Содержание
Виды автомобильных двигателей: описание, характеристики
Мало кто знает, что двигатель внутреннего сгорания был изобретён ещё 5 веков назад, легендарным инженером и конструктором Леонардо да Винчи. Но, после первого чертежа потребовалось ещё 300 лет, чтобы были созданы первые прототипы, которые могли полноценно работать.
Виды двигателей
Первый полноценный прототип двигателя внутреннего сгорания был сконструирован в далёком 1806 году, который принадлежал братьям Ньепсье. После этого важного исторического факта было недолгое затишье.
Но, в конце 19 века три легендарным немца положили старт автомобилестроению — Николас Отто, Готлиб Даймлер и Вильгельм Майбах. После этого двигатели внутреннего сгорания получили много модификаций и вариантов, которые используются по сегодняшний день.
Рассмотрим, какие существуют виды автомобильных ДВС, а также укажем типы двигателей:
- Паровая машина
- Бензиновый двигатель
- Карбюраторная система впрыска
- Инжектор
- Дизельные двигатели
- Газовый двигатель
- Электрические моторы
- Роторно-поршневые ДВС
Паровая машина
Первым представителем полноценного двигателя внутреннего сгорания следует считать паровую машину, которая устанавливалась на все транспортные средства 19 века, до момента изобретения остальных видов моторов.
На то время паровыми движками оснащались паровозы, автомобили и даже примитивные трёхколёсные самоходные машины (напоминающие мотоциклы). Изобретение такого класса завоевало весь мир, но к концу 19 — начало 20 века стало неэффективное, поскольку транспортные средства на пару не могли развивать достаточно большую скорость.
Бензиновый двигатель
Бензиновый двигатель — это ДВС средством питания, которого является бензин. Горючее подаётся с топливного бака при помощи насоса (механического или электрического) на систему впрыска. Итак, рассмотрим, какие бывают типы бензиновых моторов:
- С карбюратором.
- Инжекторного типа.
Современный мир привык, что большинство автомобилей имеет электронную систему впрыска топлива (инжектор).
Карбюраторная система впрыска
Карбюратор — это тип впрыскового устройства горючего во впускной коллектор с дальнейшим распределением по цилиндрам. Первый примитивный карбюратор был разработан в Германии ещё в конце 19 века и имеет почти 100 летнюю историю развития.
Карбюраторы бывают — одно-, двух-, четырех- и шестикамерные. Кроме этого существует достаточно много прототипов.
Принцип работы карбюратора достаточно простой: бензонасос подаёт топливо в поплавковую камеру, где бензин проходит сквозь жиклёры механическим путём (количество впрыскиваемого топлива регулирует водитель при помощи педали акселератора), и подаётся во впускной коллектор. Недостатком карбюратора стало то, что он чувствительный к регулировкам, а также не соответствует экологическим международным нормам.
Инжектор
Инжекторный двигатель — это тип впрыскового устройства горючего в цилиндры двигателя. Инжекторный впрыск бывает моно и разделённым Данная система на сегодняшний день все больше совершенствуется, чтобы уменьшит выбросы СО2 в атмосферу. Для впрыска используются форсунки, которые ещё ранее начали использоваться на дизельных двигателях.
С переходом на данную систему транспортные средства стали оснащать электронными блоками управления двигателем, чтобы корректировать состав воздушно-топливной смеси, а также сигнализировать о неисправностях внутри системы.
Дизельные двигатели
Дизельный мотор — это вид двигателя, который расходует как горючее дизельное топливо. Основные системы и элементы движка идентичны бензиновому брату, различие состоит в системе впрыска и воспламенении смеси. В дизельном моторе отсутствуют свечи зажигания, поскольку воспламенение смеси от искры не нужно.
На моторах такого типа устанавливаются свечи накала, которые разогревают воздух в камере сгорания, который превышает температуру воспламенения. После этого через форсунки подаётся распылённое топливо, которое сгорает, чем создаёт достаточное давление для привода в движения поршня, который раскручивает коленчатый вал.
Дизель с турбонаддувом
Одним из подвидов дизельного ДВС считается турбодизель. На этом моторе установлена турбина, которая имеет вид улитки. При помощи турбины в мотор подаётся больше количество сжатого воздуха, который даёт больше детонационный эффект, за счёт чего движок можно быстрее разогнать.
Газовый двигатель
Газовые двигатели на сегодняшний день в автоиндустрии в чистом виде почти не используются, поскольку частые поломки моторов, стали причиной полного отказа от них. Вместо этого, газовые установки зачастую можно встретить на бензиновых автомобилях, что значительно экономит расход денег на горючее.
Газ с баллона подаётся на редуктор, который распределяет топливо по цилиндрам, а затем горючее попадает непосредственно в камеры сгорания. После этого с помощью свечей зажигания газ воспламеняется. Единственным недостатком использования газовой установки считается то, что мотор теряет 20% своего потенциального ресурса.
Электрические моторы
Николас Тесла впервые предложил использовать для автомобилей электроэнергию. Электрические моторы на сегодняшний день не распространены, поскольку заряда батареи хватает только до 200 км пути, а заправочных станций, которые могут предоставить услугу зарядки автомобиля — практически нет.
Известная мировая компания, производитель электрических автомобилей «Тесла» продолжает совершенствовать электродвигатели, и каждый год дарит потребителям новинки, которые имеют больший запас хода без дозарядки.
Гибриды
Наверное, самые желаемые двигатели на сегодняшний день. Это смесь бензинового двигателя внутреннего сгорания и электромотора. Существует несколько вариантов работы такого движка.
- Мотор может работать на попеременном питании. Сначала движение производится на бензине, пока генератор заряжает батарею, а затем водитель может переключиться на электропитание.
- Двигатель и электромотор работают одновременно, что помогает сэкономить расход горючего на одно, и тоже расстояние с другими типами ДВС.
Роторно-поршневые ДВС
Роторно-поршневой силовой агрегат в автомобилестроении не нашёл широкого распространения, хотя можно встретить модели автомобилей, которые используют такой тип ДВС. Предложил создание такого мотора — конструктор Ванкель.
Движение осуществляется за счёт вращения трёхзубчатого ротора, который позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Данный мотор активно использовался в 80-е годы 20 ст.
Водородный мотор
НОУ-ХАУ современного мира считается водородный двигатель. В автомобиль устанавливается установка водородного типа. Отличие от бензиновых моторов заключается в подаче топлива. Если у бензина топливо подаётся вовремя возврата поршня к ВТМ, то у водородного силового агрегата в момент, когда поршень возвращается к НТМ.
В будущем планируется создать водородный двигатель закрытого типа, когда не будет требоваться выброс отработанных газов, а также на 500 км автолюбитель сможет забить о заправке автомобиле.
Стоит понимать, что автомобили с таким мотором будут стоить весьма не дёшево, пока они полностью не вытеснят бензинового брата.
Вывод
Двигатели внутреннего сгорания имеют достаточно большое количество видов и типов, на любой вкус. Так, самыми популярными, по мировой статистике, считают бензиновые, дизельные и гибридные силовые агрегата. Но, все движется к тому, что человек хочет отойти от использования бензина и его аналогов и перейти полностью на электрику.
Виды Двигателей Внутреннего Сгорания (ДВС)
Что такое двигатель внутреннего сгорания?
Двигатель внутреннего сгорания — это один из самых популярных на сегодняшний день видов двигателей. Принцип его работы построен на воспламенении смеси в камере сгорания и преобразовании её в энергию. Основной элемент в таком устройстве — поршень. Он опускается в нижнюю точку, в цилиндр впрыскивается топливо с воздухом, затем он поднимает их вверх до момента детонации.
Такие агрегаты используются в воздушных, морских и наземных транспортных средствах. До недавнего времени все автомобили выходили с конвейера только с ДВС. Пока компания Тесла не совершила прорыв в автомобилестроении и не запустила потоковое производство электромобилей.
Какие бывают виды двигателей?
Сложно создать новые виды двигателей внутреннего сгорания. В своём современном состоянии они существуют давно и уже прошли проверку временем. По принципу действия они относительно одинаковые, но каждый производитель вносит «изюминку» в агрегаты, которые выпускает. Это может быть уникальная форма поршней, система впрыска или количество клапанов.
Виды ДВС классифицируются по конструкции: рядные, V-образные, роторные и оппозитные.
Рядные моторы
Самые простые и дешевые в обслуживании и ремонте. Цилиндры стоят в ряд, один за другим. Чем больше их количество, тем больше рабочий объём.
Первый мотор был таким и имел 3 цилиндра. Сейчас такие встречаются на малолитражках. От них не ждут значительной мощности. Но они показывают маленький расход.
Наиболее популярный ДВС — 4-цилиндровый. Его максимальный объём достигает 3 литров. Такой установлен на большей части автомобилей эконом-класса. Например, Мазда 3, Форд Фокус, Тойота Королла, Рено Логан, Хонда Цивик.
В авто помощнее уже рядная шестерка. У неё оптимальное соотношение размера и ресурса. Легко помещается под капотом. Остальные агрегаты, в которых больше гильз, уже не такие надежные. Их проблемно разместить в подкапотном пространстве из-за больших габаритов и для них необходимы надежные подушки двигателя.
