Содержание
Датчик положения коленвала замена ДПКВ Нива ВАЗ 21213, 21214, 2131 lada 4×4
Электрооборудование
Предохранители и реле (назначение)
Электросхемы
Замена реле поворотников
Замена реле стеклоочистителя
Замена реле блокировки стартера
Замена реле зажигания
Блок предохранителей и реле ЭСУД
Замена блоков предохранителей и реле
Замок зажигания, его замена, ремонт
Аккумулятор
Генератор (устройство, проверка)
Неисправности генератора
Замена, разборка генератора (инжект.)
Замена, разборка генератора (карбюр.)
Стартер (устройство, характеристики)
Проверка цепи стартера
Как ремонтировать стартер
Замена (снятие) стартера
Разборка стартера 5722.3708 (инж.)
Разборка стартера 35.3708 (карб.)
Система зажигания (карб.)
Неисправности зажигания и ЭСУД
Замена свечей зажигания
Высоковольтные провода
Снятие крышки датчика-распределителя
Замена ротора датчика-распределителя
Замена датчика-распределителя
Разборка датчика-распределителя
Замена катушки зажигания
О катушках зажигания
Замена коммутатора
Система управления двигателем (ЭСУД)
Как работает система впрыска
Блок сигнализации (иммобилайзер)
Замена контроллера (ЭБУ)
Датчик положения коленвала
Датчик t° охлаждающей жидкости
Датчик положения дросс. заслонки
Датчик массовоого расхода воздуха
Датчик детонации
Датчик фаз
Датчики кислорода
Датчик скорости
Датчик положения педали сцепления
Датчик положения педали тормоза
Замена модуля (катушки) зажигания
Неисправности освещения
Снятие фары, замена ламп фары
Регулировка фар
Замена гидркорректора фар
Передний фонарь и его лампы — замена
Боковой поворотник и его лампы
Задний фонарь и его лампы
Освещение номера и его лампа
Замена лампы освещения салона и её концевого выключателя
Выключатель (кнопка) аварийки
Подрулевой переключатель
Звуковой сигнал
Неисправности звукового сигнала
Стеклоочиститель и стеклоомыватель
Неисправности стеклоочистителя
Неисправности омывателя
Замена стеклоочистителя
Замена бачка омывателя и моторчика
Задний стеклоочиститель и омыватель
Замена заднего стеклоочистителя
Замена бачка заднего омывателя и мот.
Обогрев заднего стекла
Неисправности комбинации приборов
Снятие щитка приборов, замена ламп
Регулятор подсветки приборов
Замена датчика температуры воздуха
Система управления э/м клапаном карбюратора
Замена лампы воздушной заслонки
Проверки тестером напряжения
Проверки тестером сопротивления и проводимости
Технология ремонта проводки
Схема комбинации приборов
Схема фар и противотуманного света
Схема работы прочего освещения
Схема работы поворотников и аварийки
|
Как заменить и отрегулировать датчик положения коленвала (ДПКВ) на ВАЗ-2110, 2111 и 2112 своими руками?
Ни для кого не секрет, что при выходе датчика положения коленвала из строя автомобиль дальше поедет только на эвакуаторе или на буксире. Двигатель попросту будет невозможно завести, и датчик не ремонтопригоден, только замена. Датчик не из дешевых, поэтому прежде чем покупать новый рекомендую убедиться что причиной неисправности является именно ДПКВ, а не что либо другое, или просто косяк в проводке и фишке подключения датчика. Если же диагностика показывает что виноват именно он, топаем в ближайший магазин автозапчастей и приобретаем датчик, выглядит он следующим образом:
Для замены ДПКВ на ВАЗ-2110, 2111 и 2112 нам понадобится следующий инструмент:
Торцевой ключик на «10».
Набор щупов, что бы выставить зазор.
Ну и сам новый датчик коленвала.
Датчик расположен в непосредственной близости от шкива коленвала. Итак, снимаем колодку с датчика поддев ее отверткой или любым другим сподручным инструментом. (можно просто руками).
