Система питания двигателя ГАЗ-21 (Цветной альбом, лист 8)

Библиотека волговода (ГАЗ-21)

Система питания двигателя ГАЗ-21 (Цветной альбом, лист 8) Источник: www.volga21.h2.ru

А — топливный бак; Б — топливный насос; В — фильтр тонкой очистки топлива; Г — карбюратор; Д — воздушный фильтр; Е — глушитель шума выхлопа; 1 — корпус фильтра тонкой очистки топлива; 2 — прокладка фильтрующего элемента; 3 — фильтрующий элемент; 4 — стакан-отстойник фильтра; 5 — пружина фильтрующего элемента; 6 — зажимное устройство стакана-отстойника; 7 — корпус глушителя шума всасывания; 8 — уплотнительная прокладка; 9 — корпус воздушного фильтра; 10 — фильтрующий элемент воздушного фильтра; 11 — держатель противошумной прокладки; 12 — противошумная прокладка; 13 — винт крепления фильтра к карбюратору; 14 — уплотнительная прокладка воздушного фильтра; 15 — маслоотражательное кольцо; 16 — масляная ванна; 17 — стакан-отстойник топливного насоса; 18 — головка топливного насоса; 19 — диафрагма топливного насоса; 20 — чашка диафрагмы топливного насоса; 21 — пружина диафрагмы; 22 — уплотнитель тяги диафрагмы; 23 — тяга диафрагмы; 24 — корпус топливного насоса; 25 — рычаг ручной подкачки топлива; 26 — возвратная пружина; 27 — ось рычага; 28 — поджимная пружина рычага; 29 — рычаг привода топливного насоса; 30 — впускной клапан; 31 — прокладка стакана-отстойника топливного насоса; 32 — выпускной клапан; 33 — топливный фильтр; 34 — зажимное устройство стакана-отстойника топливного насоса; 35 — воздушный клапан; 36 — паровой клапан; 37 — пробка топливного бака; 38 — наливная горловина бака; 39 — воздушная труба; 40 — стяжная лента; 41 — шумопоглощающая прокладка; 42 — датчик указателя количества топлива; 43 — топливозаборная трубка; 44 — ручной указатель уровня топлива; 45 — противовес регулятора подогрева; 46 — биметаллическая пружина; 47 — заслонка регулятора подогрева; 48 — выпускной трубопровод; 49 — впускная труба; 50 — предохранительный щиток карбюратора

Система питания двигателя состоит из топливного бака А, топливного насоса В, фильтра тонкой очистки топлива В, карбюратора Г, воздушного фильтра 4, впускного трубопровода, топливопроводов, приводов управления дроссельной и воздушной заслонками карбюратора.

Топливный бак (емкостью 60 л) расположен сзади автомобиля, под полом багажника. Состоит из верхней и нижней половин, сваренных между собой. Для повышения жесткости бака и уменьшения плескания в нем бензина внутри приварены две перегородки, а между ними распорка. В нижней половине имеется выштамповка с фланцем, в котором располагается сливная пробка. На верхней половине крепятся: датчик электрического указателя уровня топлива 42, топливозаборная трубка 43, стержневой указатель уровня топлива (щуп) 44 и фланец трубки 39, которая отводит воздух из бака при заполнении его бензином и предупреждает выплескивание бензина при заправке. Топливозаборная трубка посредством фланца крепится к баку пятью винтами. На нижнем конце трубки между двумя фланцами укреплен фильтрующий элемент. Последний состоит из каркаса и двух слоев латунной сетки, имеющей 1480 ячеек на 1 см2. Нижний фланец укреплен на трубке с помощью специального штифта, а верхний поднимается к фильтрующему элементу пружиной, расположенной на трубке. В верхнюю половину бака вварена нижняя часть наливной горловины, а сама горловина крепится к ней с помощью гибкого шланга. Кроме того, она дополнительно крепится к кузову скобой. Через уплотнительную прокладку из бензостойкой резины горловина закрывается пробкой 37. В пробке расположены два клапана: паровой 36 и воздушный 35. Испытаниями установлено, что воздушный клапан должен открываться и впускать воздух при разрежении в баке 40—350 мм вод.ст., а паровой — открываться и выпускать пары топлива при давлении в нем 40—165 мм вод.ст. Крепится бак к полу с помощью двух стяжных лент 40, под которые установлены шумопоглощающие картонные прокладки 41. Из бака топливо насосом диафрагменного типа подается к фильтру тонкой очистки. Топливный насос установлен с левой стороны двигателя и приводится в действие эксцентриком, расположенным на распределительном валу.

