Содержание
Схема подключения электродвигателя на 220в через конденсатор: рассчитываем необходимую емкость
Автор Aluarius На чтение 6 мин. Просмотров 15.1k. Опубликовано
Содержание
Подключение электродвигателя к однофазной сети – это ситуация, которая встречается достаточно часто. Особенно такое подключение требуется на загородных участках, когда трехфазные электродвигатели используются под какие-то приспособления. К примеру, для изготовления наждака или самодельного сверлильного аппарата. Кстати, мотор стиральной машины через конденсатор производится. Но как это сделать правильно? Необходима схема подключения электродвигателя на 220В через конденсатор. Давайте разбираться в ней.
Начнем с того, что существует две стандартные схемы подключения электродвигателя к трехфазной сети: звезда и треугольник. Оба вида подключения создают условия, при которых в обмотках статора двигателя попеременно проходит ток. Он создает внутри вращающееся магнитное поле, которое действует на ротор, заставляя его вращаться. Если подключается трехфазный электродвигатель в однофазную сеть, то вот этот вращающийся момент не создается. Что делать? Вариантов несколько, но чаще всего электрики устанавливают в схему конденсатор.
Что при этом получается?
- Скорость вращения не изменяется.
- Мощность сильно падает. Конечно, говорить о конкретных цифрах здесь не приходиться, потому что падение мощности будет зависеть от разных факторов. К примеру, от условий эксплуатации самого двигателя, от схемы подключения, от конденсаторов, а, точнее, от их емкости. Но в любом случае потери будут составлять от 30 до 50 процентов.
Необходимо отметить, что не все электродвигатели могут работать от однофазной сети. Лучше всего работают асинхронные виды. У них даже на бирках указаны, что можно проводить подключение и на трехфазную сеть, и на однофазную. При этом обязательно указывается величина напряжения – 127/220 или 220/380В. Меньший показатель предназначен для схемы треугольник, больший для звезды. На картинке ниже показано обозначение.
Внимание! Конденсаторный двигатель в однофазную сеть лучше подключать через схему треугольник. Это обусловлено тем, что при таком виде подключения уменьшаются потери мощности агрегата.
Обратите внимание в рисунке на нижнюю бирку (Б). Она говорит о том, что двигатель можно подключить только через звезду. С этим придется смириться и получить аппарат с низкой мощностью. Если есть желание изменить ситуацию, то придется разобрать двигатель и вывести еще три конца обмоток, после чего провести подключение по треугольнику.
И еще один очень важный момент. Если вы устанавливаете в однофазную сеть электродвигатель с напряжением 127/220 вольт, то понятно, что к сети напряжением 220В можно подключиться через звезду. Потери мощности гарантированы. Но сделать в данном случае ничего нельзя. Если будет произведено подключение этого прибора через треугольник – мотор просто сгорит.
Схемы подключения
Давайте рассмотрим обе схемы подключения. Начнем с треугольника. В любой схеме очень важно правильно подключить именно конденсатор. В данном случае провода распределяются таким образом:
- Два контакта подсоединяются к сети.
- Один через конденсатор к обмотке.
Но тут есть один момент, если электродвигатель не нагружать, то его ротор без проблем начнем вращаться. Если пуск будет производиться под определенной нагрузкой, то вал или не будет вращаться вообще, или с очень низкой скоростью. Чтобы решить эту проблему, в схему необходимо установить еще один конденсатор – пусковой. На нем лежит всего лишь одна задача – запустить мотор, отключиться и разрядиться. По сути, пусковой работает всего 2-3 секунды.
В схеме звезда подключение конденсатора производится на выходные концы обмоток. Две из них соединяются с сетью 220В, а свободный конец и один из подключенных к сети замыкают конденсатор.
Как рассчитать емкость
Емкость конденсатора, который устанавливается в схему подключения трехфазного электродвигателя, подсоединяемого к сети напряжением в 220В, зависит от самой схемы. Для этого существуют специальные формулы.
Соединение звездой:
Cр = 2800•I/U, где Ср – это емкость, I – сила тока, U – напряжение. Если производится подсоединение треугольником, то используется та же формула, только коэффициент 2800 меняется на 4800.
Хотелось бы обратить ваше внимание на тот факт, что сила тока (I) на бирке мотора не указывается, поэтому ее надо будет рассчитать по вот этой формуле:
I = P/(1.73•U•n•cosф), где Р- это мощность электрического двигателя, n – КПД агрегата, cosф – коэффициент мощности, 1,73 – это поправочный коэффициент, он характеризует соотношение между двумя видами токов: фазным и линейным.
