Предложены детонационные двигатели, которые значительно удешевят космические полёты

3DNews Технологии и рынок IT. Новости на острие науки Предложены детонационные двигатели, кото…

Самое интересное в обзорах


27.03.2019 [09:30], 

Геннадий Детинич

Как сообщает интернет-ресурс Xinhua, в Австралии разработана первая в мире технология, которая может значительно удешевить запуск космических аппаратов. Речь идёт о создании так называемого ротационного или спинового детонационного двигателя (РДД). В отличие от уже несколько лет находящихся на стадии стендовых испытаний в России импульсных детонационных двигателей, ротационные детонационные двигатели характеризуются постоянным детонационным горением топливной смеси, а не периодическим. В РДД фронт горения постоянно перемещается в кольцевой камере сгорания, а топливная смесь в камеру подаётся непрерывно. В остальном принцип импульсного и ротационного ДД схож ― фронт горения перемещается быстрее скорости звука, что открывает путь к гиперзвуковым скоростям и не только.

Общий принцип работы РДД (https://aerospaceamerica.aiaa.org)

Важным преимуществом РДД представляется работа летательного аппарата без запаса кислорода на борту. Кислород в систему для горения подаётся с помощью забора воздуха за бортом. На всей траектории полёта в атмосфере двигатель РДД может работать за счёт обычной воздушной среды. Это избавит космические носители от лишнего веса в виде кислорода для сжигания топлива и определённо удешевит запуски спутников.

Новую технологию РДД в виде компьютерной модели создали и испытали в австралийской компании DefendTex. Компания DefendTex работает на «оборонку» Австралии и проект РДД ведёт совместно с Университетом Бундесвера в Мюнхене, Южно-австралийским Университетом, Мельбурнским королевским технологическим университетом (RMIT), Организацией оборонной науки и техники Австралии и компанией Innosync Pty.

Пример работы ротационного (спинового) детонационного двигателя (непосредственно к новости не относится)

Предварительные результаты компьютерного моделирования процессов детонационного сгорания на основе новых подходов привели к интересным и важным находкам. В частности, выявились данные по оптимальной геометрии кольцевой камеры сгорания для непрерывного устойчивого взрывного горения топлива, что важно для проектирования ракетных двигателей. На основе этой информации сообщество разработчиков приступило к созданию опытной модели перспективного двигателя.

Источник:


Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

Материалы по теме

Постоянный URL: https://3dnews.ru/984774

Рубрики:
Новости Hardware, на острие науки, космос,

Теги:
ракета, двигатели, сверхзвуковой

← В
прошлое
В будущее →

Ракетный детонационный двигатель принцип работы, последние новости

Производство двигателей и турбин Производство машин и оборудования Прорывные технологии Технология находится в процессе разработки 

Детонационный двигатель.

Технология находится в процессе разработки!

 



Поделиться в:

 

Детонационный двигатель более простой и дешевле в изготовлении, на порядок мощнее и экономичнее обычного реактивного двигателя, по сравнению с ним обладает более высоким КПД.

 

Детонационный двигатель, сущность, строение и принцип работы

Преимущества детонационного двигателя

 

Детонационный двигатель, сущность, строение и принцип работы:

Детонационный двигатель (импульсный, пульсирующий двигатель) идет на смену обычного реактивного двигателя. Чтобы понять сущность детонационного двигателя надо разобрать обычный реактивный двигатель.

Обычный реактивный двигатель устроен следующим образом.

В камере сгорания происходит сгорание топлива и окислителя, в качестве которого выступает кислород из воздуха. При этом давление в камере сгорания постоянно. Процесс горения резко повышает температуру, создает неизменный пламенный фронт и постоянную реактивную тягу, истекающую из сопла. Фронт обычного пламени распространяется в газовой среде со скоростью 60-100 м/сек. За счет этого и происходит движение летательного аппарата. Однако современные реактивные двигатели достигли определенного предела КПД, мощности и других характеристик, повышение которых практически невозможно либо крайне затруднительно.