Преимущества рядных двигателей
Недостатки рядных двигателей
-
громоздкость
-
высота
V-образные моторы
Цилиндры расположены под углом, друг напротив друга. Угол развала зависит от их количества. Такое строение позволяет получить мощный движок не большого размера. 8-цилиндровый рядный выглядит громоздко и практически не используется в легковых или грузовых автомобилях. Такой же V-образный мотор занимает гораздо меньше места.
Основное преимущество в количестве лошадиных сил и моменте, которые можно получить на таком блоке.
В повседневных машинах популярны V6, V8. Они встречаются на премиальных авто и внедорожниках — Toyota Camry, Nissan 350Z, Nissan Murano. Стоимость обслуживания получается в два раза больше, чем у рядных. При капитальном ремонте количество прокладок, поршней, клапанов, сальников нужно умножать на 2. Визуально у ДВС две ГБЦ.
Существуют также разновидности V10, V12. Встречаются на спорткарах, типа Lamborghini Huracan, Porsche Carrera GTS, AUDI R8 и не предназначены для ежедневного использования. Большой минус любого варианта в сильных вибрациях при работе. Их очень трудно сгладить.
Преимущества V-образных двигателей:
-
компактный размер
-
большая мощность
Недостатки V-образных ДВС:
-
вибрации
-
большой объём
Оппозитные двигатели
Название происходит от английского слова “opposite” — противоположный. Цилиндры смотрят в противоположные стороны. Угол между ними всегда 180 градусов. Визуально похож на раскрытый в-образник. Основное отличие в движении поршней. В оппозитнике они поочередно достигают мертвой точки, а в V-образнике — одновременно.
Благодаря своей конструкции боксер, так их ещё называют, более сбитый. Лучше переносит вибрации за счёт своей схемы работы. Автомобили с таким ДВС отличаются хорошей развесовкой и управляемостью. Он расположен ниже, чем обычно.
Важно понимать, что поршни в этом агрегате ходят не в вертикальной плоскости, а в горизонтальной. Что приводит к неравномерной выработке гильз и переборке мотора. Его сборка обходится дорого. Как в предыдущем виде, здесь две головки блока, все прокладки следует покупать в двойном экземпляре.
Самые известные автомобили с оппозитными моторами это – Subaru. Автоконцерн довёл конструкцию до совершенства. Также есть они на некоторых представителях Порше и Альфа Ромео.
Преимущества оппозитных двигателей:
Недостатки оппозитных двигателей:
Роторные моторы
Он же двигатель Ванкеля. В нём используется не поршень, а треугольный ротор. Он вращается вокруг оси — статора — в «цилиндре» овальной формы. Камера образуется между гранью ротора и стенкой блока. За один круг происходит 3 рабочих хода.
Роторный мотор — компактный. Отсутствует ГРМ, коленвал, шатуны. Вместо них уплотнения, которые продлевают срок службы агрегата.
Уже не устанавливаются в авто. Они никогда не пользовались большой популярностью. Отличный экземпляр с таким мотором — Mazda RX8. Все его владельцы могут рассказать про жор масла.
Преимущества роторных двигателей:
Недостатки роторных ДВС:
Типы двигателей автомобилей
Моторы отличаются не только конструктивно. Типы двигателей автомобилей бывают разные. Главное отличие в топливе, которое они используют. ДВС можно разделить на:
-
бензиновые,
-
дизельные,
-
гибридные и
-
на газу.
Каждый из них заслуживает внимания. Имеет свои особенности, преимущества, недочеты.
Бензиновые двигатели
Самый распространенный тип автомобильных ДВС. Используется на большинстве иномарок и отечественных машин. Работает на бензине, который перекачивает топливный насос.
По способу впрыска разделяют на карбюраторные и инжекторные. Первая разновидность простая и уже не выпускается. Количество горючего регулирует водитель нажатием педали газа. Оно подаётся в карбюратор, где смешивается с воздухом и идёт во впускной коллектор.
Вторая версия сложнее. Инжектор — более точная система, за каждый цилиндр отвечает своя форсунка. Сколько бензина впрыснуть, регулирует уже электронный блок управления. Такая система установлена на многих новых автомобилях.
Она, в свою очередь, делится на подвиды: моноинжектор — с одной регулирующей форсункой и обычный инжектор — по форсунке на цилиндр. Современная вариация бензинового ДВС — с прямым впрыском. Топливо попадает в камеру отдельно от воздуха и смешивание происходит внутри.
Дизельный двигатель
Работает на дизельном топливе. Не имеет свечей зажигания, вместо них — свечи накала. Они разогревают воздух в цилиндрах до нужной температуры. Форсунки распыляют дизтопливо, оно сразу сгорает и заставляет двигаться поршень.
Особенно популярен вариант турбодизеля. С помощью турбины подается больше воздуха. Коленвал раскручивается быстрее за счёт сильной детонации. Такие моторы быстрее разгоняются.
В целом дизели не быстрые. Имеют большой вес, чтобы уравновесить детонационные вибрации. Отличаются характерным цокотом во время работы. Похоже на стук гидрокомпенсаторов на бензине.
Газовые двигатели
Самостоятельно уже не используются. ГБО устанавливается как альтернатива на бензиновые моторы. Газовый редуктор распределяет его по цилиндрам. Дальше всё происходит по стандартной схеме.
Преимущество машин на газу в том, что стоимость газа меньше. Расход с ГБО возрастает на 1-2 литра. Мощность понижается. Такие агрегаты работают мягче.
Переоборудование необходимо регистрировать в МРЭО и вносить в техпаспорт. Дополнительные форсунки и редуктор не портят блок и его составляющие.
Гибридные двигатели
Смесь ДВС и электромотора. Может работать по-разному. В большинстве случаев сначала функционирует классический мотор, а генератор подзаряжает батарею. От неё работает электродвигатель. На него можно переключить авто и он будет самостоятельно приводить в движение колеса.
Бензиновый и электромотор возможно подключить одновременно. В таком случае расход солярки будет меньше.
Двигатель внутреннего сгорания — Что такое Двигатель внутреннего сгорания?
AИ-95
0
AИ-98
0
48762
Двигатель внутреннего сгорания — тепловой двигатель, который преобразовывает теплоту сгорания топлива в механическую работу.
Двигатель внутреннего сгорания — тепловой двигатель, который преобразовывает теплоту сгорания топлива в механическую работу.
По сравнению с паромашинной установкой двигатель внутреннего сгорания характеризуется следующими признаками:
Типы двигателей внутреннего сгорания
По назначению:
-
транспортные, -
стационарные, -
специальные.
По роду применяемого топлива:
-
легкие жидкие (бензин, газ), -
тяжелые жидкие (дизельное топливо, судовые мазуты).
По способу образования горючей смеси:
По способу воспламенения:
-
с принудительным зажиганием, -
с воспламенением от сжатия, -
калоризаторные.
По расположению цилиндров:
-
рядные, -
вертикальные, -
оппозитные с одним и с двумя коленвалами, -
V-образные с верхним и нижним расположением коленвала, -
VR-образные и W-образные, -
однорядные и двухрядные звездообразные, -
Н-образные, -
двухрядные с параллельными коленвалами, -
«двойной веер», -
ромбовидные, -
трехлучевые и др.
Поршневой двигатель — это двигатель, у которого камера сгорания находится в цилиндре, где тепловая энергия топлива превращается в механическую энергию, а механическая из поступательного движения поршня превращается во вращательную с помощью кривошипно-шатунного механизма.
Бензиновый двигатель — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой.
Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.
Дизельный двигатель характеризуется воспламенением топлива без использования свечи зажигания.
В разогретый от сжатия воздух (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива.
В процессе впрыскивания топлива происходит его распыливание, а затем вокруг отдельных капель топлива возникают очаги сгорания.
Т.к. дизельные двигатели не подвержены явлению детонации, характерному для двигателей с принудительным воспламенением, в них допустимо использование более высоких степеней сжатия (до 26), что благотворно сказывается на КПД данного типа двигателей, который может превышать 50% в случае с крупными судовыми двигателями.
Газовый двигатель — двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях
Роторно-поршневой двигатель — двигатель, конструкция которого предложена изобретателем Ванкелем в начале ХХ века.
Основа двигателя — треугольный ротор (поршень), вращающийся в камере особой 8-образной формы, исполняющий функции поршня, коленвала и газораспределителя.
Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения.
За 1 оборот двигатель выполняет 3 полных рабочих цикла, что эквивалентно работе 6-цилиндрового поршневого двигателя.
Последние новости
Новости СМИ2
Произвольные записи из технической библиотеки
Используя данный сайт, вы даете согласие на использование файлов cookie, помогающих нам сделать его удобнее для вас. Подробнее.
8 самых известных типов двигателей в мире и их отличия
После прочтения нашего обзора вы будете понимать, как работают восемь типов двигателей в мире.
Двигатель – это агрегат, который может преобразовать одну энергию в механическую. В эту категорию входит множество видов двигателей, начиная от паровых (двигатели внешнего сгорания) и электрических и заканчивая двигателями внутреннего сгорания (бензиновые, дизельные моторы и т. д.). Мы покажем вам восемь самых известных в мире двигателей, а также просто и интуитивно понятно расскажем вам, как они работают, описав принципы их работы.