Топливный насос состоит из корпуса 24, головки 18 и стакана-отстойника 17. Стакан-отстойник крепится с помощью зажимного устройства 34 через уплотнительную пробковую прокладку 31 к головке насоса. Головка топливного насоса имеет всасывающую и нагнетательную полости, в которых расположены впускной 30 и выпускной 32 клапаны. Над впускным клапаном установлен сетчатый фильтр 33.
Между фланцами головки 18 и корпуса 24 зажата диафрагма 19, состоящая из четырех слоев специальной эластичной хлопчатобумажной ткани, пропитанной бензомаслостойким лаком.
Чашки 20 соединяют диафрагму с тягой 23, имеющей в нижней части специальный паз, в который входит рычаг привода 29. Для защиты диафрагмы от попадания масла и разъедания ее картерными газами нижний конец тяги 23 уплотняется специальным сальником 22, изготовленным из бензомаслостойкой резины. Сверху на сальник установлено защитное стальное кольцо, в которое упирается нижний конец пружины 21. Второй конец пружины упирается в нижнюю чашку диафрагмы, Пружина создает необходимый напор и обеспечивает подачу топлива в карбюратор.
На оси 27, запрессованной в корпус 24 и зашплинтованной, во избежание перемещений, с обоих концов, установлен рычаг привода 29. Пружина 28 постоянно поджимает рычаг 29 к эксцентрику распределительного вала. В приливах корпуса расположен валик ручной подкачки, снабженный рычагом 25, который постоянно удерживается в нижнем положении возвратной пружиной 26.
Головка насоса имеет два прилива, в которых нарезана резьба К 1/4″ под входной и выходной штуцера топливного насоса.

Работает насос следующим образом.
При набегании эксцентрика на рычаг 29 последний перемещает тягу 23 вместе с чашками 20 вниз, изгибая диафрагму 19. В результате над диафрагмой создается разрежение, которое закрывает выпускной клапан. Давлением топлива открывается впускной клапан, и бензин заполняет всю камеру.
При сбеге эксцентрика с рычага последний освобождает тягу 23 диафрагмы. Диафрагма 19 с чашками под действием пружины 21 перемещается вверх, вытесняя бензин через выпускной клапан из наддиафрагменной полости в полость нагнетания.

Насос обладает саморегулируемостью, т. е. количество бензина, подаваемое им, зависит от расхода топлива через карбюратор. При небольших расходах топлива ход диафрагмы недоиспользуется, а часть хода рычага привода будет холостой. При возрастании расхода топлива через карбюратор давление бензина в нагнетательной полости насоса упадет и диафрагма автоматически увеличит свой ход на величину, необходимую для уравнивания давлений в нагнетательной полости насоса с одной стороны и пружины с другой стороны. Топливный насос через соединительный трубопровод подает бензин к фильтру тонкой очистки топлива. Фильтр состоит из корпуса 1, стакана-отстойника 4, фильтрующего элемента 3, прокладки 2, пружины 5 и зажимного устройства 6. Зажимное устройство состоит из коромысла, держателя, винта и гайки-барашка. Зажимным устройством стакан-отстойник через уплотняющую прокладку 2 из бензостойкой резины крепится к корпусу фильтра. Внутри стакана-отстойника пружиной 3 к той же уплотнительной прокладке 2 поджат фильтрующий элемент 3.
На двигатель может устанавливаться фильтр с керамическим фильтрующим элементом или с фильтрующим элементом, изготовленным из латунной сетки (1480 ячеек на 1см2). Сетка в два слоя намотана на стакан из алюминиевого сплава, имеющего на боковой поверхности ребра и отверстия для обеспечения прохода бензина. Сетка на стакане удерживается пружиной, надетой снаружи элемента.
Бензин через входной штуцер поступает в стакан-отстойник, где осаждаются наиболее крупные частицы примесей. В фильтрующем элементе происходит окончательная очистка бензина, который поступает затем к карбюратору.

