поток Фобр вращается противоположно ротору, поэтому частота вращения ротора n2 относительно Фобр - отрицательная. В этом случае скольжение ротора относительно Фобр определится выражением
sобр = (16.2)
Прямое поле наводит в обмотке ротора ЭДС Е2пр, а обратное поле — ЭДС Е2обр. Эти ЭДС создают в обмотке ротора токи I/2пр и I/2обр.
Известно, что частота тока в роторе пропорциональна скольжению (f2 = sf1). Так как snp < sобр, то частота тока I/2обр намного больше частоты тока I/2пр. Так, для однофазного двигателя с n1 = 1500 об/мин, n2 = 1450 об/мин и f1 = 50 Гц получим:
snp = (1500 - 1450)/ 1500 = 0,033;
f2пр = 0,033 - 50 = 1,8 Гц;
sобр = (1500 +1450)/ 1500 = 1,96;
f2о6р = 1,96 - 50 = 98 Гц.
Рис.16.1 Схема включения однофазного
асинхронного двигателя
Индуктивное сопротивление обмотки ротора току I/2обр во много раз больше ее активного сопротивления (потому что f2обр >>f2пр). Ток I/2о6р является почти чисто индуктивным, оказывающим сильное размагничивающее действие на обратное поле Фобр. В результате обратное поле и обусловленный им момент Мобр оказываются значительно ослабленными и ротор однофазного двигателя вращается и направлении прямого поля под действием момента
М = Мпр - М06р, (16.3)
где Мпр — электромагнитный момент, обусловленный прямым полем.
Рис. 16.2. Разложение пульсирующего магнитного потока на два вращающихся
На рис. 16.3 представлен график зависимости вращающего момента М в функции скольжения s = sпр. Этот график получен путем наложения графиков Мпр = f(snp) и Мо6р = f(sобр)- При малых значениях скольжения s, что соответствует работе двигателя в пределах номинальной нагрузки, вращающий момент Мсоздается главным образом моментом Мпр.
При sпр = sобр = 1 моменты Мпр и Мо6р равны, а поэтому пусковой момент однофазного двигателя равен нулю. Следовательно, однофазный асинхронный двигатель не может самостоятельно прийти во вращение при подключении его к сети, а нуждается в первоначальном толчке, так как лишь при s≠ 1 на ротор двигателя действует вращающий момент М = Мпр- Мобр
Рис. 16.3. Механические характе- Рис. 16.4. Схема однофазного ристики однофазного асинхронного асинхронного двигателя с пусковой двигателя обмоткой
Приведенные на рис. 16.3 зависимости моментов показывают, что однофазный асинхронный двигатель не создает пускового момента. Чтобы этот момент появился, необходимо во время пуска двигателя создать в нем вращающееся магнитное поле. С этой целью на статоре двигателя помимо рабочей обмотки Априменяют еще одну обмотку — пусковую В. Эти обмотки располагают на статоре обычно так, чтобы их оси были смещены относительно друг друга на 90 эл. град. Кроме того, токи в обмотках статора и должны быть сдвинуты по фазе относительно друг друга. Для этого в цепь пусковой обмотки включают фазосмещающий элемент (ФЭ), в качестве которого могут быть применены активное сопротивление, индуктивность или емкость (рис. 16.4). По достижении частотой вращения значения близкого к номинальному, пусковую обмотку Вотключают с по мощью реле. Таким образом, во время пуска двигатель является двухфазным, а во время работы — однофазным.
Для получения вращающегося магнитного поля посредством двух обмоток на статоре, смещенных относительно друг друга на 90 эл. град, необходимо соблюдать следующие условия (рис. 16.5):
а) МДС рабочей и пусковой обмоток и должны быть и равны и сдвинуты в пространстве относительно друг друга на 90 эл. град;
б) токи в обмотках статора и должны быть сдвинуты по фазе относительно друг друга на 90°.
При строгом соблюдении указанных условий вращающееся поле статора является круговым, что соответствует наибольшему вращающему моменту. При частичном нарушении какого-либо из условий поле статора становится эллиптическим, содержащим обратную составляющую (см. рис. 9.5, б). Обратная составляющая поля создает тормозной момент и ухудшает пусковые свойства двигателя.
Из векторных диаграмм, приведенных на рис. 16.6, видно, что активное сопротивление и индуктивность в качестве ФЭ не обеспечивают получения фазового сдвига между токами в 90°. Лишь только емкость С в качестве ФЭ обеспечивает фазовый сдвиг ψ = 90°. Значение этой емкости выбирают таким, чтобы ток пусковой обмотки в момент пуска (s = 1) опережал по фазе напряжение , на угол φв, дополняющий угол φА до 90°:
Рис. 16.5. Получение вращающегося магнитного
поля двухфазной системой токов
Если при этом обе обмотки создают одинаковые по значению МДС, то в начальный период пуска вращающееся поле окажется круговым и двигатель будет развивать значительный начальный пусковой момент. Однако применение емкости в качестве ФЭ часто ограничивается значительными габаритами конденсаторов, тем более что для получения кругового поля требуются конденсаторы значительной емкости. Например, для однофазного двигателя мощностью 200 Вт необходима емкость 30 мкФ при рабочем напряжении 300—500 В.
