ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Все про компрессию и степень сжатия дизельного двигателя. Давление в камере сгорания в двс


Компрессия и степень сжатия дизельного двигателя

Если вы найдете ошибку в тексте, выделите её мышью и нажмите Ctrl+Enter. Спасибо.

Степень сжатия и компрессия дизельного двигателя

Двигатель любого автомобиля, в том числе и дизельный, является довольно сложным устройством, состоящим из механизмов и систем.

Взаимодействие этих систем и механизмов между собой позволяет преобразовывать энергию, возникающую при сгорании топливно-воздушной смеси во вращательное движение кривошипно-шатунного механизма с дальнейшей передачей вращения на трансмиссию.

Основная работа по преобразованию энергии происходит внутри цилиндро-поршневой группы, а именно в цилиндрах.

Преобразование энергии зависит от многих факторов, среди которых степень сжатия двигателя и компрессия. Особенно эти понятия играют более важную роль в дизельных силовых установках, поскольку воспламенение горючей смеси в цилиндрах этого агрегата производятся за счет сжатия смеси.

Понятие степени сжатия

Зачастую эти понятия путают между собой или объединяют в один термин. В действительности это два разных термина, и характеризуются они по-разному.

Сначала разберем все о степени сжатия дизельного мотора.

Соотношение объема цилиндра двигателя в момент нахождения поршня в нижней мертвой точке (НМТ) к объему камеры сгорания в момент, когда поршень достегает верхней мертвой точки и есть степень сжатия двигателя.

Степень сжатия

Данное соотношение указывает на разницу давления, возникающую в цилиндре двигателя в тот момент, когда в цилиндр поступает топливо.

В технической документации, идущей вместе с дизельной силовой установкой, степень сжатия указывается в виде математического соотношения, к примеру - 18:1.

Для дизельного агрегата самой оптимальной степень сжатия варьируется в диапазоне от 18:1 до 22:1. Именно при таких показателях у этого двигателя достигаются максимальные показатели эффективности.

Как все работает

У дизельного мотора при такте сжатия, когда поршень движется к ВМТ, объем в цилиндре быстро сокращается. В этот момент в камере сгорания находиться только воздух, он-то и сжимается, данный процесс называется тактом сжатия.

При подходе поршня к ВМТ, воздух сжимается на указанную в документации степень сжатия, в камеру сгорания под давлением подается топливо.

Смесь из топлива и воздуха из-за воздействия на нее высокого давления воспламеняется, значительно увеличивая давление внутри камеры, поршень в этот момент проходит ВМТ.

Образовавшееся в результате сгорания топливовоздушной смеси высокое давление начинает давить на днище поршня, заставляя его двигаться к НМТ.

Посредством шатуна поступательное движение поршня преобразовывается во вращательное движение колен. вала.

В данном случае давление, возникшее в результате воспламенения смеси, заставляет двигаться поршень к НМТ называется рабочим ходом. Рабочий ход является одним из тактов работы цилиндро-поршневой группы.

При такте сжатия как раз и важна степень сжатия. Чем она выше, тем более легче воспламениться горючая смесь и в более полной мере она сгорит, обеспечив большее давление.

При хорошем показателе степени сжатия дизельный мотор будет обеспечивать больший выход мощности при меньшем количестве сгораемого топлива.

Однако у дизельных силовых установок не зря имеется диапазон степени сжатия, за который выходить не рекомендуется.

Степень сжатия меньше 18:1 приводит к снижению мощностного показателя установки, при этом потребление топлива увеличивается.

Но и чрезмерная степень сжатия у мотора тоже сказывается нехорошо на двигателе, особенно дизельном. За счет увеличенных нагрузок, которые испытывают цилиндропоршневая группа, их ресурс очень быстро сокращается.

Увеличение сверх нормы степени сжатия может привести к прогоранию поршня, изгибу шатуна.

Прогорел поршень

В некоторых случаях увеличение данного показателя приводит к взрыву силовой установки без возможности последующего восстановления.

ВАЖНО ЗНАТЬ: Степень сжатия у водородных двигателей значительно больше.

Возможность замера степени сжатия

Проверить степень сжатия дизельного агрегата в гаражных условиях практически невозможно. Поскольку нужно проводить некоторые замеры, которые сделать очень сложно.

Одним из таких замеров является выяснение объема в цилиндре при нахождении поршня в ВМТ.

Далее нужно знать некоторые параметры силовой установки, часть из которых можно узнать из тех. документации, но некоторые узнать довольно сложно.

Для вычисления степени сжатия потребуется знать объем камеры сгорания, поскольку между блоком цилиндров находиться прокладка, то нужно знать ее толщину и диаметр поршневого отверстия в ней, ход поршня и диаметр цилиндра.

Расчет степени сжатия

Имея все эти данные, а также произведя замеры объема в цилиндре, можно математическим путем провести вычисления степени сжатия.

Способы повышения показателя

Замерить степень сжатия на дизельном двигателе сложно, а вот изменить данный показатель в лучшую сторону – можно.

Есть несколько способов увеличения показателей степени сжатия на дизельном агрегате.

Уменьшаем камеру сгорания двигателя.

Самым простым способом увеличения данного показателя является уменьшение камеры сгорания.

Поскольку степень сжатия – это соотношение объема цилиндра к объему камеры сгорания, то изменив объем одного можно поменять и сам показатель соотношения.

Уменьшить объем камеры сгорания можно несколькими путями.

