ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Широтно-импульсное управление двигателем постоянного тока. Управление шим двигателем


Как управлять мотором постоянного тока

Как подключить мотор к МК

В данной статье мы будем разбираться как управлять с помощью МК скоростью и направлением вращения обычным двигателем постоянного тока.

Для того чтобы коллекторный мотор постоянного тока заработал, достаточно подать на него определённое напряжение. Полярность данного напряжения будет определять направление его вращения, а величина напряжения — скорость вращения. Напряжение нельзя менять безгранично. Каждый мотор рассчитан на определённый диапазон напряжений. Максимальной мощности он достигает на указанном в документации напряжении. Как правило, ниже 30-50% от этого напряжения он перестаёт вращаться. Чем больше нагрузка на мотор, тем больший ток он потребляет. Если же мотор не сможет прокрутить вал (его заклинило), то мотор по сути станет сопротивлением и потребляемый ток достигает максимальной величины, зависящей от внутреннего сопротивления его обмоток. Мотор не рассчитан на работу в таком режиме и может сгореть.

Для того чтобы вы поняли как меняется ток от нагрузки, посмотрим на реальный мотор R380-2580.

Мы видим, что рабочее напряжение данного мотора — 12В, потребляемый ток под нагрузкой — 1.5А. Ток останова мотора вырастает до 8А, а в холостом же вращении, потребляемый ток равен всего 0.8А.

Как мы знаем, порт микроконтроллера не может выдать ток больше 50мА, и напряжение питания 12В для него слишком большое. Для управления моторами нам понадобится электронный ключ — транзистор, возьмём обычный биполярный транзистор NPN и подключим его по следующей схеме.

Чтобы мотор начал вращаться, на базу транзистора необходимо подать небольшой ток, далее транзистор откроется и сможет пропустить через себя гораздо больший ток и напряжение — мотор будет вращаться. Стоит отметить что, если мы соберём такую схему, то транзистор очень скоро, если не сразу, выйдет из строя. Чтобы этого не произошло, его необходимо защитить.

Обмотки мотора обладают достаточно большой индуктивностью, а как известно индуктивность сопротивляется изменению тока. Поэтому, когда мы закроем транзистор, чтобы выключить мотор, то его сопротивление резко увеличится и он перестанет пропускать через себя ток. Однако индуктивность будет сопротивляться этому, и для того, чтобы удержать ток на прежнем уровне, по закону Ома, напряжение на коллекторе транзистора начнёт резко повышаться (может достигнуть даже 1000В, правда очень на малое время) и транзистор сгорит. Чтобы этого не произошло необходимо параллельно обмоткам мотора поставить диод, который откроет путь для обратного тока и замкнёт его на обмотке мотора, тем самым защитит транзистор. Также, все постоянные моторы имеют еще одну неприятность — их щётки искрят в процессе работы, создавая помехи, что может привести к сбою микроконтроллера. Чтобы снизить эти помехи, необходимо использовать конденсаторы небольшой ёмкости, подключенный параллельно выводам мотора (как можно ближе к самому мотору). Вот окончательная схема.

Биполярные транзисторы имеют один недостаток — в открытом состоянии они ведут себя как диоды (на них падает около 0.7 В). А это, в свою очередь, вызывает их большой нагрев на больших токах и снижаем КПД схемы управления мотором. Поэтому лучше управлять моторами с помощью полевых (MOSFET) транзисторов. В настоящее время они достаточно распространены и имеют невысокую цену. Их низкое сопротивление в открытом состоянии позволяет коммутировать очень высокие токи. Однако и у них есть свои недостатки. Так как MOSFET транзисторы управляются напряжением, а не током (и обычно оно составляет 10В), то нужно выбирать специальные логические MOSFET, которые могут управляться низким напряжением — 1.8 .. 2.5В или использовать специальные схемы драйверов полевых транзисторов. Как выбирать MOSFET под вашу схему мы рассмотрим в других статьях, на конкретных приборах.

Теперь, подавая на выход микроконтроллера логическую единицу, мы заставим мотор вращаться, а логический ноль — остановится. Однако вращаться он будет с постоянной скоростью и в только одну сторону. Хотелось бы иметь возможность менять направление вращения мотора, а также его скорость. Рассмотрим, как этого можно добиться с помощью микроконтроллера.

H-Мост — меняем направление вращения мотора

Для управления направлением вращения мотора существует специальная схема, которая называется H-мост (схема выглядит как буква H).

Работает схема очень просто. Если открыть верхний правый и левый нижний транзистор, то на клемах мотора справа будет плюс, а слева будет минус. Мотор будет крутиться в одну сторону. Если открыть левый верхний и правый нижний, то справа будет минус, а слева плюс — полярность тока сменится, и мотор будет крутиться в другую сторону. Паразитные диоды внутри MOSFET транзисторов будут защищать всю схему (параметры этих диодов не очень хорошие и в реальных схемах могут понадобиться более быстродействующие диоды Шотке параллельно паразитным диодам, для снижения нагрева полевого транзистора), так что лишние компоненты не понадобятся, кроме искрогасящего конденсатора.

В схеме H-моста в качестве нижних транзисторов всегда используются N-канальные, а вот верхние могут быть как N-канальные, так и P-канальные. P-канальными транзисторами в верхнем ключе проще управлять, достаточно сделать схему смещения уровня напряжения на затворе. Для этого можно использовать маломощный N-канальный полевой или биполярный транзистор. Нижним транзистором можно управлять напрямую от МК, если выбрать специальный логический полевой транзистор.

Если в вашей схеме будет использоваться высоковольтный мотор постоянного тока (больше 24В) или мощный мотор с токами более 10А, то лучше использовать специальные микросхемы — драйверы MOSFET транзисторов. Драйверы управляются, как правило, сигналами микроконтроллера от 2 до 5В, а на выходе создают напряжение необходимое для полного открытия MOSFET транзисторов — обычно это 10-15В. С помощью драйверов легко организовать управление верхним N-канальным транзистором. Очень хорошим драйвером является микросхема L6387D от компании ST. Данная микросхема хороша тем, что не требует диода для схемы накачки напряжения. Вот так она подключается для управления H-мостом на всех N-канальных транзисторах.

N-канальные полевые транзисторы, стоят дешевле P-канальных, а также имеют меньшее сопротивление в открытом состоянии, что позволяет коммутировать большие токи. Но ими сложнее управлять в верхнем положении. Проблема использования N-канального транзистора в верхнем ключе состоит в том, что для его открытия нужно подать напряжение 10В относительно Истока, а как вы видите на схеме там может быть все напряжение питания мотора, а не 0 вольт. Таким образом, на базу необходимо подать 10В + напряжение питания мотора. Нужна специальная bootstrap схема для повышения напряжения. Обычно, для этих целей используется схема накачки напряжения на конденсаторе и диоде. Однако такая схема работает только, если вы постоянно подзаряжаете конденсатор — открывая, закрывая нижний транзистор (в ШИМ управлении), или нужно еще усложнять схему — добавлять схему внешней подпитки конденсатора. Вот пример схемы управления N-канальными транзисторами без использования микросхем.

