В наше время очень актуально увеличивать скоростные показатели своего автомобиля. Наиболее распространённые варианты это установка компрессора или турбины: что лучше пробуем разобраться в этой статье.
Но для начала разберёмся с принципами работы, плюсами и минусами данных улучшений для двигателя.
Существуют объёмные нагнетатели, они подают воздух в двигатель равными порциями независимо от скорости, что даёт преимущества на низких оборотах.
Нагнетатель
Компрессоры внешнего сжатия, очень хорошо подходят там, где требуется много воздуха на низких оборотах. Минус, это то, что давления он сам не создаёт и может создать обратный поток. Его сжатие имеет довольно низкий КПД.
Компрессоры внутреннего сжатия довольно хороши на высоких оборотах и имеет намного меньший эффект обратного потока. Из-за высоких требований к изготовлению имеют высокую цену, а при перегреве имеют шанс заклинивания.
Динамические нагнетатели работают при достижении, определённых оборотов, но зато с большой эффективностью.
Компрессоры работают от коленчатого вала двигателя с помощью дополнительного привода. И поэтому обороты компрессора зависят от оборотов двигателя.
Видео: устройство и принцип работы винтового компрессора.
Так, переходим к турбо-наддуву, чтобы определиться, что лучше компрессор или турбина.
Турбина работает за счёт энергии отработавших газов. Турбокомпрессор — это комбинирование турбины и центробежного компрессора.
Выхлопные газы с большей скоростью вращают колесо турбины на валу, а в другом конце вала находится центробежный насос, который нагнетает больше воздуха в цилиндры.
Чтобы охладить сжатый турбиной воздух, используют дополнительный радиатор — интеркулер.
Турбина хорошо подходит для обогащения кислородом топливной смеси. Но всё же имеет свои минусы:
В наше время уже имеются турбины, отлично работающие на высоких и на низких оборотах двигателя, но и цена у них соответственно приличная. При выборе компрессора или турбины, многие отдают предпочтение турбо-наддуву, независимо от цены.
Что же лучше — компрессор или турбина
С компрессором намного проще при установке и эксплуатации. Работает он на низких и на высоких оборотах. Также он не требует больших усилий или затрат при ремонте, так как в отличие от турбины, компрессор независимый агрегат.
Чтобы настроить турбину, понадобится хороший специалист для настройки под топливную смесь. А что бы настроить компрессор не нужно больших усилий, или каких либо профессиональных знаний, всё настраивается топливными жиклёрами.
Помимо всего, турбо-наддув довольно сильно нагревается, из-за своей особенности, развивать очень высокие обороты.
У приводных нагнетателей (компрессор), давление не зависит от оборотов и поэтому автомобиль очень чётко реагирует на нажатие педали газа, а это довольно ценное качество, когда машина разгоняется. Ещё они очень просты в своей конструкции.
Но есть недостатки и у компрессоров, моторы оборудованные нагнетателями с механическим приводом имеют большой расход топлива и меньший КПД, в сравнении с турбиной.
Также имеются большие различия в цене. Любая мощная турбина популярного производителя будет иметь большую стоимость и будет дорога в обслуживании. И к тому же требуется для её установки, немало дополнительного оборудования. Компрессору же, нужен только дополнительный привод.
Видео: как работает турбина и компрессор.
В любом случае решать вам, что лучше компрессор или турбина, взвесьте все положительные и отрицательные качества, и сделайте правильное решение!
Загрузка...avto-i-avto.ru
Многие автолюбители очень часто задаются вопросом касательно того, какое решение окажется в итоге лучшим-турбина или компрессор? Такой вопрос может возникнуть как при выборе нового автомобиля, так и при покупке машины б/у. Не менее часто с задачей такого выбора сталкиваются и любители тюнинга.
Стоит отметить в самом начале, что оба устройства одновременно имеют как ряд определенных преимуществ, так и недостатков. Все это однозначно влияет на конечный выбор. Отличия указанных систем заключаются не только во внешнем виде, форме, весе, способе крепления на двигателе и габаритах, но и в главных принципах работы. Не всегда однозначно просто выявить все главные критерии при выборе того или иного устройства. Давайте разбираться в этом вопросе более подробно.