Первое, что можно сделать – это заменить прокладку между блоком и головкой двигателя на более тонкую, за счет этого и измениться объем камеры сгорания.

Прокладка между блоком и головкой двигателя

Дополнительно можно провести торцевание головки блока цилиндров. В этом случае с головки блока снимается слой металла, из-за чего и уменьшается камера сгорания.

Использование турбированного нагнетателя.

Вторым способом изменения данного показателя является увеличение давления в камере сгорания.

Применение такого устройства, как турбинный нагнетатель, он же турбонаддув, позволяет увеличить степень сжатия.

В дизельных силовых установках, не имеющих данного устройства, воздух, требуемый для создания горючей смеси, подается за счет разрежения в цилиндре, возникающего при такте впуска.

При такой подаче воздуха в цилиндры высокое давление на такте сжатия обеспечить в полной мере невозможно, поскольку количество воздуха получатся ограниченным.

турбонаддув

При использовании нагнетателя воздух в цилиндры подается принудительно. Это обеспечивает подачу большего количества воздуха, и как следствие большего давления в цилиндре при такте сжатия.

ЧИТАЙТЕ ПО ТЕМЕ: Турбированный или атмосферный двигатель, что лучше.

Интеркулер.

Часто на дизельных моторах, помимо нагнетателя применяется еще одно устройство – интеркулер. Он также позволяет увеличить давление в цилиндре, но по несколько иному принципу, чем нагнетатель.

Интеркулер

В задачу интеркулера входит охлаждение воздуха перед подачей его в цилиндры. Приводит это к тому, что при охлаждении плотность воздуха увеличивается, а значит и давление в цилиндре будет выше.

Это основная информация, что касается степени сжатия. Перейдем к компрессии.

Понятие компрессии

Компрессия – это показатель давления в цилиндрах двигателя. Измеряться данный показатель может в нескольких величинах – кг/см кв., Барах, Атмосферах, Паскалях.

Особое внимание заслуживает компрессия дизельного двигателя, так как данный показатель очень важен в дизельных моторах. У дизеля компрессия должна быть порядка 22 Атм., хотя на разных двигателях может быть и больше, при этом значительно.

Высокая компрессия в цилиндрах дизеля должна обеспечиваться потому, что воспламенение горючей смеси производиться именно из-за высокого давления.

Что такое компрессия двигателя

Если данный показатель на дизеле будет значительно меньше нормы, запуск мотора – затруднителен или невозможен.

Компрессия дизельного двигателя в цилиндре достигается путем сжатия воздуха поршнем при такте сжатия. Но полной герметичности внутри цилиндра добиться просто невозможно, всегда будет утечка воздуха.

Воздух частично может прорываться через изношенные компрессионный кольца, когда они уже не могут обеспечить должное прилегание к цилиндру, часть воздушной массы может выходить из цилиндра через неплотное прилегание клапанов к седлам.

Если говорить в общем, то показатель компрессии указывает на состояние двигателя.

Сильное несоответствие компрессии двигателя от заданных норм всегда указывает на сильный износ механизмов силовой установки. Поэтому измерение компрессии входит в комплекс диагностических работ двигателя.

Как замерить компрессию

В отличие от степени сжатия провести замеры компрессии двигателя не особо сложно. Для проведения данных работ достаточно иметь компессометр или компрессограф.

Принцип действия этих двух приборов одинаков, разница лишь в выводе информации.

У компрессометра значение давления указывается на шкале манометра.

компрессометр

У компрессографа же информация о давлении в цилиндре заносится на какой-либо носитель информации или же просто на бумагу.

компрессограф

Последовательность проверки компрессии в дизельном двигателе такова:

  1. С одного цилиндра снимается форсунка, на ее место устанавливается прибор;
  2. Затем производится проворот коленвала стартером и записывается полученный результат;
  3. После проверяется компрессия во всех остальных цилиндрах;
  4. Затем значения, полученные во всех цилиндрах, сверяются.

У неизношенного двигателя компрессия должна соответствовать или хотя быть близкой к номинальному значению, указанному в документации. Разбежность в показателях на разных цилиндрах тоже должна быть одинаковой, допускается незначительные отличия.

От чего зависит компрессия

Как уже сказано, компрессия дизельного двигателя, и не только его, а всех силовых установок, зависит от состояния цилиндро-поршневой группы и газораспределительного механизма.

Но помимо этого компрессия двигателя еще и зависит от количества оборотов коленвала. Чем ниже его обороты, тем больше времени у воздуха, находящегося внутри цилиндра найти место, где он может выйти из нее.

Поэтому при замере компрессии важно проследить о том, чтобы стартер обеспечил хотя минимальных 20-250 оборотов колен. вала в минуту. Иначе показания компрессометра не будут соответствовать реальному значению данного показателя.

Износ двигателя

Это конечно, не все факторы, влияющие на компрессию, но перечисленные являются одними из основных.

Особенности запуска дизельного двигателя

Но высокая компрессия дизельного двигателя, которой обеспечивается работоспособность силовой установки, играет не на руку легкости пуска.

Конечно, если двигатель хорошо прогреется, стартеру не составит труда обеспечить должные обороты коленвала, и как следствие должное давление в камере сгорания и запуск силовой установки.

У холодного же мотора появляется несколько дополнительных факторов, усложняющих запуск. Одним из таких факторов является повышенное трение между узлами и механизмами у холодного двигателя, поскольку масляной прослойки между ними нет.