Получили распространение однофазные двигатели с активным сопротивлением в качестве ФЭ. При этом повышенное активное сопротивление пусковой обмотки достигается тем, что она выполняется проводом уменьшенного сечения (по сравнению с проводом рабочей обмотки). Так как эта обмотка включена на непродолжительное время (обычно несколько секунд), то такая ее конструкция вполне допустима. Пусковой момент таких двигателей обычно не превышает номинального, но это вполне приемлемо при пуске двигателей при небольшой нагрузке на валу.
Рис. 16.6. Сравнение свойств фазосмещающих элементов:
а— активное сопротивление, б— индуктивность, в— емкость, г— механические характеристики двигателя при различных фазосмещающих элементах; 1 — активное сопротивление; 2— емкость
Применение емкости в качестве ФЭ позволяет получить пусковой момент Мп= (1,6÷2,0) Мном. На рис. 16.6, г приведены механические характеристики однофазного асинхронного двигателя при различных ФЭ. Для большей наглядности значения момента даны в относительных единицах.
Асинхронные конденсаторные двигатели
Асинхронный конденсаторный двигатель имеет на статоре две обмотки, занимающие одинаковое число пазов и сдвинутые в пространстве относительно друг друга на 90 эл. град. Одну из обмоток — главную — включают непосредственно в однофазную сеть, а другую — вспомогательную — включают в эту же сеть, но через рабочий конденсатор Сра6 (рис. 16.7, а).
В отличие от рассмотренного ранее однофазного асинхронного двигателя в конденсаторном двигателе вспомогательная обмотка после пуска не отключается и остается включенной в течение всего периода работы, при этом емкость Сраб создает фазовый сдвиг между токами и .
Таким образом, если однофазный асинхронный двигатель по окончании процесса пуска работает с пульсирующей МДС статора, то конденсаторный двигатель - с вращающейся. Поэтому конденсаторные двигатели по своим свойствам приближаются к трехфазным двигателям.
Необходимая для получения кругового вращающегося поля емкость (мкФ)
Cраб = 1,6 105 IA sin φA / (f1UA k2), (16.4)
при этом отношение напряжений на главной UА и на вспомогательной UBобмотках должно быть
UA /UB = tg φA ≠ 1.
ЗдесьφA - угол сдвига фаз между током и напряжением при круговом поле; k = ωB kB/ (wAkA) - коэффициент трансформации, представляющий собой отношение
Рис. 16.7. Конденсаторный двигатель:
а— с рабочей емкостью, б — с рабочей и пусковой емкостями, в — механические характеристики; 1— при рабочей емкости, 2— при рабочей и пусковой емкостях
эффективных чисел витков вспомогательной и главной обмоток; kAи kB— обмоточные коэффициенты обмоток статора.
Анализ (16.4) показывает, что при заданных коэффициенте трансформации kи отношении напряжений UA/ UBемкость Сра6 обеспечивает получение кругового вращающегося поля лишь при одном, вполне определенном режиме работы двигателя. Если же и изменится режим (нагрузка), то изменятся и ток IAи фазовый угол φA, а следовательно, и Сраб, соответствующая круговому полю. Таким образом, если нагрузка двигателя отличается от расчетной, то вращающееся поле двигателя становится эллиптическим и рабочие свойства двигателя ухудшаются. Обычно расчет Сраб ведут для номинальной нагрузки или близкой к ней.
Обладая сравнительно высокими КПД и коэффициентом мощности (соs φ1 = 0,80 ÷ 0,95), конденсаторные двигатели имеют неудовлетворительные пусковые свойства, так как емкость Сраб обеспечивает круговое поле лишь при расчетной нагрузке, а при пуске двигателя поле статора эллиптическое. При этом пусковой момент обычно не превышает 0,5МНОМ.
Для повышения пускового момента параллельно емкости Сраб включают емкость Спуск, называемую пусковой(рис. 16.7, б). Величину Спуск выбирают, исходя из условия получения кругового поля статора при пуске двигателя, т. е. получения наибольшего пускового момента. По окончании пуска емкость Спуск следует отключать, так как при небольших скольжениях в цепи обмотки статора, содержащей емкость Си индуктивность L, возможен резонанс напряжений, из-за чего напряжение на обмотке и на конденсаторе может в два-три раза превысить напряжение сети.