Читайте в этой статье
Турбина представляет собой ротационный двигатель, особенностью которого является его постоянная и беспрерывная работа. Ранние попытки создать турбину предпринимались еще на заре развития человечества, но качественная реализация стала возможна только в 19 веке. Эпоха развития машиностроения позволила создать первые турбины, которые были паровыми. Турбина осуществляет преобразование кинетической энергии пара, газов или воды в полезную механическую работу. Турбины нашли свое применение во многих устройствах, а также стали неотъемлемой частью различных видов транспорта. Это касается как наземных средств передвижения, так и морских судов наряду с воздушными летательными аппаратами.
Если говорить о компрессоре, то конструктивно устройство может иметь разные модификации и успешно применяется во многих промышленных областях. Главной его задачей становится сжатие и подача газа под давлением.
Дальнейшее развитие технологий привело к появлению своеобразного симбиоза турбины и компрессора. Разработка турбокомпрессора позволила значительно повысить КПД и мощность двигателей.
Как известно, получить максимальную мощность мотора без увеличения его объема можно при помощи принудительного нагнетания в камеру сгорания большего количества воздуха. Остается только подать больше топлива и мощность силового агрегата существенно возрастет. Как показывают приведенные в различных источниках данные, в среднем компрессор обеспечивает прибавку мощности до 50% и обеспечивает около 30% прироста крутящего момента.
С этой задачей успешно и по отдельности может справиться как полностью механический, так и турбокомпрессор. Но какое из этих решений лучше? Давайте сравним механический компрессор и турбокомпрессор.
Читайте также
Разница между турбиной и компрессором наглядно продемонстрирована в тех отличиях, которые имеются у ряда устройств подобного типа.
Автовладелец вполне может приобрести турбины новейшего поколения, которые лишены в большей мере такого недостатка и не так сильно зависят от оборотов ДВС, но и сумма итоговых затрат после покупки и доработок будет внушительной. Компрессор по своей производительности не зависит от оборотов машины и выходит на наддув при низких оборотах, обеспечивая при этом прогнозируемую мощность при любой скорости.
Как вы уже поняли из всего вышесказанного, установка любого типа компрессора является не самой простой задачей. Перед установкой стоит тщательно взвесить все «за» и «против» относительно каждого из доступных решений по обеспечению наддува, а также просчитать необходимые итоговые показатели мощности в соответствии с поставленной задачей.
Сегодня же оптимальным можно считать систему двойного наддува, когда на одном моторе задействованы механический компрессор и турбонаддув одновременно. При этом устройства работают на разных оборотах, обеспечивая максимум эластичности и комфорта в широком диапазоне оборотов двигателя.
Читайте также
krutimotor.ru
Полезно знать
В развитии автомобильного производства всегда существуют два основных вопроса, которые приходится решать всем производителям двигателей для автомобилей:• Уменьшение расхода топлива, и создание «малозатратного» автомобиля.• Увеличение мощности существующего двигателя без полной переработки конструкции.Если решение первого вопроса требует применения инновационных современных способов, то для решения второй проблемы существуют другие способы.В первую очередь, следует учитывать, что только двигатель с большим объемом может дать существенный прирост мощности. Если же двигатель имеет не очень большой объем, то и получить значительный прирост мощности невозможно.
Однако существует один способ, который позволяет получить увеличение мощности двигателя без его перестройки. Рассмотрим некоторые факторы, которые влияют на увеличение мощности двигателя:1. Правильная работа всех систем двигателя автомобиля.2. Качественное топливо.3. Оптимальные режимы работы двигателя.4. Необходимый запас прочности двигателя, который позволяет увеличить мощность.
Самый простой путь увеличения мощности двигателя – это полное сгорание топлива. Если обратиться к исследованиям выхлопа автомобиля, то известно, что довольно большое количество топлива не сгорает в двигателе, а выбрасывается наружу вместе с другими отработанными газами. Вот это положение вещей и требовалось изменить.
Компрессор в автомобиле используют для того, чтобы с его помощью увеличить поток воздуха, который подается в камеру сгорания. Рассмотрим выгоды процесса, который происходит в двигателе с компрессором:• Топливо полностью сгорает, и выдает больше мощности.• Расход топлива уменьшается, значит, увеличение мощности таким способом ведет к удешевлению работы двигателя.• Полное сгорание топлива позволяет в несколько раз уменьшить выброс неотработанных вредных веществ в атмосферу.