Рассмотрим теперь, как управлять скоростью вращения мотора.

ШИМ сигнал — управляем скоростью вращения мотора

Моторы постоянного тока имеют линейную зависимость скорости вращения от приложенного напряжения. Таким образом, чтобы снизить скорость вращения, надо подать меньше напряжения. Но надо помнить, что с падением напряжения, у мотора падает мощность. Поэтому, на практике, можно управлять скоростью мотора только в пределах 30%-50% от полной скорости вращения мотора. Для управления скоростью мотора без потери мощности, необходима обратная связь от мотора по оборотам вращения, например как в электрическом шуруповерте. Такой режим управления, требует более сложной схемы. Рассмотрим простой вариант — управление скоростью мотора без обратной связи.

Итак, нам необходимо менять напряжение подаваемое на мотор. В нашем распоряжении есть MOSFET транзистор. Мы помним, что наш мотор — это в первую очередь индуктивность. Индуктивность сопротивляется изменению тока. И если быстро включать и выключать напряжение на моторе, то в момент выключения ток будет продолжать течь благодаря индуктивности. А мотор будет продолжать вращаться по инерции, а не остановится. Но естественно, вращаться он будет медленнее, среднее напряжение на его обмотках будет меньшее.

Микроконтроллер, как раз, отлично умеет генерировать ШИМ (PWM) сигнал. А мотор умеет интегрировать данный сигнал (усреднять) за счёт индуктивности обмоток. От коэффициента заполнения (скважности) ШИМ сигнала как раз и будет зависеть полученное мотором среднее напряжение, а значит и скорость.

Какая же частота ШИМ нужна для лучшего управления мотором? Ответ очень простой, чем больше, тем лучше. Минимальная частота зависит от индуктивности мотора, а также массы ротора и нагрузки на вал мотора. Если смоделировать в электрическом симуляторе (например, PROTEUS) ШИМ управление мотором, то будет видно, что чем больше частота ШИМ, тем более ровный ток протекает через мотор (ripple current — снижается при увеличении частоты). Низкая частота:

высокая частота:

Если же частота упадёт ниже определённого уровня, то мотор не сможет крутится, ток станет разрывным (будет падать до нуля).

Отлично, все просто! Делаем частоту ШИМ побольше, например 1 МГц, и любому мотору хватит. В жизни же, все не так просто. Для понимания всех возможных проблем можно упрощенно принять затвор MOSFET транзистора за идеальный конденсатор. Для того чтобы транзистор полностью открылся, конденсатор необходимо зарядить до 10В (на самом деле меньше). Чем больше ток, который мы можем вкачать в конденсатор, тем быстрее он зарядится, а значит быстрее откроется транзистор. В процессе открытия транзистора, ток и напряжение на нем будут максимальными, и чем больше это время, тем сильнее нагреется транзистор. В datasheet обычно есть такой параметр как Qgate — полный заряд, который надо передать транзистору, чтобы он открылся полностью.

Чем меньше эта величина, тем меньшей ток нужен для управления данным транзистором. Естественно, такой ток нужен только на очень короткое время — какое, опять же написано в datasheet — tr, обычно оно измеряется в наносекундах. Чтобы выдать такой ток, нужны специальные драйверы, если же мы управляем логическим MOSFET напрямую от микроконтроллера, то мы не сможем обеспечить такой ток. Поэтому для защиты микроконтроллера необходимо перед базой MOSFET ставить резистор, а это сильно замедляет время открытия. В итоге, микроконтроллер в прямом управлении не может обеспечить более 1-2 мкc на открытие и закрытие транзистора. Время открытия и закрытия должно занимать не более 10% длительности ШИМ сигнала. Таким образом, мы сразу получаем ограничение в частоте — 50 000 Гц. Дополнительно, сам микроконтроллер должен иметь возможность генерировать ШИМ сигнал с возможностью хотя бы 8 битного управления шириной ШИМ (для этого требуется большая рабочая частота МК). В итоге, обеспечить большую частоту ШИМ не так просто. Так же, на высоких частотах, начитает мешать паразитные ёмкости и индуктивности. На плате, которую можно сделать дома, получить частоту ШИМ больше 300 кГц, очень сложно. Трассировка платы должна быть сделана идеально. Для снижения требований к плате, в настоящее время выпускаются специальные MOSFET, объединённые с драйверами управления, они позволяют на заводских, многослойных платах получить частоту управления MOSFET в 2МГц.

Индуктивность моторов не маленькая, и такие большие частоты не нужны. Для управления моторами постоянного тока вполне достаточно 8КГц, лучше около 20КГц (за звуковым диапазоном).

ШИМ управление мотором предполагает очень быстрое изменение напряжение от 0 для максимального, что порождает большие проблемы при трассировке платы. Перечислим коротко правила, которые необходимо соблюдать при трассировке платы.

Более подробно мы рассмотрим как работают эти правила на конкретных приборах.

ШИМ сигнал в H-мосте

Чтобы можно было менять направление вращения и скорость — нужна схема H-моста и нужно управлять транзисторами ШИМ сигналом. В схеме H-моста четыре транзистора, как лучше ими управлять, на какой транзистор подавать ШИМ сигнал. Разберёмся в этом вопросе (рекомендуем прочитать очень подробную статью на эту тему).

Рассмотрим нашу схему с точки зрения нагрева транзисторов. Это один из основных критериев, по которому наш прибор может выйти из строя. Полевой транзистор состоит из двух элементов — собственно транзистор и паразитный диод. В схеме управления мотором оба элемента работают. Нагрев полевого транзистора происходит в следующие моменты времени:

Посмотрим, как влияет схема управления на нагрев нашим электронных ключей. Допустим, что мы управляем мотором ШИМ сигналом со скважностью 50% и мотор крутится в одну сторону.

Самый простой вариант — применить ШИМ сигнал к одному из двух транзисторов, а второй оставить все время открытым. Обычно, ШИМ в этом случае подаётся на нижний транзистор (N типа), который обычно быстрее. В этом случае нагрев нижнего будет больше верхнего на величину тепла выделяемого при переключениях транзистора. Чтобы сравнять счет, можно попеременно подавать ШИМ сигнал то на верхний (если они одинаковые), то на нижний транзистор. Также можно подавать ШИМ на оба транзистора одновременно, но из-за разницы в транзисторах это будет не эффективно, а также будет увеличивать нагрев за счет переключения транзисторов. При такой схеме управления, два других транзистора работают как диоды. К счастью, наибольший ток через диод будет при наибольшей скважности ШИМ, при этом диод будет задействован очень малое время.