А если к данному фактору у дизельной установки добавить еще и слабую компрессию, из-за которой воспламенение рабочей смеси затруднительно, поскольку давления в камере сгорания недостаточно, то пуск мотора очень затруднителен.

Поэтому чем ниже температура и слабее компрессия дизельного двигателя, тем меньше шансов его запустить.

И это еще не рассмотрена такая особенность дизельного топлива, как парафинированние его при низких температурах.

Если в статье есть видео и оно не проигрывается, выделите любое слово мышью, нажмите Ctrl+Enter, в появившееся окно введите любое слово и нажмите "ОТПРАВИТЬ". Спасибо.

ЭТО МОЖЕТ БЫТЬ ПОЛЕЗНЫМ:

ПОДЕЛИТЬСЯ НОВОСТЬЮ С ДРУЗЬЯМИ:

autotopik.ru

Факторы, влияющие на процесс сгорания в карбюраторном двигателе

Основными показателями, определяющими протекание процесса сгорания в карбюраторном двигателе являются:

• температура и давление рабочей смеси в начале воспламенения;

• концентрация топлива, воздуха и остаточных газов;

• интенсивность тепловыделения.

Эти показатели зависят от различных конструктивных и эксплуатационных факторов.

К эксплуатационным относятся следующие факторы.

1. Состав смеси. Наименьшие значения первой фазы сгорания соответствуют составу смеси, при котором скорость сгорания имеет наибольшие значения (α от 0,8 до 0,9). При сильном обеднении смеси не только увеличивается первая фаза сгорания, но и резко ухудшается стабильность воспламенения вплоть до появления пропусков в отдельных цилиндрах.

2. Вихревое движение заряда обеспечивается конструкцией: типом и формой камеры сгорания, профилем впускных клапанов и позволяет в результате улучшения однородности рабочей смеси сократить продолжительность θ1.

3. Степень сжатия. С ростом степени сжатия увеличиваются температура и давление рабочей смеси, что способствует увеличению скорости сгорания и соответствующему сокращению продолжительности θ1.

4. Угол опережения зажигания. Каждому режиму работы двигателя соответствует свой наивыгоднейший (оптимальный) угол опережения зажигания, при котором основная фаза сгорания θ2 располагается максимально близко к ВМТ, и двигатель работает с наилучшей эффективностью: развивает максимальную мощность и имеет минимальный расход топлива. Оптимальный угол опережения зажигания зависит от продолжительности фаз сгорания (в первую очередь от θ1), поэтому при увеличении частоты вращения коленчатого вала и уменьшении нагрузки угол опережения зажигания необходимо увеличить. Отклонение угла опережения зажигания от оптимального значения ведет к изменению положения кривой Т (см. рис. 11) относительно ВМТ, что влечет за собой потери, связанные с динамикой сгорания. Это происходит потому, что при позднем зажигании значительная часть тепловыделения происходит уже на такте расширения, когда объем увеличивается, в результате чего максимально возможное давление не достигается.

При отклонении значения угла опережения зажигания от оптимального в сторону увеличения поршню приходится в конце процесса сжатия преодолевать резко увеличивающееся от сгорания давление газов. А при чрезмерно большом значении угла опережения зажигания значительное возрастание давления и температуры в цилиндре приводит к возникновению детонационного сгорания, сущность которого рассматривается ниже.

5. Частота вращения коленчатого вала. При увеличении частоты вращения коленчатого вала возрастает скорость прохождения смеси через клапанную щель, поэтому усиливается турбулизация заряда. При этом продолжительность θ1 и θ3 относительно второй фазы сгорания затягивается, поэтому при увеличении частоты вращения коленчатого вала необходимо увеличить угол опережения зажигания. В целом с увеличением частоты вращения коленчатого вала эффективность сгорания увеличивается.

6. Нагрузка. Уменьшение нагрузки осуществляется поворотом (закрытием) дроссельной заслонки, которое приводит к уменьшению коэффициента наполнения ηv и росту коэффициента остаточных газов γr. Кроме этого уменьшаются давление и температура в конце сжатия. Все это уменьшает скорость развития пламени в первой фазе сгорания и снижает скорость распространения фронта пламени во второй и третьей фазах сгорания. Их протекание замедляется, особенно при малых нагрузках и низких частотах вращения коленчатого вала.

Для того чтобы в какой-то мере компенсировать ухудшение динамики сгорания на малых нагрузках прибегают к обогащению горючей смеси и увеличению угла опережения зажигания. Ухудшение сгорания на малых нагрузках является большим недостатком карбюраторного двигателя, так как оно влечет за собой перерасход топлива и увеличение окиси углерода и углеводородов в отработавших газах.

К конструктивным факторам, влияющим на процесс сгорания, относятся следующие:

1. Форма камеры сгорания. Турбулизация, которая возникает в процессе впуска, может быть не только сохранена, но и усилена на такте сжатия при перетекании заряда из цилиндра в камеру сгорания. Для этого камера сгорания имеет специальную форму. Завихрение улучшает однородность рабочей смеси, что особенно положительно влияет на сгорание во второй и третьей фазах. Для улучшения турбулизации применяют тангенциальное расположение впускных каналов перед клапанами и так называемые вытеснители, которые представляют собой зазоры между поверхностью головки цилиндров и днищем поршня. Различные конструкции камер сгорания представлены на рис. 12.