Конечно, применение компрессора не всегда может быть возможным. Однако именно компрессор позволяет получить быстрые результаты, без больших затрат. Установка компрессора не требует очень уж больших материальных затрат и окупаемость очень быстрая. Именно такой способ увеличения мощности помогает созданию мощного, но экономичного двигателя. Не стоит упускать из виду и экологическую составляющую. В современном мире очень большое количество автомобилей и именно экологичность может стать главным фактором в дальнейшем развитии ДВС.
avtolab.in.ua
Предисловие
Устройство поршневого компрессора в зависимости от назначения и исполнения может быть разным. Отличия между типами и моделями этого вида нагнетательного оборудования порой просто колоссальны. Однако принцип работы всех поршневых компрессоров одинаков и похож на схему функционирования двигателя внутреннего сгорания.
Основной узел поршневого нагнетательного оборудования – это непосредственно сам компрессор. В нем, собственно, и происходит сжатие среды, на работу с которой рассчитан агрегат. В компрессорах холодильников, например, это хладагент, а в различных нагнетателях воздуха – какой-либо газ (чаще всего воздух). Ниже и далее пойдет речь именно о последнем типе поршневого оборудования – о воздушных компрессорах.
Основной узел поршневого нагнетательного оборудования
Самый простой по конструкции компрессор – одноцилиндровый. В нем те же основные узлы, что и в двигателе внутреннего сгорания (ДВС). Это рабочий цилиндр, находящийся в нем поршень, закрепленный на шатуне, и клапаны, которые называются всасывающим и нагнетательным, в отличие от впускного и выпускного ДВС. Также есть коленчатый вал, к которому подсоединен шатун. В некоторых компрессорах, например, маломощных автомобильных для подкачки шин вместо кривошипно-коленчатого привода поршня стоит эксцентриковый.
Однако в ДВС поршень приводит через шатун во вращение коленвал. В компрессоре все наоборот. Вращающийся коленвал через шатун приводит в движение поршень. Последний, двигаясь возвратно-поступательно, сначала втягивает воздух в цилиндр, а затем сжимает и выталкивает из него.
Устройство поршневого компрессора
Первый цикл работы компрессора происходит при движении поршня в направлении от крышки цилиндра, в которой расположены клапаны. При этом внутренний объем цилиндра в этой его части (между стенками, крышкой с клапанами и поршнем) увеличивается. За счет этого происходит разряжение, преодолевающее жесткость пружины всасывающего клапана и открывающее его. Через него в цилиндр втягивается воздух. Нагнетательный клапан все это время плотно закрыт.
Когда поршень начинает двигаться в направлении крышки с клапанами, воздух начинает сжиматься, так как объем цилиндра в этой его части уменьшается. Под действием создаваемого при этом давления, превышающего атмосферное, и собственной пружины всасывающий клапан закрывается. Когда давление превысит значение, на которое рассчитана жесткость пружины нагнетательного клапана, тот открывается и выпускает из цилиндра воздух. Последний выходит под давлением, которое называется рабочим. Оно, как видно из описания работы компрессора, задается жесткостью пружины нагнетательного клапана.
Кривошипно-коленчатому валу или эксцентриковому приводу компрессора сообщает вращение двигатель агрегата – электрический или внутреннего сгорания (дизельный либо бензиновый). По взаимному расположению мотора и компрессорной головки агрегаты делятся на 2 типа:
Коаксиальное устройство
Компрессорные агрегаты, от которых требуется поддержание на их выходе постоянного давления и равномерного расхода воздуха, оснащаются накопителем сжатого газа – ресивером. Он представляет собой прочную толстостенную стальную емкость. В таких агрегатах воздух с компрессорной головки сначала подается в ресивер, где накапливается, а уже из него расходуется по назначению.
Поршневые агрегаты выпускают одно-, два- и многоцилиндровыми. Последние 2 типа по расположению цилиндров делят на V-, W-образные и рядные. Исполнение двух- и многоцилиндровых по осуществлению процесса сжатия бывает одноступенчатое и многоступенчатое (чаще всего 2-ступенчатое). Выбор нужного компрессора делают, исходя из предполагаемых работ с ним.