При выборе типа конденсатора следует помнить, что его рабочее напряжение определяется амплитудным значением синусоидального напряжения, приложенного к конденсатору Uc. При круговом вращающемся поле это напряжение (В) превышает напряжение сети U1и определяется выражением
Uc = U1 (16.5)
Рис 16.8. Схемы включения двухфазного двигателя в трехфазную сеть
Конденсаторные двигатели иногда называют двухфазными, так как обмотка статора этого двигателя содержит две фазы. Двухфазные двигатели могут работать и без конденсатора или другого ФЭ, если к фазам обмотки статора подвести двухфазную систему напряжений (два напряжения, одинаковые по значению и частоте, но сдвинутые по фазе относительно друг друга на 90°). Для получения двухфазной системы напряжений можно воспользоваться трехфазной линией с нулевым проводом, включив обмотки статора так, как показано на рис. 16.8, а: одну обмотку — на линейное напряжение UAB,а другую — на фазное напряжение Uc через автотрансформатор AT (для выравнивания значения напряжений на фазных обмотках двигателя). Возможно включение двигателя и без нулевого провода (рис. 16.8, б), но в этом случае напряжения на обмотках двигателя будут сдвинуты по фазе на 120°, что приведет к некоторому ухудшению рабочих свойств двигателя.
stydopedya.ru
ГЛАВА 16
• Однофазные и конденсаторные асинхронные двигатели
§16.1. Принцип действия и пуск однофазного асинхронного двигателя
По своему устройству однофазный асинхронный двигатель аналогичен трехфазному и состоит из статора, в пазах которого уложена однофазная обмотка (см. рис. 8.8), и короткозамкнутого ротора. Особенность работы однофазного асинхронного двигателя заключается в том, что при включении однофазной обмотки статора С1—С2 в сеть (рис. 16.1) МДС статора создает не вращающийся, а пульсирующий магнитный поток (см. § 9.4) с амплитудой Фmах, изменяющейся от + Фmах до – Фmах При этом ось магнитного потока остается неподвижной в пространстве.
Для объяснения принципа действия однофазного двигателя пульсирующий поток Фmах разложим на два вращающихся в противоположные стороны потока Фпр и Фобр (рис. 16.2), каждый из которых равен 0,5Фmax и вращается с частотой (об/мин)
nпр = nобр = f160/ p = n1
Условимся считать поток Фпр вращающийся в направлении вращения ротора, прямым, а поток Фо6р -обратным. Допустим, что ротор двигателя вращается против часовой стрелки, т. е. в направлении потока Фпр.
Частота вращения ротора n2 меньше частоты вращения магнитного поля статора n1, поэтому скольжение ротора относительно вращающегося потока Фпр будет
sпр = (n1 – n2)/ n1 = s (16.1)
Обратный поток Фобр вращается противоположно ротору, поэтому частота вращения ротора n2 относительно Фобр - отрицательная. В этом случае скольжение ротора относительно Фобр определится выражением
sобр = (16.2)
Прямое поле наводит в обмотке ротора ЭДС Е2пр, а обратное поле — ЭДС Е2обр. Эти ЭДС создают в обмотке ротора токи I/2пр и I/2обр.
Известно, что частота тока в роторе пропорциональна скольжению (f2 = sf1). Так как snp < sобр, то частота тока I/2обр намного больше частоты тока I/2пр. Так, для однофазного двигателя с n1 = 1500 об/мин, n2 = 1450 об/мин и f1 = 50 Гц получим:
snp = (1500 - 1450)/ 1500 = 0,033;
f2пр = 0,033 - 50 = 1,8 Гц;
sобр = (1500 +1450)/ 1500 = 1,96;
f2о6р = 1,96 - 50 = 98 Гц.
Рис.16.1 Схема включения однофазного
асинхронного двигателя
Индуктивное сопротивление обмотки ротора току I/2обр во много раз больше ее активного сопротивления (потому что f2обр >>f2пр). Ток I/2о6р является почти чисто индуктивным, оказывающим сильное размагничивающее действие на обратное поле Фобр. В результате обратное поле и обусловленный им момент Мобр оказываются значительно ослабленными и ротор однофазного двигателя вращается и направлении прямого поля под действием момента
М = Мпр - М06р, (16.3)
где Мпр — электромагнитный момент, обусловленный прямым полем.
Рис. 16.2. Разложение пульсирующего магнитного потока на два вращающихся
На рис. 16.3 представлен график зависимости вращающего момента М в функции скольжения s = sпр. Этот график получен путем наложения графиков Мпр = f(snp) и Мо6р = f(sобр)- При малых значениях скольжения s, что соответствует работе двигателя в пределах номинальной нагрузки, вращающий момент Мсоздается главным образом моментом Мпр.
