симисторный и тиристорный, системы индикации и схемы

Практически в любом радиоэлектронном устройстве в большинстве случаев присутствует регулировка по мощности. За примерами далеко ходить не надо: это электроплиты, кипятильники, паяльные станции, различные регуляторы вращения двигателей в устройствах.

  • Регулятор мощности на симисторе
  • Напряжение на тиристоре
    • Простая схема
    • С генератором на основе логики
    • На основе транзистора КТ117

Способов, по которым можно собрать регулятор напряжения своими руками 220 В, в Сети полно. В большинстве случаев это схемы на симисторах или тиристорах. Тиристор, в отличие от симистора, более распространённый радиоэлемент, и схемы на его основе встречаются гораздо чаще. Разберём разные варианты исполнения, основанные на обоих полупроводниковых элементах.

Регулятор мощности на симисторе

Симистор, по большому счету, — это частный случай тиристора, пропускающий ток в обе стороны, при условии, что он выше тока удержания. Один из его недостатков — это плохая работа на высоких частотах. Поэтому его часто используют в низкочастотных сетях. Для построения регулятора мощности на основе обычной сети 220 В, 50 Гц он вполне подходит.

Регулятор напряжения на симисторе используется в обычных бытовых приборах, где нужна регулировка. Схема регулятора мощности на симисторе выглядит следующим образом.

  • Пр. 1 — предохранитель (выбирается в зависимости от требуемой мощности).
  • R3 — токоограничительный резистор — служит для того чтобы при нулевом сопротивлении потенциометра остальные элементы не выгорели.
  • R2 — потенциометр, подстроечный резистор, которым и осуществляется регулировка.
  • C1 — основной конденсатор, заряд которого до определённого уровня отпирает динистор, вместе с R2 и R3 образует RC-цепь
  • VD3 — динистор, открытие которого управляет симистором.
  • VD4 — симистор — главный элемент, производящий коммутацию и, соответственно, регулировку.

Основная работа возложена на динистор и симистор. Сетевое напряжение подаётся на RC-цепочку, в которой установлен потенциометр, им в итоге и регулируется мощность. Производя регулировку сопротивления, мы меняем время зарядки конденсатора и тем самым порог включения динистора, который, в свою очередь, включает симистор. Демпферная RC-цепь, подключённая параллельно симистору, служит для сглаживания помех на выходе, а также при реактивной нагрузке (двигатель или индуктивность) предохраняет симистор от скачков высокого обратного напряжения.

Симистор включается, когда ток, проходящий через динистор, превышает ток удержания (справочный параметр). Отключается, соответственно, когда ток становится меньше тока удержания. Проводимость в обе стороны позволяет настроить более плавную регулировку, чем это возможно, например, на одном тиристоре, при этом используется минимум элементов.

Осциллограмма регулировки мощности представлена ниже. Из неё видно, что после включения симистора оставшаяся полуволна поступает на нагрузку и при достижении 0, когда ток удержания уменьшается до такой степени, что симистор отключается. Во втором «отрицательном» полупериоде происходит тот же процесс, т. к. симистор обладает проводимостью в обе стороны.

Напряжение на тиристоре

Для начала разберёмся, чем отличается тиристор от симистора. Тиристор содержит в себе 3 p-n перехода, а симистор — 5 p-n переходов. Не углубляясь в детали, если говорить простым языком, симистор обладает проводимостью в обоих направлениях, а тиристор — только в одном. Графические обозначения элементов показаны на рисунке. Из графики это хорошо видно.

Принцип работы абсолютно такой же. На чём и построена регулировка по мощности в любой схеме. Рассмотрим несколько схем регулятора на тиристорах. Первая простейшая схема, которая в основе повторяет схему на симисторе, описанную выше. Вторая и третья — с применением логики, схемы, которые более качественно гасят помехи, создаваемые в сети переключением тиристоров.

Простая схема

Простая схема фазового регулирования на тиристоре представлена ниже.