Затем берем приготовленный торцовый или рожковый ключик на 10 и им откручиваем болт, который крепит ДПКВ к двигателю.
Затем откладываем в сторону снятый датчик, берем новый и ставим взамен старого, ошибиться при установке невозможно, он устанавливается только в одном положении. Прикручиваем обратно болт крепления датчика, и берем наш набор щупов. Ими то мы и отрегулируем или просто проверим получился ли у нас необходимый зазор нового датчика. Правильным расстоянием от зубов шкива коленвала до датчика считается 1 мм. плюс-минус 0,41 мм.
Если все верно – одеваем фишку на место и пробуем завести двигатель. Если расстояние больше – смотрим где косяк и что попало под датчик, может просто грязь. Проблемы с тем, что расстояние меньше я еще не встречал. Обычно все становится нормально и сразу.
Справочная информация: ДАТЧИК ПОЛОЖЕНИЯ КОЛЕНЧАТОГО ВАЛА (ДПКВ) подаёт в контроллер сигнал частоты вращения и положения коленчатого вала. Этот сигнал представляет собой серию повторяющихся электрических импульсов напряжения, генерируемых датчиком при вращении коленчатого вала. На базе этих импульсов контроллер управляет форсунками и системой зажигания. ДПКВ установлен на крышке масляного насоса на расстоянии около 1+0,4мм от задающего диска (шкива) коленчатого вала. Шкив коленчатого вала имеет 58 зубцов расположенных по окружности. Зубцы равноудалены и расположены через 6°. Для генерирования «импульса синхронизации» два зуба на шкиве отсутствуют. При вращении коленчатого вала зубцы диска изменяют магнитное поле датчика, создавая наведенные импульсы напряжения. По импульсу синхронизации от датчика положения коленчатого вала, контроллер определяет положение и частоту вращения коленчатого вала и рассчитывает момент срабатывания форсунок и модуля зажигания. Провод ДПКВ защищён от помех экраном, замкнутым на массу через контроллер. ДПКВ — самый главный из всех датчиков, при неисправности которого двигатель работать не будет. Этот датчик рекомендуется всегда возить с собой. Диагностика ДПКВ описана здесь. Датчик ПКВ — полярный прибор — при нарушении проводки следует подключать соблюдая полярность. В «обратном» включении двигатель не заведется.
Датчик положения коленчатого вала (ДКП)
Общее описание
Датчик ДПКВ, без которого работа системы впрыска топлива невозможна. Дефекты в ДПКВ неизбежно приводят к отказу двигателя, и машина не заводится. Датчик положения коленчатого вала (ДКП) представляет собой электромагнитный датчик, с помощью которого система впрыска топлива осуществляет синхронизацию работы топливных форсунок и системы зажигания. Датчик СКР посылает сигнал о частоте вращения и положении коленчатого вала на бортовой контроллер. Этот сигнал представляет собой серию повторяющихся импульсов электрического напряжения, генерируемых датчиком при вращении коленчатого вала. На основе этих импульсов бортовой контроллер управляет топливными форсунками и системой зажигания.
Внешний вид
Типовой датчик СКР показан на рис.1.
Рис. 1
Принцип работы пары шестерня коленчатого вала – датчик положения коленчатого вала
Датчик положения коленчатого вала расположен на консоли к зубчатому колесу коленчатого вала.
Рис. 2 Рис. 3
Воздушный зазор расположен между датчиком и зубчатым колесом. Этот зазор должен составлять примерно 1 мм ± 0,4 мм и достигается подбором соответствующих шайб (рис. 2 и рис. 3).
Зубчатое колесо коленчатого вала изготавливается в виде специального диска, который обычно имеет 58 зубьев на каждые 6 градусов. Отсутствуют два зубца, которые используются для генерации импульса синхронизации (рис. 2 и рис. 3). Вращение коленчатого вала вызывает изменение магнитного поля датчика и, таким образом, создает импульсы напряжения. Через синхронизацию импульсов от датчика CKP бортовой контроллер определяет положение и скорость коленчатого вала и рассчитывает точный момент работы топливных форсунок и точный момент для образования искры. Начало 20-го зуба (после отсутствующих) зубчатого колеса совпадает с верхней мертвой точкой (ВМТ) первого и четвертого цилиндров.