При sпр = sобр = 1 моменты Мпр и Мо6р равны, а поэтому пусковой момент однофазного двигателя равен нулю. Следовательно, однофазный асинхронный двигатель не может самостоятельно прийти во вращение при подключении его к сети, а нуждается в первоначальном толчке, так как лишь при s≠ 1 на ротор двигателя действует вращающий момент М = Мпр- Мобр
Рис. 16.3. Механические характе- Рис. 16.4. Схема однофазного ристики однофазного асинхронного асинхронного двигателя с пусковой двигателя обмоткой
Приведенные на рис. 16.3 зависимости моментов показывают, что однофазный асинхронный двигатель не создает пускового момента. Чтобы этот момент появился, необходимо во время пуска двигателя создать в нем вращающееся магнитное поле. С этой целью на статоре двигателя помимо рабочей обмотки Априменяют еще одну обмотку — пусковую В. Эти обмотки располагают на статоре обычно так, чтобы их оси были смещены относительно друг друга на 90 эл. град. Кроме того, токи в обмотках статора и должны быть сдвинуты по фазе относительно друг друга. Для этого в цепь пусковой обмотки включают фазосмещающий элемент (ФЭ), в качестве которого могут быть применены активное сопротивление, индуктивность или ем кость (рис. 16.4). По достижении частотой вращения значения близкого к номинальному, пусковую обмотку Вотключают с по мощью реле. Таким образом, во время пуска двигатель является двухфазным, а во время работы — однофазным.
Для получения вращающегося магнитного поля посредством двух обмоток на статоре, смещенных относительно друг друга на 90 эл. град, необходимо соблюдать следующие условия (рис. 16.5):
а) МДС рабочей и пусковой обмоток и должны быть и равны и сдвинуты в пространстве относительно друг друга на 90 эл. град;
б) токи в обмотках статора и должны быть сдвинуты по фазе относительно друг друга на 90°.
При строгом соблюдении указанных условий вращающееся поле статора является круговым, что соответствует наибольшему вращающему моменту. При частичном нарушении какого-либо из условий поле статора становится эллиптическим, содержащим обратную составляющую (см. рис. 9.5, б). Обратная составляющая поля создает тормозной момент и ухудшает пусковые свойства двигателя.
Из векторных диаграмм, приведенных на рис. 16.6, видно, что активное сопротивление и индуктивность в качестве ФЭ не обеспечивают получения фазового сдвига между токами в 90°. Лишь только емкость С в качестве ФЭ обеспечивает фазовый сдвиг ψ = 90°. Значение этой емкости выбирают таким, чтобы ток пусковой обмотки в момент пуска (s = 1) опережал по фазе напряжение , на угол φв, дополняющий угол φА до 90°:
Рис. 16.5. Получение вращающегося магнитного
поля двухфазной системой токов
Если при этом обе обмотки создают одинаковые по значению МДС, то в начальный период пуска вращающееся поле окажется круговым и двигатель будет развивать значительный начальный пусковой момент. Однако применение емкости в качестве ФЭ часто ограничивается значительными габаритами конденсаторов, тем более что для получения кругового поля требуются конденсаторы значительной емкости. Например, для однофазного двигателя мощностью 200 Вт необходима емкость 30 мкФ при рабочем напряжении 300—500 В.
Получили распространение однофазные двигатели с активным сопротивлением в качестве ФЭ. При этом повышенное активное сопротивление пусковой обмотки достигается тем, что она выполняется проводом уменьшенного сечения (по сравнению с проводом рабочей обмотки). Так как эта обмотка включена на непродолжительное время (обычно несколько секунд), то такая ее конструкция вполне допустима. Пусковой момент таких двигателей обычно не превышает номинального, но это вполне приемлемо при пуске двигателей при небольшой нагрузке на валу.
Рис. 16.6. Сравнение свойств фазосмещающих элементов:
а— активное сопротивление, б— индуктивность, в— емкость, г— механические характеристики двигателя при различных фазосмещающих элементах; 1 — активное сопротивление; 2— емкость
Применение емкости в качестве ФЭ позволяет получить пусковой момент Мп= (1,6÷2,0) Мном. На рис. 16.6, г приведены механические характеристики однофазного асинхронного двигателя при различных ФЭ. Для большей наглядности значения момента даны в относительных единицах.
ГЛАВА 17
• Асинхронные машины специального назначения
ГЛАВА 18
• Конструктивные формы исполнения электрических машин
ГЛАВА 16
• Однофазные и конденсаторные асинхронные двигатели
§16.1. Принцип действия и пуск однофазного асинхронного двигателя
По своему устройству однофазный асинхронный двигатель аналогичен трехфазному и состоит из статора, в пазах которого уложена однофазная обмотка (см. рис. 8.8), и короткозамкнутого ротора. Особенность работы однофазного асинхронного двигателя заключается в том, что при включении однофазной обмотки статора С1—С2 в сеть (рис. 16.1) МДС статора создает не вращающийся, а пульсирующий магнитный поток (см. § 9.4) с амплитудой Фmах, изменяющейся от + Фmах до – Фmах При этом ось магнитного потока остается неподвижной в пространстве.