1. Оппозитный двигатель
В горизонтально противоположном двигателе (оппозитном) поршни двигаются по обеим сторонам коленчатого вала влево и вправо в горизонтальном направлении. В этом случае высота двигателя уменьшена. За счет использования оппозитного двигателя уменьшается центр тяжести транспортного средства – автомобиль движется более плавно. Крутящий момент, создаваемый поршнями с обеих сторон, компенсирует друг друга, значительно уменьшая вибрацию транспортного средства во время движения.
Также подобная конструкция позволяет сделать двигатели высокооборотистыми. Но, несмотря на высокие обороты, оппозитные моторы имеют меньше шума, чем обычные ДВС.
Двигатели с горизонтальным ходом поршней использует компания Porsche почти во всех моделях. Но, например, в Porsche Cayenne и Panamera оппозитные двигатели не применяются.
2. Рядный двигатель
В рядном двигателе все его цилиндры расположены рядом друг с другом в одной плоскости. Конструкция цилиндров и коленвала довольно-таки проста. Головка блока цилиндров имеет небольшую стоимость при изготовлении. Также рядные двигатели отличаются высокой стабильностью, характеристиками крутящего момента на низких оборотах, низким расходом топлива и компактным размером. Рядные двигатели обычно обозначаются латинской буквой «L-n», где n – количество цилиндров рядного двигателя. Современные автомобили в основном имеют двигатели с обозначением L3, L4, L5, L6.
3. Двигатель V-типа (V-образный силовой агрегат)
V-образный двигатель разделяет все цилиндры на две группы друг напротив друга под определенным углом. В итоге мотор образует плоскость под углом. Если посмотреть на этот тип двигателя со стороны, то он будет иметь V-образную форму. V-образные двигатели имеют небольшую высоту и длину. Этот тип моторов удобнее размещать в автомобиле по сравнению с обычными рядными моторами, которые по своим размерам гораздо больше.
В настоящее время во многих автомобилях среднего и люкс-класса используются V-образные двигатели. Чаще всего это 6-цилиндровые силовые агрегаты. Например, такие двигатели стоят на Volkswagen Passat, Audi A6 и Mercedes E-класса AMG.
4. Квазитурбинный двигатель
Квазидвигатель представляет собой модифицированный двигатель, основанный на роторном силовом агрегате. Если в обычном роторном двигателе задействованы три лопасти, то квазидвигатель использует цепной ротор, состоящий из четырех частей. Это беспоршневой роторный мотор с ромбовидным ротором. Преимущество двигателя: это новый тип двигателя небольшого размера, с высокой мощностью, высоким крутящим моментом, который может работать на множестве источников энергии.
В настоящий момент квазидвигатель не используется ни на одном автомобиле, поэтому невозможно проверить, подходит ли он для замены обычных поршневых двигателей внутреннего сгорания или в качестве лучшей альтернативы обычным роторным моторам. Квазидвигатель все еще находится в стадии создания прототипа.
5. Роторный двигатель
Внутреннее пространство корпуса роторного двигателя всегда разделено на три рабочие камеры. Во время движения ротора объем трех рабочих камер постоянно изменяется. Двигатель также имеет четыре такта: впуск, сжатие, сгорание и выпуск последовательно завершаются в циклоидальном цилиндре.
Роторный двигатель сильно отличается от обычных поршневых двигателей внутреннего сгорания. Себестоимость производства роторных моторов существенно больше, также как и их последующее обслуживание и ремонт. Кроме того поршневой двигатель по сравнению с роторным эффективней с точки зрения мощности, веса, выбросов и энергопотребления.
В сочетании с этим, а также в связи со странности технологий роторного двигателя, крупные автомобильные компании пришли к выводу, что использование роторных силовых агрегатов в автопромышленности бессмысленно. Так как роторные моторы не показали своих преимуществ перед обычными, у автомобильных компаний не появилось энтузиазма по их дальнейшей разработке. Только компания Mazda до сих пор тратит огромные деньги на разработку новых поколений роторных моторов.
6. Двигатель Green Steam
Green Steam – эффективный, экономичный и простой двигатель, разработанный изобретателем Робертом Грином из Лагуна Вудс, Калифорния, США. Этот мотор преобразует избыточное тепло в водяной пар, который и приводит в движение силовой агрегат. Легкий и компактный двигатель Green Steam преобразует возвратно-поступательное движение во вращательное. Его основной характеристикой является гибкий вал, который передает возвратно-поступательное движение от поршней к кривошипу «Z», таким образом, совершая вращательное движение, не используя запястья, шатуны или коленчатые валы.
Этот мотор может использоваться для воздушных насосов, генераторов, водяных насосов, воздуходувок горячего воздуха, аппаратов дистилляции воды, тепловых насосов, кондиционеров, модельных самолетов и т. д.
Одним из наиболее уникальных преимуществ двигателя является его способность генерировать энергию из тепла двигателей. По существу, отработанное тепло выхлопных газов от двигателя транспортного средства может быть преобразовано в энергию, используемую для некоторых систем охлаждения и насосов транспортного средства. Этот двигатель повысит уровень эффективности любого транспортного средства или системы машины, на которой он установлен.
7. Двигатель Стирлинга
Двигатель Стирлинга относится к типам силовых агрегатов внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменении давления. Принцип работы двигателя Стирлинга заключается в постоянном сжатии рабочего цилиндра, в результате чего происходит нагревание его внутренней части, а затем охлаждение. Из-за перепада давления из цилиндра извлекается энергия, образуемая при изменении давления. Обычно в качестве рабочего тела используется водород или гелий. Но чаще в таких моторах используется воздух.
Двигатели Стирлинга отлично подходят для преобразования тепла в электроэнергию. Например, многие специалисты считают, что эти моторы подходят для солнечных электрических установок.
То есть это идеальные силовые агрегаты для преобразования солнечной энергии в электричество.
8. Радиальный двигатель (звездообразный)
Звездообразный двигатель представляет собой поршневой двигатель внутреннего сгорания, в котором цилиндры расположены вокруг коленчатого вала. Один поршень соединен с коленвалом через главный шатун. Остальные поршни прикреплены через шатуны к кольцам главного ведущего шатуна.
Двигатель преимущественно создан для использования в самолетах. До появления реактивных двигателей в большинстве поршневых авиационных двигателей использовались подобные звездообразные конструкции силовых агрегатов. Эти моторы, как правило, устанавливались на самолеты небольшой дальности. Остальные самолетные моторы имели V-образную форму.
Некоторые современные легкие самолеты до сих пор оснащаются радиальными моторами.
Ряд компаний продолжает строить радиальные системы сегодня. Например, вот современный авиационный радиальный 9-цилиндровый двигатель Веденеев мощностью 360–450 л. с., который в настоящий момент используется на самолетах Яковлева и Сухого.
Просто о сложном. Двигатель
Все вышло из воды
Двигатель – это устройство, которое преобразует какой-либо вид энергии в механическую работу.
Двигатели разделяют на первичные и вторичные.
К первичным относятся те виды двигателей, которые преобразуют природные энергетические ресурсы в механическую работу. Это ветряное и водяное колесо, гиревой механизм, тепловые двигатели.
Вторичные – двигатели, которые преобразуют выработанную или накопленную энергию другими источниками. К ним относят электрические, пневматические и гидравлические.
Первичные двигатели, такие как парус и водяное колесо, были известны с незапамятных времен и использовались повсеместно.
До середины XVII века человек обходился первичными двигателями и довольствовался силой воды, ветра и тяжести.
Первым шагом на пути к двигателю стала пароатмосферная машина, созданная по проектам французского физика Дени Папена и английского механика Томаса Севери, которая сама по себе не могла служить механическим приводом, и к ней необходимо было водяное колесо.
В 1763 году механик Иван Ползунов по собственному проекту изготовил стационарную паровую машину, которая хоть и была далека от совершенства, но работала без сбоев.
К 1784 году английский механик Джеймс Уатт создал более совершенную паровую машину, которая была названа универсальным паровым двигателем.
В машине был предусмотрен жесткий поршень, по обе стороны которого поочередно подавался пар. Подача пара происходила автоматически, а поршень через кривошипно-шатунную систему вращал маховик, который обеспечивал плавность хода. Такая модификация машины Севери не была привязана к водонапорной башне и могла стать самостоятельным приводом различных механизмов. Уатт создал элементы, которые в дальнейшей истории двигателестроения в той или иной вариации входили во все паровые машины, получившие широкое распространение. Их использовали как приводы станков, экипажей для перевозки людей и грузов, судов и локомотивов на железных дорогах.
Следующим шагом в двигателестроении стала паровая турбина, изобретенная в конце XIX века, которая применялась на морских судах и на электростанциях в начале XX века.
Индустрия двигателестроения не стояла на месте, и в конце XIX века на первый план вышли двигатели внутреннего сгорания.
Первым в семействе ДВС стал механизм, созданный французским инженером Этьеном Ленуаром в 1860 году. Его конструкция представляла собой одноцилиндровый двухтактный газовый двигатель. Ленуар использовал принцип работы поршня двигателя Уатта, но рабочим телом служил не пар, а продукты сгорания смеси воздуха и светильного газа, вырабатываемого газогенератором.
Двигатель Ленуара стал первым в истории серийно выпускавшимся ДВС.
В 1897 году инженер Рудольф Дизель предложил ДВС с воспламенением рабочей смеси в цилиндре от сжатия воздуха, который был впоследствии назван его именем.