Единственное её отличие от схемы на симисторе — это то, что регулировка происходит только положительной полуволны сетевого напряжения. Времязадающая RC-цепь путём регулирования величины сопротивления потенциометра регулирует величину отпирания, тем самым задавая выходную мощность, поступающую на нагрузку. На осциллограмме это выглядит следующим образом.

Из осциллограммы видно, что регулировка мощности идёт путём ограничения напряжения поступающего на нагрузку. Образно говоря, регулировка заключается в ограничении поступления сетевого напряжения на выход. Регулируя время заряда конденсатора путём изменения переменного сопротивления (потенциометра). Чем выше сопротивление, тем дольше происходит заряд конденсатора и тем меньше мощности будет передано на нагрузку. Физика процесса подробно описана в предыдущей схеме. В этом случае она ничем особым не отличается.

С генератором на основе логики

Второй вариант более сложный. В связи с тем, что процессы коммутации на тиристорах вызывают большие помехи в сети, это плохо влияет на элементы, установленные на нагрузке. Особенно если на нагрузке находится сложный прибор с тонкими настройками и большим количеством микросхем.

Такая реализация тиристорного регулятора мощности своими руками подойдёт для активных нагрузок, например, паяльник или любые устройства нагрева. На входе стоит выпрямительный мост, поэтому обе волны сетевого напряжения будут положительными. Обратите внимание, что при такой схеме для питания микросхем понадобиться дополнительный источник постоянного напряжения +9 В. Осциллограмма из-за наличия выпрямительного моста будет выглядеть следующим образом.

Обе полуволны теперь будут положительными из-за влияния выпрямительного моста. Если для реактивных нагрузок (двигатели и другие индуктивные нагрузки) наличие разно полярных сигналов предпочтительно, то для активных — положительное значение мощности крайне важно. Отключение тиристора происходит также при приближении полуволны к нулю ток удержания подаёт до определённого значения и тиристор запирается.

На основе транзистора КТ117

Наличие дополнительного источника постоянного напряжение может вызвать затруднения, если его нет, и вовсе придётся городить дополнительную схему. Если дополнительного источника у вас нет, то можно воспользоваться следующей схемой, в ней генератор сигналов на управляющий вывод тиристора собран на обычном транзисторе. Есть схемы на основе генераторов, построенных на комплементарных парах, но они более сложные, и здесь мы их рассматривать не будем.

В данной схеме генератор построен на двухбазовом транзисторе КТ117, который при таком применении будет генерировать управляющие импульсы с периодичностью, задаваемой подстроечным резистором R6. На схеме ещё реализована система индикации на базе светодиода HL1.

  • VD1-VD4 — диодный мост, выпрямляющий обе полуволны и позволяющий выполнять более плавную регулировку мощности.
  • EL1 — лампа накаливания — представлена вроде нагрузки, но может быть любой другой прибор.
  • FU1 — предохранитель, в этом случае стоит на 10 А.
  • R3, R4 — токоограничительные резисторы — нужны, чтобы не сжечь схему управления.
  • VD5, VD6 — стабилитроны — выполняют роль стабилизации напряжения определённого уровня на эмиттере транзистора.
  • VT1 — транзистор КТ117 — установлен должен быть именно с таким расположение базы №1 и базы №2, иначе схема будет не работоспособна.
  • R6 — подстроечный резистор, определяющий момент, когда поступает импульс на управляющий вывод тиристора.
  • VS1 — тиристор — элемент, обеспечивающий коммутацию.
  • С2 — времязадающий конденсатор, определяющий период появления управляющего сигнала.

Остальные элементы играют незначительную роль и в основном служат для токоограничения и сглаживания импульсов. HL1 обеспечивает индикацию и сигнализирует только о том, что прибор подключён к сети и находится под напряжением.

Схемы регуляторов мощности (диммеров) на симисторах



Принцип работы симисторных регуляторов мощности (напряжения) в цепях
переменного тока.



Что такое симистор, принцип его работы, а также справочные характеристики некоторых популярных приборов мы с Вами внимательно
рассмотрели на странице &nbspСсылка на страницу.

