Содержание

Ток нагрузки

Содержание

Характер нагрузки потребителя электрической энергии в заявке

Здравствуйте, в этой статье мы постараемся ответить на вопрос «Характер нагрузки потребителя электрической энергии в заявке». Также Вы можете бесплатно проконсультироваться у юристов онлайн прямо на сайте.

График нагрузки, характеризующий изменение мощности, потребляемой за одни сутки, называется суточным графиком.

Подача в отношении одних и тех же энергопринимающих устройств одновременно двух и более заявок в разные сетевые организации не допускается, за исключением случаев технологического присоединения энергопринимающих устройств, в отношении которых применяется категория надежности электроснабжения, предусматривающая использование два и более источников электроснабжения.

Заявка направляется заявителем в сетевую организацию в двух экземплярах письмом с описью вложения. Заявитель вправе представить заявку в сетевую организацию лично или через уполномоченного представителя, а сетевая организация обязана принять такую заявку.

Потребители электроэнергии и их классификация

В случае несоблюдения хотя бы одного из указанных критериев считается, что техническая возможность присоединения отсутствует. Потребителю откажут в подключении или выдадут индивидуальные технические условия (подробнее будет рассмотрено ниже).

При осуществлении технологического присоединения к потребителям предъявляются различные требования в зависимости от мощности их энергопринимающих устройств. Учитывается не только вновь подключаемая, но и ранее присоединенная мощность.

Расчет электрических мощностей промышленного транспорта, испытательных станций, лабораторных установок производят по другим методикам, которые учитывают специфику работы данных установок.

На изменение графиков нагрузки влияет также внедрение новых технологий и производственных процессов, увеличение вентиляции санитарно – технической, а также наращивание производственных мощностей. Также повышение использования оборудования за счет уплотнения рабочего времени, автоматизации процессов производства и так далее.

Суточные графики строятся на действующих объектах по показаниям счетчиков активной и реактивной энергии, производимым каждый час.

В п. 5 Заявки указывается запрашиваемая максимальная мощность энергопринимающих устройств Заявителя и технические характеристики присоединяемых энергопринимающих устройств.

Предметом изучения являются электрические нагрузки. Основой рационального решения комплекса вопросов, связанных с проектированием и эксплуатацией электрических сетей всех классов напряжений, является количественная информация об электрических нагрузках.

Расмотрены основные проблемы, которые возникают с низковольтным оборудованием, пути решения данных проблем и полезные советы.

Технологическое присоединение осуществляется на возмездной основе на основании договора, заключаемого между сетевой организацией и юридическим или физическим лицом.

Характеристики основных электроприемников — Мегаобучалка

За счет этой платы компенсируются расходы на строительство и реконструкцию объектов электросетевого хозяйства (линий, подстанций, трансформаторов, компенсирующих устройств) в целях присоединения новых или увеличения мощности энергопринимающих устройств, присоединенных ранее.

С данным явлением борятся и принимают меры, для повышения активной составляющей в нагрузке. Выражается реактивная мощность специальным коэффициентом мощности cos φ.Документация структурирована на: 1.

Нормативную, куда включены все ГОСты, ОСТы и другие нормативные документы по энергетике, 2. Заводскую, где выложены схемы, руководства, паспорта, инструкции и другие документы заводов- изготовителей; 3.

За максимальные длительные нагрузки принимаются максимальные значения активной, реактивной, полной мощности и тока продолжительностью за принятый интервал осреднения по допустимому нагреву элементов СЭС равным 30 минутам.

Какие бывают электронные нагрузки

Большинство серий электронных нагрузок предназначены для тестирования источников питания постоянного тока (аккумуляторов, блоков питания, солнечных батарей и др.), типичные примеры: серия ITECH IT8500+ и серия ITECH IT8800. Для тестирования источников питания переменного тока (инверторов, источников бесперебойного питания, трансформаторов и др.) выпускаются специализированные AC/DC электронные нагрузки переменного и постоянного тока, типичный пример: серия ITECH IT8615.

Конструктивно серийные электронные нагрузки изготавливаются в приборных корпусах. Размер и масса корпуса напрямую зависят от максимальной мощности, которую может рассеивать нагрузка. Самые маломощные модели могут рассеивать около 100 Вт и помещаются в небольших компактных корпусах, как например модель IT8211 рассчитанная на 150 Вт.

Типичная маломощная электронная нагрузка (модель ITECH IT8211, максимальная мощность 150 Вт).

Более серьёзные модели, как например пятикиловаттная нагрузка ITECH IT8818B, могут монтироваться в промышленную стойку и весят 40 и более килограмм.

Типичная мощная электронная нагрузка (модель ITECH IT8818B, максимальная мощность 5 кВт).

Также выпускаются модели, которые могут рассеивать десятки и даже сотни киловатт. Чтобы увидеть варианты конструктивного исполнения электронных нагрузок разной мощности, посмотрите серию ITECH IT8800.