Двигатели внутреннего сгорания стали основой развития автомобильного транспорта в XX веке.
В первой половине XX века были созданы новые типы первичных двигателей: газовые турбины, реактивные двигатели, а в 1950-х и ядерные силовые установки.
В 1834 году русский ученый Борис Якоби создал первый пригодный для практического использования вторичный двигатель – электродвигатель постоянного тока.
Двигатели можно классифицировать по источнику энергии, по типам движения, по устройству, по назначению и т.д.
Отрасль двигателестроения является одной из наиболее развивающихся. В год по всему миру подается до 50 заявок на патентование в категории «Двигатели». В основном это модификации существующих механизмов с новым соотношением элементов либо с принципиальными новинками. Новые конструкции же появляются редко.
А вместо сердца – пламенный мотор
В авиации используются в основном тепловые двигатели, которые создают тягу, необходимую для поднятия летательного аппарата в воздух.
По способу создания тяги авиационные двигатели можно разделить на три группы: винтовые, реактивные и комбинированные.
Винтовые двигатели создают тягу вращением воздушного винта, а реактивные преобразуют энергию топлива в кинетическую энергию вытекающей из двигателя газовой струи, вызывающей силу реакции, непосредственно используемой в качестве движущей силы. Воздушно-реактивные двигатели используют для сгорания кислород атмосферного воздуха.
Комбинированные создают тягу, складывающуюся из силы реакции потока продуктов сгорания, вытекающих из двигателя, и тяги, создаваемой обычным или специальным воздушным винтом. Комбинированные двигатели разделяются на турбовинтовые, турбореактивные и винтовентиляторные. Также их называют газотурбинными авиадвигателями.
Такие двигатели с легкостью поднимают в небо трансатлантические лайнеры, но их мощности недостаточно для того, чтобы поднять ракету в космос.
Для ракет используют реактивные двигатели, в них для сгорания топлива используется окислитель, транспортируемый самим летательным аппаратом.
Кроме того, сила тяги реактивного двигателя не зависит от наличия окружающей среды, а также от скорости самой ракеты.
Взлетные технологии
Развитие отрасли двигателестроения в России, стремящейся к независимости от импортных механизмов, началось в 1980-х гг. Такие предприятия, как УМПО, НПП «Мотор», рыбинское НПО «Сатурн», включились в мировую гонку за создание передового двигателя, который составит конкуренцию продукции таких гигантов промышленности, как Pratt & Whitney, которой комплектуют самолеты линейки Boeing и Airbus.
В результате многолетней кропотливой работы всех предприятий и НИИ отрасли, а также интеграции частного и государственного капитала был создан авиационный двигатель ПД-14. Он предназначен для новейшего российского среднемагистрального самолета МС-21, который в конце 2017 года совершил тестовый перелет с аэродрома корпорации «Иркут» на аэродром Жуковский для проведения дальнейших испытаний.
ПД-14 представляет собой турбореактивный двухконтурный двухвальный двигатель. Взлетная тяга ПД-14 может достигать 18 тонн.
Эксперты сравнивают ПД-14 с двигателями для среднемагистральных самолетов компаний Pratt & Whitney и Rolls-Royce.
На базе ПД-14 ведутся разработки вертолетного двигателя ВК-2500М. Подготовка демонстрационной модели двигателя нового поколения запланирована на 2021 год. Как и в ПД-14, в конструкции ВК-2500М будут использованы новейшие материалы, что позволит облегчить массу на 15% по сравнению с существующими аналогами без потери мощности.
Первая модификация указанного двигателя ВК-2500 активно вводится в эксплуатацию, а также выводится на международный рынок путем валидации сертификатов в странах-импортерах.
Мы наращиваем объемы производства двигателей ВК-2500 в интересах государственного заказчика, а также планируем существенно нарастить экспорт. При этом сборка ведется полностью из российских комплектующихАнатолий Сердюков, индустриальный директор авиационного кластера Госкорпорации Ростех
В отличие от своего предшественника, новый вертолетный двигатель оснащен цифровой системой автоматического управления с современным электронным блоком автоматического регулирования и новейшими датчиками. Использование современных технологий и новейших материалов позволило обеспечить поддержание режимов в более широком диапазоне температур наружного воздуха, повысить ресурсы и показатели топливной экономичности. Такие двигатели позволят вертолетам семейства Ми-17 и аналогичным расширить потенциал своих возможностей в высокогорных районах и районах с жарким климатом.
Российское двигателестроение развивается в направлении как гражданской, так и военной авиации. В апреле 2018 года завершились работы по стендовым испытаниям опытного двигателя АЛ-41Ф-1.Данная разработка предприятия «ОДК-Уфимское моторостроительное производственное объединение» является двигателем первого этапа для истребителя пятого поколения Су-57. АЛ-41Ф-1 является авиационным турбореактивным двухконтурным двигателем с форсажной камерой и управляемым вектором тяги.
Несмотря на гонку технологий, существуют системы, проверенные временем и доказавшие свою эффективность даже спустя многие годы. Ракетные двигатели РД 107/108 на протяжении более полувека являются основой пилотируемой космонавтики в России.
Именно благодаря РД 107/108 Юрий Гагарин совершил свой легендарный полет. Двигатели РД-107 устанавливаются на блоках первой ступени, а РД-108 – второй.
РД-107/108 показали себя как одни из самых надежных и удачных двигателей, поднимающих космические корабли. Они стоят на серийном производстве и доставляют на орбиту российских космонавтов, американских астронавтов и космических туристов.
Российский ракетный двигатель уже назван рекордсменом. За 60 лет использования он не утратил своего первенства в отрасли. На основе первых двигательных систем разработано 18 модификаций.
Когда в 2011 году США прекратили использование шаттлов, единственным способом отправки космонавтов на МКС остались корабли «Союз», оснащенные двигателями РД-107/108.
Выводы
-
Отрасль двигателестроения является одной из наиболее востребованных и перспективных как для развития промышленности страны, так и для выхода на международный рынок. -
Внедрение частного капитала и интеграция научно-технической базы предприятий, занимающихся разработкой и производством двигательных систем и комплектующих, позволили создать полный производственный цикл отечественных двигателей, способных составить конкуренцию мировым аналогам.
Рекомендации
-
Интеграция научно-технических достижений и новейших технологий в области двигателестроения для оперативного реагирования отрасли на запросы гражданской и военной авиации, а также космонавтики и своевременного ввода в эксплуатацию новых двигательных систем, отвечающих вызовам времени и не уступающих мировым аналогам. -
Создание и поддержание научно-технической базы, способной обеспечить российскую авиационную отрасль двигательными системами отечественного производства, сокращение объемов импорта, а также вывод конкурентоспособной продукции на мировой рынок.
Двигатель внутреннего сгорания: устройство, принцип работы, виды
Люди постоянно пытаются построить экономичный и надёжный мотор. До сих пор идея об изобретении вечного двигателя не даёт покоя многим изобретателям. Неудачные разработки исчезли в веках. Но в результате проб и ошибок появилось несколько типов двигательных установок. Эти механизмы успешно нами эксплуатируются.
Все известные двигатели используют разные виды энергии, которую затем преобразуют в движение. В качестве приводной тяги может служить электроэнергия, вода и тепло. Поэтому они разделяются на следующие типы:
- электродвигатели;
- гидравлические машины;
- тепловые агрегаты.
Тепловые моторы основаны на преобразовании тепловой энергии в работу. В таких машинах применён один из двух способов сгорания топлива: внешний и внутренний.
В школе наверняка всем рассказывали о машинах, работающих на пару. Они как раз и представляют вид тепловых двигателей с внешней камерой сгорания. Первые паровые механизмы были построены ещё в середине XIX века. Сейчас паровые машины практически исчезли из нашей жизни. Они уступили место двигателям внутреннего сгорания (ДВС).
Принципиально ДВС отличаются от паровых машин местом размещения камеры сгорания. В механизмах с внутренним сгоранием эти камеры расположены в самих агрегатах. Такие моторы работают практически во всех транспортных средствах.
В этой статье приведена основная информация о принципе работы различных видов ДВС: газотурбинного, роторного, поршневого. Рассказано, как работает двигательный агрегат с внешней камерой сгорания — двигатель Стирлинга. Описана классификация и устройство двигателей внутреннего сгорания поршневого типа. Объяснено отличие двухтактного двигателя от четырёхтактного.
Содержание
Принцип работы ДВС
Самым главным механизмом, установленным в каждом автомобиле, является двигатель внутреннего сгорания. Механики любят называть его сердцем автомобиля. Именно он отвечает за преобразование энергии сгорания углеводородного топлива в механическое движение. Работают ДВС на жидком или газообразном топливе.
Принцип работы ДВС прост. Небольшие порции топлива, смешанного с воздухом в нужной пропорции, поступают в камеру сгорания. В ней топливная смесь воспламеняется. Выделяемая при этом энергия приводит в движение поршни, которые вращают вал.
Все остальные узлы автомобиля предназначены либо для повышения производительности силового агрегата, либо для контроля и управления. Вспомогательные системы создают также комфорт пассажирам и водителям, при этом обеспечивая им безопасную езду.
Более чем за полуторавековую историю своего развития появились ДВС, различающиеся конструкцией, мощностью и используемым топливом.
Видео: Принцип работы двигателя внутреннего сгорания
Главная классификация ДВС
Все существующие ДВС разделены на 3 вида:
- поршневые;
- роторные;
- газотурбинные.