Так как чаще всего подключение трехфазного двигателя к однофазной сети 220В производится по треугольнику, то емкость конденсатора (рабочего) можно подсчитать по более простой формуле:
C = 70•Pн, здесь Рн – это номинальная мощность агрегата, измеряемая в киловаттах и обозначаемая на бирке прибора. Если разобраться в этой формуле, то можно понять, что существует достаточно простое соотношение: 7 мкФ на 100 Вт. К примеру, если устанавливается мотор мощностью 1 кВт, то для него необходим конденсатор на 70 мкФ.
Как определить, точно ли подобран конденсатор? Это можно проверить только в рабочем режиме.
- Если в процессе эксплуатации мотор перегревается, то, значит, емкость прибора больше требуемой.
- Низкая мощность двигателя, значит, емкость занижена.
Даже расчет может привести к неправильному выбору, ведь условия эксплуатации мотора будут влиять на его работу. Поэтому рекомендуется начинать подбор с низких величин, и при необходимости наращивать показатели до необходимых (номинальных).
Что касается пусковой емкости, то здесь в первую очередь учитывается, какой пусковой момент необходим для запуска электродвигателя. Хотелось бы обратить ваше внимание на то, что пусковая емкость и емкость пускового конденсатора – это не одно и то же. Первая величина – это сумма емкостей рабочего и пускового конденсаторов.
Внимание! Емкость пускового конденсатора должна быть раза в три больше емкости рабочего. При этом специалисты советуют вместо одного большого прибора использовать несколько с малой емкостью. К тому же пусковые работают непродолжительное время, поэтому на их место можно устанавливать дешевые модели.
В качестве рабочих можно использовать бумажные, металлизированные или пленочные аналоги. При этом необходимо учитывать тот факт, что допустимое напряжение должно быть в полтора раза быть больше номинального. Как видите, подобрать точно конденсатор под электродвигатель достаточно непростым. Даже расчет является процессом неточным.
Схема подключения двигателя через конденсатор
Оглавление:
Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.
В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.
Схема подключения однофазного двигателя через конденсатор
При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.
- 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
- 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
- 2 схема – подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.
Схема подключения трёхфазного двигателя через конденсатор
Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.
Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.
Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В – обязательно подключайте к нему – это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.
Онлайн расчет емкости конденсатора мотора
Введите данные для расчёта конденсаторов – мощность двигателя и его КПД Треугольник Звезда Соединение обмоток двигателя, Y/Δ Мощность двигателя, Вт Напряжение в сети, В Коэффициент мощности, cosφ КПД двигателя, (значение от 0 до 1)
Емкость рабочего конденсатора, мкФ Емкость пускового конденсатора, мкФ |
Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:
Рабочий конденсатор берут из расчета 0,8 мкФ на 0,1 кВт мощности двигателя;
Пусковой подбирается в 2-3 раза больше.
Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.
Пусковые конденсаторы для моторов
Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.
При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.
Реверс направления движения двигателя
Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».
Схема подключения однофазного двигателя
и примеры — Wira Electrical
Схема подключения однофазного двигателя очень поможет нам при работе с электродвигателями для большинства бытовых приборов.
В настоящее время каждый дом и бытовая техника используют для работы однофазное электричество. Это также верно для почти каждого электродвигателя, который мы используем, например: двигатель водяного насоса, фен и электрический вентилятор. Вот почему действительно стоит изучить схему однофазного двигателя, если мы хотим проводить техническое обслуживание и ремонт.
Мы изучим схему каждого типа однофазного двигателя, потому что однофазные двигатели могут иметь разные схемы, соединения и назначение. Вот почему изучение каждого типа, который мы можем найти, является хорошей идеей.
Схема подключения однофазного двигателя
Однофазный асинхронный двигатель — это двигатель переменного тока, работающий от однофазного питания. Этот двигатель широко используется в бытовой технике.
Ротор — это динамическая часть асинхронного двигателя, которая вращается внутри двигателя.
Статор — это статическая часть асинхронного двигателя, создающая вращающееся магнитное поле для ротора.
В отличие от двигателя постоянного тока, однофазное электричество к статору будет иметь трудности при вращении ротора двигателя переменного тока из-за недостаточного вращающегося магнитного поля. Двигатель переменного тока хорошо известен своим более высоким током при запуске двигателя.