Как работает 1-цилиндровый, описано выше. Чтобы понять принцип функционирование остальных типов, достаточно рассмотреть 2-цилиндровый агрегат. В одноступенчатом компрессоре цилиндры (поршни) одинакового размера. Работают они в противофазе, поочередно всасывая, сжимая, а затем вытесняя воздух в линию нагнетания.
Двухцилиндровый агрегат
В 2-ступенчатом агрегате цилиндры разного размера. Наружный воздух всасывается имеющим больший диаметр. Он называется цилиндром 1-ой ступени или, по-другому, низкого давления. В нем воздух сжимается до какого-то промежуточного значения. Затем газ подается в межступенчатый охладитель (обычно медная трубка в специальном исполнении), где охлаждается, а потом в цилиндр высокого давления или, по-другому, 2-ой ступени (с поршнем меньшего диаметра). В нем воздух сжимается до максимального рабочего значения давления компрессора.
Размеры обоих цилиндров так подобраны, чтобы в каждом производилась примерно равнозначная работа по сжатию.
Промежуточное охлаждение воздуха необходимо, чтобы обеспечить максимальные КПД работы поршневой группы и давление компрессора. Ведь при сжатии газ нагревается. Вследствие этого он расширяется и начинает занимать больший объем в цилиндре 2-ой ступени. Охладившись в ресивере, воздух уменьшается в объеме, и при этом его давление падает.
Чтобы электрические агрегаты могли работать в автоматическом режиме – сами включаться и выключаться по мере необходимости, на них устанавливают прессостат (реле давления). Он размыкает электрическую цепь питания двигателя при достижении давления в ресивере максимального рабочего компрессора, и последний прекращает нагнетать воздух.
Как только давление в резервуаре снизится до предусмотренной производителем агрегата минимальной величины, прессостат обратно замыкает цепь, запуская электродвигатель. Все компрессоры оснащаются манометрами – для контроля давления на выходе агрегата и/или в ресивере. Последний обязательно оснащается предохранительным клапаном – для сброса избыточного воздуха.
Большинство профессиональных и промышленных агрегатов оборудованы:
На некоторых могут быть осушители воздуха, вентилятор для охлаждения компрессорной головки и другое дополнительное оснащение. Чем сложнее устройство, тем более трудным может оказаться ремонт компрессора.
Оцените статью: Поделитесь с друзьями!nasotke.ru
Турбореактивный двигатель (ТРД) – это наиболее известный и востребованный тип газотурбинных двигателей (ГТД), который широко используется в гражданской и военной авиации. ТРД, как и все остальные виды ГТД, относятся к тепловым машинам, а это значит, что выработанная ими энергия получена в результате сжигания топлива. Именно эти двигатели стали первыми газотурбинными двигателями, которые заменили собой поршневые в авиастроении.
История ТРД берет начало в 30-х годах, когда в СССР и Европе были проведены исследования и созданы первые опытные образцы турбореактивных двигателей для самолетов: отечественные АЛ, немецкий HeS3B, английский W. Вскоре интерес к ним проявили и авиаконструкторы из США и Японии. Первый советский турбореактивный истребитель ЯК-15, оснащенный двигателем РД-10 появился сразу после Второй Мировой Войны – в 1946 году. С тех пор практически все военные самолеты летали именно на реактивных двигателях.
Все модели двигателей семейства ГТД имеют схожее строение, а их работа основывается на вращении турбины, что и дало название всему семейству. Строение турбореактивного двигателя с одной стороны проще, чем у других видов, но с другой имеет ряд особенностей. Итак, ТРД состоит из компрессора, камеры (или нескольких камер) сгорания, турбины и сопла. Другие виды ГТД имеют еще и дополнительные валы, выполняющие определенную полезную работу, но в данном случае их нет, что и упрощает конструкцию, а также снижает вес.