Иногда, для удешевления, вместо электронной нагрузки используют реостат (мощный переменный резистор). Использование реостата при тестировании силовых устройств связано с такими ограничениями:
— отсутствие режима постоянного тока потребления;
— отсутствие режима постоянной мощности;
— отсутствие режима стабилизации напряжения;
— отсутствие режима изменения состояния по списку заданных значений;
— отсутствие автоматизации работы;
— значительная индуктивность реостата;
— необходимость использовать дополнительный вольтметр и амперметр.
Поэтому вместо устаревших методов тестирования, эффективнее и в конечном итоге дешевле применять современную контрольно-измерительную аппаратуру, специально разработанную под конкретную задачу.

Использование хорошей электронной нагрузки позволяет существенно упростить и ускорить процесс тестирования любых источников электропитания, а также сделать этот процесс безопасным и эффективным.

Для чего используются электронные нагрузки

Основная задача электронных нагрузок — это тестирование различных источников электропитания: аккумуляторов, батареек, блоков питания, преобразователей напряжения, регуляторов и стабилизаторов напряжения, солнечных батарей, генераторов и других подобных устройств. Для проведения тестирования, электронную нагрузку подключают к проверяемому источнику электропитания и запускают один или несколько тестов. При этом, электронная нагрузка ведёт себя как реальная нагрузка: например меняет своё сопротивление по заданному алгоритму, имитирует большие стартовые токи запуска, короткое замыкание и прочие заданные Вами условия. Во время проведения теста, электронная нагрузка непрерывно измеряет напряжение, ток и потребляемую мощность.

Примеры устройств, для проверки работы которых применяют электронные нагрузки.

Большинство электронных нагрузок содержат точный мультиметр, измеряющий напряжение, ток и мощность, потребляемую нагрузкой. Некоторые модели могут выполнять нормированный разряд аккумуляторов и батареек, измеряя реальную ёмкость элемента питания в Ампер-часах. Многие модели также могут управляться при помощи компьютера, что позволяет использовать их в составе автоматизированных контрольно-измерительных комплексов.

Задняя панель маломощной электронной нагрузки серии IT8800 с интерфейсными разъёмами для подключения к компьютеру.

Определение нагрузок

Для подсчета суммарных нагрузок и построения их графика необходимо определить нагрузки различных частей системы электроснабжения:

  • Мощные электроприемники (например, главные привода прокатных станов, электропечи, мощные электромашины) нужно изучать путем изучения технологического цикла, а также индивидуальных показателей режима работы. Построение графиков электрических нагрузок на основе технологических графиков работы цеха либо предприятия;
  • Определить суммарные резкопеременные нагрузки (например электропечи и т. д.) на основе графиков индивидуальных нагрузок с учетом фактора несовпадений индивидуальных графиков для снижения максимальной ударной нагрузки и для уменьшения колебания напряжения сети;
  • Определить нагрузку воздуходувных, насосных, компрессорных станций по удельному потреблению электрической энергии на единицу объема воздуха, воды и так далее;

Нагрузку электроприемников находящихся в резерве, сварочные ремонтные трансформаторы, пожарные насосы, а также электроприемников работающих в кратковременном режиме (как пример – задвижки, вентили, дренажные насосы и другие), при подсчете средних нагрузок, как правило, не учитывают. Питающие линии и силовые пункты должны рассчитываться с учетом влияния резервных электроприемников.

электрическая нагрузка – это… Что такое электрическая нагрузка?

электрическая нагрузка

1. Любой потребитель электроэнергии

электрическая нагрузкаЛюбой приемник (потребитель) электрической энергии в электрической цепи 1)

нагрузка

Устройство, потребляющее мощность

EN

load (1), noun device intended to absorb power supplied by another device or an electric power system

FR

charge (1), f dispositif destiné à absorber de la puissance fournie par un autre dispositif ou un réseau d’énergie électrique

1)   Иными словами (электрическая) нагрузка, это любое устройство или группа устройств, потребляющих электрическую энергию (электродвигатель, электролампа, электронагреватель и т. д.) Термимн нагрузка удобно использовать как обощающее слово. В приведенном ниже примере термин нагрузка удачно используется для перевода выражения any other appliance:

Make sure that the power supply and its frequency are adapted to the required electric current of operation, taking into account specific conditions of the location and the current required for any other appliance connected with the same circuit.

Ток, напряжение и частота источника питания должны соответствовать параметрам агрегата с учетом длины и способа прокладки питающей линии, а также с учетом другой нагрузки, подключенной к этой же питающей линии.