Будут представлены различные схемы однофазных двигателей, а также их модификации для обеспечения правильной работы. Несмотря на то, что все они разные, некоторые из них имеют одни и те же элементы: конденсатор и центробежный переключатель.
Конденсатор будет подключен к вспомогательной обмотке для создания вращающегося магнитного поля со сдвинутой фазой. Некоторые однофазные двигатели немедленно обесточивают конденсатор и вспомогательную обмотку, когда скорость достигает определенной точки, некоторые из них все еще включают ее.
Вам лучше изучить их ниже, как подключить однофазный двигатель и как подключить однофазный двигатель.
Подключение однофазного асинхронного двигателя
При изучении и наблюдении за подключением однофазного двигателя мы начнем с подключения однофазного асинхронного двигателя. Как указывалось выше, однофазный двигатель испытывает трудности с созданием вращающегося магнитного поля для запуска вращения ротора.
Вот почему вспомогательная обмотка используется для создания дополнительного магнитного поля. Конечно, добавление еще одной обмотки ничему не поможет при вращении ротора. Конденсатор используется для сдвига фазы, поэтому мы можем получить два вращающихся магнитных поля с разными фазами.
Ниже приведена схема центробежного выключателя однофазного двигателя.
Центробежный выключатель используется для соединения вспомогательной обмотки с конденсатором и источником питания. Как только скорость достигает определенного значения, переключатель отключает конденсатор и вспомогательную обмотку от источника питания.
С этого момента питание подается только на основную обмотку, чтобы двигатель работал в установившемся режиме.
Исходя из этого поведения, мы можем назвать это переключателем конденсатора однофазного электродвигателя или асинхронным двигателем с пусковым конденсатором , потому что мы используем конденсатор для переключения между пуском и работой.
Схема подключения двигателя постоянного конденсатора с расщепленной фазой
Как следует из названия, эта схема однофазного двигателя будет работать с расщепленной фазой, генерируемой конденсатором. Емкость конденсатора и реактивное сопротивление обмотки в некоторой степени сдвигают фазу.
Ниже приведена схема подключения однофазного двигателя с постоянным конденсатором.
Этот постоянный конденсаторный двигатель с расщепленной фазой также известен как конденсаторный двигатель с одним номиналом . Этому также не нужен центробежный переключатель или какой-либо другой переключатель для отключения питания от вспомогательной обмотки. О центробежных выключателях других типов мы поговорим позже.
Этот двигатель состоит из:
- А короткозамкнутого ротора,
- А обмотки статора,
- Вспомогательной обмотки и
- Конденсатор для запуска двигателя.
Ниже показано, как подключить двигатель с расщепленной фазой.
Схема подключения двигателя с пусковым конденсатором
Теперь мы узнаем о схеме подключения однофазного двигателя с 2 конденсаторами или пусковом конденсаторе двигателя с пусковым конденсатором .
Двигатель с конденсаторным пуском, работающий от конденсатора, также известен как двигатель с двумя конденсаторами . «Двойное значение» происходит от установки двух конденсаторов для двух разных целей: запуска и работы.
В дополнение к двум конденсаторам в этом двигателе также используется центробежный переключатель для управления процессом пуска и работы.
Пусковой конденсатор подключается к вспомогательной обмотке, когда двигатель находится в пусковой фазе.
После того, как двигатель достигнет определенной скорости, центробежный переключатель отключит вспомогательную обмотку от пускового конденсатора.
Этот двигатель имеет две обмотки: основную обмотку и вспомогательную обмотку, как и другие типы. Вспомогательная обмотка поможет при запуске двигателя, а основная обмотка будет питаться постоянно.
Поскольку он имеет два конденсатора для обеспечения двух фазовых сдвигов друг к другу, мы можем назвать это схемой подключения однофазного двухполюсного двигателя.
На рисунке ниже показан фактический вид двигателя с конденсаторным пуском.
Ниже приведен пример того, как мы подключаем двигатель с пусковым конденсатором.
Двигатель с экранированными полюсами
Этот двигатель широко используется в маломощных устройствах.
Этот однофазный двигатель сильно отличается от предыдущих типов, поскольку в нем не используются конденсатор и центробежный переключатель для создания желаемых вращающихся магнитных полей.