Для исключения тока через диоды, которые дают существенный нагрев, можно мотор никогда не отключать от напряжения, а вместо этого, крутить его в обратную сторону. Таким образом, мы должны, например 70% ШИМ сигнала крутить вправо, а 30% влево. Это даст в итоге 70%-30%=40% скорости вправо. Но при этом не будут задействованы диоды. Такой метод управления называется комплементарным. Такая схема требует большого конденсатора на линии питания, а также источника питания, который может потреблять ток (например аккумулятора).

Вместо вращения мотора в разные стороны, можно помогать диодам — а именно тормозить мотор, открывать два верхних транзистора в момент низкого уровня ШИМ сигнала. На практике, все эти методы не дают существенного изменения скорости вращения двигателя, но позволяют эффективно управлять нагревом полевых транзисторов. Более подробно про особенности различных схем управления можно в этой статье.

myowndevice.ru

Все про широтно-импульсную модуляцию (ШИМ)

Широтно-импульсная модуляция (ШИМ) – это метод преобразования сигнала, при котором изменяется длительность импульса (скважность), а частота остаётся константой. В английской терминологии обозначается как PWM (pulse-width modulation). В данной статье подробно разберемся, что такое ШИМ, где она применяется и как работает.

Область применения

С развитием микроконтроллерной техники перед ШИМ открылись новые возможности. Этот принцип стал основой для электронных устройств, требующих, как регулировки выходных параметров, так и поддержания их на заданном уровне. Метод широтно-импульсной модуляции применяется для изменения яркости света, скорости вращения двигателей, а также в управлении силовым транзистором блоков питания (БП) импульсного типа.

Широтно-импульсная (ШИ) модуляция активно используется в построении систем управления яркостью светодиодов. Благодаря низкой инерционности, светодиод успевает переключаться (вспыхивать и гаснуть) на частоте в несколько десятков кГц. Его работа в импульсном режиме воспринимается человеческим глазом как постоянное свечение. В свою очередь яркость зависит от длительности импульса (открытого состояния светодиода) в течение одного периода. Если время импульса равно времени паузы, то есть коэффициент заполнения – 50%, то яркость светодиода будет составлять половину от номинальной величины. С популяризацией светодиодных ламп на 220В стал вопрос о повышении надёжности их работы при нестабильном входном напряжении. Решение было найдено в виде универсальной микросхемы – драйвера питания, работающего по принципу широтно-импульсной или частотно-импульсной модуляции. Схема на базе одного из таких драйверов детально описана здесь.

Подаваемое на вход микросхемы драйвера сетевое напряжение постоянно сравнивается с внутрисхемным опорным напряжением, формируя на выходе сигнал ШИМ (ЧИМ), параметры которого задаются внешними резисторами. Некоторые микросхемы имеют вывод для подачи аналогового или цифрового сигнала управления. Таким образом, работой импульсного драйвера можно управлять с помощью другого ШИ-преобразователя. Интересно, что на светодиод поступают не высокочастотные импульсы, а сглаженный дросселем ток, который является обязательным элементом подобных схем.

Масштабное применение ШИМ отражено во всех LCD панелях со светодиодной подсветкой. К сожалению, в LED мониторах большая часть ШИ-преобразователей работает на частоте в сотни Герц, что негативно отражается на зрении пользователей ПК.

Микроконтроллер Ардуино тоже может функционировать в режиме ШИМ контроллера. Для этого следует вызвать функцию AnalogWrite() с указанием в скобках значения от 0 до 255. Ноль соответствует 0В, а 255 – 5В. Промежуточные значения рассчитываются пропорционально.

Повсеместное распространение устройств, работающих по принципу ШИМ, позволило человечеству уйти от трансформаторных блоков питания линейного типа. Как результат – повышение КПД и снижение в несколько раз массы и размеров источников питания.

ШИМ-контроллер является неотъемлемой частью современного импульсного блока питания. Он управляет работой силового транзистора, расположенного в первичной цепи импульсного трансформатора. За счёт наличия цепи обратной связи напряжение на выходе БП всегда остаётся стабильным. Малейшее отклонение выходного напряжения через обратную связь фиксируется микросхемой, которая мгновенно корректирует скважность управляющих импульсов. Кроме этого современный ШИМ-контроллер решает ряд дополнительных задач, способствующих повышению надёжности источника питания:

Принцип работы ШИМ контроллера

Задача ШИМ контроллера состоит в управлении силовым ключом за счёт изменения управляющих импульсов. Работая в ключевом режиме, транзистор находится в одном из двух состояний (полностью открыт, полностью закрыт). В закрытом состоянии ток через p-n-переход не превышает несколько мкА, а значит, мощность рассеивания стремится к нулю. В открытом состоянии, несмотря на большой ток, сопротивление p-n-перехода чрезмерно мало, что также приводит к незначительным тепловым потерям. Наибольшее количество тепла выделяется в момент перехода из одного состояния в другое. Но за счёт малого времени переходного процесса по сравнению с частотой модуляции, мощность потерь при переключении незначительна.

Широтно-импульсная модуляция разделяется на два вида: аналоговая и цифровая. Каждый из видов имеет свои преимущества и схемотехнически может реализовываться разными способами.

Аналоговая ШИМ

Принцип действия аналогового ШИ-модулятора основан на сравнении двух сигналов, частота которых отличается на несколько порядков. Элементом сравнения выступает операционный усилитель (компаратор). На один из его входов подают пилообразное напряжение высокой постоянной частоты, а на другой – низкочастотное модулирующее напряжение с переменной амплитудой. Компаратор сравнивает оба значения и на выходе формирует прямоугольные импульсы, длительность которых определяется текущим значением модулирующего сигнала. При этом частота ШИМ равна частоте сигнала пилообразной формы.

Цифровая ШИМ

Широтно-импульсная модуляция в цифровой интерпретации является одной из многочисленных функций микроконтроллера (МК). Оперируя исключительно цифровыми данными, МК может формировать на своих выходах либо высокий (100%), либо низкий (0%) уровень напряжения. Однако в большинстве случаев для эффективного управления нагрузкой напряжение на выходе МК необходимо изменять. Например, регулировка скорости вращения двигателя, изменение яркости светодиода. Что делать, чтобы получить на выходе микроконтроллера любое значение напряжения в диапазоне от 0 до 100%?