Принцип работы ТРД соответствует принципу работы всех ГТД. Компрессор втягивает воздух, сжимает его и направляет в камеру сгорания. В ней воздух перемешивается с впрыснутым форсунками топливом, образуя топливный заряд, который при сгорании расширяется. Расширенные газы направляются в сторону турбины, вращая ее, а остатки неиспользованной энергии выходят через сужающееся сопло, образуя реактивную тягу, которая и является движущей силой. Турбина, вращаясь, приводит в движение компрессор, связанный с ней механически.
Теперь более подробно о каждой составляющей ТРД. Турбореактивные двигатели отличаются между собой по типу компрессоров, которые в них устанавливаются. Они могут быть осевыми, центробежными или комбинированными. В данной статье будут рассматриваться ТРД с осевым компрессором.
Осевой компрессор представляет собой вал с подвижными дисками, на концах которых закреплены рабочие лопатки, называемый ротором, а между этими дисками находятся неподвижные направляющие лопатки, закрепленные на внутренней стороне корпуса, — статор. Ротор работает, как обычный вентилятор, только лопастей у него больше и скорость вращения выше. Поток воздуха, пройдя через подвижные лопатки, закручивается, и чтобы его выровнять, используется статор. Неподвижные лопатки статора тормозят воздух и придают ему нужный вектор движения, направленный вдоль оси вала. Именно поэтому компрессор и называется осевым.
Каждая пара рабочих и направляющих лопаток формирует одну ступень компрессора. Таких ступеней обычно несколько (их число может достигать 15) и расположены они одна за другой. В результате получается чередование подвижных и неподвижных лопаток, расположенных вдоль вала. Одна ступень увеличивает давление воздуха в незначительной степени, но при прохождении всех их оно достигает нужного значения. Уменьшение скорости на статоре увеличивает давление и температуру, так что на следующую ступень воздух поступает уже сжатым и нагретым. С каждой последующей ступенью давление и температура в компрессоре повышаются. Количество ступеней определяется при проектировании двигателя и зависит от требуемого значения степени сжатия в камере сгорания.
Для получения большего значения величины давления корпус компрессора может постепенно сужаться, что дополнительно увеличивает напор внутри и контролирует осевое направление движения потока. С этой же целью ротор может иметь конусную форму, а в некоторых случаях сечение канала сужается путем комбинирования конусной формы и корпуса, и ротора.
Компрессор может быть одно- или многокаскадным. Первый тип представляет собой ротор и статор с необходимым числом ступеней. Он используется в обычных турбореактивных двигателях. Многокаскадный компрессор – это два и более узла, каждый из которых оснащен своей приводной турбиной. Его использование позволяет более точно и эффективно управлять режимами работы двигателя и настраивать их под определенную нагрузку. Такие компрессоры нашли применение как на обычных, так и на двухконтурных ТРД.
Если сравнивать осевой и цетробежный компрессоры, более эффективным считается первый. КПД осевого компрессора может достигать 90%, к тому же он более легкий и компактный и имеет большую производительность. Именно поэтому авиаконструкторы чаще отдают предпочтение именно ему.
Камера сгорания газотурбинных двигателей в основном представлена 3 типами. Камера сгорания представляющая собой «кольцо», которое охватывает корпус мотора, или же отдельные трубы, называемые жаровыми, а вот гибрид этих двух КС, так называемый трубчато-кольцевая камера сгорания использовалась в переходный момент от трубчатой КС к кольцевой КС и редко где встречается. Поверхность камеры сгорания имеет своеобразную перфорацию для эффективного сжигания топлива и воздушного охлаждения. В ней расположены форсунки, подающие топливо (в самолетах это авиационный керосин). При контакте с сжатым горячим воздухом оно воспламеняется, в результате чего образуются расширенные газы с высоким зарядом энергии.
Трубчатая КС Кольцевая КСОсновная функция камеры сгорания, это подвод тепловой энергии к воздушному потоку, получаемой в результате химической реакции окисления топлива кислородом воздуха, то есть попросту его сгорания. Дополнительная энергия подводимая к потоку, проходящему через камеру сгорания в частности и всецело через двигатель, позволяет уравновесить потери, и разогнать этот поток в сопле с целью получения достаточной тяги для придания движения двигателю и как следствие, летательному аппарату.