Имейте в виду, что этот двигатель относительно небольшой и не развивает большой мощности. Он в основном используется для небольших приложений, таких как электрический вентилятор. Этот двигатель дешев, прост в запуске, прочен, прост, но не эффективен. В большинстве случаев мы выбрасываем этот мотор, как только он сломается, и покупаем новый, а не ремонтируем его.
Ниже показана конструкция двигателя с экранированными полюсами.
В отличие от других однофазных двигателей, в которых в качестве статора используются обмотки, в этом двигателе в качестве статора используется многослойный сердечник для создания магнитного поля. Его ротор будет таким же, с короткозамкнутым ротором.
Кроме того, катушка используется для создания магнитного потока в пластинах статора.
Из названия следует, что нам нужно что-то, чтобы изобразить «заштрихованный столб». Здесь используются экранирующие полюса из пары закороченных медных марок, известных как экранирующие кольца.
Экранирующие кольца не связаны электрически в двигателе, но они создают магнитные поля за счет индуцированного тока, протекающего в катушке.
Эти кольца делают возможным возникновение вращающегося магнитного поля. Кольца будут задерживать генерируемый вращающийся магнитный поток. Этот проводник должен прервать полный оборот полюса. Поток увеличивается, но задерживается индуцированным током в медном кольце.
Ниже приведено фактическое изображение двигателя с заштрихованными полюсами.
Источник: Википедия.
Схемы подключения двигателя
Маркировка и соединения проводов электродвигателя
Чтобы узнать о конкретных соединениях двигателей Leeson, перейдите на их веб-сайт и введите номер каталога Leeson в поле «Обзор», вы найдете данные о соединении, размеры, данные с паспортной таблички и т. д. www.leeson.com
Однофазные соединения: (трехфазные – см. ниже)
Одиночное напряжение:
Вращение | L1 | L2 |
против часовой стрелки | 1,8 | 4,5 |
КВ | 1,5 | 4,8 |
Двойное напряжение: (только основная обмотка)
Напряжение | Вращение | L1 | L2 | Присоединяйтесь к |
Высокий | против часовой стрелки | 1 | 4,5 | 2, 3 и 8 |
CW | 1 | 4,8 | 2, 3 и 5 | |
Низкий | против часовой стрелки | 1,3,8 | 2,4,5 | ——- |
CW | 1,3,5 | 2,4,8 | ——- |
Двойное напряжение: (основная и вспомогательная обмотка)
Напряжение | Вращение | L1 | L2 | Регистрация |
Высокий | против часовой стрелки | 1,8 | 4,5 | 2&3,6&7 |
CW | 1,5 | 4,8 | 2&3,6&7 | |
Низкий | против часовой стрелки | 1,3,6,8 | 2,4,5,7 | ——— |
CW | 1,3,5,7 | 2,4,6,8 | ——— |
Маркировка однофазных клемм, обозначенная цветом: (стандарты NEMA)
1-Синий 5-Черный P1 – Цвет не назначен присвоено
4 желтых 8 красных
Трехфазные соединения:
Начало обмотки детали:
6 выводов NEMA Номенклатура:
0010
Т1 | Т2 | Т3 | Т7 | Т8 | Т9 | |
Провода двигателя | 1 | 2 | 3 | 7 | 8 | 9 |
9 выводов Номенклатура NEMA
WYE
Т1 | Т2 | Т3 | Т7 | Т8 | Т9 | Вместе | |
Провода двигателя | 1 | 2 | 3 | 7 | 8 | 9 | 4&5&6 |
12 выводов NEMA & IEC Номенклатура
Двигатели с одним или низким напряжением двух напряжений
| Т1 | Т2 | Т3 | Т7 | Т8 | Т9 |
NEMA | 1,6 | 2,4 | 3,5 | 7,12 | 8,10 | 9,11 |