Воздух, поступающий в двигатель через карбюратор, очищается от пыли в воздушном фильтре инерционно-масляного типа. Конструктивно воздушный фильтр объединен с глушителем шума всасывания. Фильтр крепится на карбюраторе с помощью винта 13. Между воздушным патрубком карбюратора и фильтром установлена прокладка 8 из бензомаслостоййой резины.
Воздушный фильтр состоит из корпуса 9, конструктивно объединенного с корпусом 7 глушителя шума всасывания и фильтрующего элемента 10 в сборе с крышкой.
Фильтрующий элемент в сборе с крышкой представляет собой неразборную конструкцию, состоящую из фильтрующей набивки, корпуса элемента, горловины, маслоотражательного кольца 13 и крышки с противошумной войлочной прокладкой 12 и держателем прокладки 11. Набивкой фильтрующего элемента служит капроновая щетина с диаметром нитей 0,2–0,3 мм.
Корпус воздушного фильтра имеет в нижней части специальную выштамповку — масляную ванну 16, в которую заправляется 0,35 л моторного масла. В верхней части корпуса фильтра приварено кольцо. Корпус фильтрующего элемента и корпус фильтра соединяются между собой через уплотнительную прокладку 14, изготовленную из бензомаслостойкой резины.

При работе двигателя воздух входит в кольцевую щель, образованную кольцом корпуса фильтра и корпусом фильтрующего элемента. Пройдя вертикальный кольцевой канал между корпусом фильтра и корпусом фильтрующего элемента, воздушный поток делает резкий поворот на 180 над масляной ванной. При этом крупные частицы пыли, продолжая двигаться по инерции вниз, попадают в масло и оседают на дно масляной ванны. В фильтрующем элементе мелкие частички пыли, находящиеся в воздухе, сталкиваются с промасленными нитями набивки и задерживаются. По мере увеличения расхода воздуха, т. е. скорости его прохождения в зоне масляной ванны, воздух увлекает масло из нее в фильтрующий элемент. В фильтрующем элементе масло постоянно находится в подвижном состоянии, перемещаясь по набивке, что повышает эффективность очистки воздуха. При снижении расхода воздуха масло стекает обратно в масляную ванну, увлекая за собой основную массу уловленной в элементе пыли.

Впускной 49 и выпускной 48 трубопроводы крепятся к головке блока цилиндров шпильками и гайками через сталеасбестовую прокладку. Впускная труба отлита из алюминиевого сплава АЛ4. Горючая смесь подогревается в ней теплом от выхлопных газов. Степень подогрева регулируется автоматически с помощью устройства, состоящего из заслонки 47, груза 45 и биметаллической пружины 46, один конец которой закреплен на оси заслонки 47, а второй — на стенке выпускной трубы. При нагреве спираль 46 раскручивается, что дает возможность грузу 45 повернуть заслонку 47 так, что выхлопные газы проходят мимо впускной трубы 49, обеспечивая минимальный подогрев горючей смеси.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ СИСТЕМЫ ПИТАНИЯ

Обязательным условием надежной работы системы питания является чистота всех ее элементов, плотность всех соединений, особенно в местах подсоединения трубопроводов к приборам.

Чистка и промывка топливных баков производится при сезонном обслуживании, спуск отстоя через сливную пробку — по мере необходимости.

Не следует без необходимости разбирать топливный насос. Промывка сетчатого фильтра производится примерно через 25000 км пробега автомобиля. Рекомендуется периодически проверять создаваемое насосом давление и разрежение, которые должны быть соответственно 150—210мм рт.ст. и не менее 350мм рт.ст. Проверка осуществляется непосредственно на двигателе при прокручивании его стартером.

Смазка тяг и соединений привода управления карбюратором осуществляется смазкой ЦИАТИМ-201 по мере необходимости. Фильтр тонкой очистки топлива разбирается для промывки сетчатого фильтрующего элемента примерно через 8000км пробега автомобиля. Керамический фильтрующий элемент промывается в бензине несколько чаще — через 2000—3000км. Если его промывка не дает желаемого результата, то он заменяется новым.

Воздушный фильтр промывается в зависимости от условий эксплуатации автомобиля. В обычных условиях эксплуатации (дороги с усовершенствованным покрытием и дороги с гравийным, булыжным и каменным покрытием) фильтр промывается через 20000 — 25000км пробега автомобиля. Фильтрующий элемент промывается керосином, а затем смачивается маслом. В масляную ванну заправляется чистое, можно отработавшее, но обязательно отстоявшееся моторное масло.