Там же мы отметили, что симистор пришёл на смену рабочей лошадке-тиристору и практически полностью вытеснил его из электроцепей
переменного тока.

Вспомним пройденный материал.

Отличительной чертой симистора является то, что при подаче на его управляющий электрод тока (напряжения), прибор переходит в проводящее
состояние, замыкая нагрузку, причём проводит ток, независимо от полярности, приложенного к нагрузке напряжения.

Полярность открывающего напряжения должна быть либо отрицательной для обеих полярностей напряжения на условном аноде, либо совпадать с
полярностью «анодного» напряжения (т. е. быть плюсовой в момент прохождения положительной полуволны и минусовой — в момент прохождения
отрицательной).

Итак. Важным плюсом симисторных схем в электроцепях переменного тока является отсутствие выпрямительных устройств,
и двухполюсность напряжения в нагрузке, что даёт возможность подключать их, помимо всего прочего, как трансформаторам, так
и электродвигателям переменного тока.

Познакомимся с расхожими схемами симисторных регуляторов.

Для начала давайте рассмотрим простейшую, но вполне себе работоспособную схему симисторного регулятора мощности с фазово-импульсным
управлением, позволяющего работать с нагрузками вплоть до 1200 Вт.


Рис.1

При замене симистора на другой, с большей величиной допустимого тока, мощность нагрузки можно увеличивать практически неограниченно.

А теперь — как это всё работает?

В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения конденсатор С1 заряжается
через последовательно соединённые резисторы R1 и R2.
Причём увеличение напряжения на конденсаторе С1 отстаёт (сдвигается по фазе) от сетевого на величину, зависящую от суммарного
сопротивления резисторов и номинала ёмкости С1. Чем выше значения резисторов и конденсатора — тем больше сдвиг по фазе.

Заряд конденсатора продолжается до тех пор, пока напряжение на нём не достигнет порога пробоя динистора (около 35 В).
Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечёт ток, определяемый суммарным
сопротивлением открытого симистора и нагрузки.

При этом симистор остаётся открытым до конца полупериода, т.е. момента, когда полуволна сетевого напряжения приблизится к нулевому
уровню.

Переменным резистором R2 устанавливают момент открывания динистора и симистора, производя тем самым регулировку мощности,
подводимой к нагрузке.

При действии отрицательной полуволны принцип работы устройства аналогичен.

Диаграммы напряжения на нагрузке при различных значениях переменного резистора приведены на Рис. 1 справа.

Для предотвращения ложных срабатываний триаков, вызванных переходными процессами в индуктивных нагрузках (например, в электродвигателях и
обмотках трансформаторов),
симисторы должны иметь дополнительные компоненты защиты. Это, как правило, демпферная RC-цепочка (снабберная цепь) между силовыми
электродами триака,
которая используется для ограничения скорости изменения напряжения (на схеме Рис.1 показана синим цветом).

В некоторых случаях, когда нагрузка имеет ярко выраженный ёмкостной характер, между силовыми электродами необходима индуктивность
для ограничения скорости изменения тока при коммутации.

Существуют и различные модификации приведённой выше простейшей схемы диммера.


Рис.2

Дополнительная цепочка R3 C2 (Рис.2 слева) призвана увеличить максимально достижимый фазовый сдвиг между сетевым напряжением и
напряжением, поступающим на левый вывод динистора, что в свою очередь позволяет производить более глубокую регулировку мощности,
подводимой к нагрузке.

На схеме, приведённой на Рис.2 справа, цепь, образованная диодами D1, D2 и резистором R1, обеспечивает плавность регулировки
при минимальной выходной мощности. Без неё характеристика управления регулятором имеет гистерезис, что проявляется в скачкообразном
повышении регулируемой мощности от нуля до 3…5% от максимальной.

Диодно-резисторная цепочка разряжает конденсатор при переходе сетевого напряжения от отрицательной к положительной полуволне и,
тем самым, устраняет эффект скачкообразного начального увеличения мощности в нагрузке.