… подключенная к трансформатору нагрузка Поскольку приемник электрической энергии это любой аппарат, агрегат, механизм, предназначенный для преобразования электрической энергии в другой вид энергии , то термин нагрузка может характеризовать электроприемник с точки зрения тока, сопротивления или мощности. 2. Потребитель энергоэнергии, с точки зрения потребляемой мощности

нагрузка Мощность, потребляемая устройством

EN

load (2), noun power absorbed by a load

FR

charge (2), f puissance absorbée par une charge Source: 151-15-15

При проектировании электроснабжения энергоемких предприятий следует предусматривать по согласованию с заказчиком и с энергоснабжающей организацией регулирование электрической нагрузки путем отключения или частичной разгрузки крупных электроприемников, допускающих без значительного экономического ущерба для технологического режима перерывы или ограничения в подаче электроэнергии.

В настоящее время характер коммунально-бытовой нагрузки кардинально изменился в результате широкого распространения новых типов электроприемников (микроволновых печей, кондиционеров, морозильников, люминесцентных светильников, стиральных и посудомоечных машин, персональных компьютеров и др.), потребляющих из питающей сети наряду с активной мощностью (АМ) также и значительную реактивную мощность (РМ).

Действия

  • аварийное отключение нагрузки
  • аварийный сброс нагрузки
  • включение нагрузки
  • защитное отключение нагрузки
  • ограничение допустимых нагрузок
  • отключение нагрузки
  • отключение неприоритетных нагрузок
  • передача нагрузки с одной системы шин на другую
  • питание нагрузки
  • регулирование электрической нагрузки

Сопутствующие термины

  • нагрузки жилых зданий
  • нагрузки общественных зданий
  • территориальное расположение нагрузок
  • ток нагрузки
  • токовая нагрузка
  • характер коммунально-бытовой наргрузки
  • характер нагрузки (индуктивный, емкостной)

Виды электрической мощности в электроэнергетике

Активная мощность – это среднее значение мощности за полный период. Активная мощностью называют полезную мощность, которая расходуется на совершение работы – преобразование электрической энергии в другие виды энергии (механическую, световую, тепловую). Измеряется в Ваттах (Вт).

Максимальная мощность – это величина мощности, обусловленная составом энергопринимающего оборудования и технологическим процессом потребителя, исчисляемая в

Мгновенная мощность – мощность в данный момент времени. В общем случае это скорость потребления энергии. Различают среднюю мощность за определенный промежуток времени и мгновенную мощность в данный момент времени. В электроэнергетике под понятием мощность понимается средняя мощность.

Полная мощность – это геометрическая сумма активной и реактивной мощности (см. Треугольник мощностей). Измеряется в Вольт-Амперах (ВА).

Присоединенная мощность – это совокупная величина номинальной мощности присоединенных к электрической сети (в том числе и опосредованно) трансформаторов и энергопринимающих устройств потребителя электрической энергии, исчисляемая в МВт.

Расчетная мощность – величина ожидаемой мощности на данном уровне электроснабжения. Данная мощность является важнейшим показателем, поскольку исходя из неё выбирается электрооборудование. Расчетная мощность показывает фактическую величину потребления энергопринимающими устройствами и зависит от конкретного потребителя (многоквартирные дома, различные отрасли производства). Получение величины расчетной мощности представляет собой сложную задачу, в которой должны учитываться различные факторы, такие как сезонность нагрузки, особенности технологии. На основании статистических данных разработаны таблицы коэффициентов использования, по которым величина расчетной мощности находится как произведение установленной мощности на коэффициент использования.

Реактивная мощность – это мощность, которая обусловлена наличием в электрической сети устройств, которые создают магнитное поле (емкости и индуктивности). Интерес представляет не само магнитное поле, а характер прохождения по таким элементам переменного тока, а именно появление фазового сдвига между приложенным напряжением и током в элементах сети, таких как (электродвигатели, трансформаторы, конденсаторы).

Реактивная мощность в сети может быть, как избыточная, так и дефицитная это обусловлено характером установленного оборудования. Избыточная реактивная мощность (преобладает емкостной характер сети) приводит к повышению напряжения сети, в то время как дефицитная (преобладание индуктивного характера сети) к снижению напряжения. Поскольку в распределительных сетях в большинстве случаев индуктивность преобладает над емкостью, т.е. имеется дефицит реактивной мощности, то в сеть искусственно вносятся емкостные элементы, призванные скомпенсировать индуктивный характер сети, как следствие уменьшить фазовый сдвиг между напряжением сети и током, а это значит передать потребителю в большей степени только активную мощность, а реактивную «сгенерировать» на месте. Этот принцип широко используют сетевые компании, обязывающие потребителей устанавливать компенсационные устройства, однако же установка данных устройств нужна в большей степени сетевой компании, а не каждому потребителю в отдельности. Измеряется в Вольт-Амперах реактивных (ВАр).

Трансформаторная мощность – это суммарная мощность трансформаторов энергопринимающих устройств потребителя электрической энергии исчисляемая в МВт.