Вопрос решается применением метода широтно-импульсной модуляции и, используя явление передискретизации, когда заданная частота переключения в несколько раз превышает реакцию управляемого устройства. Изменяя скважность импульсов, меняется среднее значение выходного напряжения. Как правило, весь процесс происходит на частоте в десятки-сотни кГц, что позволяет добиться плавной регулировки. Технически это реализуется с помощью ШИМ-контроллера – специализированной микросхемы, которая является «сердцем» любой цифровой системы управления. Активное использование контроллеров на основе ШИМ обусловлено их неоспоримыми преимуществами:

Получить на выводах микроконтроллера ШИМ сигнал можно двумя способами: аппаратно и программно. В каждом МК имеется встроенный таймер, который способен генерировать ШИМ импульсы на определённых выводах. Так достигается аппаратная реализация. Получение ШИМ сигнала с помощью программных команд имеет больше возможностей в плане разрешающей способности и позволяет задействовать большее количество выводов. Однако программный способ ведёт к высокой загрузке МК и занимает много памяти.

Примечательно, что в цифровой ШИМ количество импульсов за период может быть различным, а сами импульсы могут быть расположены в любой части периода. Уровень выходного сигнала определяется суммарной длительностью всех импульсов за период. При этом следует понимать, что каждый дополнительный импульс – это переход силового транзистора из открытого состояния в закрытое, что ведёт к росту потерь во время переключений.

Пример использования ШИМ регулятора

Один из вариантов реализации ШИМ простого регулятора уже описывался ранее в этой статье. Он построен на базе микросхемы NE555 и имеет небольшую обвязку. Но, несмотря на простату схемы, регулятор имеет довольно широкую область применения: схемы управления яркости светодиодов, светодиодных лент, регулировка скорость вращения двигателей постоянного тока.

Читайте так же

ledjournal.info

схема, принцип работы, управление :: SYL.ru

Один из используемых подходов, позволяющих существенно сократить потери на нагревании силовых компонентов радиосхем, представляет собой использование переключательных режимов работы установок. При подобных системах электросиловой компонент или раскрыт - в это время на нем наблюдается фактически нулевое падение напряжения, или открыт - в это время на него подается нулевой ток. Рассеиваемую мощность можно вычислить, перемножив показатели силы тока и напряжения. В этом режиме получается достичь коэффициента полезного действия около 75-80% и более.

Что такое ШИМ?

Для получения на выходе сигнала требуемой формы силовой ключ должен открываться всего лишь на определенное время, пропорциональное вычисленным показателям выходного напряжения. В этом и заключается принцип широтно-импульсной модуляции (ШИМ, PWM). Далее сигнал такой формы, состоящий из импульсов, разнящихся по своей ширине, поступает в область фильтра на основе дросселя и конденсатора. После преобразования на выходе будет практически идеальный сигнал требуемой формы.

Область применения ШИМ не ограничивается импульсными источниками питания, стабилизаторами и преобразователями напряжения. Использование данного принципа при проектировании мощного усилителя звуковой частоты дает возможность существенно снизить потребление устройством электроэнергии, приводит к миниатюризации схемы и оптимизирует систему теплоотдачи. К недостаткам можно причислить посредственное качество сигнала на выходе.

Формирование ШИМ-сигналов

Создавать ШИМ-сигналы нужной формы достаточно трудно. Тем не менее индустрия сегодня может порадовать замечательными специальными микросхемами, известными как ШИМ-контроллеры. Они недорогие и целиком решают задачу формирования широтно-импульсного сигнала. Сориентироваться в устройстве подобных контроллеров и их использовании поможет ознакомление с их типичной конструкцией.

Стандартная схема контроллера ШИМ предполагает наличие следующих выходов:

Выходное управляющее напряжение (OUT)

Количество выводов микросхемы определяется её конструкцией и принципом работы. Не всегда удается сразу разобраться в сложных терминах, но попробуем выделить суть. Существуют микросхемы на 2-х выводах, управляющие двухтактными (двухплечевыми) каскадами (примеры: мост, полумост, 2-тактный обратный преобразователь). Существуют и аналоги ШИМ-контроллеров для управления однотактными (одноплечевыми) каскадами (примеры: прямой/обратный, повышающий/понижающий, инвертирующий).

Помимо этого, выходной каскад может быть по строению одно- и двухтактным. Двухтактный используется в основном для управления полевым транзистором, зависящим от напряжения. Для быстрого закрытия необходимо добиться быстрой разрядки емкостей "затвор - исток" и "затвор - сток". Для этого как раз и используется двухтактный выходной каскад контроллера, задачей которого является обеспечение замыкание выхода на общий кабель, если требуется закрыть полевой транзистор.

Для контроля над биполярным транзистором двухтактный каскад не используется, так как управление осуществляется с помощью тока, а не напряжения. Для закрытия биполярного транзистора достаточно всего лишь прекратить протекание тока через базу. При этом замыкание базы на общий провод необязательно.

Ещё о функциях контроллеров ШИМ

Задумав спроектировать контроллер ШИМ своими руками, необходимо как следует продумать все детали его реализации. Только так можно создать работающее устройство. Кроме вышеуказанных выходов, работа ШИМ-контроллера подразумевает наличие следующих функций:

Частота работы устройств, синхронизация

Микросхемы ШИМ-контроллеров могут применяться для различных целей. Чтобы отладить их совместную работу с другими элементами устройства, следует разобраться, как устанавливать те или иные параметры работы контроллера и какие компоненты цепи за это отвечают.

ШИМ-контроллеры в составе блоков питания

Блок питания является неотъемлемым элементом большинства современных девайсов. Срок его эксплуатации практически ничем не ограничен, но от его исправности во многом зависит безопасность работы подконтрольного устройства. Спроектировать блок питания можно и своими руками, изучив принцип его действия. Основная цель – формирование нужной величины напряжения питания, обеспечение её стабильности. Для большинства мощных устройств гальванической развязки, основанной на действии трансформатора, будет недостаточно, да и подобранный элемент явно удивит пользователей своими габаритами.

Увеличение частоты тока питания позволяет существенно уменьшить размеры используемых компонентов, что обеспечивает популярность блоков питания, работающих на частотных преобразователях. Один из самых простых вариантов реализации питающих элементов – блок-схема, состоящая из прямого и обратного преобразователей, генератора и трансформатора. Несмотря на видимую простоту реализации таких схем, на практике они демонстрируют больше недочетов, чем преимуществ. Большинство получаемых показателей стремительно изменяются под влиянием скачков напряжения питания, при загрузке выхода преобразователя и даже при увеличении температуры окружающей среды. ШИМ-контроллеры для блоков питания дают возможность стабилизировать схему, а также воплотить множество дополнительных функций.