Рис. 12. Различные конструкции камер сгорания двигателей с искровым зажиганием: а — полусферическая; б — плоскоовальная; в — клиновая; г — полуклиновая; д — шатровая; 1 — вытеснитель

 

При выборе места расположения свечи зажигания стремятся к тому, чтобы обеспечить хорошую очистку зоны свечи от продуктов сгорания. Ее размещают ближе к центру камеры сгорания с тем, чтобы сократить путь пламени до наиболее удаленных точек.

2. Степень сжатия. Чем больше степень сжатия, тем больше давление и температура рабочей смеси в момент искрового разряда, что улучшает воспламенение и протекание первой фазы сгорания, но продолжительность третьей фазы затягивается, так как количество смеси в пристеночных слоях увеличивается. Поэтому рост степени сжатия увеличивает только КПД цикла. Основным препятствием к увеличению степени сжатия является возникновение детонации.

3. Параметры искрового разряда. Количество теплоты, выделяемой при искровом разряде, определяет надежность зажигания и продолжительность первой фазы сгорания. Чем больше тепловая энергия разряда, тем больше объем смеси прогревается этим разрядом до температуры воспламенения, тем меньше время формирования фронта пламени, способного к быстрому распространению. Однако положительный эффект повышения энергии разряда наблюдается только до определенного момента. Дальнейшее повышение энергии влияет значительно меньше и не вызывает существенного улучшения протекания первой фазы.

При повышенной энергии искрового разряда увеличивается нижний предел воспламенения, и можно использовать бедные составы горючей смеси. Значительная часть энергии системы зажигания затрачивается на ионизацию газового промежутка между электродами свечи, а также рассеивается в камере сгорания. На нагрев смеси в зоне искры расходуется только 10—20 % энергии, и, чтобы обеспечить надежное воспламенение, система зажигания должна выделять количество теплоты значительно больше, чем для этого требуется. Поэтому искровой разряд должен обладать не только достаточной энергией, но и достаточной продолжительностью выделения этой энергии.

4. Расслоение смеси. Считается, что для улучшения сгорания в зоне свечи зажигания должна находиться обогащенная рабочая смесь, а по мере удаления от нее смесь обедняется. В обычных камерах сгорания это обеспечить очень сложно, поэтому применяют разделенные камеры сгорания с форкамерно-факельным зажиганием (рис. 13).

Рис. 13. Устройство карбюраторного двигателя с форкамерно-факельным зажиганием

 

В форкамере (предкамере) небольшого объема (3—20 % объема основной камеры сгорания) устанавливается свеча зажигания и небольшой впускной клапан, через который подается сильно обогащенная смесь (α2). В основную же камеру подается обедненная смесь (α1> 1,5). Смесь такого состава не загорается от искры, но хорошо воспламеняется от факелов пламени, выбрасываемых из сопловых отверстий форкамеры. В результате экономичность и мощность двигателя увеличиваются. Недостатками являются сложность газораспределительного механизма, плохие условия работы свечи зажигания, неравномерное распределение по цилиндрам форкамерной смеси.

 

Детонация

Часть рабочей смеси, до которой фронт пламени доходит в последнюю очередь нагревается в результате роста давления со стороны фронта пламени. При достижении температуры самовоспламенения очаги горения в этих зонах, тем не менее, не возникают из-за местного недостатка кислорода и времени протекания первой фазы сгорания, продолжительное протекание которой характерно для пререферийных зон.

Однако несгоревшая смесь в этих зонах чрезвычайно активизируется и оказывается на границе теплового взрыва. Любое местное повышение давления и температуры вызывает самовоспламенение этой части заряда, которое носит взрывной характер.

Ударные волны со стороны таких очагов самовоспламенения вызывают в свою очередь самовоспламенение хорошо подготовленной к этому смеси. Это вызывает еще большее повышение давления, под действием которого фронт пламени принудительно ускоряется. Скорость его может превысить скорость звука и достичь 1500—2300 м/с, что характерно для взрывного горения.

Сгорание в цилиндрах двигателя с искровым зажиганием последних порций заряда после его объемного самовоспламенения, сопровождающееся возникновением ударных волн, называется детонационным.

При отражении ударных волн от стенок камеры сгорания возникает звонкий металлический стук, который является внешним проявлением детонации.

На индикаторных диаграммах на возникновение детонации указывает колебание давления (рис. 14).

При сильной детонации мощность двигателя падает, растет расход топлива, в отработавших газах появляется черный дым. Ударные волны разрушают масляную пленку на поверхности верхней части цилиндра, что приводит к его интенсивному износу. В дальнейшем могут обгореть кромки поршней, электроды свечей зажигания, прокладки головки блока цилиндров, произойти вы­крашивание антифрикционного сплава в подшипниках коленчатого вала и иные разрушения деталей кривошипно-шатунного механизма (KШM). Таким образом, детонационное сгорание отрицательно влияет на рабочий процесс и долговеч­ность деталей КШМ.

Рис. 14. Индикаторная диаграмма работы карбюраторного двигателя при детонационном сгорании

 

Возникновению детонации способствуют следующие факторы:

1. Сорт топлива — характеризуется октановым числом, который оценивает антидетонационную стойкость бензина. Чем выше октановое число, тем выше антидетонационные свойства топлива. Октановое число легких фракций бензина меньше, чем у средних и тяжелых фракций. При быстром открытии дроссельной заслонки (например, при интенсивном разгоне) тяжелые фракции поступают в цилиндр с некоторой задержкой, что приводит к детонации в начале разгона из-за временного снижения октанового числа топлива, поступившего в цилиндр. Октановое число автомобильных бензинов (ГОСТ 2084—77) составляет от 76 до 98 единиц.