В поршневых агрегатах рабочим органом является поршень. В роторных моторах используется движение ротора. В газотурбинных двигателях движение осуществляется турбиной.
В каждом из видов этих силовых установок конструктивно реализованы разные схемы преобразования тепловой энергии в полезную работу. Это принципиально отличает их друг от друга. Максимальная производительность силовых агрегатов зависит от того, каким образом преобразуется тепловая энергия. Каждый вид силовых агрегатов создан для эффективной работы в своей области применения.
Ниже подробно описаны конструкции этих агрегатов и физические процессы, происходящие в них. Отдельный раздел статьи посвящён двигателю Стирлинга. Он относится к механизмам с внешней камерой сгорания. Но принцип работы этого мотора по нескольким признакам похож на ДВС. Это часто вызывает путаницу.
Газотурбинный двигатель
При воспламенении топлива образуются газы, которые при нагреве расширяются. Этот факт всем известен из школьного курса физики. Указанный принцип положен в основу газотурбинной установки. Топливная смесь сгорает, и нагретый газ моментально расширяется, заставляя лопасти турбины вращаться. Чем больше температура газа, тем быстрее он увеличивается в объёмах. Эта зависимость определяет коэффициент полезного действия этого вида ДВС: чем выше температура газов, тем больше КПД.
Разработано два типа газотурбинных установок, отличающихся количеством рабочих валов. Агрегаты с двумя валами мощнее по сравнению с одновальными механизмами.
Газотурбинные двигатели устанавливают на машины, где необходима большая мощность силовой установки. Например, грузовые автомобили, корабли, самолёты и железнодорожные локомотивы.
Видео: Принцип работы газотурбинного двигателя
Роторный ДВС
В моторах этого вида реализован принцип вращения вала от кругового движения ротора. Ротором является треугольный поршень, который вращается в овальной камере – статоре. Ротор закреплён на валу с эксцентриситетом. При таком расположении во время вращения ротора в цилиндре создаются полости для тактов зажигания, сгорания и выпуска. За один оборот ротора происходит 3 такта работы.
Достоинством роторного ДВС является отсутствие шатунов, коленчатого вала и многих сопутствующих узлов. Инженеры подсчитали, что деталей в агрегате роторного типа намного меньше, чем в моторах других типов. Поэтому роторные моторы гораздо меньше других. Это является ещё одним их преимуществом.
В Японии, известной своими передовыми разработками в автомобилестроении, были сконструированы двигатели, имеющие несколько роторов. Например, японцы сконструировали агрегат, имеющий такую же мощность, что и шестипоршневой двигатель гоночного автомобиля. Но размеры многороторного движка при этом гораздо меньше.
На ранних моделях вазовских автомобилей в своё время устанавливались роторные моторы.
Роторные двигатели гораздо проще и эффективнее поршневых. Но по непонятной причине роторные агрегаты используются очень редко.
Видео: Принцип работы роторного двигателя
Поршневой двигатель
Это – самый распространённый тип двигателя. Рассмотрим его принципиальную схему работы.
В конструкции мотора этого вида имеется несколько цилиндров, внутри каждого из них поршни совершают возвратно-поступательные движения. В обоих концах цилиндров расположены клапаны. Открываясь, клапан пропускает порцию топливной смеси в камеру сгорания, образующуюся в цилиндре перед поршнем. В это время поршень, двигаясь вверх, сжимает смесь. В расчётный момент происходит её воспламенение. Образующиеся газы расширяются и толкают поршень в другую сторону. Несколько таких поршней закреплены на валу П-образной конструкции. Обычно такой вал называют коленчатым. За каждое движение поршня вал проворачивается на определённую величину. Цикл движения поршня от одной стороны цилиндра до другой называется тактом. Скоординированная работа поршней заставляет коленчатый вал проворачиваться на полный оборот. Такие циклы постоянно повторяются, заставляя вращаться вал с большой скоростью.
Автомобилестроители постоянно совершенствуют поршневые двигатели. Каждое усовершенствование приводит к повышению мощности двигателя. Поршневые агрегаты являются самыми надёжными из всех видов силовых установок.
Видео: Принцип работы дизельного двигателя
Читайте также: Что такое трансмиссия автомобиля
Двигатель Стирлинга
В качестве примера разновидности двигательного агрегата с внешней камерой сгорания можно привести так называемый двигатель Стирлинга. Своё название он получил по фамилии изобретателя – шотландского священника Роберта Стирлинга. Этот оригинальный мотор работает на основе неоднократного нагрева рабочего тела – порции воздуха.
Принцип работы внешне похож на схему ДВС. В моторе Стирлинга тоже имеется цилиндр с поршнем, который двигается по возвратно-поступательной траектории и приводит в движение кривошипно-шатунный механизм. Мало того, цилиндр имеет радиатор охлаждения как в двигателе внутреннего сгорания.
Но главным отличием двигателя Стирлинга от ДВС является отсутствие топливной смеси. Её роль в данном случае выполняет воздух, который нагревается внешним источником тепла.
Дело в том, что уже находящийся в цилиндре воздух, нагреваясь, расширяется и толкает вытеснитель, который в свою очередь двигает рабочий поршень вверх. Поршень проворачивает кривошип. Проходя через зону охлаждения, воздух сжимается, давление в цилиндре уменьшается, образуя разрежение. В это время кривошип, двигаясь дальше, возвращает поршень в нижнее положение. Так периодически чередуя циклы нагрева и остывания рабочего тела (воздуха), извлекают энергию из процесса изменения давления.
Примечательно, что такой агрегат легко превратить в тепловой насос, изменив координацию работы рабочего поршня и вытеснителя.
Двигатель Стирлинга может работать практически на любом топливе, от дров до ядерной энергии. При этом конструкция этого агрегата очень проста и надёжна. Инженеры разработали 3 типа моторов подобного рода и назвали их буквами греческого алфавита. Выше описан принцип самого простого из них: бета-типа.
Двигатель конструкции Стирлинга незаменим в тех случаях, когда появляется необходимость преобразования очень маленького перепада температур. В таких условиях ни одна газовая турбина функционировать не может. Проще говоря, установки Стирлинга могут эффективно работать от обычной переносной газовой горелки или даже спиртовки. Туристы уже оценили такие устройства. Учёные предсказывают, что двигатели Стирлинга сделают революцию в солнечной энергетике.
Видео: Принцип работы двигателя Стирлинга
Виды поршневых ДВС
Поршневые моторы классифицируются по типу используемого топлива:
- бензиновые;
- газовые;
- дизельные.
Кроме того, двигатели отличаются системой зажигания. В установках, использующих принудительное зажигание, воспламенение топливной смеси производится устройствами, генерирующими искру. Их ещё называют свечами зажигания. В них периодически образуется электрическая дуга, которая и поджигает топливо в камере сгорания цилиндра. Работают свечи от электрического аккумулятора. Сложность представляет регулировка свечей. Необходимо отрегулировать свечи так, чтобы искра образовывалась точно в тот момент, когда смесь достигнет расчётного уровня сжатия.
Принудительное зажигание характерно только для бензиновых двигателей. Реже такая система применяется в двигателях, работающих на газе.
Топливная смесь может подаваться в цилиндры двумя способами: с помощью карбюратора или инжектора.
Поршневые агрегаты, использующие в качестве топлива солярку, называются дизельными и имеют другую систему воспламенения топлива в цилиндре. В дизельных установках смесь самопроизвольно воспламеняется в результате её сжатия поршнем. Отличительной особенностью дизельных двигателей является их «всеядность». Они способны работать на нескольких видах топлива. Дизели прекрасно функционируют, будучи заправлены другими горючими веществами. Например, керосином, мазутом или даже растительным маслом.
В зависимости от количества тактов рабочего цикла, различают двухтактные и четырёхтактные ДВС. Двухтактные двигатели обычно ставят на мотоциклы, мопеды или газонокосилки. Четырёхтактные моторы устанавливаются в современных автомобилях.
По пространственному расположению цилиндров ДВС тоже имеют свою классификацию.
Если цилиндры расположены на одной оси, то такие двигатели называются рядными. Обозначаются рядные моторы английским символом «R» с цифрой, указывающей на количество цилиндров.
Если цилиндры размещены под углом друг к другу, то такие агрегаты называют V-образными. Они гораздо компактнее других типов двигателей. Обычно угол между осями цилиндров составляет 120 градусов. Имеются модели V-образных моторов с другим углом между осями цилиндров.
Агрегаты, обозначаемые символом «Vr», имеют переходную конструкцию. Они обладают признаками и рядных, и V-образных двигателей.
При расположении цилиндров напротив друг друга, то есть под углом 180 градусов, двигатели называются оппозитными.
Читайте также: Что такое лямбда-зонд
Устройство двигателя внутреннего сгорания: описание основных узлов ДВС
В этом разделе рассмотрено назначение и конструктивное исполнение отдельных узлов поршневых двигателей.
Кривошипно-шатунный механизм
Поршни в цилиндрах движутся возвратно-поступательно. Кривошип вместе с шатунами преобразуют это движение во вращение вала. Механизм называется кривошипно-шатунным (КШМ). Состоит из П-образного вала, называемого коленчатым, узла цилиндров, головки блока цилиндров (ГБЦ) и креплений.