Зубчатое колесо может быть литым, неметаллическим или демпферным (с резиновой изоляцией). За время эксплуатации автомобиля износа неметаллической шестерни не наблюдалось. Единственное, за чем стоит следить, так это за недопущением попадания мелких частиц и грязи между зубами. Если зубчатое колесо с демпфером, то его состояние следует контролировать на предмет повреждения демпфера, так как это может привести к проблемам с двигателем. При ремонте следует соблюдать осторожность, чтобы не допустить деформации зубчатого колеса, так как это может привести к поломке двигателя. Визуально наблюдать за зубчатым колесом можно со стороны правого переднего колеса, как показано на рис. 4.
Рис. 4
Используемые типы датчиков
СКР делятся на два типа:
- Индуктивные
- Эффект датчика Холла
В индуктивных чувствительный элемент имеет сердечник намагничивания и обмотку из медного проводника, закрепленную на изолированной катушке.
Датчики Холла используют «эффект Холла», выражающий влияние магнитного поля на полупроводниковый датчик.
Типичные признаки неисправности CKP и зубчатого колеса коленчатого вала
В случае выхода из строя CKP или шестерни коленчатого вала бортовой контроллер фиксирует неисправность и включает контрольную лампу «CHECK ENGINE». К неисправностям этих элементов можно отнести следующие признаки:
- неустойчивый холостой ход
- самопроизвольное повышение и понижение оборотов двигателя;
- остановка двигателя;
- двигатель не заводится;
- плохая работа двигателя;
- стук при разгоне;
- Пропуски зажигания в двигателе.
На рис.5 и рис.6 показано зубчатое колесо коленчатого вала с поврежденным демпфером. Эта неисправность делает невозможной правильную синхронизацию фаз впрыска и зажигания, так как внутренняя часть смещена к зубчатому колесу и, следовательно, фазы впрыска и зажигания сдвинуты друг относительно друга.
Рис. 5 Рис. 6
Порядок проверки состояния СКР
- Выполните внешний визуальный осмотр CKP и зубчатого колеса коленчатого вала.
- Проверить жгут CKP на предмет коррозии и повреждений.
- Убедитесь, что штифты жгутов надежно закреплены на своих местах и имеется хороший электрический контакт.
- Убедитесь, что воздушный зазор между зубчатым колесом и датчиком положения коленчатого вала находится в допустимых пределах.
- Отсоедините жгут датчика.
- Измерить омметром активное сопротивление между клеммами ДКП. Проверьте по базе данных, какое должно быть значение измеренного сопротивления датчика для соответствующей марки и модели автомобиля. Если показания показывают чрезвычайно высокое сопротивление, это означает, что в датчике имеется обрыв. Нулевая или близкая к нулю индикация означает короткое замыкание в катушке.
ПРИМЕЧАНИЕ. Независимо от того, находится ли измеренное сопротивление в допустимых пределах, это не может рассматриваться как свидетельство того, что CKP сможет выдавать правильный сигнал.
Проверьте экранированный кабель CKP:
- CKP может иметь экранированный кабель (не во всех случаях). Разденьте муфту жгута.
- Подключить один из щупов омметра к одному из выводов СКР (1 или 2).
- Подсоедините другой зонд к клемме, соответствующей экрану. Чтение должно склоняться к бесконечному сопротивлению.
- Переместите зонд с клеммы экрана и подключите его к земле. Показания должны стремиться к бесконечности.
Примечание. В некоторых системах экранирующий кабель CKP соединен с кабелем обратной связи CKP с землей. В этом случае омметр покажет короткое замыкание, что является нормальным для данной системы . Исследуйте электрическую цепь тестируемой системы, чтобы определить, как именно подключен CKP. - Вставьте разъем датчика.
Измерения осциллографом
— Датчик индуктивного типа —
Активный конец измерительного щупа подключите к одному из выводов CKP, а другой конец к земле. Вы увидите картину, как на рис. 7 — при прокручивании двигателя и на рис. 8 — при работе двигателя на холостом ходу.