2. Частота вращения коленчатого вала. Увеличение частоты вра­щения коленчатого вала приводит к росту турбулизации заряда, что влечет за собой увеличение скорости распространения пламени. В результате времени на развитие предпламенных процессов в последних частях заряда становится недостаточно, и детонация снижается. Кроме того, с увеличением частоты вращения коленчатого вала увеличивается содержание остаточных газов в рабочей смеси, что также снижает интенсивность предпламенных процессов и приводит к снижению детонации.

3. Нагрузка. Уменьшение нагрузки сопровождается прикрытием дроссельной заслонки карбюратора, вследствие чего давление и температура заряда в конце процесса сжатия снижается, а коэффициент остаточных газов γг увеличивается. Кроме этого уменьшается количество вводимого рабочего тела, а значит и выделяемая теплота, вследствие чего снижается давление в цилиндре. Поэтому уменьшение нагрузки приводит к снижению детонации и наоборот.

4. Угол опережения зажигания. Увеличение угла опережения за­жигания приводит к более раннему тепловыделению относительно прихода поршня в ВМТ. В результате резко повышается давление,что способствует возрастанию степени сжатия смеси перед фронтом пламени и вызывает появление очагов самовоспламенения. Поэтому с увеличением угла опережения склонность к детонации возрастает и наоборот.

5. Тепловое состояние двигателя. С ростом температуры деталей камеры сгорания увеличивается вероятность возникновения очагов самовоспламенения и детонации.

6. Температура и давление воздуха на впуске в цилиндр. Увеличение температуры и давления окружающей среды усиливает вероятность детонации. Поэтому применение наддува в двигателях с принудительным воспламенением затруднительно.

7. Степень сжатия. Увеличение степени сжатия ε приводит к увеличению температуры и давления в конце процесса сжатия. Следовательно, увеличение е ограничивается и ее максимально допустимое значение выбирается в зависимости от сорта топлива, формы камеры сгорания, материала поршня, головки блока цилиндров, быстроходности двигателя и способа его охлаждения.

8. Форма и размеры камеры сгорания. Двигатели с формой камеры сгорания, обеспечивающей наибольшую турбулизацию смеси, более защищены от детонации. С этой точки зрения наиболее рациональными являются камеры сгорания в поршне или клиновые и плоскоовальные камеры с вытеснителями.

Уменьшение пути пламени от свечи до периферийных зон камеры сгорания сокращает время его распространения и тем самым снижает вероятность возникновения детонации. Следовательно, детонацию ограничивает применение двух свечей зажигания вместо одной и уменьшение диаметра цилиндра.

9. Материал поршня и головки блока цилиндров. Материал этих деталей во многом определяет теплоотвод от рабочего тела. Применение алюминиевых сплавов, обладающих высокой теплопроводностью, позволяет снизить требования к октановому числу бензина на 5—7 единиц.

Не следует путать детонационное сгорание с преждевременным самовоспламенением, которое может произойти во время процесса сжатия еще до момента появления искры в результате разогрева от горячей поверхности центрального электрода свечи зажигания, головки выпускного клапана или нагара. Такое воспламенение носит название калильного зажигания.

Воспламенившаяся от накаленных поверхностей рабочая смесь затем сгорает с нормальной скоростью, однако, момент самовоспламенения неуправляем и со временем наступает все раньше и раньше. При этом давление и температура достигают своего максимума задолго до прихода поршня в ВМТ, что приводит к уменьшению мощности двигателя и его перегреву. Устранить это явление выключением зажигания нельзя, поэтому в таких случаях необходимо просто прекратить подачу горючей смеси.

В некоторых случаях аналогично калильному зажиганию возникает воспламенение топлива, но от сжатия — явление дизилинга. Такое воспламенение наблюдается при выключении зажигания, когда прогретый карбюраторный двигатель не останавливается и продолжает работать с пониженной частотой вращения коленчатого вала, большой нестабильностью и вибрациями. Это явление имеет место при ε > 8,5. Для его устранения применяют автоматическое перекрытие в карбюраторе канала холостого хода при выключении зажигания.

 

Похожие статьи:

poznayka.org

давление в камере сгорания - это... Что такое давление в камере сгорания?

 давление в камере сгорания

combustion pressure

Русско-английский морской словарь. 2013.

Смотреть что такое "давление в камере сгорания" в других словарях:

sea_ru_en.academic.ru

Камера сгорания двигателя - Энциклопедия по машиностроению XXL

Испытания, проведенные на стендах с беговыми барабанами по методике ОСТ 37.001.054—74 с моделированием различных регулировок систем двигателей в пределах, при которых возможно воспроизведение ездового цикла, показали, что любое отклонение перечисленных параметров от норм, рекомендуе.мых заводом-изготови-телем автомобиля, приводит к увеличению выбросов вредных веществ и расхода топлива (рис. 52 и 53). Значительное увеличение выбросов наблюдается при разрегулировке системы холостого хода и нарушении работы свечей зажигания как наиболее часто встречающихся неисправностях. Следует отметить, что метод испытаний по ездовому циклу дает наиболее объективную оценку влияния регулировок двигателя на токсичность. Известно, что угол опережения зажигания на установившихся режимах практически не влияет на процессы образования СО в камере сгорания двигателя (см. рис. 5), При выполнении программы ездового цикла отклонение угла опережения зажигания от оптимального снижает мощность двигателя, что требует увеличения  [c.83] Использование нагрузочных режимов при диагностировании двигателей позволяет выявить неисправности, которые не проявляются на режимах холостого хода, в частности в работе экономайзера, вакуумного регулятора опережения зажигания. Особенно наглядно проявляются неисправности системы зажигания. При увеличении давления в камере сгорания двигателя, работающего под нагрузкой, появляются пропуски зажигания в неисправных свечах, утечки тока в проводах высокого напряжения, видимые на экране осциллоскопа мотор-тестера.  [c.91]