Газораспределительная система
ГБЦ регулирует подачу обогащённой смеси в цилиндры. Процесс происходит за счёт скоординированных во времени циклов открытия и закрытия группы клапанов, осуществляющих подачу смеси и выпуск отработанных газов. Кроме этого, газораспределительная система отводит наружу выхлопные газы. Управляет клапанами распределительный вал, который связан с коленвалом зубчатой или ремённой передачей. Вращаясь, распределительный вал заставляет открываться и закрываться нужные клапана в строго определённое время.
Вся система состоит из распредвала и клапанных групп. Ремонт головки часто вызывает затруднения, так как требует тщательной установки уплотнений. При неправильно установленных прокладках произойдёт подсос воздуха, возможна также утечка топлива. Это нарушает баланс топливной смеси.
Система питания
Внутрь цилиндров подаётся не чистое горючее, а порция смеси, состоящей из обогащённого воздухом топлива. Карбюратор смешивает бензин с воздухом, то есть обогащает топливо. Затем приготовленная смесь через коллектор, называющийся впускным, попадает в камеру.
Если ДВС оборудован инжектором, то бензин под высоким давлением подается сразу во впускной коллектор. Впрыск происходит через форсунки. Бензин и воздух смешиваются не в карбюраторе, а непосредственно во впускном коллекторе.
Топливо циркулирует в системе питания за счёт работы насоса. В карбюраторных двигателях установлены механические насосы. В инжекторных — электрические.
Инжекторные двигатели обычно оснащаются электронным зажиганием. Такое зажигание эффективнее свечного, так как воспламенением топливно-воздушной смеси управляет бортовой компьютер. Для его эффективной работы в автомобиле установлены специальные датчики, собирающие все необходимые данные для компьютера.
Зажигание
В двигателях с карбюратором всегда имеются так называемые свечи зажигания. Они генерируют вольтову дугу, поджигающую топливную смесь. В народе такую дугу обычно называют искрой. В таких автомобилях система зажигания состоит из свечей и аккумулятора.
В двигателях на дизельном топливе процесс возгорания смеси принципиально отличается. Она самовоспламеняется. Это стало возможным благодаря уникальным свойствам дизельного топлива. Дизтопливо через форсунки под высоким давлением подаётся в цилиндр. Предварительно воздух в камере цилиндра тоже сжимается и нагревается до 700 градусов. В таких условиях солярка мгновенно самовоспламеняется.
Выхлопная система
Вывод газов наружу осуществляется системой выпуска продуктов сгорания — выхлопной системой. Токсичные газы направляются сначала в выпускной коллектор, в котором осуществляется сбор выхлопных газов от всех цилиндров. Из коллектора газ, содержащий большое количество вредных веществ, выбрасывается наружу через глушитель.
Последние модели всех автомобилей теперь выпускаются только с каталитическими нейтрализаторами. Они сильно снижают токсичность выхлопных газов, приводя их в соответствие с экологическими нормами.
Система смазки
В автомобиле есть много деталей вращения. Во время работы двигателя трущиеся между собой детали активно изнашиваются. Чтобы уменьшить износ и увеличить КПД двигателя, в каждом автомобиле предусмотрена замкнутая система, созданная для циркуляции смазки. Подача масла в систему осуществляет масляный насос. Перед тем, как попасть в двигатель, масло проходит через фильтр, где очищается от накопившихся загрязнений. Через систему распределения масло подаётся в подшипники коленчатого вала и в газораспределительный механизм для смазки деталей распределительного вала. Затем отработанное масло поступает в картер — специально сконструированную ёмкость в виде поддона. Из картера масло опять забирается насосом и направляется на следующий цикл смазки.
В результате работы системы смазки фильтры засоряются, что снижает степень очистки. Недостаточный уровень очистки ухудшает характеристики масла. По мере засорения фильтров давление масла начинает повышаться. Для сброса давления и безопасной работы узлов автомобиля устанавливают предохранительные, или так называемые редукционные клапаны, срабатывающие при превышении давления масла. Эти клапаны срабатывают вследствие засорения фильтров. Своевременная замена масла и фильтров является непременным условием эффективной работы ДВС.
Во время работы мотора масло нагревается, что тоже плохо отражается на работе мотора. Все мощные двигатели работают со своей системой охлаждения масла. Обычно их называют масляными радиаторами.
Системы охлаждения
Во время продолжительной работы двигатели могут нагреться до достаточно высоких температур. Температура внешней поверхности цилиндров достигает нескольких сотен градусов. Никакие механизмы не могут эффективно работать при таких высоких температурах. Поэтому конструкторы разработали системы для охлаждения узлов автомобиля. Принцип работы таких систем заключается в передаче тепла от нагретых частей к охлаждающей жидкости. Заметим, что состав таких жидкостей и их свойства постоянно улучшаются производителями.
Самым узнаваемым элементом системы охлаждения стал радиатор, который обычно находится в начале моторного отсека, непосредственно перед двигателем. Такое расположение позволяет радиатору дополнительно охлаждаться встречным потоком воздуха. Для повышения эффективности работы радиатора впереди него установлен мощный вентилятор.
Радиатор понижает температуру самого охлаждающего агента после того, как тот отберёт тепло от цилиндров. Вся система охлаждения состоит из термостата, помпы, небольшой расширительной ёмкости и устройства обогрева салона.
Работа системы охлаждения регулируется термостатом. Если двигатель ещё не нагрелся до критических величин, то помпа прогоняет охлаждающую жидкость по так называемому «малому» кругу, то есть только в пределах самого двигателя. Когда термостат включается, то жидкость пропускается через радиатор, охлаждаясь при этом гораздо эффективнее.
Порог срабатывания термостата обычно составляет 90 градусов. В некоторых моделях автомобилей температура срабатывания термостата может быть установлена больше или меньше этой величины.
Долговременная работа любого автомобиля невозможна без эффективной системы охлаждения.
Читайте также: Что такое интеркулер в автомобиле
Четырехтактный ДВС
Число тактов работы — одна из важнейших характеристик любого ДВС. Далее приведено описание взаимодействия поршня с клапанами поочерёдно в каждом такте. Напомним, 1 цикл — это 4 такта.
В первом такте выполняется впуск смеси. Топливо смешивается с воздухом. Поршень двигается к наивысшей точке. В камере сгорания создаётся область низкого давления — разрежение. Впускной клапан открывает отверстие в камере для подачи смеси. Коленвал начинает первый оборот.
Во втором такте смесь сжимается. Впускной клапан закрывается. Поршень, достигнув наивысшей точки, сжимает обогащённую топливную смесь. Коленвал завершает первый оборот.
Рабочий ход выполняется в третьем такте. Обогащённая смесь поджигается. В бензиновых двигателях поджигание производится электрической дугой от свечи. В дизельных — топливо воспламеняется самостоятельно в процессе сжатия. Облако расширяющихся газов заставляет поршень двигаться вниз. Начало второго оборота коленвала.
В четвёртом такте происходит выпуск. Открывается выпускной клапан. Газы выводятся в коллектор, а затем выбрасываются наружу. Поршень начинает двигаться вверх. Вал завершает второй оборот.
Таким образом, за 1 рабочий цикл этот двигатель совершает 4 такта, во время которых вал проворачивается дважды.
Видео: Принцип работы четырёхтактного двигателя
Двухтактный мотор
В этих двигателях сжатие и рабочий ход совершаются также как в четырёхтактных. Но очистка и заполнение цилиндров топливной смесью происходит за очень короткое время в момент нахождения поршня в самом нижнем положении. Если в четырёхтактном двигателе смесь попадает в камеру сгорания через открытые отверстия клапанов, то в этом моторе очередная порция смеси поступает в цилиндр через специальные отверстия, называемыми окнами. Они открываются и закрываются телом поршня. Процессы наполнения полостей цилиндра новой смесью и удаления продуктов сгорания называются продувкой.
Для осуществления продувки внутренняя полость цилиндра напрямую связана с КШМ. По сути, поршень двигается в одном пространстве с кривошипом. Под ним образуется полость, которую называют кривошипной камерой или картером. Эта камера тоже участвует в процессах газообмена. В ней периодически создаётся разрежение. Это позволяет поступать новой порции смеси через впускное отверстие.
Такая конструкция позволяет двигателю развивать в 1,5 раза большую мощность по сравнению с другими моторами аналогичного объёма при тех же оборотах двигателя. Но есть и ряд недостатков.
- Детали в таком двигателе работают с большей интенсивностью, то есть быстрее изнашиваются.
- Особое значение придаётся герметизации всех механизмов, работающих практически в одном пространстве: поршня, цилиндра и кривошипа.
- Так как в картере нельзя устроить масляную ванну, то смазку поршня и других деталей осуществляют добавлением масла в топливо.
- Перепады давления смеси в цилиндре не так велики, поэтому для повышения производительности двигателя часто используют принудительную продувку.
Рабочий цикл осуществляется в течение одного оборота коленвала.
Видео: Принцип работы двухтактного двигателя
Вам также будет интересно почитать:
Список типов двигателей внутреннего сгорания [детали, работа, применение] PDF
Главная » Автомобильная техника » Что такое двигатели внутреннего сгорания? и различные типы двигателей внутреннего сгорания (PDF)
Саифом М.
Двигатель внутреннего сгорания. И разница между двигателем s и двигателем IC.