Для объяснения принципа действия однофазного двигателя пульсирующий поток Фmах разложим на два вращающихся в противоположные стороны потока Фпр и Фобр (рис. 16.2), каждый из которых равен 0,5Фmax и вращается с частотой (об/мин)
nпр = nобр = f160/ p = n1
Условимся считать поток Фпр вращающийся в направлении вращения ротора, прямым, а поток Фо6р -обратным. Допустим, что ротор двигателя вращается против часовой стрелки, т. е. в направлении потока Фпр.
Частота вращения ротора n2 меньше частоты вращения магнитного поля статора n1, поэтому скольжение ротора относительно вращающегося потока Фпр будет
sпр = (n1 – n2)/ n1 = s (16.1)
Обратный поток Фобр вращается противоположно ротору, поэтому частота вращения ротора n2 относительно Фобр - отрицательная. В этом случае скольжение ротора относительно Фобр определится выражением
sобр = (16.2)
Прямое поле наводит в обмотке ротора ЭДС Е2пр, а обратное поле — ЭДС Е2обр. Эти ЭДС создают в обмотке ротора токи I/2пр и I/2обр.
Известно, что частота тока в роторе пропорциональна скольжению (f2 = sf1). Так как snp < sобр, то частота тока I/2обр намного больше частоты тока I/2пр. Так, для однофазного двигателя с n1 = 1500 об/мин, n2 = 1450 об/мин и f1 = 50 Гц получим:
snp = (1500 - 1450)/ 1500 = 0,033;
f2пр = 0,033 - 50 = 1,8 Гц;
sобр = (1500 +1450)/ 1500 = 1,96;
f2о6р = 1,96 - 50 = 98 Гц.
Рис.16.1 Схема включения однофазного
асинхронного двигателя
Индуктивное сопротивление обмотки ротора току I/2обр во много раз больше ее активного сопротивления (потому что f2обр >>f2пр). Ток I/2о6р является почти чисто индуктивным, оказывающим сильное размагничивающее действие на обратное поле Фобр. В результате обратное поле и обусловленный им момент Мобр оказываются значительно ослабленными и ротор однофазного двигателя вращается и направлении прямого поля под действием момента
М = Мпр - М06р, (16.3)
где Мпр — электромагнитный момент, обусловленный прямым полем.
Рис. 16.2. Разложение пульсирующего магнитного потока на два вращающихся
На рис. 16.3 представлен график зависимости вращающего момента М в функции скольжения s = sпр. Этот график получен путем наложения графиков Мпр = f(snp) и Мо6р = f(sобр)- При малых значениях скольжения s, что соответствует работе двигателя в пределах номинальной нагрузки, вращающий момент Мсоздается главным образом моментом Мпр.
При sпр = sобр = 1 моменты Мпр и Мо6р равны, а поэтому пусковой момент однофазного двигателя равен нулю. Следовательно, однофазный асинхронный двигатель не может самостоятельно прийти во вращение при подключении его к сети, а нуждается в первоначальном толчке, так как лишь при s≠ 1 на ротор двигателя действует вращающий момент М = Мпр- Мобр
Рис. 16.3. Механические характе- Рис. 16.4. Схема однофазного ристики однофазного асинхронного асинхронного двигателя с пусковой двигателя обмоткой
Приведенные на рис. 16.3 зависимости моментов показывают, что однофазный асинхронный двигатель не создает пускового момента. Чтобы этот момент появился, необходимо во время пуска двигателя создать в нем вращающееся магнитное поле. С этой целью на статоре двигателя помимо рабочей обмотки Априменяют еще одну обмотку — пусковую В. Эти обмотки располагают на статоре обычно так, чтобы их оси были смещены относительно друг друга на 90 эл. град. Кроме того, токи в обмотках статора и должны быть сдвинуты по фазе относительно друг друга. Для этого в цепь пусковой обмотки включают фазосмещающий элемент (ФЭ), в качестве которого могут быть применены активное сопротивление, индуктивность или ем кость (рис. 16.4). По достижении частотой вращения значения близкого к номинальному, пусковую обмотку Вотключают с по мощью реле. Таким образом, во время пуска двигатель является двухфазным, а во время работы — однофазным.