Турбина – это «компрессор наоборот»: если лопасти компрессора вращаются, чтобы затягивать воздух в корпус, то лопасти турбины вращаются, потому что на них воздействуют расширенные газы. По своей структуре турбина практически не отличается от компрессора, имея неподвижные лопатки статора и подвижные ротора. Но в ее случае статор находится впереди, а ротор – за ним (сначала поток газов выпрямляется, а затем попадает на рабочие лопатки). Ступеней у турбины меньше, обычно их количество не более 4-х, а то и меньше; есть даже одноступенчатые модели. Работает турбина следующим образом: из камеры сгорания расширенные газы попадают на рабочие лопатки и вращают их. Поскольку основная и единственная задача турбины ТРД – вращение компрессора, ей достаточно небольшого количества ступеней. Излишек энергии, не потраченный на вращение турбинного ротора, в прямом смысле слова «вылетает в трубу», то есть в сопло, обеспечивая реактивную тягу.
Сопла ТРД тоже бывают разными. Они могут иметь переменное сечение, сужаясь к выходу, а могут сначала сужаться, а затем расширяться. В некоторых моделях самолетов можно регулировать сечение сопла и направление тяги, могут быть устройство реверса или отклонения вектора тяги, различные шумопоглощающие устройства или приспособления для снижения инфракрасной заметности. Сопловой аппарат это так же и форсажная камера.
Основная задача сопла — это формирования необходимых параметров потока газа, выходящего из двигателя. Срабатывание энергии газа в поступательную энергию двигателя и движение самолета. Сопла для реактивных двигателей бывают 2 видов, в зависимости от расчетной скорости полета самолета. Для двигателей самолетов, летающих с дозвуковой скоростью применяют сопло со сужающимся сечением к срезу сопла. Сопло для двигателей сверхзвуковых самолетов применяют уже с расширяющимся сечением к срезу сопла, так называемое сопло Лаваля.
1 — обычное жесткое сужающееся сопло, 2 — сопло Витошинского, 3 — сопло Лаваля
В современной авиации из соображений наибольшей оптимальности работы двигателей на всех режимах полета самолета (максимального приближения к расчетному режиму), то есть обеспечения большой тяги с минимальными потерями, сверхзвуковые сопла делаются регулируемыми.
Несмотря на кажущуюся простоту конструкции, турбореактивный двигатель – это сложная система, которой практически полностью управляет «умная» автоматика. Пилот определяет нагрузку с помощью одного только рычага, тогда как многочисленные датчики и регуляторы выполняют остальную работу, настраивая двигатель на нужный режим работы.
Турбореактивными двигателями с осевым компрессором оснащаются большинство самолетов с ТРД. К ним относятся большинство современных гражданских самолетов, а также военные истребители и бомбардировщики. Такое широкое применение объясняется наличием у турбореактивного двигателя ряда преимуществ, выгодно выделяющих их среди других видов моторов. Во-первых, их конструкция наиболее простая среди ГТД, во-вторых, они имеют компактные габариты и малый вес, в-третьих, они менее шумные, чем турбовинтовые (ТВД) или турбовальные (ТВаД) двигатели. Но главным их преимуществом является возможность преодолевать звуковой барьер, что особенно важно в военной авиации.
К недостаткам ТРД можно отнести их «прожорливость». Среди моторов семейства ГТД они занимают первое место по расходу топлива, так что порой намного выгоднее заменить их теми же ТВД. Это объясняет то, что они редко используются на самолетах с низкими скоростями, летающими на дальние расстояния. Еще один недостаток – их дороговизна. Достаточно представить, в каких условиях работает турбина, чтобы понять: обыкновенные материалы не смогут выдержать таких нагрузок. Для изготовления лопастей турбин используются сверхпрочные жаростойкие материалы, способные выдержать «адские» условия работы, а стоят они, соответственно, немало.
В последнее время традиционные турбореактивные двигатели начали вытесняться другими своими подвидами, например, двухконтурными ТРД. Прогресс не стоит на месте, а авиаконструкторы постоянно борются за повышение мощности и эффективности моторов в комплексе с уменьшением их веса, что так важно для авиации. И все же ТРД рано списывать со счетов – они по-прежнему востребованы, о чем свидетельствует их широкое применение.