МЭК | 1 | 2 | 3 | 7 | 8 | 9 |
Трехфазные односкоростные двигатели
Номенклатура Nema – 6 проводов:
Одно напряжение – внешнее соединение звездой
L1 | L2 | Л3 | Присоединяйтесь к |
1 | 2 | 3 | 4, 5 и 6 |
Одно напряжение – внешнее соединение треугольником
L1 | L2 | Л3 |
1,6 | 2,4 | 3,5 |
Соединения «звезда-треугольник» с одним напряжением
Режим работы | Соединение | L1 | L2 | L3 | Присоединиться |
---|---|---|---|---|---|
Старт | Звезда | 1 | 2 | 3 | 4, 5 и 6 |
Выполнить | Дельта | 1,6 | 2,4 | 3,5 | ——- |
Соединения «звезда-треугольник» с двойным напряжением
Напряжение | Соединение | L1 | L2 | L3 | Присоединиться |
---|---|---|---|---|---|
Высокий | Звезда | 1 | 2 | 3 | 4, 5 и 6 |
Низкий | Дельта | 1,6 | 2,4 | 3,5 | ——- |
Номенклатура NEMA — 9 Выводы:
Двойное напряжение, соединение звездой
Напряжение | L1 | L2 | L3 | Регистрация |
Высокий | 1 | 2 | 3 | 4 и 7, 5 и 8, 6 и 9 |
Низкий | 1,7 | 2,8 | 3,9 | 4&5&6 |
Двойное напряжение, соединение треугольником
Напряжение | L1 | L2 | L3 | Регистрация |
Высокий | 1 | 2 | 3 | 4 и 7, 5 и 8, 6 и 9 |
Низкий | 1,6,7 | 2,4,8 | 3,5,9 | ———— |
Номенклатура NEMA — 12 проводов:
Двойное напряжение — внешнее соединение звездой
Напряжение | L1 | L2 | L3 | Регистрация |
Высокий | 1 | 2 | 3 | 4 и 7, 5 и 8, 6 и 9, 10 и 11 и 12 |
Низкий | 1,7 | 2,8 | 3,9 | 4&5&6, 10&11&12 |
Двойное напряжение
Delta-Connected Run
Напряжение | Соединение | L1 | L2 | L3 | Регистрация |
Высокий | Звезда | 1 | 2 | 3 | 4 и 7, 5 и 8, 6 и 9, 10 и 11 и 12 |
Дельта | 1,12 | 2,10 | 3,11 | 4 и 7, 5 и 8, 6 и 9 | |
Низкий | Звезда | 1,7 | 2,8 | 3,9 | 4&5&6, 10&11&12 |
Дельта | 1,6,7,12 | 2,4,8,10 | 3,5,9,11 | ———— |
Номенклатура IEC — 6 и 12 отведения:
Соединения «звезда-треугольник» с одним напряжением Соединения «звезда-треугольник» с одним напряжением
рабочий режим | Соединение | L1 | L2 | L3 | Регистрация |
Старт | Звезда | U1 | V1 | W1 | U2&V2&W2 |
Выполнить | Дельта | У1,Ш2 | В1,У2 | Ш1,В2 | ————— |
Соединения «звезда-треугольник» с двойным напряжением
Вольт | Соединение | L1 | L2 | L3 | Регистрация |
Высокий | Звезда | У 1 | V1 | W1 | U2&V2&W2 |
Низкий | Дельта | У1,Ш2 | В1,У2 | Ш1,В2 | ————— |
Двойное напряжение, соединение звездой, пуск
Delta-Connected Run
Вольт | Соединение | L1 | L2 | L3 | Регистрация |
Высокий | Звезда | У 1 | V1 | W1 | U2 и U5, V2 и V5, W2 и W5, U6 и V6 и W6 |
Дельта | У1,Ш6 | В1,У6 | Ш1,В6 | U2 и U5, V2 и V5, W2 и W5 | |
НИЗКИЙ | ЗВЕЗДА | У1,У5 | В1,В5 | Ш1, Ш5 | U2&V2&W2, U6&V6&W6 |
Дельта | У1, У5, Ш2, Ш6 | В1,В5 У2,У6 | W1, W5 V2, V6 | ——————————————— |
Номенклатура NEMA — 6 выводов:
Соединение с постоянным моментом
Скорость | L1 | L2 | Л3 | Типовой Соединение | |
Высокий | 6 | 4 | 5 | 1&2&3Соединение | 2 звезды |
Низкий | 1 | 2 | 3 | 4-5-6 Открыть | 1 Дельта |
Соединение с переменным крутящим моментом (Низкоскоростной HP составляет 1/4 от высокоскоростного HP)
Скорость | L1 | L2 | Л3 | Типовой Соединение | |
Высокий | 6 | 4 | 5 | 1&2&3Присоединиться | 2 звезды |
Низкий | 1 | 2 | 3 | 4-5-6 Открыть | 1 ЗВЕЗДА |
Подключение постоянной мощности (л.