В детонационном (импульсном или пульсирующем) двигателе горение происходит путем детонации. Детонация — это процесс горения, но которое происходит в сотни раз быстрее, чем при обычном сжигании топлива. При детонационном горении образуется детонационная ударная  волна, несущая со сверхзвуковой скоростью. Она составляет порядка 2500 м/сек. Давление в результате детонационного горения стремительно возрастает, а объем камеры сгорания остается неизменным. Продукты горения вырываются с огромной скоростью через сопло. Частота пульсаций детонационной волны достигает несколько тысяч в секунду. В детонационной волне нет стабилизации фронта пламени, на каждую пульсацию обновляется топливная смесь и волна запускается вновь.

Давление в детонационном двигателе создается за счет самой детонации, что исключает подачу топливной смеси и окислителя при высоком давлении. В обычном реактивном двигателе, чтобы создать давление тяги в 200 атм., необходимо подавать топливную смесь под давлением в  500 атм. В то время как в детонационном двигателя – давление подачи топливной смеси – 10 атм.

Камера сгорания детонационного двигателя конструктивно имеет кольцевую форму с форсунками, размещёнными по её радиусу для подачи топлива. Волна детонации пробегает по окружности вновь и вновь, топливная смесь сжимается и выгорает, выталкивая продукты сгорания через сопло.

 

Преимущества детонационного двигателя:

– детонационный двигатель более простой в изготовлении. Отсутствует необходимость в использовании турбонасосных агрегатов,

на порядок мощнее и экономичнее обычного реактивного двигателя,

– имеет более высокий КПД,

дешевле в изготовлении,

– нет необходимости создавать высокое давление подачи топливной смеси и окислителя, высокое давление создается за счет самой детонации,

детонационный двигатель превосходит обычный реактивный двигатель в 10 раз по мощности, снимаемой с единицы объема, что приводит к уменьшению конструкции детонационного двигателя,

– детонационное горение в 100 раз быстрее, чем обычное горение топлива.

 

Примечание: © Фото https://www.pexels.com, https://pixabay.com

 

как работает российский спиновый непрерывно импульсный ротационный пульсирующий детонационный жидкостный ракетный реактивный двигатель принцип работы последние новости россия википедия энергомаш видео испытан в россии 2017 2018 рогозин
принцип действия устройство испытания импульсного ракетного детонационного двигателя будущее российского двигателестроения
двигатель детонационное сгорание
какие страны разрабатывают фролов импульсные детонационные двигатели скачать с незатухающей детонационной волной cdw внутреннего сгорания

 

Коэффициент востребованности
1 731

Что такое вращающийся детонационный двигатель и что он может означать для авиации?

Вращающиеся детонационные двигатели (РДЭ) были предметом теории и спекуляций на протяжении десятилетий, но до сих пор не перешли от теории к практическому применению. Но теперь похоже, что эти экзотические силовые установки вот-вот перейдут на действующие платформы.

Теоретически, вращающийся детонационный двигатель обещает быть намного более эффективным, чем традиционные реактивные двигатели, потенциально обеспечивая серьезное увеличение дальности и скорости ракетных приложений. Это также может означать развертывание меньших по размеру вооружений, способных достигать таких же скоростей и дальности, как современные ракеты.

В авиастроении, например, в реактивных истребителях, вращающиеся детонационные двигатели могли бы иметь те же преимущества, что и ракеты, с точки зрения дальности и скорости, потенциально снижая требования к техническому обслуживанию. Истребители, в частности, полагаются на форсажные камеры, которые эффективно направляют топливо в поток выхлопных газов двигателя для дополнительной тяги. Это быстро истощает запасы топлива и снижает дальность полета истребителя. RDE потенциально могут обеспечить аналогичное увеличение тяги при значительном снижении расхода топлива.