А также загрузите PDF-файл этой статьи в конце.
Двигатели внутреннего сгорания
Как следует из названия, двигатели внутреннего сгорания (сокращенно Двигатель внутреннего сгорания ) — это двигатели, в которых сгорание топлива происходит внутри цилиндра двигателя.
Другими словами, двигатели внутреннего сгорания — это те двигатели, в которых сгорание топлива происходит внутри цилиндра двигателя с помощью искры. Это бензиновые, дизельные и газовые двигатели.
Двигатель представляет собой устройство, которое, используя химическую энергию топлива, преобразует ее в тепловую энергию путем сгорания для производства механической работы. Мы видели в паровых машинах, что топливо подается в цилиндр. Он в виде пара. Который уже прогрет и готов к работе в цикле сгорания двигателя.
Разница между паровыми двигателями и двигателями внутреннего сгорания.
Ниже приведены различия между паровым двигателем и двигателем внутреннего сгорания:
Читайте также: Какие существуют типы теплообменников и их применение?
Типы двигателей
- Двигатели внешнего сгорания (EC)
- Двигатели внутреннего сгорания (IC)
Двигатели внешнего сгорания — Если сгорание топлива происходит вне цилиндра двигателя, это двигатель внешнего сгорания . Пример: паровая турбина, газовая турбина, паровая турбина и т. д.
Двигатели внутреннего сгорания – Если сгорание топлива происходит внутри цилиндра двигателя, это двигатель внутреннего сгорания. Пример: бензиновый двигатель, дизельный двигатель.
Типы двигателей внутреннего сгорания
Ниже приводится список типов двигателей внутреннего сгорания (классифицированных по разным методам):
- Используемый рабочий цикл
- Двухтактный двигатель
- Четырехтактный двигатель
6 Используемое топливо
- Бензин
- Дизель
- Газовый двигатель
- Характер используемого термодинамического цикла
- Цикл Отто
- Дизельный цикл
- Двойной цикл
- Methods Of Cooling
- Air Cooling
- Water Cooling
- Speed Of The Engine
- High-speed Engine
- Medium-speed Engine
- Low-speed Engine
- Field Of Application
- Стационарный двигатель
- Автомобильный двигатель
- Портативный двигатель
- Авиационный двигатель
- Способ зажигания
- Двигатель с искровым зажиганием
- Двигатель с воспламенением от сжатия
- Расположение цилиндра двигателя
- Горизонтальный двигатель
- Двигатель Verticle
- Радиальный двигатель
- V-Type Engine
. :
1. Цилиндр
- Цилиндр изготовлен из стали или алюминиевых сплавов.
- В этом поршень совершает движения для развития мощности.
- Выдерживает высокое давление и температуру.
2. Головка цилиндра
- Головка цилиндра устанавливается в верхней части цилиндра.
- Изготавливается из стали или алюминиевых сплавов.
- Изготовлено методом литья.
- Медная или асбестовая прокладка устанавливается между цилиндром и головкой цилиндра для обеспечения герметичности.
3. Поршень
- Изготовлен из алюминиевых сплавов.
- Основной функцией является передача силы горения заряда на шатун.
4. Поршневые кольца
- Это круглые кольца, изготовленные из специальных стальных сплавов.
- размещаются в кольцевых канавках поршня.
- Два комплекта колец: верхнее кольцо предотвращает утечку продуктов сгорания в нижнюю часть, а нижнее кольцо предотвращает утечку масла в цилиндр двигателя.
- Сохраняют эластичность даже при более высокой температуре.
- Кольца снабжены воздухонепроницаемым уплотнением.
Читайте также: Поршневые кольца: Типы поршневых колец
5. Клапаны
- Предусмотрены на головке блока цилиндров,
- Впускной клапан используется для подачи свежей смеси в цилиндр.
- Выпускной клапан служит для удаления продуктов сгорания из цилиндра.
6. Шатун
- Является связующим звеном между поршнем и коленчатым валом.
- Функция шатуна заключается в передаче усилия от поршня к коленчатому валу.
7. Коленчатый вал
- Изготовлен из специальных стальных сплавов.
- Функция коленчатого вала заключается в преобразовании возвратно-поступательного движения поршня во вращательное с помощью шатуна.
8. Картер
- Картер изготовлен из чугуна.
- Удерживает цилиндр и коленчатый вал двигателя.
- Он также служит поддоном (местом для хранения) смазочного масла.
9. Маховик
- Это большое сплошное колесо, установленное на коленчатом валу двигателя внутреннего сгорания.
- Основной функцией маховика является поддержание постоянной скорости.
- Запасает избыточную энергию во время работы и отдает во время такта сжатия.
Принцип работы двигателей внутреннего сгорания
В двигателях внутреннего сгорания (двигателях внутреннего сгорания) сгорание происходит внутри цилиндра, поэтому тепловая энергия топлива непосредственно преобразуется в механическую работу.
Двигатель внутреннего сгорания имеет более высокий тепловой КПД, чем тепловой КПД двигателей ЕС. В двигателях внутреннего сгорания, когда двигатель внутреннего сгорания работает непрерывно, можно рассматривать цикл, начинающийся с любых тактов.
Мы знаем, что когда двигатель возвращается к исходному такту, мы говорим, что один цикл завершен. Двигатель внутреннего сгорания имеет четыре шага для завершения одного цикла следующим образом:
Такт всасывания В этом такте пары топлива в правильной пропорции подаются в цилиндр двигателя.
Такт сжатия В этом такте пары топлива сжимаются в цилиндре двигателя.
Такт расширения В этом такте сжигание паров топлива свечой зажигания происходит в верхней части цилиндра двигателя. при сгорании топлива резко повышается давление из-за расширения продуктов сгорания в цилиндре двигателя. Повышение давления толкает поршень с большой силой и вращает коленчатый вал. Коленчатый вал, в свою очередь, приводит в движение соединенную с ним машину.
Такт выпуска В этом такте выхлопные газы выбрасываются из цилиндра двигателя, чтобы освободить место для паров свежего топлива.
Разница между бензиновым двигателем и дизельным двигателем
Основное различие между бензиновым двигателем и дизельным двигателем заключается в том, что бензиновый двигатель всасывает смесь бензина и воздуха во время такта всасывания. А дизельный двигатель всасывает только воздух во время такта всасывания.
Бензиновый двигатель работает по циклу Отто. Его легко запустить, он легче и дешевле, у него высокие эксплуатационные расходы и низкие затраты на техническое обслуживание.
Дизельный двигатель работает по дизельному циклу. Его трудно запустить, он тяжелее и дороже, у него низкие эксплуатационные расходы и высокие затраты на техническое обслуживание.
Тепловой КПД бензиновых двигателей составляет около 26%. Это высокоскоростные двигатели, которые используются в легковых автомобилях. Где тепловой КПД дизельных двигателей составляет около 40%. Это тихоходные двигатели, которые используются в большегрузных автомобилях.
Применение двигателей внутреннего сгорания
Ниже приведены области применения двигателей внутреннего сгорания:
- Двигатели внутреннего сгорания используются в дорожных транспортных средствах, таких как скутеры, мотоциклы, автобусы и т. д.
- Он также используется в самолетах.
- Двигатель внутреннего сгорания обычно используется в моторных лодках.
- Двигатель внутреннего сгорания отлично подходит для небольших машин, таких как газонокосилки, бензопилы и переносные двигатели-генераторы.
Итак, теперь мы надеемся, что развеяли все ваши сомнения относительно двигателя внутреннего сгорания. Если у вас все еще есть сомнения по поводу « Типы двигателей внутреннего сгорания » можно спросить в комментариях.
Вот и все, спасибо за прочтение. Если вам понравилась наша статья, поделитесь ею с друзьями.
Загрузить PDF-файл этой статьи:
Загрузить сейчас
Подпишитесь на нашу рассылку, чтобы получать уведомления, когда мы загружаем новые статьи.
Введите адрес электронной почты
Читать далее:
- История двигателей внутреннего сгорания
- Человек, стоящий за первым двигателем внутреннего сгорания
О Саифе М.
Саиф М. по профессии инженер-механик. Он закончил инженерное образование в 2014 году и в настоящее время работает в крупной фирме инженером-механиком. Он также является автором и редактором на сайте www.theengineerspost.com
…
Типы двигателей
Двигатели — это машины, которые преобразуют источник энергии в физическую работу. Если вам нужно что-то для передвижения, двигатель — это то, что вам нужно. Но не все двигатели сделаны одинаково, и разные типы двигателей определенно не работают одинаково.
Изображение предоставлено Little Visuals / Pixabay.
Вероятно, самый интуитивный способ различить их — это тип энергии, которую каждый двигатель использует для питания.
- Тепловые двигатели
- Двигатели внутреннего сгорания (двигатели внутреннего сгорания)
- Двигатели внешнего сгорания (двигатели ЕС)
- Реактивные двигатели
- Электрические двигатели
- Физические двигатели
Содержание
- 1 Тепловые двигатели
- 1. 1 Двигатели внутреннего сгорания
- 1.2 Двигатели внешнего сгорания
- 1,3 Реактивные двигатели
- 2 Электрические двигатели
- 2.1 Ионные приводы
- 2,2 EM/Cannae Drives
- 3 EM/Cannae Drives
973 . этим двигателям требуется источник тепла для преобразования в движение. В зависимости от того, как они генерируют указанное тепло, они могут быть двигателями внутреннего сгорания (которые сжигают вещества) или двигателями без сгорания. Они функционируют либо за счет прямого сгорания топлива, либо за счет преобразования жидкости для создания работы. Таким образом, большинство тепловых двигателей также частично совпадают с системами химического привода. Это могут быть двигатели с воздушным дыханием (которые берут окислитель, такой как кислород, из атмосферы) или двигатели без дыхания (с окислителями, химически связанными с топливом).