Небольшое видео, представленное ниже про работу турбовентиляторного двигателя, продемонстрирует работу турбореактивного двигателя с осевым компрессором, т.к. принцип у них одинаков.
zewerok.ru
May 21, 2015
Воздушный компрессор это машина повышающая давление газа за счет уменьшения его объема и увеличения плотности без преобразования в жидкость. Сжатый воздух может быть использован для множества различных задач. Для любого компрессора не зависимо от его типа необходимо топливо: бензин, дизельное топливо, электричество. Компрессора также используются для различных химических веществ и топлива, которые требуют сжатия.
Основные компоненты воздушного компрессора: двигатель (электрический, бензиновый или дизельный), приемник (резервуар) и насос. В зависимости от назначения и типа компрессора приемник может быть разного размера и положения (горизонтальный или вертикальный). Двигатель через привод приводит в движение механизм забора и сжатия воздуха. В зависимости от модели могут быть и другие важные детали: вентилятор, маховик, коленчатый вал.
Виды компрессоров
По принципу действия компрессоры делятся на три основных вида: центробежные, поршневые и винтовые (роторные или ротационные).
Центробежные компрессоры
В центробежных компрессорах избыточное давление создается при помощи нескольких рядов лопастей расположенных на роторе, наподобие вентилятора. Ротор с лопастями расположен внутри герметичного корпуса с двумя отверстиями. Вентилятор приводится в движение с помощью двигателя. Рабочее колесо всасывает воздух, через впускное отверстие, нагнетая его к противоположной стороне корпуса увеличивая кинетическую энергию. На выходе с лопасти воздух за счет центробежной силы приобретает дополнительное давление. В таком состоянии сжатый воздух закачивается в камеру. Центробежные компрессоры широко используются в крупных машинах и оборудовании.
Поршневые компрессоры
В поршневых компрессорах используется коленчатый вал с поршнями. Вал, вращаясь, заставляет двигаться поршни, которые и сжимают воздух. Эти компрессоры очень похожи на автомобильный двигатель и работают аналогичным образом за исключением того, что сжатый воздух не воспламеняется в цилиндре. При нисходящем ходе поршня воздух втягивается в цилиндр, а при восходящем сжимается. В конструкции такого компрессора может использоваться несколько поршней, и они могут выдавать сжатый воздух с очень большим давлением. Благодаря простоте своей конструкции и легкостью обслуживания поршневые компрессоры используются чаще всего. В основном применяются на портативных устройствах сжатия воздуха.
Винтовые или роторные компрессоры
Компрессоры с винтовым принципом более сложные и дорогие. В большинстве случаев это не портативные устройства, а стационарные промышленные агрегаты многоцелевого использования. Роторный компрессор работает от двигателя внутреннего сгорания, дизельного или бензинового. Разделяют масляные и безмасляные винтовые компрессоры.
В герметичном корпусе находятся два вращающихся ротора с винтовыми зубьями, которые находятся в постоянном сцеплении друг с другом. Привод от двигателя придает вращение одному из роторов, второй вращается за счет постоянного сцепления. Винтовая пара, вращаясь, всасывает воздух, через воздухозаборник, нагнетая в более мелкие полости, тем самым сжимая его. Внутренняя полость корпуса заполнена маслом, которое выступает в качестве хладагента и герметика, не позволяющего уходить воздуху при вращении винтов. Кроме того, масло позволяет снизить уровень шума. Сжатый воздух вместе с маслом попадают в разделительные камеры, где воздух уходит вверх, а масляные остатки вниз. Сжатый воздух через клапан попадает в резервуар, а масло из разделительной камеры в радиатор, где оно охлаждается, перед тем как снова попасть в компрессор. Автоматическое охлаждение и смазка дают возможность беспрерывного использование такого компрессора длительный срок.
Безмасляный роторный компрессор работает по тому же принципу, что и его масляный аналог. Воздух втягивается в компрессор посредством двух взаимосвязанных винтов, который также сжимается и направляется в резервуар. Безмасляный роторный компрессор применяется в отраслях, где неприемлема возможность загрязнения воздуха маслом. Как пример: медицинские и исследовательские учреждения, производство мелких компьютерных компонентов.
Безмасляный компрессор более дорогой из-за тонкой подгонки деталей, в то время как масляные работают более тихо, а также у них более широкая сфера применения.
lab-37.com