Но где эта технология может быть наиболее полезной, так это в питании будущих неатомных надводных кораблей ВМФ, обеспечивая повышенную мощность, дальность и скорость, а также оказывая серьезное благотворное влияние на бюджет ВМФ.

Связанный: ВВС присматриваются к революционным новым двигателям для F-35 до 1950-е годы. В Соединенных Штатах Артур Николлс, почетный профессор аэрокосмической техники Мичиганского университета, был одним из первых, кто попытался разработать рабочий проект RDE.

В некотором смысле, вращающийся детонационный двигатель является расширением концепции импульсных детонационных двигателей (PDE), которые сами по себе являются расширением пульсирующих реактивных двигателей. Это может показаться запутанным ( и, возможно, это ), но мы разберемся.

Пульсирующие реактивные двигатели  работают, смешивая воздух и топливо в камере сгорания, а затем воспламеняя смесь, которая вылетает из сопла быстрыми импульсами, а не при постоянном сгорании, как в других реактивных двигателях.

В импульсных реактивных двигателях, как и почти во всех двигателях внутреннего сгорания, воспламенение и горение воздушно-топливной смеси называется дефлаграцией , что в основном означает нагрев вещества до его быстрого сгорания, но с дозвуковой скоростью.

Импульсный детонационный двигатель работает аналогично, но вместо дефлаграции он использует детонационный . На фундаментальном уровне детонация очень похожа на ее звучание: взрыв .

В то время как дефлаграция связана с воспламенением и дозвуковым горением топливно-воздушной смеси, детонация является сверхзвуковой. Когда воздух и топливо смешиваются в импульсно-детонационном двигателе, они воспламеняются, создавая дефлаграцию, как и в любом другом двигателе внутреннего сгорания. Однако внутри более длинной выхлопной трубы мощная волна давления сжимает несгоревшее топливо перед воспламенением, нагревая его выше температуры воспламенения в так называемом переходе от дефлаграции к детонации (DDT). Другими словами, вместо того, чтобы быстро сжигать топливо, оно взрывает , создавая большую тягу из того же количества топлива; взрыв, а не быстрое горение.

«Процесс детонации — это более быстрое и эффективное извлечение энергии из вашего топлива с термодинамической точки зрения по сравнению с дефлаграцией», — сказал Ди Ховард, профессор гиперзвуковой и аэрокосмической техники, доктор Крис Комбс, Sandboxx News.

Детонация по-прежнему происходит импульсами, как и в пульсирующем реактивном двигателе, но импульсно-детонационный двигатель способен развивать транспортное средство до более высоких скоростей, которые, как считается, составляют около 5 Маха. Поскольку детонация высвобождает больше энергии, чем дефлаграция, детонационные двигатели более эффективны — создание большей тяги при меньшем количестве топлива, что позволяет использовать меньшие нагрузки и большую дальность полета.

Анимация Pulse Detonation Engine предоставлена ​​Фредом Шауэром (AFRL/PRTS)

Ударная волна детонации распространяется значительно быстрее, чем волна дефлаграции в современных реактивных двигателях, объяснил Trimble: до 2000 метров в секунду (4475 миль в час) по сравнению с 10 метрами в секунду от дефлаграции.

В мае 2008 года Исследовательская лаборатория ВВС вошла в историю, построив первый в мире пилотируемый самолет с импульсным детонационным двигателем, используя самодельный самолет Scaled Composites под названием Long-EZ. Необычный франкен-самолет развил скорость выше 120 миль в час во время своего испытательного полета с летчиком-испытателем Питом Зибольдом на штурвале и достиг высоты от 60 до 100 футов.

Самолет Long-EZ с импульсно-детонационным двигателем совершает свой исторический первый полет. (Courtesy photo)

«Это потенциально может изменить правила игры с точки зрения эффективности использования топлива», — сказал Фред Шауэр из Управления силовых установок AFRL о PDE, который приводит в действие Long-EZ.