Установленная мощность – алгебраическая сумма номинальных мощностей электроустановок потребителя. Наибольшая активная электрическая мощность, с которой электроустановка может длительно работать без перегрузки в соответствии с техническими условиями или паспортом на оборудование.

 Заявленная мощность – это предельная величина потребляемой в текущий период регулирования мощности, определенная соглашением между сетевой организацией и потребителем услуг по передаче электрической энергии, исчисляемая в мегаваттах.

 

 

Помогла ли вам статья?

Задать вопрос

Пишите ваши рекомендации и задавайте вопросы в комментариях

Ток нагрузки

Содержание

Характер нагрузки потребителя электрической энергии в заявке

Здравствуйте, в этой статье мы постараемся ответить на вопрос «Характер нагрузки потребителя электрической энергии в заявке». Также Вы можете бесплатно проконсультироваться у юристов онлайн прямо на сайте.

График нагрузки, характеризующий изменение мощности, потребляемой за одни сутки, называется суточным графиком.

Подача в отношении одних и тех же энергопринимающих устройств одновременно двух и более заявок в разные сетевые организации не допускается, за исключением случаев технологического присоединения энергопринимающих устройств, в отношении которых применяется категория надежности электроснабжения, предусматривающая использование два и более источников электроснабжения.

Заявка направляется заявителем в сетевую организацию в двух экземплярах письмом с описью вложения. Заявитель вправе представить заявку в сетевую организацию лично или через уполномоченного представителя, а сетевая организация обязана принять такую заявку.

Потребители электроэнергии и их классификация

В случае несоблюдения хотя бы одного из указанных критериев считается, что техническая возможность присоединения отсутствует. Потребителю откажут в подключении или выдадут индивидуальные технические условия (подробнее будет рассмотрено ниже).

При осуществлении технологического присоединения к потребителям предъявляются различные требования в зависимости от мощности их энергопринимающих устройств. Учитывается не только вновь подключаемая, но и ранее присоединенная мощность.

Расчет электрических мощностей промышленного транспорта, испытательных станций, лабораторных установок производят по другим методикам, которые учитывают специфику работы данных установок.

На изменение графиков нагрузки влияет также внедрение новых технологий и производственных процессов, увеличение вентиляции санитарно – технической, а также наращивание производственных мощностей. Также повышение использования оборудования за счет уплотнения рабочего времени, автоматизации процессов производства и так далее.

Суточные графики строятся на действующих объектах по показаниям счетчиков активной и реактивной энергии, производимым каждый час.

В п. 5 Заявки указывается запрашиваемая максимальная мощность энергопринимающих устройств Заявителя и технические характеристики присоединяемых энергопринимающих устройств.

Предметом изучения являются электрические нагрузки. Основой рационального решения комплекса вопросов, связанных с проектированием и эксплуатацией электрических сетей всех классов напряжений, является количественная информация об электрических нагрузках.

Расмотрены основные проблемы, которые возникают с низковольтным оборудованием, пути решения данных проблем и полезные советы.

Технологическое присоединение осуществляется на возмездной основе на основании договора, заключаемого между сетевой организацией и юридическим или физическим лицом.

Характеристики основных электроприемников — Мегаобучалка

За счет этой платы компенсируются расходы на строительство и реконструкцию объектов электросетевого хозяйства (линий, подстанций, трансформаторов, компенсирующих устройств) в целях присоединения новых или увеличения мощности энергопринимающих устройств, присоединенных ранее.

С данным явлением борятся и принимают меры, для повышения активной составляющей в нагрузке. Выражается реактивная мощность специальным коэффициентом мощности cos φ.Документация структурирована на: 1.

Нормативную, куда включены все ГОСты, ОСТы и другие нормативные документы по энергетике, 2. Заводскую, где выложены схемы, руководства, паспорта, инструкции и другие документы заводов- изготовителей; 3.

За максимальные длительные нагрузки принимаются максимальные значения активной, реактивной, полной мощности и тока продолжительностью за принятый интервал осреднения по допустимому нагреву элементов СЭС равным 30 минутам.

Какие бывают электронные нагрузки

Большинство серий электронных нагрузок предназначены для тестирования источников питания постоянного тока (аккумуляторов, блоков питания, солнечных батарей и др. ), типичные примеры: серия ITECH IT8500+ и серия ITECH IT8800. Для тестирования источников питания переменного тока (инверторов, источников бесперебойного питания, трансформаторов и др.) выпускаются специализированные AC/DC электронные нагрузки переменного и постоянного тока, типичный пример: серия ITECH IT8615.

Конструктивно серийные электронные нагрузки изготавливаются в приборных корпусах. Размер и масса корпуса напрямую зависят от максимальной мощности, которую может рассеивать нагрузка. Самые маломощные модели могут рассеивать около 100 Вт и помещаются в небольших компактных корпусах, как например модель IT8211 рассчитанная на 150 Вт.