При работе в условиях сильной запыленности следует промывать фильтр и менять в нем масло через день. Во избежание подсоса запыленного воздуха при установке фильтра на карбюраторе надо следить за правильным положением прокладок.

Гарри Вольдемарович Эварт, создатель двигателя ГАЗ-21 для ГАЗ, УАЗ

Гарри Вольдемарович Эварт появился на свет в Эстляндской губернии, на территории нынешней Эстонии, в 1913 году. Выходец из рабочей семьи к моменту своего совершеннолетия уже жил в СССР. В расположенном недалеко от родных краев городе Ленинграде. Здесь в 18 лет Гарри пошел работать на завод токарем, а через год поступил в Ленинградский индустриальный институт имени Калинина и окончил его по специальности инженер-механик.

Гарри Вольдемарович Эварт, создатель двигателя ГАЗ-21 и его модификаций для автомобилей ГАЗ, «Волга», РАФ, УАЗ, ЕрАЗ.

С 1936 года Эварт работал в конструкторских бюро. Сначала на заводе №77. Потом на Ленинградском мотоциклетном заводе. Как инженер-конструктор, способный специалист, он имел законное право не идти на войну, но в блокадном Ленинграде не остался. В 1941 году Эварт попал в Горький, где главный конструктор ГАЗа А.А. Липгарт назначил его ведущим по нескольким направлениям. А позднее — начальником конструкторского бюро.

Инженерные способности Гарри Вольдемаровича раскрылись в полной мере, когда развернулись работы над автомобилем большого класса ЗИМ-12. Эварт разрабатывал такую новинку, как двухкамерный карбюратор К-21. Систему впуска и выпуска форсированного шестицилиндрового двигателя.

Но самым сложным узлом считалась гидромуфта. Установленная между двигателем и трехступенчатой механической коробкой передач. Это был первый шаг к автоматической передаче. Муфту с парой крыльчаток — турбинным колесом, приводящим в действие насосное за счет давления масла, Эварт разработал самостоятельно.

Перспективную модель М-21 «Волга» предстояло оснастить первым в истории ГАЗа верхнеклапанным двигателем. Вариант с цепным приводом распределительного вала и находящимися по разные стороны блока цилиндров впускным и выпускным коллекторами оказался не работоспособным.

Взамен Эварт предложил известную теперь всем модель двигателя с:

— Алюминиевой головкой.
— Чугунным блоком.
— Съемными мокрыми гильзами.
— Пятиопорным коленчатым валом.
— Шестеренчатым приводом распредвала.
— Одинаковыми диаметром цилиндра и ходом поршня.

Двигатель ГАЗ-21 рабочим объемом 2445 см3 выпускали на трех заводах. Сначала на ГАЗе, потом на ЗМЗ. Потом его производство дублировали на Ульяновском моторном заводе. Помимо «Волги», им оснащали РАФы, УАЗы, ЕрАЗы, силовую продукцию.

Пока конструкторы других КБ разрабатывали «Волгу» второго поколения ГАЗ-24, Эварт трудился над кардинальным усовершенствованием двигателя. Сохранив общую компоновку, основные конструктивные особенности и размерность цилиндров своего предшественника, двигатель ГАЗ-24 отличался повышенной мощностью и увеличенным ресурсом.

Для этого пришлось пожертвовать взаимозаменяемостью запчастей. Даже коробка передач ГАЗ-24 сопрягалась с картером сцепления иначе, чем у ГАЗ-21. В 1968 году, когда завод осваивал выпуск новой «Волги», Эварт описывал особенности ее двигателя на страницах журнала «За рулем».

Гарри Вольдемарович считался одним из лучших на заводе специалистов по карбюраторам. Он конструировал общую для «Победы», ГАЗ-51 и первых выпусков «Волги» серию карбюраторов К-22. Потом однокамерные К-105, К-124, значительно более сложный карбюратор «Чайки» К-113.

Двигатель автомобиля ГАЗ-21 «Волга» с автоматической коробкой передач.

Некоторые из разработок Эварта осваивали предприятия-смежники. В частности Ленинградский карбюраторный завод «Ленкарз». В наше время известный под маркой «Пекар». Для ГАЗ-24 предназначался двухкамерный карбюратор К-126, изначально разработанный для «Москвича». Эварт приспосабливал его к моторам «Волги», РАФа, УАЗа, ГАЗ-52 и ГАЗ-53.