Рис. 7
Рис. 8
Обратите внимание на амплитуды электрических импульсов при прокручивании коленчатого вала двигателя и при работе двигателя на холостом ходу. В первом случае амплитуда сигнала будет значительно ниже.
Таким образом можно определить работоспособность ДПКВ, а также износ зубчатого колеса коленчатого вала. Пример износа зубчатого колеса показан на рис. 10. На рис.11 показан высокий износ. В этом случае необходимо заменить шестерню коленчатого вала.
Рис. 10
Рис. 11
ПРИМЕЧАНИЕ: CKP является полярным датчиком и перестановка сигнальных клемм «Плюс» и «Минус» равносильна неисправности.
— Датчик Холла —
Картина, которую вы должны наблюдать в этом случае, выглядит следующим образом (рис. 12).
Рис. 12
Продолжительный импульс отмечает синхронизирующий импульс, а каждый другой показывает зуб, проходящий мимо датчика.
Сервисные решения: сценарий «CKP»
Автор: Владимир Постоловский, Перевод Олле Гладсо, инструктора Технического и муниципального колледжа Риверленд Альберт Ли, Миннесота
Сигнал положения или скорости вращения датчика положения коленчатого вала ( CKP) содержит много информации о двигателе. Когда двигатель работает, цилиндры двигателя нажимают на шейку коленчатого вала.
Вот почему коленчатый вал кратковременно ускоряется после верхней мертвой точки (ВМТ) в такте расширения (или сгорания). Если бы топливо не воспламенялось в цилиндре, ускорения не было бы.
Вместо этого коленчатый вал замедлится. Таким образом, вклад мощности от каждого цилиндра можно определить, наблюдая за ускорением и замедлением коленчатого вала.
Даже если блок управления двигателем постоянно регулирует скорость оборотов двигателя на холостом ходу, чтобы поддерживать скорость в заданном диапазоне, разгон и торможение от цилиндров двигателя присутствуют.
Сигнал датчика CKP вместе с сигналом зажигания от цилиндра ГРМ (обычно цилиндр №1) содержит информацию о значительном количестве параметров двигателя.
Анализ этих сигналов позволяет:
оценивать статическую и динамическую компрессию для каждого цилиндра;
выявления неисправностей в системе зажигания;
оценить состояние форсунок;
получить информацию об угле опережения зажигания;
определение характеристик вращения маховика; и
определить отсутствующие и погнутые зубья маховика.
Сигнал датчика CKP вместе с сигналом опережения зажигания можно записать с помощью USB-автоскопа (или осциллографа) и проанализировать с помощью скрипта «CKP».
Скрипт CKP способен анализировать сигнал датчика скорости/положения коленчатого вала двигателя, работающего в паре с маховиками с любым количеством зубьев и с зазорами или без них типа 60-2, 36-1, 60-2- 2, 36-2-2-2 и так далее.
Основным требованием является жесткое крепление маховика или гибкой пластины к коленчатому валу. Цепные или ременные крепления маховика дадут плохой результат, так как в этом случае происходит значительное сглаживание сигнала от коленчатого вала.
Скрипту CKP требуется минимум информации для анализа сигнал датчика коленвала, сигнал зажигания от цилиндра ГРМ, количество цилиндров в двигателе, порядок включения и начальный угол опережения зажигания. Подробное описание результатов анализа, отображаемых во вкладках скрипта отчета «CSS», приведено ниже.
Вкладка «Отчет» (Кадр 1)
В первой строке данной вкладки указано название и версия анализатора сценариев. Это помогает убедиться, что используется последняя версия программного обеспечения.
Затем отображаются результаты анализа, выполненного этим скриптом:
Количество зубьев на один оборот коленчатого вала:
Формула привода маховика, который работает совместно с датчиком частоты вращения/CKP.
Например, «60-2» означает, что диск имеет 60 зубьев, из которых два отсутствуют.
Примечание: Ford часто использует маховики с формулой 36-1; новый дизель Volkswagen 60-2-2, Subaru 36-2-2-2.