Составляющие схемы блоков питания с ШИМ-контроллерами

Типовая схема состоит из генератора импульсов, в основе которого лежит ШИМ-контроллер. Широтно-импульсная модуляция дает возможность собственноручно контролировать амплитуду сигнала на выходе ФНЧ, изменяя при необходимости длительность импульса или его скважность. Сильная сторона ШИМ – высокий КПД усилителей мощности, в особенности звука, что в целом обеспечивает устройствам довольно обширную сферу применения.

ШИМ-контроллеры для блоков питания могут использоваться в схемах с различными мощностями. Для реализации относительно маломощных схем необязательно включать в их состав большое число элементов – в качестве ключа может выступать обычный полевой транзистор.

ШИМ-контроллеры для источников питания большой мощности могут иметь также элементы управления выходным ключом (драйверы). В качестве выходных ключей рекомендуется использовать IGBT-транзисторы.

Основные проблемы ШИМ-преобразователей

При работе любого устройства полностью исключить вероятность поломки невозможно, и преобразователей это тоже касается. Сложность конструкции при этом не имеет значения, проблемы в эксплуатации может вызвать даже известный ШИМ-контроллер TL494. Неисправности имеют различную природу – некоторые из них можно выявить на глаз, а для обнаружения других требуется специальное измерительное оборудование.

Чтобы узнать, как проверить ШИМ-контроллер, следует ознакомится со списком основных неисправностей приборов, а лишь позже – с вариантами их устранения.

Диагностика неисправностей

Одна из часто встречающихся проблем – пробой ключевых транзисторов. Результаты можно увидеть не только при попытке запуска устройства, но и при его обследовании с помощью мультиметра.

Кроме того, существуют и другие неисправности, которые несколько сложнее обнаружить. Перед тем как проверить ШИМ-контроллер непосредственно, можно рассмотреть самые распространенные случаи поломок. К примеру:

В заключение

Универсальные и многофункциональные ШИМ-контроллеры сейчас можно встретить практически везде. Они служат не только в качестве неотъемлемой составляющей блоков питания большинства современных устройств - типовых компьютеров и других повседневных девайсов. На основе контроллеров разрабатываются новые технологии, позволяющие существенно сократить расход ресурсов во многих отраслях человеческой деятельности. Владельцам частных домов пригодятся контроллеры заряда аккумуляторов от фотоэлектрических батарей, основанные на принципе широтно-импульсной модуляции тока заряда.

Высокий коэффициент полезного действия делает разработку новых устройств, действие которых основывается на принципе ШИМ, весьма перспективной. Вторичные источники питания - вовсе не единственное направление деятельности.

www.syl.ru

Широтно-импульсное управление двигателем постоянного тока

  1. Цель работы

Практическое изучение принципа регулирования частоты вращения двигателя постоянного тока с помощью широтно-импульсного регулятора. Оценка влияния частоты коммутации и индуктивности якорной цепи двигателя на качество регулирования. Исследование механических характеристик электропривода при действии обратной связи по скорости вращения.

  1. Указания к самостоятельной работе

При подготовке к лабораторной работе необходимо по учебникам, конспектам лекций изучить тему «Электроприводы постоянного тока с широтно-импульсным управлением»: устройство, принцип действия, способы регулирования частоты вращения, механические и регулировочные характеристики в разомкнутой и замкнутой системе регулирования [1,2], а также лабораторный практикум к выполнению лабораторной работы 5.

  1. Принцип действия, характеристики системы широтно-импульный преобразователь двигатель постоянного тока и описание лабораторного стенда

3.1 Принцип действия, характеристики системы ШИП-ДПТ

Принцип широтно-импульсного управления двигателя постоянного тока поясняет рис. 3.1. На схеме штриховой линией очерчен электронный ключ VS, который периодически подключает цепь якоря двигателя М на выход неуправляемого выпрямителя V с напряжением ud. На отрезке времени tо, когда ключ VS замкнут, ток iя якоря двигателя создается напряжением Ud. При этом часть энергии, поставляемой выпрямителем V, запасается в якоре двигателя М в виде магнитного поля.

На отрезке времени tз, когда ключ VS разомкнут, ток iя якоря двигателя М протекает в прежнем направлении, но через шунтирующий диод VD, используя для этого энергию электромагнитного поля индуктивностей якорной цепи двигателя М.

Рис 3.1. Схема (а) и диаграмма (б) напряжений и тока при широтно-импульсном управлении

Среднее значение напряжения uя на якоре двигателя М за период TК коммутации VS ключа определяется по формуле

(3.1)

где­ скважность импульсов; ­ напряжение на выходе выпрямителяV.

Таким образом, напряжение Uя определяется путем изменения скважности импульсов. Для изменения скважности импульсов применяется широтно-импульсный модулятор ШИМ (рис. 3.1,a).

ШИМ состоит из генератора опорного напряжения (ГОН), нуль-органа сравнения (НО) и формирователя выходных импульсов (ФИ). Генератор ГОН вырабатывает треугольное напряжение u0 c частотой fк=1/Tк, которое сравнивается в НО с управляющим напряжением uу. В момент равенства этих напряжений и при условии, что Uу > u0, ФИ вырабатывает импульсы, включающие VS. При импульсном управлении ток в якоре двигателя М имеет колебательный характер. При этом пульсации составляют (2-10)% от номинального значения тока якоря. Величина пульсаций I якорного тока определяется выражением

(3.2)

где rя, Lя - соответственно активное сопротивление и индуктивность якорной цепи двигателя М; - электромагнитная постоянная времени якорной цепи двигателя.

Из уравнения (3.2) видно, что величина пульсаций якорного тока обратно пропорциональна частоте коммутации fк и электромагнитной постоянной Тэ , а также зависит от величины скважности  импульсов. Наибольшие пульсации якорного тока возникают при =0,5. Для уменьшения пульсаций тока целесообразно увеличивать частоту коммутации ключа. В преобразователях с тиристорными ключами частота коммутации выбирается в пределах 200 - 2000 Гц, в преобразователях на транзисторах - в пределах 2 - 40 кГц.

Для обеспечения тормозных режимов при регулировании скорости вращения и сбросе нагрузки используется схема с двумя силовыми ключами (рис.3.2,а). Если в схеме работают ключ VS1 и диод VD1, то имеет место двигательный режим работы электропривода (сплошные стрелки). При этом энергия на движение вала потребляется из сети постоянного тока. При работе ключа VS2 и диода VD2 электропривод переводится в тормозной режим (штриховые стрелки) с рекуперацией энергии движения вала в сеть. Диаграмма тока iя якоря и тока iс питающей сети соответственно для двигательного и тормозного режимов изображены на рис. 3.2, б и в. Диаграмма токов показывает, что ток iс сети носит импульсный характер с изменением направления при тормозном режиме.