Так как один цикл четырехтактного двигателя осуществляется за два оборота коленчатого вала, то объем камеры сгорания двигателя  [c.22]

Воспользовавшись формулой, приведенной в предыдущей задаче, вычислить приближенное значение температуры стенки камеры сгорания двигателя на 6-й секунде после запуска. Температуры газов в камере и коэффициенты теплоотдачи в различные моменты времени  [c.193]

Величины 1 и А — основные химические характеристики применяемых топлив эти величины существенно зависят от весового отношения компонент топлива, поступающего в камеру сгорания двигателя, и от полноты сгорания ), обусловленной процессами испарения, смешения и, вообще говоря, свойствами кинетики химических реакций. В зависимости от состава топлива величину 1 можно рассчитать по опытным  [c.125]

Ко второй группе относят двигатели, камеры сгорания которых разделены на две (рис. 34-8, б и в) и реже на три полости, сообщающиеся широкой горловиной с одним или несколькими каналами. Для образования смеси в таких дизелях используется энергия сгорающего топлива в дополнительной камере 3 (поэтому они менее экономичны). Топливо, впрыскиваемое насосом через форсунку 2 в одну из полостей (обычно дополнительную), частично сгорает, повышая в ней температуру и давление заряда. В результате этого горящие газы перетекают из одной полости камеры сгорания в другую 3, интенсивно перемешиваясь с воздухом, находящимся в основной полости камеры сгорания. Двигатели, снабженные подобными камерами, носят название двигателей с разделенными камерами.  [c.425]

Эффективной работой ГТД называется работа, снимаемая с выходного вала редуктора ГТД. Эффективный КПД ГТД r t определяется по эффективной работе и расходу теплоты в камере сгорания двигателя.  [c.195]

По своей надежности и теплоизоляционным свойствам покрытия из алюминированного порошка циркона превосходят покрытия из алюминированного порошка диоксида циркония, что позволяет повысить с их помощью эффективность теплозащиты деталей камеры сгорания двигателей.  [c.243]

Схема топливной системы экспериментального самолета на водородном топливе с баком для жидкого водорода на конце левого крыла (1956 г.) показана на рис. 2. Испытания и усовершенствование самолета успешно проводили в течение нескольких лет. Как показано на рис. 2, путем регулируемой подачи гелия в баке с жидким водородом создавалось давление большее, чем в камере сгорания двигателя. Расход водорода контролировался регулятором подачи топлива. На пути к двигателю жидкий водород испарялся и нагревался воздухом в теплообменнике. В баке с жидким водородом в дальнейшем был установлен топливный насос. Его привод располагался снаружи это облегчало герметизацию и снижало массу и объем теплоизоляции. Подобные насосы, по-видимому, найдут распространение при создании водородных двигателей будущего.  [c.81]

Конструкция камеры сгорания двигателя существенно влияет на его работу по циклу Дизеля — Отто на газе. Наилучшие результаты получаются у однокамерных дизелей, наихудшие—у двигателей с разделённой камерой сгорания и другими теплоаккумулирующими и вихревыми приспособлениями. Высокая степень сжатия цикла Дизеля — Отто заставляет  [c.136]

Форсунка предназначена для впрыскивания и распыливания топлива в камере сгорания двигателя с внутренним смесеобразованием.  [c.274]

Конвективное охлаждение часто используется в камерах сгорания жидкостных ракетных двигателей (ЖРД), а также в стационарных высокотемпературных промышленных установках (плазмотронах и др.). Здесь применяются системы трубчатого охлаждения, состоящие из разветвленной сети каналов или труб, расположенных под нагреваемой поверхностью и находящихся в тесном контакте с ней. Через трубы непрерывно прокачивается жидкий или газообразный охладитель. Максимальное количество тепла, поглощенное такой системой, зависит от теплопроводности материала стенки, расхода и теплоемкости охладителя. В ЖРД применяется обычно система разомкнутого типа использованное в качестве охладителя топливо поступает затем в камеру сгорания двигателя и там сгорает.  [c.14]

К другим элементам, проверяемым на ранней стадии, относятся масляные фильтры, запальные свечи и камеры сгорания двигателя. Проверка последних обычно выполняется с помощью калибра, очень удобного для этой цели. Само собой разумеется, что, когда возможно, берутся пробы топлива для последующего анализа. После первого осмотра на месте аварии, если позволяют обстоятельства, все части двигательной группы отправляются на завод для более детального демонтажа и обследования. Иногда двигатели остаются в рабочем состоянии, и тогда проводятся стендовые испытания для определения их целостности. Вторая задача, выполняемая группой обследования двигателей,— это анализ записей по их обслуживанию и бортового журнала.  [c.302]