Если сигнал от ДКП записывается с помощью зубчатого венца маховика, зазоров не будет и зубьев обычно будет 136.
Отклонение при определении числа зубьев:
Величина отклонения формулы расчета маховика.
ВМТ первого цилиндра совпадает с номером зуба: Это число зубьев от маркерного зуба. Этот зуб может располагаться прямо напротив датчика скорости/CKP, когда поршень синхронизирующего цилиндра находится в ВМТ.
ВМТ также может указываться как количество зубов, удаленных от отсутствующего зуба (сигнал).
Если на тормозном колесе коленчатого вала обнаружен отсутствующий зуб, то приложение рассчитывает количество зубьев от отсутствующего зуба до ВМТ 0° цилиндра ГРМ.
Если отсутствуют зубья, то первым зубом будет зуб, расположенный под углом 180° к датчику положения коленчатого вала, когда поршень первого цилиндра находится в ВМТ.
Следует отметить, что точность количества зубьев по прохождению зубьев до ВМТ зависит от точности заданного пользователем начального угла опережения зажигания. Также на этой вкладке находятся советы для диагноста, а также сообщения об ошибках, которые могут отображаться.
Вкладка «Эффективность (ускорение)»
(кадры 2-6)
В нашем первом наборе кадров (2-6) мы видим, как серая кривая показывает мгновенную частоту вращения коленчатого вала.
Цветные кривые показывают эффективность каждого цилиндра двигателя. Чем выше кривая ускорения, тем мощнее цилиндр. Цилиндр, который вообще не работает, создает замедление коленчатого вала, в результате чего форма волны находится ниже черной горизонтальной оси.
Тестовый автомобиль: Audi A6 1995 V6 2.6L :
Симптом: Попеременное отсоединение форсунки для цилиндра № 4 и цилиндра № 5.
Во время записи двигатель изначально работал на холостом ходу. Электрический разъем форсунки четвертого цилиндра был отсоединен, а затем снова подсоединен. Затем такая же процедура применялась для цилиндра № 5.
Заметили интересную особенность в алгоритме работы блока управления двигателем. После отключения форсунки двигатель начал трясти.
В результате ЭБУ моментально реагировал на уменьшение мгновенной частоты вращения коленчатого вала, и для сохранения заданных оборотов двигателя на холостом ходу увеличивал КПД следующего по порядку зажигания цилиндра за счет опережения опережения зажигания. Во время записи дроссельная заслонка плавно открывалась.
Эти графики показывают, что вклад мощности от каждого цилиндра увеличивался при открытии дроссельной заслонки. Затем дроссельная заслонка была резко закрыта.
Вклад мощности от каждого цилиндра упал ниже нулевой линии. После этого двигатель продолжал работать на холостых оборотах.
Затем резко открылась дроссельная заслонка. Графики также показывают значительное увеличение вклада мощности от каждого цилиндра. Как только обороты двигателя достигли 3000 об/мин, зажигание выключили, но дроссельную заслонку удерживают в полностью открытом положении до полной остановки двигателя.
Как только выключается зажигание, начинает снижаться частота вращения коленчатого вала.
В этот момент двигатель работает как воздушный насос. Двигатель всасывает воздух, сжимает его, а затем выбрасывает. (Зажигание отсутствует и обычно нет топлива, так как зажигание выключено.)
В результате сжатый воздух в цилиндре (после прохождения поршнем ВМТ на такте сжатия) действует как пружина и давит на шейку коленчатого вала.
Чем больше воздуха было сжато в цилиндре, тем мощнее «толчок». Расчетное ускорение коленчатого вала на этом этапе зависит только от механической работы двигателя и не зависит от состояния системы зажигания или состояния системы подачи топлива.
Другой пример был записан на карбюраторный двигатель ВАЗ 2109 1,5л .
Эффективность цилиндра №3 снизилась из-за утечки. Кривая ускорения третьего цилиндра на холостом ходу расположена ниже черной нулевой линии ( кадр 5 ).