Для повышения эффективности торможения, особенно при низких скоростях вращения вала, необходимо увеличить время замыкания ключа VS2 и иметь в цепи якоря достаточную суммарную индуктивность.

Рис. 3.2. Схема (а), диаграмма (б и в) работы и механические характеристики электропривода с широтно-импульсным управлением

Механические характеристики электропривода с широтно-импульсным управлением для двухквадрантного режима работы представлены на рис 3.2,г. Характеристики не имеют области прерывистых токов, и их жесткость определяется активным сопротивлением якоря двигателя М. Уравнение механических характеристик может быть записано в виде:

(3.3)

где - скорость вращения холостого хода;- постоянная двигателя М;- ток короткого замыкания цепи якоря.

В импульсных преобразователях в качестве электронных ключей применяются силовые транзисторы и транзисторные модули, которые должны надежно работать в широких пределах входного напряжения и тока нагрузки, иметь высокую перегрузочную способность и обеспечивать требуемую частоту fк коммутации.

studfiles.net

ШИМ-регулятор. Широтно-импульсная модуляция. Схема :: SYL.ru

При работе с множеством различных технологий часто стоит вопрос: как управлять мощностью, которая доступна? Что делать, если её необходимо понизить или повысить? Ответом на эти вопросы служит ШИМ-регулятор. Что он собой представляет? Где применяется? И как самому собрать такой прибор?

Что такое широтно-импульсная модуляция?

Без выяснения значения этого термина продолжать не имеет смысла. Итак, широтно-импульсная модуляция — это процесс управления мощностью, которая подводится к нагрузке, осуществляемая путём видоизменения скважности импульсов, которая делается при постоянной частоте. Существует несколько типов широтно-импульсной модуляции:

1. Аналоговый.

2. Цифровой.

3. Двоичный (двухуровневый).

4. Троичный (трехуровневый).

Что такое ШИМ-регулятор?

Теперь, когда мы знаем, что такое широтно-импульсная модуляция, можно поговорить и о главной теме статьи. Используется ШИМ-регулятор для того, чтобы регулировать напряжение питания и для недопущения мощных инерционных нагрузок в авто- и мототехнике. Это может звучать слишком сложно и лучше всего пояснить на примере. Допустим, необходимо сделать, чтобы лампы освещения салона меняли свою яркость не сразу, а постепенно. Это же относится к габаритным огням, автомобильным фарам или вентиляторам. Воплотить такое желание можно путём установки транзисторного регулятора напряжения (параметрический или компенсационный). Но при большом токе на нём будет выделяться чрезвычайно большая мощность и потребуется установка дополнительных больших радиаторов или дополнение в виде системы принудительного охлаждения с использованием маленького вентилятора, снятого с компьютерного устройства. Как видите, данный путь влечёт за собой много последствий, которые необходимо будет преодолеть.

Настоящим спасением из данной ситуации стал ШИМ-регулятор, который работает на мощных полевых силовых транзисторах. Они могут коммутировать большие токи (которые достигают 160 Ампер) при напряжении всего в 12-15В на затворе. Следует отметить, что сопротивление у открытого транзистора довольное мало, и благодаря этому можно заметно снизить уровень рассеиваемой мощности. Чтобы создать свой собственный ШИМ-регулятор, понадобится схема управления, которая сможет обеспечить разность напряжения между истоком и затвором в границах 12-15В. Если этого не получится достичь, то сопротивление канала будет сильно увеличиваться и значительно возрастёт рассеиваемая мощность. А это, в свою очередь, может привести к тому, что транзистор перегреется и выйдет из строя.

Выпускается целый ряд микросхем для ШИМ-регуляторов, которые смогут выдержать повышение входного напряжения до уровня 25-30В, при том, что питание будет всего 7-14В. Это позволит включать выходной транзистор в схеме вместе с общим стоком. Это, в свою очередь, необходимо для подключения нагрузки с общим минусом. В качестве примеров можно привести такие образцы: L9610, L9611, U6080B ... U6084B. Большинство нагрузок не потребляет ток больше 10 ампер, поэтому они не могут вызвать просадку напряжения. И как результат – использовать можно и простые схемы без доработки в виде дополнительного узла, который будет повышать напряжение. И именно такие образцы ШИМ-регуляторов и будут рассмотрены в статье. Они могут быть построены на основе несимметрического или ждущего мультивибратора. Стоит поговорить про ШИМ-регулятор оборотов двигателя. Об этом далее.

Схема №1

Эта схема ШИМ-регулятора собиралась на инверторах КМОП-микросхемы. Она является генератором прямоугольных импульсов, который действует на 2-х логических элементах. Благодаря диодам здесь отдельно изменяется постоянная времени разряда и заряда частотозадающего конденсатора. Это позволяет менять скважность, которую имеют выходные импульсы, и как результат – значение эффективного напряжения, которое есть на нагрузке. В данной схеме возможно использование любых инвертирующих КМОП-элементов, а также ИЛИ-НЕ и И. В качестве примеров подойдут К176ПУ2, К561ЛН1, К561ЛА7, К561ЛЕ5. Можно использовать и другие виды, но перед этим придётся хорошо подумать о том, как правильно сгруппировать их входы, чтобы они могли выполнять возложенный функционал. Преимущества схемы – доступность и простота элементов. Недостатки – сложность (практически невозможность) доработки и несовершенство относительно изменения диапазона выходного напряжения.

Схема №2

Обладает лучшими характеристиками, нежели первый образец, но сложнее в выполнении. Может регулировать эффективное напряжение на нагрузке в диапазоне 0-12В, до которого изменяется с начального значения 8-12В. Максимальный ток зависит от типа полевого транзистора и может достигать значительных значений. Учитывая, что выходное напряжение является пропорциональным входному управляющему, данную схему можно использовать как часть системы регулирования (для поддержки уровня температуры).

Причины распространения

Чем привлекает автолюбителей ШИМ-регулятор? Следует отметить стремление к увеличению КПД, когда проводится построение вторичных источников питания для электронной аппаратуры. Благодаря данному свойству можно данную технологию найти также при изготовлении компьютерных мониторов, дисплеев в телефонах, ноутбуках, планшетах и подобной техники, а не только в автомобилях. Также следует отметить значительную дешевизну, которой отличается данная технология при своём использовании. Также, если решите не покупать, а собирать ШИМ-регулятор собственноручно, то можно сэкономить деньги при усовершенствовании своего собственного автомобиля.