Механизмы клапанного распределения регулируют подачу горючей смеси в камеру сгорания двигателей, подачу жидкости в рабочую полость цилиндров гидравлических приводов или подачу воздуха в цилиндры пневматических устройств.  [c.175]

Клапаном называют деталь, которая служит для открывания, отверстия в камеру сгорания двигателя и для плотного закрывания этого отверстия во время взрыва горючей смеси. Клапан, который открывает отверстие для выхода отработанных газов, называют, выхлопным. Наибольшее распространение как в двигателях внутреннего сгорания, так и в пневматических устройствах находят тарельчатые клапаны (см. фиг. 73,6).  [c.176]

Технические требования, предъявляемые к механизму клапанного распределения, вытекают из назначения механизма — плотно и надежно закрывать отверстие клапана во время взрыва горючей смеси в камере сгорания двигателя и точно на время всасывания горючей смеси открывать его.  [c.176]

Установившимися или равновесными называются такие режимы ГТД, при которых число оборотов ротора и все параметры рабочего процесса не изменяются во времени. Для реализации установившегося режима необходимо, чтобы мощность турбины tVt двигателя равнялась мощности, потребной для вращения с заданным числом оборотов компрессора и вспомогательных агрегатов N , т. е. = Л к- Это обеспечивается подачей постоянного количества топлива в камеру сгорания двигателя, необходимого для поддержания данного равенства.  [c.213]

Особенность запуска ГТД в полете состоит в том, что отпадает необходимость в раскрутке ротора двигателя с помощью стартера. Встречный поток воздуха приводит ротор в быстрое вращение (режим авторотации), при котором для осуществления запуска достаточно лишь воспламенить топливо в камере сгорания двигателя.  [c.217]

С уменьшением подачи топлива в камеру сгорания двигателя снижается расход, а также давление и температура газа за турбиной, т. е. падает мощность турбины свободного турбокомпрессора, причем от- нд  [c.104]

Особенности конструкции камеры сгорания двигателя с подводом теплоты при постоянном объеме приводят к существенно пульсирующим режимам работы. Поэтому, несмотря на его более высокий термический КПД по сравнению с КПД для двигателя с подводом теплоты при постоянном давлении, он широкого применения в практике не нашел.  [c.113]

Камера сгорания двигателя короткая, кольцевого типа, спроектирована специально для работы при большом давлении газа. Она работает бездымно с высокой полнотой сгорания, что достигнуто с помощью хорошего перемешивания топлива и воздуха непосредственно за форсунками и применения завихрителя с увеличенным расходом воздуха через первичную зону. Кроме того, перед фронтовым устройством камеры установлен разделитель потока воздуха, гарантирующий распределение воздуха по наружному и внутреннему кольцевым каналам камеры.  [c.104]

Камера сгорания двигателя кольцевого типа имеет внутреннее пленочное и внешнее конвективное охлаждение. Для получения расчетного поля температур на выходе из камеры применены высокоэффективный диффузор за компрессором и относительно большое число (тридцать) топливных форсунок.  [c.124]

Камера сгорания двигателя — кольцевая, с форсунками испарительного типа, бездымная. В задней части внутреннего корпуса расположен роликовый подшипник турбины высокого давления.  [c.137]

Компрессор ТРД служит для сжатия и нагнетания воздуха, поступающего далее в камеру сгорания двигателя за счет подведенной к нему работы.  [c.246]

Подачу соответствующего количества топлива в пусковые воспламенители и камеры сгорания двигателя при запуске.  [c.274]

Устойчивость процесса в камерах сгорания двигателя существенно зависит от уровня давления газа в них, поэтому в эксплуатации ограничивается высота полета в соответствии с заданной скоростью.  [c.287]

Для уменьшения проникновения масла по стержням клапанов в камеру сгорания двигателя в опорных шайбах установлены резиновые кольца или на стержни клапанов надеты резиновые колпачки. Для равномерного нагрева клапана желательно, чтобы при работе двигателя он поворачивался.  [c.36]

Таким образом, ни по физическим свойствам, ни по форме, ни структурно ядерное топливо не сравнимо с органическим. Тем не менее основное назначение активной зоны энергетического реактора — производить тепловую энергию. В этом отношении активная зона реактора выполняет роль обычного котла или камеры сгорания двигателя, когда в них сжигается органическое топливо. Такая аналогия с привычным процессом обычной тепловой энергетики вполне правомерно позволила называть урановую и уран-плутониевую загрузку реактора ядерным топливом, а процессы деления и расходования делящихся элементов в реакторе — сжиганием , или выгоранием ядерного топлива, хотя, разумеется, никакого горения и сжигания в традиционном понимании этих слов в реакторе не происходит.  [c.86]

Принцип действия воздушно-реактивного двигателя состоит в следующем (рис. 370). При полете самолет а во входное (переднее) отверстие двигателя поступает атмосферный воздух со скоростью v, с которой летит самолет. В камере сгорания двигателя этот оздух нагревается пламенем горящего топлива (вследствие чего объем воздуха увеличивается) и вместе с продуктами сгорания вылетает через выходное отверстие двигателя со скоростью с > t) (так как уходит из двигателя больший объем воздуха, чем входит). Масса сгорающего за секунду топлива ц, мала по сравнению с массой Хо прошедшего за это время через двигатель воздуха, и приближенно можно считать, что масса, выбрасываемая через выходное отверстие двигателя, также равна  [c.576]