Типичная маломощная электронная нагрузка (модель ITECH IT8211, максимальная мощность 150 Вт).

Более серьёзные модели, как например пятикиловаттная нагрузка ITECH IT8818B, могут монтироваться в промышленную стойку и весят 40 и более килограмм.

Типичная мощная электронная нагрузка (модель ITECH IT8818B, максимальная мощность 5 кВт).

Также выпускаются модели, которые могут рассеивать десятки и даже сотни киловатт. Чтобы увидеть варианты конструктивного исполнения электронных нагрузок разной мощности, посмотрите серию ITECH IT8800.

Иногда, для удешевления, вместо электронной нагрузки используют реостат (мощный переменный резистор). Использование реостата при тестировании силовых устройств связано с такими ограничениями:
— отсутствие режима постоянного тока потребления;
— отсутствие режима постоянной мощности;
— отсутствие режима стабилизации напряжения;
— отсутствие режима изменения состояния по списку заданных значений;
— отсутствие автоматизации работы;
— значительная индуктивность реостата;
— необходимость использовать дополнительный вольтметр и амперметр.
Поэтому вместо устаревших методов тестирования, эффективнее и в конечном итоге дешевле применять современную контрольно-измерительную аппаратуру, специально разработанную под конкретную задачу.

Использование хорошей электронной нагрузки позволяет существенно упростить и ускорить процесс тестирования любых источников электропитания, а также сделать этот процесс безопасным и эффективным.

Для чего используются электронные нагрузки

Основная задача электронных нагрузок — это тестирование различных источников электропитания: аккумуляторов, батареек, блоков питания, преобразователей напряжения, регуляторов и стабилизаторов напряжения, солнечных батарей, генераторов и других подобных устройств. Для проведения тестирования, электронную нагрузку подключают к проверяемому источнику электропитания и запускают один или несколько тестов. При этом, электронная нагрузка ведёт себя как реальная нагрузка: например меняет своё сопротивление по заданному алгоритму, имитирует большие стартовые токи запуска, короткое замыкание и прочие заданные Вами условия. Во время проведения теста, электронная нагрузка непрерывно измеряет напряжение, ток и потребляемую мощность.

Примеры устройств, для проверки работы которых применяют электронные нагрузки.

Большинство электронных нагрузок содержат точный мультиметр, измеряющий напряжение, ток и мощность, потребляемую нагрузкой. Некоторые модели могут выполнять нормированный разряд аккумуляторов и батареек, измеряя реальную ёмкость элемента питания в Ампер-часах. Многие модели также могут управляться при помощи компьютера, что позволяет использовать их в составе автоматизированных контрольно-измерительных комплексов.

Задняя панель маломощной электронной нагрузки серии IT8800 с интерфейсными разъёмами для подключения к компьютеру.

Определение нагрузок

Для подсчета суммарных нагрузок и построения их графика необходимо определить нагрузки различных частей системы электроснабжения:

  • Мощные электроприемники (например, главные привода прокатных станов, электропечи, мощные электромашины) нужно изучать путем изучения технологического цикла, а также индивидуальных показателей режима работы. Построение графиков электрических нагрузок на основе технологических графиков работы цеха либо предприятия;
  • Определить суммарные резкопеременные нагрузки (например электропечи и т.д.) на основе графиков индивидуальных нагрузок с учетом фактора несовпадений индивидуальных графиков для снижения максимальной ударной нагрузки и для уменьшения колебания напряжения сети;
  • Определить нагрузку воздуходувных, насосных, компрессорных станций по удельному потреблению электрической энергии на единицу объема воздуха, воды и так далее;

Нагрузку электроприемников находящихся в резерве, сварочные ремонтные трансформаторы, пожарные насосы, а также электроприемников работающих в кратковременном режиме (как пример – задвижки, вентили, дренажные насосы и другие), при подсчете средних нагрузок, как правило, не учитывают. Питающие линии и силовые пункты должны рассчитываться с учетом влияния резервных электроприемников.

электрическая нагрузка – это… Что такое электрическая нагрузка?

электрическая нагрузка

1. Любой потребитель электроэнергии

электрическая нагрузкаЛюбой приемник (потребитель) электрической энергии в электрической цепи 1)

нагрузка

Устройство, потребляющее мощность

EN

load (1), noun device intended to absorb power supplied by another device or an electric power system

FR

charge (1), f dispositif destiné à absorber de la puissance fournie par un autre dispositif ou un réseau d’énergie électrique

1)   Иными словами (электрическая) нагрузка, это любое устройство или группа устройств, потребляющих электрическую энергию (электродвигатель, электролампа, электронагреватель и т. д.) Термимн нагрузка удобно использовать как обощающее слово. В приведенном ниже примере термин нагрузка удачно используется для перевода выражения any other appliance:

Make sure that the power supply and its frequency are adapted to the required electric current of operation, taking into account specific conditions of the location and the current required for any other appliance connected with the same circuit.