Заключение

Что ж, вы теперь знаете, что собой представляет ШИМ-регулятор мощности, как он работает, и даже можете сами собрать подобные устройства. Поэтому, если есть желание поэкспериментировать с возможностями своего автомобиля, можно сказать по этому поводу только одно – делайте. Причем можете не просто воспользоваться представленными здесь схемами, но и существенно доработать их при наличии соответствующих знаний и опыта. Но даже если всё не получится с первого раза, то вы сможете получить очень ценную вещь – опыт. Кто знает, где он может в следующий раз пригодиться и насколько важным будет его наличие.

www.syl.ru

Двигатели постоянного тока и управление ими с помощью широтно-импульсной модуляции. Часть 1. » Портал инженера

Электродвигатели это очень распространенный объект управления в различных устройствах и технических комплексах. Без них наша современная жизнь была бы не такой уж и современной. Они используются во многих сферах потребительской техники и промышленной автоматизации, начиная от небольших двигателей, вращающих барабан стиральной машинки, и заканчивая огромными махинами, приводящими в движение заводские конвейеры и шахтные подъемники.

Традиционно электродвигатели делят на двигатели постоянного тока и двигатели переменного тока. Последние в силу бурного развития научно-технической мысли, которая предлагает более совершенные алгоритмы векторного управления и довольно дешевые и удобные в использовании частотники, приобретают все большую популярность. Но двигатели постоянного тока (ДПТ) тоже имеют свои преимущества, и они еще долгое время будут крутить свои валы в режиме нещадной эксплуатации в различных технических областях, поэтому сегодня речь пойдет именно о ДПТ, точнее об управлении коллекторными электродвигателями постоянного тока.

Такие агрегаты были первыми двигателями, нашедшими широкое применение в промышленном оборудовании, и их до сих пор используют там, где требуется невысокая стоимость конечного устройства, простая установка и управление. На роторе этих двигателей располагаетсяобмотка (1 на рисунке 1), а на статоре — электромагниты (2 на рисунке 1). Щеточные контакты (3 на рисунке 1), которые устанавливаются по окружности вала ротора, применяются для переключения полярности напряжения, прикладываемого к обмотке ротора. Они же создают основную проблему эксплуатации коллекторного ДПТ — ненадежность, поскольку претерпевают сильный износ и требуют периодической замены. Также между щетками и коммутаторными контактами в ходе работы возникают искры, что может привести к возникновению сильных электромагнитных помех. Кроме того, при неправильной эксплуатации всегда имеется риск создать электрическую дугу в коллекторе или, как еще это называют, круговой огонь. В этом случае якорь двигателя гарантированно отживает свой срок.

Рисунок 1 – двигатель постоянного тока

 

Сегодня получили распространение две схемы управления двигателем такого типа: генератор-двигатель (Г-Д) и преобразователь-двигатель (тиристорный ТП-Д и транзисторный ТрП-Д).

Рисунок 2 – силовые схемы электроприводов постоянного тока а) Г-Д, б) ТП-Д или ТрП-Д

 

На рисунке 2 показаны две схемы управления ДПТ с независимым возбуждением. В обоих случаях управление угловой скоростью и моментом по абсолютному значению и направлению осуществляют путем регулирования напряжения на якоре двигателя. Напряжение на якоре двигателя Д в системе Г-Д регулируют путем изменения силы тока в обмотке возбуждения генератора (ВГ). 

Для этой цели служит возбудитель генератора ВГ, в качестве которого используют силовые магнитные усилители (системы МУ-Г-Д, хотя это прошлый век, и в современных системах такого не встретишь), тиристорные (ТВ-Г-Д) или транзисторные (ТрВ-Г-Д) преобразователи. В системах ТП-Д напряжение на якоре двигателя регулируют путем фазового управления коммутацией тиристоров, а в системах ТрП-Д путем изменения скважности пульсирующего питающего напряжения, то есть с помощью широтно-импульсной модуляции (ШИМ).

Популярность Г-Д, а также ТП-Д с каждым годом падает из-за их громоздкости, аппаратной избыточности и сложности в управлении, по сути, они в основном применяются в промышленности для управления крупными двигателями.  А ТрП-Д все чаще применяется в различных технических системах благодаря своей простоте, дешевизне и удобству управления. Также за счет обилия на рынке различных моделей MOSFET и IGBT-транзисторов и драйверов управления их затворами системы ТрП-Д применяются для управления как маломощными, так и крупными двигателями. Думаю, это стоит того, чтобы познакомиться с такими системами ближе.

Итак, сердцем ТрП-Д является широтно-импульсный преобразователь (ШИП), который состоит из четырех транзисторов (рисунок 3). В диагональ такого транзисторного моста включается нагрузка, то есть якорь двигателя. Питается ШИП от источника постоянного тока.

Рисунок 3 – схема транзисторного ШИП

 

Есть несколько способов управления ШИП по цепи якоря. Самый простой – это симметричный способ. При таком управлении в состоянии переключения находятся все четыре транзистора, и выходное напряжение ШИП представляет собой знакопеременные импульсы, длительность которых регулируется входным сигналом. Сам принцип переключения показан на рисунке 4. Логично предположить, если относительная продолжительность включения будет равна 50%, то на выходе ШИП получим 0 В. Преимуществом симметричного способа является простота реализации, но двухполярное напряжение на нагрузке, вызывающее пульсации тока в якоре, является его недостатком. По сути, он используется для управления маломощными ДПТ.

Рисунок 4 – симметричный способ управления ДПТ

 

Более совершенным является несимметричный способ управления. Как мы видим на рисунке 5, он обеспечивает на выходе ШИП однополярное напряжение. В данном случае переключаются лишь два транзистора Т3 и Т4, при этом Т1 постоянно открыт, а Т2 постоянно закрыт. Для того, чтобы среднее напряжение на выходе ШИП было равно нулю, достаточно чтобы нижний переключающийся транзистор оставался в закрытом состоянии. Такой подход тоже не очень хорош тем, что верхние ключи загружены по току больше, чем нижние. При больших нагрузках это может привести к перегреву и выходу транзисторов из строя.

Рисунок 5 – несимметричный способ управления ДПТ

 

Но и с этим недостатком справились, придумав способ поочередного управления (рисунок 6). Здесь как при движении как в одну сторону, так и в другую будут переключаться все четыре транзистора. Обязательным условием является нахождение в противофазе управляющих напряжений транзисторов Т1 и Т2 для одной группы и Т3 и Т4 для другой.

Рисунок 6 – поочередный способ управления ДПТ

 

Из рисунка видим, что при определенном знаке сигнала задания на скорость длинные импульсы с разницей в полпериода подаются на диагонально противоположные ключи (в данном случае Т1 и Т4). Соответственно, также со сдвигом полпериода на ключи противоположной диагонали подаются короткие импульсы. Таким образом, нагрузка подключается к источнику во время отсутствия коротких импульсов, а во время их присутствия закорачивается либо на питание, либо на землю. При изменении знака задания транзисторы управляются противоположным образом.