Изредка можно встретить устройства, в которых регулировка мощности производится посредством отдельной схемы, которая
формирует импульсы с регулируемой длительностью для управления симистором.

Такие диммеры обладают значительно лучшими характеристиками, чем представленные выше, однако обратной стороной медали является
повышенная сложность устройств и необходимость наличия отдельного источника питания схемы. Исключения составляют устройства,
выполненные на специализированных ИМС. Примером такой микросхемы является фазовый регулятор КР1182ПМ1.


Рис.3

Применение КР1182ПМ1 в регуляторах мощности (Рис.3) позволяет добиваться как хорошей повторяемости, так и широкого диапазона перестройки
и высокой температурной стабильности.

А если уж мы решили заморачиваться созданием отдельной схемы формирования управляющих импульсов, то имеет смысл отказаться от
фазово-импульсного метода управления, и обратиться в сторону регуляторов мощности, работающих по принципу пропускания через
нагрузку определённого целого числа периодов сетевого напряжения в единицу времени.

При таком способе регулирования появляется возможность включения симистора вблизи точки пересечения сетевым переменным напряжением
нулевого потенциала, вследствие чего радикально снижается уровень помех, вносимых в электросеть.

Освещение таким диммером не запитаешь ввиду заметного мерцания, а вот для беспомехового регулирования мощности электронагревательных
приборов — самое то.

Рис.4

Данная схема (Рис.4) перекочевала со страницы https://www.radiokot.ru/circuit/power/converter/50/ и представляет собой модификацию
регулятора мощности, описанного в журнале Радио, 2009, № 9, с. 40–41 «В.Молчанов Симисторный регулятор мощности». Вот, что пишет
автор.

«Устройство предназначено для беспомехового регулирования мощности электронагревательных приборов, работающих от сети переменного
тока 220 В.

Кроме снижения уровня коммутационных помех, в регуляторе реализован принцип пропускания в нагрузку целого числа периодов сетевого
напряжения. При таком способе регулирования с высокой точностью обеспечивается отсутствие постоянной составляющей напряжения на нагрузке,
вследствие чего дополнительно снижается уровень искажений, вносимых в электросеть. Это особенно важно в случае мощной нагрузки.

Максимальная мощность нагрузки, подключаемой к регулятору, составляет 1 кВт. Потребляемый регулятором ток от сети не превышает 4 мА
(действующее значение), типовое потребление – 3,5 мА.

На микросхеме DD1 и элементах R1, C1, VD1, VD2 выполнен синхронизированный с сетью генератор прямоугольных импульсов.
Период импульсов, вырабатываемых генератором, составляет около 1,3 с. Резистор R1 регулирует скважность импульсов.
Элементы DD1.1, DD1.2 и DD1.3, DD1.4 включены как два RS‑триггера, на входы которых (выводы 1 и 9 микросхемы) через делитель
R7R6 поступает часть сетевого напряжения. Транзисторы VT1 и VT2 выполняют функцию мощного инвертора логических сигналов для управления
симистором. Питание устройства осуществляется через параметрический стабилизатор, в котором задействованы балластный резистор R7,
стабилитрон VD3 и сглаживающий конденсатор C3. Когда напряжение на верхнем по схеме сетевом выводе относительно нижнего отрицательное,
стабилитрон VD3 пропускает ток в прямом направлении, когда положительное – ограничивает напряжение на выводах 1 и 9 микросхемы DD1
на уровне 10 В. Ток, проходящий через эти выводы и внутренние защитные диоды микросхемы, заряжает конденсатор C3 до напряжения около
9,2 В, которое служит для питания низковольтной части устройства. Использование защитных диодов микросхемы не приводит к её
защёлкиванию, поскольку амплитудное значение тока через резистор R7 ограничено и составляет около 5 мА.