С конца 50-х годов Гарри Вольдемарович Эварт руководил работами по принципиально новой теме — двигателя» с форкамерной и форкамерно-факельной системой зажигания. Сначала это сложное устройство пытались внедрить на шестицилиндровом верхнеклапанном двигателе, предназначенном для ГАЗ-51 и грузовика повышенной проходимости ГАЗ-62. Затем с помощью такого устройства решили повысить мощность «Волги».

Гарри Вольдемарович ушел из жизни в 1977 году в возрасте 64 лет. Он не дожил до начала серийного выпуска «Волги» ГАЗ-3102 с форкамерным 100-сильным двигателем ЗМЗ-4022. Уже без Эварта в Заволжье выпускали модернизированный двигатель ГАЗ-24. Его под маркой ЗМЗ-402 до конца XX века устанавливали на «Газели» и новые поколения «Волги».

Независимо от этого в Ульяновске продолжал выпускаться первый мотор разработки Эеарта — ГАЗ-21. Его модернизировали, переименовывали в УМЗ-451, УМЗ-417, УМЗ-421. Долгие десятилетия им оснащали УАЗ-452, УАЗ-469 и их модернизированные варианты 80-х годов с новыми индексами. Эти моторы шли в запчасти для сохранившихся в эксплуатации «Волг» ГАЗ-21. Так как, в отличие от ЗМЗ-24 и ЗМЗ-402, они свободно сопрягались с картером сцепления таких машин.

Самую последнюю модификацию старой разработки Эварта — «двадцать первого» двигателя, доведенную до современных экологических норм, на исходе второго десятилетия XXI века УМЗ поставляет на конвейер ГАЗа для «Газелей» и «Соболей».

Бензиновый двигатель | Эксплуатация, топливо и факты

V-образный двигатель

См. все СМИ

Ключевые сотрудники:
Зигфрид Маркус
Готлиб Даймлер
Карл Бенц
Похожие темы:
Г-образный двигатель
двигатель Отто
двигатель Ленуара
рядный двигатель
V-образный двигатель

Просмотреть весь связанный контент →

Сводка

Прочтите краткий обзор этой темы

бензиновый двигатель , любой из классов двигателей внутреннего сгорания, которые вырабатывают энергию за счет сжигания летучего жидкого топлива (бензина или бензиновой смеси, такой как этанол) с воспламенением, инициируемым электрической искрой. Бензиновые двигатели могут быть построены для удовлетворения требований практически любого мыслимого применения силовых установок, наиболее важными из которых являются легковые автомобили, небольшие грузовики и автобусы, самолеты авиации общего назначения, подвесные и небольшие внутренние морские установки, стационарные насосные станции среднего размера, осветительные установки, станки, электроинструменты. Четырехтактные бензиновые двигатели используются в подавляющем большинстве автомобилей, легких грузовиков, средних и больших мотоциклов и газонокосилок. Двухтактные бензиновые двигатели менее распространены, но они используются для небольших подвесных судовых двигателей и во многих ручных садовых инструментах, таких как цепные пилы, кусторезы и воздуходувки.

Типы двигателей

Бензиновые двигатели можно разделить на несколько типов в зависимости от нескольких критериев, включая их применение, метод управления подачей топлива, зажигание, расположение поршня и цилиндра или ротора, ходы за цикл, систему охлаждения и клапан тип и расположение. В этом разделе они описаны в контексте двух основных типов двигателей: поршневых и цилиндровых двигателей и роторных двигателей. В поршне-цилиндровом двигателе давление, создаваемое сгоранием бензина, создает силу на головке поршня, которая совершает возвратно-поступательное или возвратно-поступательное движение по всей длине цилиндра. Эта сила отталкивает поршень от головки цилиндра и совершает работу. Роторный двигатель, также называемый двигателем Ванкеля, не имеет обычных цилиндров с возвратно-поступательными поршнями. Вместо этого давление газа действует на поверхности ротора, заставляя ротор вращаться и, таким образом, выполнять работу.

Большинство бензиновых двигателей представляют собой поршневые двигатели с возвратно-поступательным движением. Основные узлы поршневого двигателя показаны на рисунке. Почти все двигатели этого типа работают либо по четырехтактному, либо по двухтактному циклу.