Ток, напряжение и частота источника питания должны соответствовать параметрам агрегата с учетом длины и способа прокладки питающей линии, а также с учетом другой нагрузки, подключенной к этой же питающей линии.

… подключенная к трансформатору нагрузка Поскольку приемник электрической энергии это любой аппарат, агрегат, механизм, предназначенный для преобразования электрической энергии в другой вид энергии , то термин нагрузка может характеризовать электроприемник с точки зрения тока, сопротивления или мощности. 2. Потребитель энергоэнергии, с точки зрения потребляемой мощности

нагрузка Мощность, потребляемая устройством

EN

load (2), noun power absorbed by a load

FR

charge (2), f puissance absorbée par une charge Source: 151-15-15

При проектировании электроснабжения энергоемких предприятий следует предусматривать по согласованию с заказчиком и с энергоснабжающей организацией регулирование электрической нагрузки путем отключения или частичной разгрузки крупных электроприемников, допускающих без значительного экономического ущерба для технологического режима перерывы или ограничения в подаче электроэнергии.

В настоящее время характер коммунально-бытовой нагрузки кардинально изменился в результате широкого распространения новых типов электроприемников (микроволновых печей, кондиционеров, морозильников, люминесцентных светильников, стиральных и посудомоечных машин, персональных компьютеров и др.), потребляющих из питающей сети наряду с активной мощностью (АМ) также и значительную реактивную мощность (РМ).

Действия

  • аварийное отключение нагрузки
  • аварийный сброс нагрузки
  • включение нагрузки
  • защитное отключение нагрузки
  • ограничение допустимых нагрузок
  • отключение нагрузки
  • отключение неприоритетных нагрузок
  • передача нагрузки с одной системы шин на другую
  • питание нагрузки
  • регулирование электрической нагрузки

Сопутствующие термины

  • нагрузки жилых зданий
  • нагрузки общественных зданий
  • территориальное расположение нагрузок
  • ток нагрузки
  • токовая нагрузка
  • характер коммунально-бытовой наргрузки
  • характер нагрузки (индуктивный, емкостной)

Виды электрической мощности в электроэнергетике

Активная мощность – это среднее значение мощности за полный период. Активная мощностью называют полезную мощность, которая расходуется на совершение работы – преобразование электрической энергии в другие виды энергии (механическую, световую, тепловую). Измеряется в Ваттах (Вт).

Максимальная мощность – это величина мощности, обусловленная составом энергопринимающего оборудования и технологическим процессом потребителя, исчисляемая в

Мгновенная мощность – мощность в данный момент времени. В общем случае это скорость потребления энергии. Различают среднюю мощность за определенный промежуток времени и мгновенную мощность в данный момент времени. В электроэнергетике под понятием мощность понимается средняя мощность.

Полная мощность – это геометрическая сумма активной и реактивной мощности (см. Треугольник мощностей). Измеряется в Вольт-Амперах (ВА).

Присоединенная мощность – это совокупная величина номинальной мощности присоединенных к электрической сети (в том числе и опосредованно) трансформаторов и энергопринимающих устройств потребителя электрической энергии, исчисляемая в МВт.

Расчетная мощность – величина ожидаемой мощности на данном уровне электроснабжения. Данная мощность является важнейшим показателем, поскольку исходя из неё выбирается электрооборудование. Расчетная мощность показывает фактическую величину потребления энергопринимающими устройствами и зависит от конкретного потребителя (многоквартирные дома, различные отрасли производства). Получение величины расчетной мощности представляет собой сложную задачу, в которой должны учитываться различные факторы, такие как сезонность нагрузки, особенности технологии. На основании статистических данных разработаны таблицы коэффициентов использования, по которым величина расчетной мощности находится как произведение установленной мощности на коэффициент использования.

Реактивная мощность – это мощность, которая обусловлена наличием в электрической сети устройств, которые создают магнитное поле (емкости и индуктивности). Интерес представляет не само магнитное поле, а характер прохождения по таким элементам переменного тока, а именно появление фазового сдвига между приложенным напряжением и током в элементах сети, таких как (электродвигатели, трансформаторы, конденсаторы).

Реактивная мощность в сети может быть, как избыточная, так и дефицитная это обусловлено характером установленного оборудования. Избыточная реактивная мощность (преобладает емкостной характер сети) приводит к повышению напряжения сети, в то время как дефицитная (преобладание индуктивного характера сети) к снижению напряжения. Поскольку в распределительных сетях в большинстве случаев индуктивность преобладает над емкостью, т.е. имеется дефицит реактивной мощности, то в сеть искусственно вносятся емкостные элементы, призванные скомпенсировать индуктивный характер сети, как следствие уменьшить фазовый сдвиг между напряжением сети и током, а это значит передать потребителю в большей степени только активную мощность, а реактивную «сгенерировать» на месте. Этот принцип широко используют сетевые компании, обязывающие потребителей устанавливать компенсационные устройства, однако же установка данных устройств нужна в большей степени сетевой компании, а не каждому потребителю в отдельности. Измеряется в Вольт-Амперах реактивных (ВАр).