Для получения вращающегося магнитного поля посредством двух обмоток на статоре, смещенных относительно друг друга на 90 эл. град, необходимо соблюдать следующие условия (рис. 16.5):
а) МДС рабочей и пусковой обмоток и должны быть и равны и сдвинуты в пространстве относительно друг друга на 90 эл. град;
б) токи в обмотках статора и должны быть сдвинуты по фазе относительно друг друга на 90°.
При строгом соблюдении указанных условий вращающееся поле статора является круговым, что соответствует наибольшему вращающему моменту. При частичном нарушении какого-либо из условий поле статора становится эллиптическим, содержащим обратную составляющую (см. рис. 9.5, б). Обратная составляющая поля создает тормозной момент и ухудшает пусковые свойства двигателя.
Из векторных диаграмм, приведенных на рис. 16.6, видно, что активное сопротивление и индуктивность в качестве ФЭ не обеспечивают получения фазового сдвига между токами в 90°. Лишь только емкость С в качестве ФЭ обеспечивает фазовый сдвиг ψ = 90°. Значение этой емкости выбирают таким, чтобы ток пусковой обмотки в момент пуска (s = 1) опережал по фазе напряжение , на угол φв, дополняющий угол φА до 90°:
Рис. 16.5. Получение вращающегося магнитного
поля двухфазной системой токов
Если при этом обе обмотки создают одинаковые по значению МДС, то в начальный период пуска вращающееся поле окажется круговым и двигатель будет развивать значительный начальный пусковой момент. Однако применение емкости в качестве ФЭ часто ограничивается значительными габаритами конденсаторов, тем более что для получения кругового поля требуются конденсаторы значительной емкости. Например, для однофазного двигателя мощностью 200 Вт необходима емкость 30 мкФ при рабочем напряжении 300—500 В.
Получили распространение однофазные двигатели с активным сопротивлением в качестве ФЭ. При этом повышенное активное сопротивление пусковой обмотки достигается тем, что она выполняется проводом уменьшенного сечения (по сравнению с проводом рабочей обмотки). Так как эта обмотка включена на непродолжительное время (обычно несколько секунд), то такая ее конструкция вполне допустима. Пусковой момент таких двигателей обычно не превышает номинального, но это вполне приемлемо при пуске двигателей при небольшой нагрузке на валу.
Рис. 16.6. Сравнение свойств фазосмещающих элементов:
а— активное сопротивление, б— индуктивность, в— емкость, г— механические характеристики двигателя при различных фазосмещающих элементах; 1 — активное сопротивление; 2— емкость
Применение емкости в качестве ФЭ позволяет получить пусковой момент Мп= (1,6÷2,0) Мном. На рис. 16.6, г приведены механические характеристики однофазного асинхронного двигателя при различных ФЭ. Для большей наглядности значения момента даны в относительных единицах.
Асинхронные конденсаторные двигатели
Асинхронный конденсаторный двигатель имеет на статоре две обмотки, занимающие одинаковое число пазов и сдвинутые в пространстве относительно друг друга на 90 эл. град. Одну из обмоток — главную — включают непосредственно в однофазную сеть, а другую — вспомогательную — включают в эту же сеть, но через рабочий конденсатор Сра6 (рис. 16.7, а).
В отличие от рассмотренного ранее однофазного асинхронного двигателя в конденсаторном двигателе вспомогательная обмотка после пуска не отключается и остается включенной в течение всего периода работы, при этом емкость Сраб создает фазовый сдвиг между токами и .
Таким образом, если однофазный асинхронный двигатель по окончании процесса пуска работает с пульсирующей МДС статора, то конденсаторный двигатель - с вращающейся. Поэтому конденсаторные двигатели по своим свойствам приближаются к трехфазным двигателям.
Необходимая для получения кругового вращающегося поля емкость (мкФ)
Cраб = 1,6 105 IA sin φA / (f1UA k2), (16.4)
при этом отношение напряжений на главной UА и на вспомогательной UBобмотках должно быть
UA /UB = tg φA ≠ 1.
ЗдесьφA - угол сдвига фаз между током и напряжением при круговом поле; k = ωB kB/ (wAkA) - коэффициент трансформации, представляющий собой отношение
Рис. 16.7. Конденсаторный двигатель:
а— с рабочей емкостью, б — с рабочей и пусковой емкостями, в — механические характеристики; 1— при рабочей емкости, 2— при рабочей и пусковой емкостях
эффективных чисел витков вспомогательной и главной обмоток; kAи kB— обмоточные коэффициенты обмоток статора.
Анализ (16.4) показывает, что при заданных коэффициенте трансформации kи отношении напряжений UA/ UBемкость Сра6 обеспечивает получение кругового вращающегося поля лишь при одном, вполне определенном режиме работы двигателя. Если же и изменится режим (нагрузка), то изменятся и ток IAи фазовый угол φA, а следовательно, и Сраб, соответствующая круговому полю. Таким образом, если нагрузка двигателя отличается от расчетной, то вращающееся поле двигателя становится эллиптическим и рабочие свойства двигателя ухудшаются. Обычно расчет Сраб ведут для номинальной нагрузки или близкой к ней.