Во время проверки регулятора мощности удобно в качестве нагрузки подключить лампу накаливания (желательно на 100 Вт или более).
Устройство обычно не нуждается в налаживании, но если оказалось, что симистор VS1 открывается ненадёжно (лампа в нагрузке не
включается или мерцает), можно попробовать уменьшить сопротивление резистора R4 или подобрать экземпляр симистора с меньшим
током открывания. Резистор R4 позволяет выставить мгновенное напряжение сети, при котором происходит открывание симистора.
Это напряжение может быть рассчитано по формуле Uпор ≈ Uпит∙R7/(2∙R4), где Uпит ≈ 9,2 В – напряжение на конденсаторе C3,
сопротивления резисторов R6 и R7 должны быть равны. Уменьшение сопротивления резистора R4 обеспечивает более надёжное открывание
симистора, но увеличивает уровень создаваемых помех, поэтому делать его сопротивление менее 30 кОм нежелательно».

И конечно, было бы совсем неправильно не упомянуть о таком важном представителе симисторного семейства, как — оптосимистор.

Оптосимистор включается посредством освещения полупроводникового слоя и представляет собой комбинацию оптоизлучателя и
симистора в одном корпусе. Преимущество — простая однополярная схема управления и гальваническая изоляция цепей управления от
фаз сетевого напряжения.

Оптосимисторы могут коммутировать нагрузку как сами (Рис.5),


Рис.5

так и управлять более мощными симисторами (Рис.6).


Рис.6

За счёт полной гальванической развязки управляющих цепей оптосимистора, основное его предназначение — это управление
мощностью нагрузки при помощи логических устройств или микроконтроллеров с собственными цепями питания.


Рис.7

В качестве примера на Рис.7 приведена схема регулятора мощности паяльника.

Вот, как работу этой схемы описывает уважаемый Falconist на странице сайта http://forum. cxem.net .

«Оптосимистор серии МОС204х/306х/308х содержит внутри себя схему пересечения питающим напряжением нуля, т.е. открывается только
в точке нулевого значения синусоидального сетевого напряжения, независимо от момента поступления управляющего напряжения на его светодиод.
Тем самым обеспечивается ключевой режим подключения нагрузки, с практически полным отсутствием ВЧ помех, проникающих в сеть 220 В.
Поэтому его замена на оптосимисторы МОС302х/305х, не имеющих такой схемы, крайне нежелательна, т.к. порочит сам принцип беспомехового
регулирования.

Конденсатор С1 является балластным реактивным сопротивлением. Ток, который он пропускает совместно с подключенным параллельно ему
резистором R1,приближенно составляет 16 мА. Данный ток используется для питания таймера DA1 и инфракрасного светодиода оптрона
DA2».

Работа таймера, формирующего управляющий сигнал для оптотиристора, аналогична работе DD1 на Рис.4 и сводится к формированию импульсов
с изменяемой скважностью.

 

4000W High Power SCR, TRIAC, регулятор напряжения – ElectroDragon

4000W High Power SCR, TRIAC, регулятор напряжения

0 из 5

(Отзывов пока нет.)