Четырехтактный цикл

Из различных методов извлечения энергии из процесса сгорания наиболее важным до сих пор был четырехтактный цикл, концепция которого впервые была разработана в конце 19 века. Четырехтактный цикл показан на рисунке. При открытом впускном клапане поршень сначала опускается на такте впуска. Воспламеняющаяся смесь паров бензина и воздуха всасывается в цилиндр за счет создаваемого таким образом частичного вакуума. Смесь сжимается по мере того, как поршень поднимается в такте сжатия при закрытых обоих клапанах. По мере приближения к концу хода заряд воспламеняется электрической искрой. Затем следует рабочий такт, когда оба клапана все еще закрыты, а давление газа из-за расширения сгоревшего газа давит на головку или головку поршня. Во время такта выпуска восходящий поршень вытесняет отработавшие продукты сгорания через открытый выпускной клапан. Затем цикл повторяется. Таким образом, для каждого цикла требуется четыре хода поршня — впуск, сжатие, рабочий ход и выпуск — и два оборота коленчатого вала.

Недостаток четырехтактного цикла состоит в том, что выполняется только половина рабочих тактов по сравнению с двухтактным циклом ( см. ниже ), и только вдвое меньше мощности можно ожидать от двигателя данного размера при заданная рабочая скорость. Однако четырехтактный цикл обеспечивает более надежную очистку от выхлопных газов (продувку) и перезагрузку цилиндров, уменьшая потерю свежего заряда в выхлопных газах.

Бензиновый двигатель | Эксплуатация, топливо и факты

V-образный двигатель

См. все СМИ

Ключевые сотрудники:
Зигфрид Маркус
Готлиб Даймлер
Карл Бенц
Похожие темы:
Г-образный двигатель
двигатель Отто
двигатель Ленуара
рядный двигатель
V-образный двигатель

Просмотреть весь соответствующий контент →

Резюме

Прочтите краткий обзор этой темы

бензиновый двигатель , любой из класса двигателей внутреннего сгорания, которые вырабатывают энергию за счет сжигания летучего жидкого топлива (бензина или бензиновой смеси, такой как этанол) с воспламенением, инициируемым электрической искрой. Бензиновые двигатели могут быть построены для удовлетворения требований практически любого мыслимого применения силовых установок, наиболее важными из которых являются легковые автомобили, небольшие грузовики и автобусы, самолеты авиации общего назначения, подвесные и небольшие внутренние морские установки, стационарные насосные станции среднего размера, осветительные установки, станки, электроинструменты. Четырехтактные бензиновые двигатели используются в подавляющем большинстве автомобилей, легких грузовиков, средних и больших мотоциклов и газонокосилок. Двухтактные бензиновые двигатели менее распространены, но они используются для небольших подвесных судовых двигателей и во многих ручных садовых инструментах, таких как цепные пилы, кусторезы и воздуходувки.

Типы двигателей

Бензиновые двигатели можно разделить на несколько типов в зависимости от нескольких критериев, включая их применение, метод управления подачей топлива, зажигание, расположение поршня и цилиндра или ротора, ходы за цикл, систему охлаждения и клапан тип и расположение. В этом разделе они описаны в контексте двух основных типов двигателей: поршневых и цилиндровых двигателей и роторных двигателей. В поршне-цилиндровом двигателе давление, создаваемое сгоранием бензина, создает силу на головке поршня, которая совершает возвратно-поступательное или возвратно-поступательное движение по всей длине цилиндра. Эта сила отталкивает поршень от головки цилиндра и совершает работу. Роторный двигатель, также называемый двигателем Ванкеля, не имеет обычных цилиндров с возвратно-поступательными поршнями. Вместо этого давление газа действует на поверхности ротора, заставляя ротор вращаться и, таким образом, выполнять работу.

Большинство бензиновых двигателей представляют собой поршневые двигатели с возвратно-поступательным движением. Основные узлы поршневого двигателя показаны на рисунке. Почти все двигатели этого типа работают либо по четырехтактному, либо по двухтактному циклу.

Четырехтактный цикл

Из различных методов извлечения энергии из процесса сгорания наиболее важным до сих пор был четырехтактный цикл, концепция которого впервые была разработана в конце 19 века. Четырехтактный цикл показан на рисунке. При открытом впускном клапане поршень сначала опускается на такте впуска. Воспламеняющаяся смесь паров бензина и воздуха всасывается в цилиндр за счет создаваемого таким образом частичного вакуума.