Трансформаторная мощность – это суммарная мощность трансформаторов энергопринимающих устройств потребителя электрической энергии исчисляемая в МВт.

Установленная мощность – алгебраическая сумма номинальных мощностей электроустановок потребителя. Наибольшая активная электрическая мощность, с которой электроустановка может длительно работать без перегрузки в соответствии с техническими условиями или паспортом на оборудование.

 Заявленная мощность – это предельная величина потребляемой в текущий период регулирования мощности, определенная соглашением между сетевой организацией и потребителем услуг по передаче электрической энергии, исчисляемая в мегаваттах.

 

 

Помогла ли вам статья?

Задать вопрос

Пишите ваши рекомендации и задавайте вопросы в комментариях

Что такое ток нагрузки в цепи печатной платы?

Ток нагрузки

  • написал: админ

Что такое ток нагрузки?

 

A Ток нагрузки — это количество электрического тока, которое передается от источника питания к устройству или компоненту, получающему питание. Большинство блоков питания способны обеспечить только определенное количество энергии, прежде чем они станут слишком горячими или короткозамкнутыми. Это означает, что текущие возможности нагрузки источника питания и требования к нагрузке используемого элемента должны быть приняты во внимание, прежде чем какой-либо элемент будет подключен к источнику питания. Любой элемент, подключенный к источнику питания, может быть поврежден, если нагрузка, обеспечиваемая источником питания, превышает нагрузку, которую элемент может выдержать. Когда этот аспект не принимается во внимание и устройство подключено к источнику питания, обеспечивающему гораздо большую нагрузку, чем устройство способно выдержать, устройство может перегреться и выйти из строя.

В большинстве случаев источник энергии не измеряется напрямую в терминах текущей нагрузки. Вместо этого источники питания обычно измеряются по напряжению и во многих случаях даже могут называться источниками напряжения. Эти типы источников напряжения посылают постоянный ток на все, что к ним подключено.

Системы электропитания с напряжением и током работают эффективно до тех пор, пока количество электрического тока, требуемого от источника питания, находится в пределах возможностей нагрузки по току источника питания. Когда устройство, которому требуется питание, должно потреблять от источника питания больше тока, чем может обеспечить источник, обычно происходит короткое замыкание. Это означает, что источник питания не может обеспечить достаточное количество тока для эффективного питания устройства.

 

Его можно определить как

 

  • Ток полной нагрузки: максимальный ток, с которым может работать электрическая машина.
  • Номинальный ток: номинальный ток, указанный на паспортной табличке электрической машины.
  • Номинальный ток: обычно упоминается в спецификациях, обычно это то же значение, что и номинальное.
  • Ток холостого хода: значение тока, необходимого только для вращения вала двигателя без подключения.

 

При использовании простых схем и простых источников сигналов обычно очевидно, как различные схемы и нагрузки влияют на поведение сигнала на выходе схемы. В более сложных схемах и широкополосных аналоговых сигналах не всегда очевидно, как на сигналы влияет сама схема или как токовые нагрузки влияют на поведение сигнала. Хотя вы могли бы проработать эти аспекты поведения сигнала вручную, не все являются математиками, и вам потребуются некоторые инструменты для ускорения анализа сложных схем.

Когда у вас есть доступ к мощному механизму моделирования в вашем программном обеспечении для проектирования схем на этапе проектирования печатной платы, вы можете быстро изучить, как импеданс нагрузки влияет на поведение сигнала в частотной области по сравнению с временной областью. Несколько простых симуляций покажут вам, как нагрузка и ее восходящая цепь изменяют сигнал.

Источник напряжения

. Как нагрузка определяет величину тока, потребляемого в цепи?

спросил

Изменено
3 года, 5 месяцев назад

Просмотрено
1к раз

\$\начало группы\$

Я понимаю, что этот вопрос может показаться похожим на другие вопросы, заданные на сайте. Но то, о чем я спрашиваю, на самом деле совсем другое.

Предположим, у меня есть резистивная нагрузка 5 Ом, подключенная к батарее 10 В. Ток, потребляемый нагрузкой, будет равен току в цепи, верно? (при условии, что нагрузка подключена последовательно). Следовательно, по закону Ома сила тока в цепи будет равна 2А.

Теперь, если я подключу ту же резистивную нагрузку 5 Ом к батарее 15 В, ток в цепи будет 3 А, согласно закону Ома.

Значит, одна и та же нагрузка не потребляет разные токи при изменении напряжения питания? Если это так, то почему мы говорим, что «потребляемый ток зависит от типа подключенной нагрузки»?