7,10 $

Артикул: OPMS080

Категория: TRIAC / Мелодия
Метки: BTA41, SCR, TRIAC

  • Описание
  • Дополнительная информация
  • Отзывы (0)
  • Запрос продукта

Описание

Особенности:
  • Новый сердечник SCR BTA41-600B. Найдите документацию на этой странице.
  • Чаще всего используется для регулировки яркости, скорости и температуры для текущего приложения.
  • Подходит для применения с низковольтным нагревательным проводом: например, для резки пенополистирола, ЭПЭ, производства плащей и т.  д.
  • Рабочее напряжение: 110 В или 220 В переменного тока
  • Регулируемое напряжение: 10–220 В переменного тока
  • Максимальная мощность: 4000 Вт (резистивная нагрузка)
  • Эффективность: 90%
  • Размеры: 85 x 55 (без ручки) x 35 мм
  • Вес модуля: около 150 г
Защитная конструкция:
  • Двухсторонняя конструкция , лучшее качество. Большинство современных продуктов на рынке имеют односторонний дизайн.
  • С корпусом с регулятором предохранителя безопаснее , удобнее в установке, больше подходит для семей и удобной установки на фабриках и предприятиях.
  • Используйте новый импортный SCR BTA-41600A.
  • Используйте температуру печатной платы толщиной 1,6 FR4, конструкция схемы разумна и используется для увеличения толщины конструкции сварочного пути, даже достаточно большого, чтобы справиться с током за счет использования более безопасного и надежного.
  • 35A — это стандартные четыре клеммы, клемма имеет закрытую конструкцию.
  • Конструкция схемы после нескольких технических улучшений, тщательный выбор каждой детали, теперь является полностью зрелой технологией. Конструкция с двумя конденсаторами (защитный конденсатор + конденсаторы с металлической пленкой) эффективно поглощает скачки напряжения и скачки напряжения, более эффективная защита тиристора, использование более эффективного и безопасного.
  • Актуальная пресс-форма из алюминия и нержавеющей стали толщиной 1,5 мм, красивая, более подходящая для семейного регулятора термостата и промышленных предприятий!
Примечание:
  • Сначала подключите нагрузку, затем выполните настройку
  • SCR в основном используется для резистивных нагрузок (электрический провод накаливания и т. Д.), Большинство однофазных двигателей переменного тока могут, но не могут гарантировать, другие типы нагрузок покупатель должен подтвердить самостоятельно. Предохранитель не панацея, есть время реакции, если ток слишком большой, кроме того, что сгорит предохранитель, может сгореть и модуль.
  • Обратите внимание на установку пластиковой крышки из-за установки корпуса, не может быть полностью открыта, отвертка для затягивания стороны с острием, другая должна быть осторожной при открытии, чрезмерное усилие легко защелкивает крышку, экспресс-транспортировка также может быть раздавлена ​​из-за ношения частей, но не влияет на использование модуля, любые проблемы с пластиковой крышкой, связанные с рестораном, не несут ответственности за возврат.

Дополнительная информация

Вес 0,17 кг

Запрос продукта

Имя

Адрес электронной почты

Расследование

Цепь автоматического стабилизатора напряжения с тиристором/симисторным управлением

0007

Последнее обновление by Swagatam 65 комментариев

В этом посте мы обсудим относительно простую схему автоматического стабилизатора сетевого напряжения, управляемую симистором, в которой используются логические ИС и несколько симисторов для управления уровнями сетевого напряжения.

Благодаря твердотельной конструкции переходы переключения напряжения очень плавные с минимальным износом, что обеспечивает эффективную стабилизацию напряжения.

Откройте для себя весь процесс создания этого уникального полупроводникового стабилизатора сетевого напряжения.

Предложенная схема стабилизатора переменного напряжения, управляемого симистором, обеспечит превосходную 4-х ступенчатую стабилизацию напряжения любого электроприбора на его выходе.

Благодаря отсутствию движущихся частей его эффективность еще больше повышается. Узнайте больше об этом бесшумном операторе: Power Guard.

Схема автоматического стабилизатора напряжения, рассмотренная в одной из моих предыдущих статей, хотя и полезная, но в силу своей более простой конструкции не имеет возможности дискретно управлять разными уровнями переменного сетевого напряжения.

Предложенная идея, хотя и не проверенная, выглядит довольно убедительно, и если критические компоненты подобраны правильно, она должна работать должным образом.

Представленная схема стабилизатора напряжения переменного тока, управляемого симистором, выдающаяся по своим характеристикам и является почти идеальным стабилизатором напряжения во всех отношениях.

Как обычно схема была разработана исключительно мной. Он способен точно контролировать и измерять входное напряжение сети переменного тока с помощью 4 независимых шагов.

Использование симисторов обеспечивает быстрое переключение (в пределах 2 мс) и отсутствие искр или переходных процессов, обычно связанных со стабилизаторами релейного типа.

Кроме того, поскольку не используются движущиеся части, весь блок становится полностью твердотельным и почти постоянным.

Давайте посмотрим, как работает схема.