Это свидетельствует о значительном снижении КПД данного цилиндра. Двигатель имеет пропуски зажигания. Другими словами, двигатель трясется.
Интересно, что при открытии дроссельной заслонки КПД этого цилиндра увеличивается. Однако по сравнению с другими цилиндрами он имеет более низкий КПД.
По этому графику фазы разгона (поскольку обороты двигателя при полностью открытой дроссельной заслонке и при выключенном зажигании замедляются) видно, что по мере снижения оборотов кривая ускорения третьего цилиндра отклоняется больше и более вниз от кривой ускорения всех других цилиндров.
Этот символ диаграммы отклонения указывает на пониженную рабочую компрессию в данном цилиндре.
Измерение компрессии с помощью манометра обычным способом с использованием пускового устройства дало следующие результаты: цилиндр 1 = 12 бар, цилиндр 2 = 14 бар, цилиндр 3 = 7 бар и цилиндр 4 = 12 бар (174, 203, 102, 174 psi соответственно).
Примечание: Двигатель в этом примере не оснащен датчиком положения коленчатого вала. В данном случае сигнал регистрировался с помощью индуктивного датчика (датчика Lx), установленного вблизи зубьев маховика, который входит в зацепление с шестерней стартера при пуске двигателя. Датчики индуктивного типа (часто называемые переменным магнитным сопротивлением или VRS) часто используются в качестве датчиков коленчатого вала, распределительного вала и скорости вращения колеса.
(Можно также использовать датчик оптического типа.) Ранее мы заявляли, что скрипт «CKP» способен записывать и анализировать сигнал практически любого датчика вращения, а также определять любую скорость любого маховика, пока на нем жестко закреплен на коленчатом валу диагностируемого двигателя.
На последней фазе графика разгона ( Кадр 6 ) учитывается падение оборотов двигателя при полностью открытой дроссельной заслонке, при выключенном зажигании. Вклад одних цилиндров меньше, чем других во всем диапазоне оборотов двигателя. Это свидетельствует либо о недостаточном наполнении цилиндра воздухом, либо о том, что степень сжатия в цилиндре снижена (возможно, из-за погнутого штока).
Таким образом, скрипт «CKP» может точно определить неисправности в механической части двигателя. Поскольку топливо и/или искра исключены из уравнения, изменения момента зажигания и подачи топлива не влияют на измерение.
Аналогично, сценарий «CKP» может идентифицировать периодические и трудно диагностируемые механические проблемы, такие как клапаны, которые периодически заедают в открытом или закрытом положении. Вклад цилиндра в мощность зависит от качества и количества воздушно-топливной смеси, качества искры зажигания, точности опережения зажигания, а также механических условий, влияющих на компрессию двигателя (клапаны, погнутые штоки).
Неисправности системы зажигания могут быть эффективно диагностированы, потому что этот тип неисправности будет влиять на работу цилиндра при определенных условиях и никак не влияет на другие условия.
Неисправная катушка зажигания
Кривая ускорения, относящаяся к неисправной катушке зажигания, выделит затронутые цилиндры.
Отказ системы зажигания, как правило, приводит к тому, что затронутые цилиндры вообще не вносят вклад в мощность. Частичное снижение вклада мощности обычно не наблюдается при отказах системы зажигания.
Возможны некоторые исключения из этого правила (например, слабая искра или искра в неподходящее время). Неисправность системы зажигания может привести к снижению компрессии, если ее не остановить в течение определенного периода времени. (На кольцевое уплотнение может повлиять снижение давления в цилиндре, вызванное недостаточным сгоранием.)
Диагностика загрязненных форсунок
На холостом ходу этот двигатель имеет явные пропуски зажигания. Последняя фаза графиков разгона (во время торможения двигателя из-за выключения зажигания) указывает на то, что двигатель механически исправен. Наполнение цилиндра и компрессия нормальные и одинаковые для всех цилиндров.
КПД цилиндров неодинаков во время торможения, но ни один цилиндр не дает пропусков зажигания полностью. Наиболее вероятной причиной этого типа проблем без каких-либо явных механических проблем является подача топлива. Измерение расхода форсунок на испытательном стенде дало следующие результаты: 64 мл, 80 мл, 40 мл, 60 мл.