«Для сравнения, если бы мы использовали этот же двигатель с обычным сгоранием, мы бы создали менее трети тяги при том же расходе топлива. По сравнению с традиционными двигателями можно ожидать экономии топлива от 5 до 20 процентов».

В то время ВВС оценили, что улучшения их двигателя PDE могут в конечном итоге разгонять самолеты до скоростей свыше 4 Маха и выше в сочетании с другими передовыми силовыми установками, такими как ГПВРД. Вращающийся детонационный двигатель мог бы быть еще более эффективным, но многие в академических и инженерных кругах задавались вопросом, можно ли когда-нибудь построить такой двигатель.

По теме: США объявляют об успешных испытаниях 3 гиперзвуковых ракет за 2 недели

Появление вращающегося детонационного двигателя

(Национальная лаборатория Ок-Ридж)

Вращающийся детонационный двигатель выводит эту концепцию на новый уровень. Вместо того, чтобы волна детонации выходила из задней части самолета в качестве движущей силы, она распространяется по круглому каналу внутри самого двигателя.

Топливо и окислители добавляются в канал через маленькие отверстия, которые затем ударяются и воспламеняются быстро вращающейся детонационной волной. В результате получается двигатель, который создает непрерывную тягу, а не импульсную тягу, при этом обеспечивая повышенную эффективность детонационного двигателя. Многие вращающиеся детонационные двигатели имеют более одной детонационной волны, одновременно вращающейся вокруг камеры.

Как объясняет редактор отдела обороны Aviation Week & Space Technology Стив Тримбл, в RDE наблюдается увеличение давления во время детонации, в то время как в традиционных реактивных двигателях наблюдается полная потеря давления во время сгорания, что обеспечивает большую эффективность. Фактически, двигатели с вращающейся детонацией даже более эффективны, чем двигатели с импульсной детонацией, которым требуется продувка и повторное наполнение камеры сгорания для каждого импульса.

«Теоретически RDE чем-то напоминает скачок от турбореактивных двигателей к турбовентиляторным в 1960-х годов, но для высокосверхзвуковых машин. Это должно дать вам большой скачок в удельном импульсе (он же топливная экономичность), и если вы сможете понять, как упаковать его таким образом, чтобы не сделать вещи значительно тяжелее или менее аэродинамическими, вы сможете получить хороший запас хода. извлеките из этого выгоду, — объяснил Тримбл.

Профессор Карим Ахмед, Университет Центральной Флориды

В 2020 году группа из Университета Центральной Флориды, работающая над Программой вращающихся детонационных ракетных двигателей в Исследовательской лаборатории ВВС, успешно построила и испытала первый в мире работающий вращающийся детонационный двигатель. который продолжал стрелять до тех пор, пока его топливо не было отключено, что эффективно доказывало возможность концепции. Трехдюймовая медная испытательная установка, разработанная командой, успешно произвела 200 фунтов тяги в лабораторных условиях.

С тех пор этому примеру последовал ряд других программ, среди которых известный производитель двигателей Пратт и Уитни.

Читать дальше из Sandboxx News

  • ВВС присматриваются к революционным новым двигателям для F-35
  • Новый двигатель GE для истребителей просто уничтожил существующие реактивные технологии
  • Самой большой угрозой для F-14 Tomcat были двигатели TF30
  • ВВС хотят иметь воздушно-реактивные двигатели для гиперзвуковых ракет
  • Новая ракета DARPA намекает на революционную технологию

Автор

Импульсно-детонационные двигатели

Импульсно-детонационные двигатели
Обязательно ознакомьтесь с видео и презентациями PDE!

PDE представляет собой силовую установку, которая в последнее десятилетие вызывает значительный интерес благодаря многочисленным преимуществам, которые она предлагает по сравнению с традиционными реактивными двигателями. PDE работают прерывистым циклическим образом, вызывая волны детонации, которые сжигают смесь топлива и окислителя внутри двигателя, высвобождают огромное количество энергии и развивают гораздо более высокое давление, чем процесс дефлаграции.