Обладая сравнительно высокими КПД и коэффициентом мощности (соs φ1 = 0,80 ÷ 0,95), конденсаторные двигатели имеют неудовлетворительные пусковые свойства, так как емкость Сраб обеспечивает круговое поле лишь при расчетной нагрузке, а при пуске двигателя поле статора эллиптическое. При этом пусковой момент обычно не превышает 0,5МНОМ.
Для повышения пускового момента параллельно емкости Сраб включают емкость Спуск, называемую пусковой(рис. 16.7, б). Величину Спуск выбирают, исходя из условия получения кругового поля статора при пуске двигателя, т. е. получения наибольшего пускового момента. По окончании пуска емкость Спуск следует отключать, так как при небольших скольжениях в цепи обмотки статора, содержащей емкость Си индуктивность L, возможен резонанс напряжений, из-за чего напряжение на обмотке и на конденсаторе может в два-три раза превысить напряжение сети.
При выборе типа конденсатора следует помнить, что его рабочее напряжение определяется амплитудным значением синусоидального напряжения, приложенного к конденсатору Uc. При круговом вращающемся поле это напряжение (В) превышает напряжение сети U1и определяется выражением
Uc = U1 (16.5)
Рис 16.8. Схемы включения двухфазного двигателя в трехфазную сеть
Конденсаторные двигатели иногда называют двухфазными, так как обмотка статора этого двигателя содержит две фазы. Двухфазные двигатели могут работать и без конденсатора или другого ФЭ, если к фазам обмотки статора подвести двухфазную систему напряжений (два напряжения, одинаковые по значению и частоте, но сдвинутые по фазе относительно друг друга на 90°). Для получения двухфазной системы напряжений можно воспользоваться трехфазной линией с нулевым проводом, включив обмотки статора так, как показано на рис. 16.8, а: одну обмотку — на линейное напряжение UAB,а другую — на фазное напряжение Uc через автотрансформатор AT (для выравнивания значения напряжений на фазных обмотках двигателя). Возможно включение двигателя и без нулевого провода (рис. 16.8, б), но в этом случае напряжения на обмотках двигателя будут сдвинуты по фазе на 120°, что приведет к некоторому ухудшению рабочих свойств двигателя.
Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
zdamsam.ru
Однофазные и конденсаторные асинхронные двигатели Принцип действия однофазного АД Устройство однофазного АД: - статор, в пазах которого уложена однофазная обмотка; - короткозамкнутый ротор. С 1 С 2 При включении в сеть МДС обмотки статора создает пульсирующий магнитный поток, который можно разложить на два потока Фпр и Фобр, вращающихся в противоположные стороны с частотой nпр= nобр= n 1. Скольжение ротора относительно потока Фпр М скольжение ротора относительно потока Фобр
Однофазные и конденсаторные асинхронные двигатели Например, при n 1 =1500 об/мин и n 2 =1450 об/мин Sпр=0, 033 и Sобр=1, 967, т. е. Sпр>f 2 пр, а индуктивное сопротивление обмотки ротора току I 2 обр во много раз больше активного сопротивления. Этот ток I 2 обр является почти чисто индуктивным и оказывает сильное размагничивающее влияние на обратное поле Фобр и тогда M В результате однофазный АД имеет вращающий момент M = M 2 пр - M 2 обр Mпр График M = f(S) может быть получен наложением графиков Mпр = f(S) и M 2 0 M 2 обр
Однофазные и конденсаторные асинхронные двигатели Для создания пускового момента необходимо во время пуска создать вращающееся магнитное поле. С этой целью применяют пусковую обмотку В. Обмотки А и В располагают на статоре со смещением на 90 эл. градусов. Пуск С 1 IА А С 2 М ФЭ В П 2 IВ Токи в обмотках статора IА и IВ должны быть сдвинуты по фазе на 900. U 1 IВ В А IА А+ В=900 П 1 Для этого в цепь пусковой обмотки включают фазосмещающий элемент (чаще всего С). После достижения частоты вращения близкой к номинальной пусковую обмотку отключают.
Асинхронные конденсаторные двигатели На статоре две обмотки, занимающие одинаковое число пазов и сдвинутые в пространстве на 90 эл. градусов. Главную обмотку А включают непосредственно в сеть, а вспомогательную обмотку В включают в ту же сеть, но через конденсатор Сраб. Пуск IА А Сраб. В М IВ Спуск. Вспомогательная обмотка В после пуска не отключается. Таким образом, если однофазный АД работает с пульсирующей МДС статора, то конденсаторный АД - с вращающейся МДС. Емкость конденсатора Сраб, необходимая для получения кругового вращающегося поля где - коэффициент трансформации. Для повышения пускового момента параллельно конденсатору Сраб включают пусковой. конденсатор Спуск, емкость которого рассчитывается из условия получения кругового поля при пуске двигателя.