Тепловые двигатели, в которых подвод теплоты к рабочему телу осуществляется в результате сгорания топлива внутри данного двигателя, называются двигателями внутреннего сгорания. В таких двигателях топливо сгорает в цилиндре или в камере сгорания двигателя, а рабочим телом являются некон-денсирующиеся газы — воздух и продукты сгорания. Причем на первом этапе рабочим телом является воздух или смесь воздуха с парами топлива, а на втором этапе — газообразные про-9 131  [c.131]

Отсек камер сгорания двигателя газовой турбины включает сборник камеры сгорания пламенные трубы переходные патрубки в сборе топливные форсунки запальные свечи трансформаторы запала индикаторы пламени пламеперебросные патрубки различные элементы материального обеспечения и прокладки.  [c.47]

Ракеты, использующие бинарные жидкие топлива, где каждый компонент находится в отдельном резервуаре, в отношении сохранности на больших глубинах, по-видимому, не более надежны, чем твердотопливные двигатели. Уже па умеренных глубинах давление может разрушить резервуары, что приведет к быстрой утечке горючего и окислителя. При наличии большого количества воды в камере сгорания двигатели с самовоспламенением или с искровым зажиганием не срабатывают. В случае сохранных - резервуаров и исправной системы подачи топлива (насосами или под давлением) двигатели после высушивания мол[c.506]

На фиг. 28 показана камера сгорания двигателя Вокеш-Гессельмана с поршневым воротником, двигатель при п = 3000 об/мин даёт среднее эффективное давление = 7 kzJ m . Удельный расход топлива 230—260 г1л.с.ч.  [c.104]

Цикл Эррена. Газовая установка в этом случае отличается от установки для работы по циклу Отто устройством топливоподающей аппаратуры (фиг. 24). Давление газа снижается редуктором до 3—4 ати. Из редуктора газ вводится в конце впуска —начале сжатия в камеру сгорания двигателя через форсунку, к которой он подаётся посредством газораспределительного золотника с приводом от коленчатого или распределительного вала двигателя.  [c.239]

Форсирование тяги впрыском воды и.ли легкоиспаряющихся жидкостей. Впрыск может осуществляться либо в компрессор, либо в камеру сгорания двигателя. Данный способ дает возможность увеличить тягу ДТРД и ТРД на 8—25%, а тягу ТВД — па 30—35%. Впрыск воды в настоящее время успешно применяется на ряде ГТД, что особенно себя оправдывает при их эксплуатации в тропических условиях.  [c.214]

Камера сгорания двигателя — кольцевая, имеет восемнадцать одноканальных топливных форсунок с воздушным распылом (см. рис. 39). При разработке камеры сгорания фирма Роллс-Ройс провела большие исследования по снижению уровня дымления, достижению равномерности поля температур на выходе и сокращению длины камеры. Конструкция камеры сгорания двигателя RB.211 показана на рис. 25, а.  [c.142]

В камере сгорания двигателя применено тридцать осевых за-вихрителей (по одному на каждую топливную форсунку), которые способствуют обеднению топливовоздушной смеси в первичион зоне камеры, что позволяет исключить образование видимого дыма с высоким содержанием частиц углерода, который обычно является результатом переобогащения смеси в этой зоне. В печати отмечалось, что уровень дымления у двигателей F6 даже ниже, чем у ДТРД TF39, имеющего допустимое дымление.  [c.149]

Камера сгорания двигателя — кольцевая, противоточная, с пнсБматическими форсунками, имеет высокую полноту сгорания в расчетной точке работы двигателя. Камера обеспечивает низкий уровень выделения загрязняющих веществ, работая на обедненной топливовоздушиой смеси в первичной зоне. Так же как и некоторые другие узлы двигателя, камера сгорания была разработана на базе хорошо зарекомендовавшей себя в эксплуатации камеры ТВД ТРЕ331.  [c.152]

Двигатель имеет трехступенчатый вентилятор с ВНА, у которого применены поворотные лопатки и семиступенчатый компрессор с поворотными направляющими аппаратами первых трех ступеней. Компактная камера сгорания двигателя — кольцевого типа с пленочным охлаждением стенок жаровой трубы. Турбины компрессора и вентилятора — охлаждаемые, причем в турбине компрессора применено интенсивное конвективно-пленочное охлаждение со струйным натеканием в сопловых и рабочих лопатках. Форсажная камера имеет смеситель воздушного и газового потоков, по-видимому, лепесткового типа. Реактивное сопло двигателя— сверхзвуковое, регулируемое, многостворчатое, охлаждается воздухом, отбираемым, от вентилятора для форсажной камеры. Двигатель имеет три опорных узла и четыре подшипника.  [c.155]

Камера сгорания двигателя — кольцевого типа, очень короткая, с оригинальным смесеобразующим устройством. В этом устройстве топливо через 20 трубок подается в небольшие смесители вихревого типа, где оно предварительно смешивается с поступающим воздухом. Такая конструкция обеспечивает хорошее смешение и полное сгорание топлива на длине камеры менее 255 мм, причем в зоне длиной приблизительно 50 мм происходит смешение, а в остальной части — горение.  [c.166]

В ракетной технике топливом называют совокупность компонентов (горючее и окислитель), необходимых для осуществлеиия процесса в камере сгорания двигателя.  [c.211]

РДТТ. В ракетных двигателях твердого топлива (рис. 5.1, а) используются для работы вещества, которые размещаются непосредственно в самой камере сгорания двигателя.  [c.217]

mash-xxl.info


Смотрите также