Кроме того, справедливо ли приведенное выше рассуждение об использовании закона Ома для любого типа нагрузки? (т.е. L-нагрузка, C-нагрузка, RL-нагрузка или комбинация всех 3)

Редактировать: это высоко оценено, что при постоянном напряжении потребляемый ток зависит от нагрузки. Так как же нагрузка потребляет два разных тока для двух разных напряжений?

  • ток
  • источник напряжения

\$\конечная группа\$

2

\$\начало группы\$

Если это так, то почему мы говорим, что «потребляемый ток зависит от типа подключенной нагрузки»?

Обычно мы имеем дело с фиксированным/постоянным напряжением питания. Наиболее распространенными примерами могут быть бытовые или промышленные сетевые напряжения или автомобильные системы 12 В. В обоих случаях напряжение остается в пределах определенных допусков, так что это означает, что другие имеют обратную зависимость, \$ I = \frac {V}{R} \$ или, поскольку V постоянно, \$ I \propto \frac {1} {R} \$.

Рисунок 1. Каждая из этих различных ламп, подключенных к одному и тому же источнику питания, будет иметь различное эффективное сопротивление и потреблять ток, обратно пропорциональный их сопротивлению. Чем выше потребляемая мощность (Вт), тем ниже эффективное «сопротивление». (Здесь я осторожно использую слово «сопротивление», поскольку светодиоды не являются сопротивлениями, но найти изображения ламп накаливания становится все труднее!) Источник изображения: Banggood.

Кроме того, справедливо ли приведенное выше рассуждение об использовании закона Ома для любого типа нагрузки? (т. е. L-нагрузка, C-нагрузка, RL-нагрузка или комбинация всех трех).

Нет. Закон Ома относится к сопротивлению. Мы можем распространить закон на катушки индуктивности и конденсаторы, но мы должны вычислить импедансы и использовать комплексные числа.

Редактировать: это высоко оценено, что для источника постоянного напряжения , потребляемый ток зависит от нагрузки. Так как же нагрузка потребляет два разных тока для двух разных напряжений?

Потому что вы изменили напряжение. Там нет нестыковки.

\$\конечная группа\$

5

\$\начало группы\$

почему мы говорим «потребляемый ток зависит от типа подключенной нагрузки»

На самом деле мы говорим, что потребляемый ток зависит от нагрузки И напряжения источника питания. Другими словами, то, что мы, , должны сказать , соответствует закону Ома.

Кроме того, справедливо ли приведенное выше рассуждение об использовании закона Ома для
любая нагрузка? то есть L-нагрузка, C-нагрузка, RL-нагрузка или их комбинация 3)

Нет, с конденсаторами и катушками индуктивности все сложнее, потому что ток, потребляемый конденсатором, зависит от скорости изменения приложенного напряжения, а не от абсолютного значения напряжения.

Для катушки индуктивности ток зависит от интеграла напряжения по времени, следовательно, ток катушки индуктивности пропорционален приложенному напряжению x времени.

Это для цепей постоянного тока. Это еще одно отклонение от закона Ома для цепей переменного тока и обработки сложных переходных процессов, но применяются те же принципы скорости изменения (или интегральные).

\$\конечная группа\$

2

\$\начало группы\$

Зависит как от подаваемого напряжения, так и от типа нагрузки. Резистивная нагрузка потребляет ток по закону Ома, поэтому он зависит только от подаваемого напряжения и сопротивления нагрузки. Кроме того, есть устройства с линейными регуляторами, поэтому они внутренне преобразуют все, например, в 5 В, поэтому при фиксированной нагрузке после регулятора они в основном потребляют постоянный ток независимо от входного напряжения. Затем есть устройства с импульсными регуляторами, поэтому при фиксированной нагрузке после регулятора они всегда потребляют постоянную мощность, поэтому при увеличении напряжения они потребляют меньше тока.

\$\конечная группа\$

\$\начало группы\$

Все проводники, полупроводники, конденсаторы и катушки индуктивности имеют сопротивление даже в регулируемых источниках питания.

  • Регулируемые расходные материалы увеличивают расхождение между желаемым выходным сигналом и фактическим, но время отклика ограничено полосой пропускания или скоростью нарастания.
  • Таким образом, ошибка регулирования нагрузки появляется во всех характеристиках регулятора
  • Его можно определить несколькими способами.
  • Оценка 1-го порядка Zout= ΔV/ΔI[Ω] выше некоторой минимальной нагрузки, чтобы избежать других проблем.
    • В разделе «Батареи и крышки» это называется ESR.
  • Импеданс 2-го порядка — это накопительная емкость, которая ограничивает скорость нарастания ошибок. На батареях они быстро восстанавливаются после короткого замыкания. Этот эффект памяти возникает из-за другого эффекта от эффектов слоя двойного заряда, которые моделируются как еще один RC с большими C и R, который запоминает, какое короткое замыкание истощило разряд.