Синхронные машины Синхронной машиной называют такую машину переменного тока, частота вращения которой в установившемся режиме равна синхронной и не зависит от нагрузки. Применение: синхронные генераторы – в качестве источников электрической энергии переменного тока на тепловых, атомных и гидроэлектростанциях Синхронные двигатели – в установках не требующих регулирования скорости, при мощности 100 к. Вт и выше (насосы, вентиляторы, компрессоры и т. д. ), а также в схемах автоматики и электробытовых приборах (СД с постоянными магнитами, индукторные, гистерезисные, шаговые и т. д. ). B C Статор синхронной машины выполнен A также как асинхронной: в пазах сердечника статора расположена трехфазная обмотка Обмотка ротора питается от постороннего источника постоянного тока через контакт+ ные кольца и щетки и называется обмоткой N возбуждения. Она создает в синхронной машине основной - магнитный поток Ф 0 S Существуют две конструкции ротора: явнополюсная и неявнополюсная
Синхронные машины n 1 поток Ф 0 индуцирует в обмотках статора переменные ЭДС с частотой f 1=p n 1/60. При вращении ротора с частотой При подключении к обмотке статора нагрузки, в ней возникает ток, который создает вращающееся магнитное поле с частотой n 1 =60 f 1/p. Т. о. ротор вращается с такой же частотой, что и магнитное поле статора. Поэтому машину называют синхронной. В синхронных машинах обмотку статора, в которой наводится ЭДС и проходит ток нагрузки, называют обмоткой якоря. Часть машины, на которой расположена обмотка возбуждения, называется индуктором. В синхронных машинах индуктор – ротор. Взаимодействие вращающегося магнитного поля статора с основным магнитным потоком Ф 0 создает электромагнитный момент М, который при работе синхронной машины генератором, является тормозящим моментом, а при работе двигателем вращающим.
Работа синхронного генератора при холостом ходе C 1 C 2 C 3 При х. х. ток статора I = 0 и магнитный поток V Ф 0 создается только обмоткой возбуждения Е 0 и направлен по оси полюсов ротора. N n 1 ПД + А S Iв При вращении ротора поток Ф 0 наводит в Е 0 обмотке статора ЭДС Характеристика холостого хода при I = 0 и n 1=const. 0 Iв
Реакция якоря синхронной машины В машине, работающей под нагрузкой, т. е при токах статора I ≠ 0, магнитное поле создается не только МДС ротора, но и МДС токов статора Воздействие МДС якоря на магнитное поле ротора называют реакцией якоря. N В + S + n 1 + В ненасыщенной машине в результате действия реакции якоря одна половина полюса размагничивается а другая – подмагничивается; кривая распределения магнитной индукции В сдвигается навстречу направления вращения на угол , но результирующий магнитный поток Ф остается неизменным. В насыщенной машине размагничивающее действие реакции якоря под одной половиной полюса сказывается сильнее, чем подмагничивающее - под другой половиной полюса. В результате снижается поток Ф, а, следовательно, и ЭДС, и электромагнитный момент. При индуктивном характере тока нагрузки размагничивающее действие реакции якоря усиливается, а при достаточной емкостной нагрузке – реакция якоря оказывает подмагничивающее воздействие.
Внешняя характеристика синхронного генератора Внешняя характеристика C 1 C 2 U 1 А 2 cos 1= const и n 1=const. U 1 А 1 I 1 + при Iв = const, C 3 V cos 1
Электромагнитный момент синхронной машины Электромагнитный момент Мэм синхронной машины создается в результате взаимодействия вращающегося магнитного поля статора с основным магнитным потоком ротора Ф 0 где - угловая синхронная скорость вращения Электромагнитная мощность неявнополюсной синхронной машины где xc – синхронное индуктивное сопротивление обмотки статора Для явнополюсного синхронного генератора где xd и xq – синхронные индуктивные сопротивления по продольной и поперечной оси
Электромагнитный момент синхронной машины Электромагнитный момент неявнополюсной синхронной машины Для явнополюсной синхронной машины При увеличении нагрузки синхронного генератора растет ток I 1 и увеличивается угол , что ведет к изменению электромагнитной мощности Pэм и электромагнитного момента Mэм. Зависимости Pэм=f ( ) и Mэм=f ( ) называются угловыми характеристиками синхронной машины.
Угловая характеристика синхронной машины Mэм Mmax Генератор Mн - - кр н /2 Двигатель -Mmax
present5.com