ВНИМАНИЕ:
КАЖДАЯ ТОЧКА ЦЕПИ, ПРЕДСТАВЛЕННОЙ ЗДЕСЬ, МОЖЕТ БЫТЬ ПОД НАПРЯЖЕНИЕМ СЕТИ ПЕРЕМЕННОГО ТОКА, ПОЭТОМУ ЧРЕЗВЫЧАЙНО ОПАСНА ДЛЯ ПРИКАСАНИЯ В ВКЛЮЧЕННОМ ПОЛОЖЕНИИ. РЕКОМЕНДУЕТСЯ С МАКСИМАЛЬНОЙ ОСТОРОЖНОСТЬЮ И ОСТОРОЖНОСТЬЮ, НАСТОЯТЕЛЬНО РЕКОМЕНДУЕТСЯ ИСПОЛЬЗОВАНИЕ ДЕРЕВЯННОЙ ДОСКИ ПОД НОГАМИ ПРИ РАБОТЕ С ЭТОЙ КОНСТРУКЦИЕЙ. … НОВИЧКИ, ПОЖАЛУЙСТА, ДЕРЖИТЕСЬ ДАЛЕКО.

Работа схемы

Функционирование схемы можно понять по следующим пунктам:

Транзисторы с T1 по T4 устроены таким образом, чтобы воспринимать постепенное повышение входного напряжения и проводить один за другим по мере увеличения напряжения и наоборот.

Гейты N1-N4 от IC 4093 сконфигурированы как буферы. Выходы транзисторов подаются на входы этих затворов.

Все вентили взаимосвязаны друг с другом таким образом, что выход только определенного вентиля остается активным в заданный период времени в соответствии с уровнем входного напряжения.

Таким образом, при повышении входного напряжения затворы реагируют на транзисторы, и их выходы последовательно становятся логическими высокими один за другим, гарантируя, что выход предыдущего затвора закрыт, и наоборот.

Логический привет от конкретного буфера подается на затвор соответствующего тиристора, который проводит и соединяет соответствующую «горячую» линию от трансформатора к внешнему подключенному устройству.

По мере роста напряжения соответствующие симисторы последовательно выбирают соответствующие «горячие» концы трансформатора для увеличения или уменьшения напряжения и поддержания относительно стабилизированного выходного сигнала.

Как собрать схему

Конструкция этой схемы управления симисторным блоком питания переменного тока проста и требует приобретения необходимых деталей и их правильной сборки на обычной печатной плате.

Совершенно очевидно, что человек, который пытается сделать эту схему, знает немного больше, чем просто основы электроники.

Все может пойти совсем не так, если в окончательной сборке будет какая-то ошибка.

Вам потребуется внешний переменный (от 0 до 12 В) универсальный источник питания постоянного тока для установки устройства следующим образом:

Предполагая, что выходное напряжение 12 вольт от TR1 соответствует входному напряжению 225 вольт, путем расчетов мы находим, что оно будет производить 9 вольт при входном напряжении 170 вольт, 13 вольт будут соответствовать 245 вольтам, а 14 вольт будут эквивалентны вход примерно 260 вольт.

Как настроить и протестировать цепь

Сначала оставьте точки «AB» отключенными и убедитесь, что цепь полностью отключена от сети переменного тока.

Настройте внешний универсальный источник питания на 12 вольт и подключите его плюс к точке «В», а минус к общему заземлению цепи.

Теперь отрегулируйте P2 так, чтобы LD2 только что включился. Уменьшите напряжение до 9 и отрегулируйте P1, чтобы включить LD1.

Аналогичным образом отрегулируйте P3 и P4, чтобы соответствующие светодиоды загорались при напряжении 13 и 14 соответственно.

Процедура настройки завершена. Удалите внешнее питание и соедините точки «AB» вместе.

Теперь все устройство можно подключить к сети переменного тока, чтобы сразу начать работу.

Вы можете проверить работу системы, подав переменный входной переменный ток через автотрансформатор и проверив выходной сигнал с помощью цифрового мультиметра.

Этот стабилизатор напряжения переменного тока, управляемый симистором, отключается при напряжении ниже 170 и выше 300 вольт.