В заключение, если последняя фаза графика (при выключенном зажигании) не указывает на проблему, а график при зажигании указывает на частичную потерю вклада цилиндра (но не полностью), наиболее вероятной причиной является проблема с подачей топлива, например неисправная или забитая форсунка. Этот метод может обнаружить частично забитую форсунку до того, как это окажет существенное влияние на эффективность двигателя. Это избавляет техника от необходимости демонтировать форсунки для проверки их расхода без уважительной причины.
Следует отметить, что если двигатель оснащен двумя свечами зажигания на цилиндр и искра есть только на одной из свечей зажигания, вклад мощности от этого цилиндра может быть уменьшен на 10-20%.
Сценарий «CKP» может служить хорошим инструментом для диагностики периодических пропусков зажигания и/или неравномерной работы двигателя. Сценарий сам по себе не может определить, является ли причиной проблема с зажиганием или подачей топлива, если цилиндр вообще не вносит вклад в мощность.
Однако, если мы подливаем топливо в двигатель во время его работы и вклад цилиндра увеличивается на неисправном цилиндре, причиной пропусков зажигания является недостаток топлива, например, из-за забитой форсунки.
Вкладка «Момент зажигания до ВМТ1 (Относительный угол опережения зажигания)» (Кадры 7 и 8)
Скрипт может рассчитать угол опережения зажигания и отобразить результат в графическом виде. Кадры 7 и 8 относятся к результату анализа сценария опережения зажигания. Результат показывает изменения синхронизации, вызванные оборотами двигателя и нагрузкой.
Испытательный автомобиль: Renault Laguna:
Графики показывают, что момент зажигания больше опережает при средней нагрузке на двигатель по мере увеличения оборотов (зеленая кривая), чем при большой нагрузке.
Следующий пример записан с бензиновым двигателем ВАЗ 2108.
В этом двигателе используется карбюратор и распределитель с механическим вакуумом и центробежным опережением.
График показывает отсутствие коррекции угла опережения зажигания при увеличении оборотов двигателя.
Центробежный механизм опережения зажигания не работает. Однако изменение синхронизации при манипулировании дроссельной заслонкой показывает, что опережение вакуума работает так, как предполагалось. Этот скрипт в чем-то похож на скрипт «Px». Сценарий «Px» вычисляет абсолютное значение момента зажигания, тогда как сценарий «CKP»
вычисляет относительное значение. Это означает, что когда сценарий «Px» вычисляет угол опережения зажигания как 10°, тогда угол опережения зажигания составляет это число градусов от ВМТ. Если сценарий «CKP» отображает 10°, то угол опережения зажигания отклоняется на это число градусов от начального момента, который был установлен.
По этой причине сценарий «CKP» не может использоваться для установки начального угла опережения зажигания. На графике область нуля градусов выделена серым цветом, чтобы показать, что это не абсолютное измерение.
Даже если график или диаграмма дает только относительные значения, можно легко увидеть проблемы опережения синхронизации, вызванные неисправными механизмами управления синхронизацией (электронными или механическими).
Вкладка «Зубчатый диск к ВМТ1 (Маховик)» ( Рамы 9 и 10 )
Скрипт «CKP» автоматически определяет количество зубьев и зазоров на маховике и их расположение относительно ВМТ маховика синхронизирующего цилиндра и создает диаграммы, показывающие характеристики маховика и датчика положения коленчатого вала.
Один пример записан с двигателя ВАЗ 2107, оснащенного впрыском топлива. Черная диаграмма (кадр 9) показывает наличие и/или отсутствие зубов. В этом случае отсутствуют два зуба в области 120° до ВМТ.
Красная диаграмма показывает отклонение между зубьями. Если расстояние между зубьями меняется (например, из-за погнутого или сломанного зуба), будет показано отклонение.
Также здесь будет отображаться погнутый или иным образом деформированный маховик. Если вариация составляет более 2%, красная диаграмма будет находиться за пределами розовой области.