 

Источник: https://digitrode.ru/

Обсудить на форуме

ingeneryi.info

ШИМ — широтно-импульсная модуляция | joyta.ru

ШИМ или PWM (англ. Pulse-Width Modulation) - широтно-импульсная модуляция - это метод предназначен для контроля величины напряжения и тока. Действие ШИМ заключается в изменении ширины импульса постоянной амплитуды и постоянной частотой.

Свойства ШИМ регулирования используются в импульсных преобразователях, в схемах управления двигателями постоянного тока или яркостью свечения светодиодов.

Принцип действия ШИМ

Принцип действия ШИМ, как указывает на это само название, заключается в изменении ширины импульса сигнала. При использовании метода широтно-импульсной модуляции, частота сигнала и амплитуда остаются постоянными. Самым важным параметром сигнала ШИМ является коэффициент заполнения, который можно определить по следующей формуле:ШИМ коэффициент заполнения формула

Также можно отметить, что сумма времени высокого и низкого сигнала определяет период сигнала:

shim-shirotno-impulsnaya-modulyaciya-f2где:

Время высокого уровня и время низкого уровня сигнала показано на нижнем рисунке. Напряжение U1- это состояния высокого уровня сигнала, то есть его амплитуда.

ШИМ диаграмма

На следующем рисунке представлен пример сигнала ШИМ с определенным временным интервалом высокого и низкого уровня.

ШИМ пример

Расчет коэффициента заполнения ШИМ

Расчет коэффициента заполнения ШИМ на примере:

 shim-shirotno-impulsnaya-modulyaciya-f3

Для расчета процентного коэффициента заполнения необходимо выполнить аналогичные вычисления, а результат умножить на 100%:

shim-shirotno-impulsnaya-modulyaciya-f4

Как следует из расчета, на данном примере, сигнал (высокого уровня) характеризуется заполнением, равным 0,357 или иначе 37,5%. Коэффициент заполнения является абстрактным значением.

Важной характеристикой  широтно-импульсной модуляция может быть также частота сигнала, которая рассчитывается по формуле:

Шим частота сигнала формула

Значение T, в нашем примере, следует взять уже в секундах для того, чтобы совпали единицы в формуле. Поскольку, формула частоты имеет вид 1/сек, поэтому 800ms переведем в 0,8 сек.

Благодаря возможности регулировки ширины импульса можно изменять, например, среднее значение напряжения. На рисунке ниже показаны различные коэффициенты заполнения при сохранении той же частоты сигналов и одной и той же амплитуды.

shim-shirotno-impulsnaya-modulyaciya-3

Для вычисления среднего значения напряжения ШИМ необходимо знать коэффициент заполнения, поскольку среднее значение напряжения является произведением коэффициента заполнения и амплитуды напряжения сигнала.Для примера, коэффициент заполнения был равен 37,5% (0,357) и амплитуда напряжения U1 = 12В даст среднее напряжение Uср:

ШИМ формула среднее напряжение

В этом случае среднее напряжение сигнала ШИМ составляет 4,5 В.

ШИМ дает очень простую возможность понижать напряжение  в диапазоне от напряжения питания U1 и до 0. Это можно использовать, например, для регулировки яркости свечения светодиодов, или скорости вращения двигателя DC (постоянного тока), питающиеся от величины среднего напряжения.

Сигнал ШИМ может быть сформирован микроконтроллером или аналоговой схемой. Сигнал от таких схем характеризуется низким напряжением и очень малым выходным током. В случае необходимости регулирования мощных нагрузок, следует использовать систему управления, например, с помощью транзистора.

Это может быть биполярный или полевой транзистор. На следующих примерах будет использован биполярный транзистор BC547.

ШИМ светодиод управлениеПример управления светодиодом при помощи ШИМ.

Сигнал ШИМ поступает на базу транзистора VT1 через резистор R1, иначе говоря, транзистор VT1 с изменением сигнала то включается, то выключается. Это подобно ситуации, при которой транзистор можно заменить обычным выключателем, как показано ниже:

Упрощенная схема управления светодиодом.Упрощенная схема управления светодиодом.

Когда переключатель замкнут, светодиод питается через резистор R2 (ограничивающий ток) напряжением 12В. А когда переключатель разомкнут, цепь прерывается, и светодиод гаснет. Такие переключения с малой частотой в результате дадут мигающий светодиод.

Однако, если необходимо управлять интенсивностью свечения светодиодов необходимо увеличить частоту сигнала ШИМ, так, чтобы обмануть человеческий глаз. Теоретически переключения с частотой 50 Гц уже не незаметны для человеческого глаза, что в результате дает эффект уменьшения яркости свечения светодиода.

Чем меньше коэффициент заполнения, тем слабее будет светиться светодиод, поскольку во время одного периода светодиод  будет гореть меньшее время.

Такой же принцип и подобную схему можно использовать и для управления двигателем постоянного тока. В случае двигателя необходимо, однако, применять более высокую частоту переключений (выше 15-20 кГц) по двум причинам.

Первая из них касается звука, какой может издавать двигатель (неприятный писк). Частота 15-20 кГц является теоретической границей слышимости человеческого уха, поэтому частоты выше этой границы будут неслышны.

Второй вопрос касается стабильности работы двигателя. При управлении двигателем низкочастотным сигналом с малым коэффициентом заполнения, обороты двигателя будут нестабильны или может привести к его полной остановке. Поэтому, чем выше частота сигнала ШИМ, тем выше стабильность среднего выходного напряжения. Также меньше пульсаций напряжения.

Не следует, однако, слишком завышать  частоту сигнала ШИМ, так как при больших частотах транзистор может не успеть полностью открыться или закрыться, и схема управления  будет работать не правильно. Особенно это относится к полевым транзисторам, где время перезарядки может быть относительно большое, в зависимости от конструкции.

Слишком высокая частота сигнала ШИМ также вызывает увеличение потерь на транзисторе, поскольку каждое переключение вызывает потери энергии. Управляя большими токами на высоких частотах необходимо подобрать быстродействующий транзистор с низким сопротивлением проводимости.

Управляя  двигателем постоянного тока с помощью ШИМ, следует помнить о применении диода для защиты транзистор VТ1 от индукционных всплесков, появляющимся в момент выключения транзистора. Благодаря использованию диода, индукционный импульс разряжается через него и внутреннее сопротивление двигателя, защищая тем самым транзистор.

ШИМ управление двигателемСхема системы управления скоростью вращения двигателя постоянного тока с защитным диодом.

Для сглаживания всплесков питания между клеммами двигателя, можно подключить к ним параллельно конденсатор небольшой емкости (100nF), который будет стабилизировать напряжение между последовательными переключениями транзистора. Это также снизит помехи, создаваемые частыми переключениями транзистора VT1.

www.joyta.ru