Рисунок 1: Схема турбореактивного двигателя
 

В обычных реактивных двигателях воздух сжимается и замедляется с помощью компрессора, а затем смешивается с топливом перед стадией сгорания, где сгорание также является медленным дозвуковым процессом. Затем горячие продукты реакции приводят в действие турбину, которая также приводит в действие компрессор, а затем ускоряются через сопло, тем самым создавая тягу. Тот факт, что турбина и компрессор соединены, означает, что двигатель не может запуститься из состояния покоя сам по себе и требует использования стартера, чтобы разогнать компрессор до скорости, прежде чем двигатель сможет поддерживать себя. Реактивные двигатели следуют циклу Брайтона, который требует сжатия воздуха до высокого давления, прежде чем станет возможным выделение тепла, что требует тяжелых компрессоров и турбин.

 

PDE, с другой стороны, теоретически могут работать с места до числа Маха 5. PDE не требуют тяжелого роторного оборудования для сжатия воздуха перед сгоранием, что снижает общий вес и сложность двигатель. Более того, геометрия ПДЭ очень проста и состоит по существу из трубы с регулирующими клапанами для подачи жидкости. Процесс детонации также обеспечивает более высокое давление и температуру реакции и обеспечивает более высокую эффективность. PDE преодолевают разрыв между дозвуковым режимом и гиперзвуковым режимом, когда на смену приходят реактивные двигатели и ракеты. Как видно из рис. 2, ПДЭ обеспечивают более высокие удельные импульсы, чем ракеты и обычные воздушно-реактивные двигатели, при всех числах Маха. Поэтому в настоящее время ведутся исследования, пытающиеся интегрировать импульсный детонационный режим горения в ракеты и реактивные двигатели аварийного сброса, в котором используется преимущество повышения производительности, достигаемое за счет процесса детонации, по сравнению с процессом дефлаграции. Все вышеперечисленное объясняет взрыв в области исследований детонации и ПДЭ в последнее время. Это привело к запуску нескольких конкурирующих исследовательских программ с целью разработки работающей системы PDE.

Рисунок 2: Число Маха в зависимости от удельного импульса для различных силовых установок

 

Рис. 3. Различные этапы цикла PDE показаны выше

 

Рис. 4. Диаграммы T-S и графики зависимости давления от удельного объема для различных циклов двигателя, цикл турбореактивного двигателя Brayton показан в правом нижнем углу.

 

Разница между детонацией и дефлаграцией

Детонация — это сверхзвуковой процесс горения, тогда как дефлаграция — дозвуковой процесс горения. Почти все двигатели, которые сжигают топливо, используют дефлаграцию для высвобождения энергии, содержащейся в топливе. При детонации ударная волна сжимает газ, за ​​чем следует быстрое выделение тепла и резкое повышение давления. В теории Чепмена-Жуге детонационная волна состоит из ударной волны и фронта пламени. Когда фронт волны проходит через газ, газ сжимается, и химическая реакция завершается в задней части фронта волны. Другая теория, известная как теория Зельдовича-фон Неймана-Деринга (ZND), использует химию конечной скорости для описания модели. В модели ZND детонационная волна изображается как ударная волна, за которой следует фронт реакции, а индукционная зона разделяет их. В действительности детонационная волна представляет собой не двумерный фронт волны, а состоит из более мелких вейвлетов, которые создают позади себя ячеистые структуры в форме ромба.

 

Одним из факторов, влияющих на практическое применение ПДЭ, является сложность достижения стабильных детонаций в камере сгорания на небольшой длине трубы. Детонацию часто трудно инициировать в топливно-воздушных смесях в более коротких трубах, что требует добавления большого количества энергии. Более полезный метод состоит в том, чтобы начать дефлагративное горение, а затем довести реакцию до детонации, поместив препятствия на пути, которые создадут турбулентное перемешивание, а также ускорят поток. Процесс ускорения волны давления в волну детонации известен.