На некоторых двигателях маховик может быть специально сконструирован с отсутствующим одним или несколькими зубьями. Цель отсутствующего зуба или зубьев состоит в том, чтобы создать ссылку для компьютера управления двигателем. ВМТ цилиндра ГРМ может быть показана, например, с отсутствующим зубом. В 1-, 2- и 4-цилиндровых двигателях красная диаграмма будет иметь циклическое, почти синусоидальное изменение. Это связано с тем, что все цилиндры будут находиться в мертвой точке одновременно.
Например, в 4-цилиндровом двигателе, когда цилиндры №1 и №4 находятся в ВМТ, цилиндры №2 и №3 будут в НМТ (нижняя мертвая точка).
В этот момент времени вся кинетическая энергия накапливается в маховике и коленчатом валу. Из-за этого даже без нагрузки на двигатель вращение коленчатого вала неравномерно и изменение скорости распознается скриптом «CKP» как небольшое отклонение положения зубьев.
Для 3-, 5- и 6-цилиндровых двигателей и более характер вращения коленчатого вала более равномерный. Зеленая диаграмма показывает уровень сигнала от датчика CKP. Амплитуда выходного сигнала этого датчика, в том числе, зависит от скорости вращения коленчатого вала.
Алгоритм расчета уровня сигнала на данном графике разработан таким образом, что расчетный уровень сигнала не зависит от скорости вращения коленчатого вала. Таким образом, расчетная мощность сигнала зависит от самого датчика, маховика и расстояния между датчиком и зубьями маховика.
Если зеленая диаграмма расположена ниже светло-зеленой оси, воздушный зазор между датчиком и маховиком может быть слишком большим. Кроме того, на зеленой диаграмме четко показано изменение скорости маховика.
Следующий кадр показывает маховик с более выраженными проблемами, чем в предыдущем примере.
Этот пример был записан для автомобиля Alfa Romeo 146 с двухконтурным двигателем объемом 1,4 л. Точность соосности зубьев низкая и шаг зубьев «гуляет» в пределах ±2%. Отсутствующие зубы расположены ближе к ВМТ, чем в предыдущем примере.
Следует отметить, что диаграммы во вкладке «Маховик» показывают только постоянные неисправности, связанные с конкретным маховиком. Если сигнал с датчика CKP будет периодически искажаться, это отразится только на графике мгновенных оборотов двигателя во вкладке «Разгон» в виде искажений этого графика.
Искажения сигнала датчика скорости/положения из-за ненадежных электрических соединений.
Диагностика дизеля
Скрипт «CKP» применим для диагностики дизеля, и актуален тем, что не все системы управления дизелями позволяют выводить через сканер информацию о работоспособности каждого цилиндра. И те, которые позволяют вам видеть такую информацию, в большинстве случаев будут отображать только данные о значениях подачи топлива по цилиндрам на холостом ходу или на более низких оборотах. Это связано с тем, что компьютеру требуется относительно стабильная скорость вращения для выполнения этого типа теста.
При работе с дизельным двигателем необходимо использовать другие средства синхронизации с цилиндром ГРМ, так как нет свечи зажигания, от которой можно было бы получить сигнал синхронизации. Если на топливораспределительной рампе есть датчик давления, этот датчик можно использовать для синхронизации.
Если датчик встроен, например, в форсунку третьего цилиндра, начните с цилиндра №3 в порядке зажигания. Итак, для четырехцилиндрового двигателя с порядком работы 1-3-4-2 используйте 3-4-2-1. Запустите порядок зажигания с номером цилиндра, который используется для синхронизации.
Для систем впрыска дизельного топлива, использующих систему Common Rail, и для систем со встроенными форсунками можно использовать датчик тока с чувствительностью 100 мВ/А. Закрепите зонд вокруг провода форсунки. Это должен быть провод, используемый для управления электромагнитным или пьезоэлектрическим штифтом форсунки.
Сценарий «CKP» автоматически синхронизируется с сигналом основного впрыска, игнорируя события до и после впрыска топлива, поскольку продолжительность основного впрыска топлива намного больше, чем продолжительность других событий впрыска.