РЕКЛАМА
Двигатели внутреннего сгорания
Двигатели внутреннего сгорания (двигатели внутреннего сгорания) сегодня довольно распространены. Они приводят в действие автомобили, газонокосилки, вертолеты и так далее. Самый большой двигатель внутреннего сгорания может генерировать 109 000 л.с. для корабля, который перевозит 20 000 контейнеров. Двигатели внутреннего сгорания получают энергию от топлива, сжигаемого в специальной области системы, называемой камерой сгорания. В процессе горения образуются продукты реакции (выхлопы) с гораздо большим общим объемом, чем общий объем реагентов вместе взятых (горючее и окислитель). Это расширение является настоящим хлебом с маслом для двигателей внутреннего сгорания — это то, что на самом деле обеспечивает движение. Тепло является лишь побочным продуктом сгорания и представляет собой потраченную впустую часть запаса энергии топлива, поскольку на самом деле оно не обеспечивает никакой физической работы.
Рядный 4-цилиндровый двигатель внутреннего сгорания.
Изображение предоставлено НАСА / Исследовательским центром Гленна. Двигатели
IC различаются по количеству «тактов» или циклов, которые каждый поршень совершает для полного оборота коленчатого вала. В настоящее время наиболее распространены четырехтактные двигатели, в которых реакция сгорания происходит в четыре этапа:
- Впуск или впрыск топливно-воздушной смеси (карбюрата) в камеру сгорания.
- Сжатие смеси.
- Зажигание от свечи зажигания или компрессии — топливо идет стрела .
- Выброс выхлопных газов.
Этот радиальный паровозик выглядит самым прикольным человечком, которого я когда-либо видел.
Изображение предоставлено Дуком / Викимедиа.
На каждом шаге поршень 4-тактного двигателя попеременно толкается вниз или назад. Зажигание — это единственный этап, на котором в двигателе генерируется работа, поэтому на всех остальных этапах каждый поршень использует энергию из внешних источников (другие поршни, электрический стартер, ручной запуск или инерция коленчатого вала). Вот почему вы должны тянуть за аккорд газонокосилки, и почему вашему автомобилю нужна исправная батарея, чтобы начать движение.
РЕКЛАМА
Другими критериями дифференциации двигателей внутреннего сгорания являются тип используемого топлива, количество цилиндров, общий рабочий объем (внутренний объем цилиндров), расположение цилиндров (рядные, радиальные, V-образные двигатели и т. д.), а также как выходная мощность и отношение мощности к весу.
Двигатели внешнего сгорания
Двигатели внешнего сгорания (двигатели ЕС) содержат топливо и продукты выхлопа раздельно — они сжигают топливо в одной камере и нагревают рабочее тело внутри двигателя через теплообменник или стенку двигателя . Этот великий папа промышленной революции, паровой двигатель, попадает в эту категорию.
В некоторых отношениях двигатели ЕС функционируют так же, как и их аналоги с двигателями внутреннего сгорания — им обоим требуется тепло, которое получается при сжигании вещества. Однако есть и несколько отличий.
В двигателях ЕС используются жидкости, которые подвергаются тепловому расширению-сжатию или фазовому сдвигу, но химический состав которых остается неизменным. Используемая жидкость может быть газообразной (как в двигателе Стирлинга), жидкой (двигатель с органическим циклом Ренкина) или претерпевать изменение фазы (как в паровом двигателе) — для двигателей внутреннего сгорания жидкость почти всегда является жидким топливом. и смесь воздуха, которая сгорает (меняет свой химический состав). Наконец, двигатели могут либо выпускать жидкость после использования, как это делают двигатели внутреннего сгорания (двигатели с открытым циклом), либо постоянно использовать одну и ту же жидкость (двигатели с замкнутым циклом).
Паровой двигатель Стивенсона в рабочем состоянии
Удивительно, но первые паровые двигатели, используемые в промышленности, работали, создавая вакуум, а не давление. Названные «атмосферными двигателями», это были громоздкие машины, крайне неэкономичные по топливу. Со временем паровые двигатели приобрели форму и характеристики, которые мы ожидаем увидеть от двигателей сегодня, и стали более эффективными — поршневые паровые двигатели с возвратно-поступательным движением представили поршневую систему (которая до сих пор используется в двигателях внутреннего сгорания) или составные системы двигателей, которые повторно использовали жидкость. в цилиндрах при снижении давления для создания дополнительной «крутости».
Сегодня паровые двигатели вышли из широкого применения: они тяжелые, громоздкие, имеют гораздо меньшую топливную экономичность и удельную мощность, чем двигатели внутреннего сгорания, и не могут изменять мощность так же быстро. Но если вас не беспокоит их вес, размер и вам нужна постоянная работа, они великолепны. Таким образом, ЭК в настоящее время с большим успехом используется в качестве паротурбинных двигателей для военно-морских операций и электростанций.
Применение ядерной энергии отличается тем, что называется негорючие двигатели или внешние тепловые двигатели , поскольку они работают на тех же принципах, что и двигатели ЕС, но не получают свою мощность от сгорания.
Реактивные двигатели
Реактивные двигатели , в просторечии известные как реактивные двигатели , создают тягу, выбрасывая реакционную массу. Основным принципом реактивного двигателя является третий закон Ньютона: если вы дунете чем-то с достаточной силой через заднюю часть двигателя, это толкнет переднюю часть вперед. А реактивных двигателей действительно умеет это делать.
Безумно хорош в этом.
Изображение предоставлено thund3rbolt / Imgur.
То, что мы обычно называем «реактивным» двигателем, те, что установлены на пассажирском самолете «Боинг», строго говоря, являются воздушно-реактивными двигателями и относятся к классу двигателей с турбинным двигателем. Прямоточные воздушно-реактивные двигатели, которые обычно считаются более простыми и надежными, поскольку они содержат меньше движущихся частей (вплоть до их полного отсутствия), также являются воздушно-реактивными двигателями, но относятся к классу двигателей с прямоточным двигателем. Разница между ними заключается в том, что прямоточные воздушно-реактивные двигатели полагаются на чистую скорость для подачи воздуха в двигатель, тогда как турбореактивные двигатели используют турбины для всасывания и сжатия воздуха в камеру сгорания. Кроме того, они функционируют в основном одинаково.
В турбореактивных двигателях воздух всасывается в камеру двигателя и сжимается вращающейся турбиной. ПВРД рисуют и сжимают его очень быстро. Внутри двигателя он смешивается с мощным топливом и воспламеняется. Когда вы концентрируете воздух (и, следовательно, кислород), смешиваете его с большим количеством топлива и взрываете (таким образом образуется выхлоп и термически расширяется весь газ), вы получаете реакционный продукт, который имеет огромный объем по сравнению с всасываемым воздухом. Единственное место, через которое может пройти вся эта масса газов, — это задняя часть двигателя, что она и делает с чрезвычайной силой. По пути туда он приводит в действие турбину, всасывая больше воздуха и поддерживая реакцию. И, чтобы добавить оскорбления к травме, в задней части двигателя есть реактивное сопло.
Здравствуйте, я — метательное сопло. Я буду вашим проводником.
Эта часть оборудования заставляет весь газ проходить через еще меньшее пространство, чем оно было изначально, тем самым еще больше ускоряя его в «струю» материи. Выхлоп выходит из двигателя с невероятной скоростью, в три раза превышающей скорость звука, толкая самолет вперед.
Реактивные двигатели без воздушного дыхания или ракетные двигатели функционируют так же, как реактивные двигатели без передней части, потому что им не нужен внешний материал для поддержания горения. Мы можем использовать их в космосе, потому что у них есть весь необходимый им окислитель, упакованный в топливо. Это один из немногих типов двигателей, которые постоянно используют твердое топливо.
Тепловые двигатели могут быть смехотворно большими или восхитительно маленькими. Но что, если у вас есть только розетка, и вам нужно подключить питание? Что ж, в таком случае вам нужно:
Электродвигатели
Ах да, чистая банда. Есть три типа классических электрических двигателей: магнитные, пьезоэлектрические и электростатические.
И, конечно же, дисковод Duracell.
Магнитный, как и батарея, является наиболее часто используемым из трех. Он основан на взаимодействии между магнитным полем и электрическим потоком для создания работы. Он работает по тому же принципу, что и динамо-машина для выработки электроэнергии, но в обратном порядке. На самом деле, вы можете генерировать немного электроэнергии, если вручную прокрутите электромагнитный двигатель.
Для создания магнитного двигателя вам понадобятся магниты и намотанный проводник. Когда на обмотку подается электрический ток, он индуцирует магнитное поле, которое взаимодействует с магнитом, создавая вращение. Важно разделить эти два элемента, поэтому электрические двигатели состоят из двух основных компонентов: статора, который является внешней частью двигателя и остается неподвижным, и ротора, который вращается внутри него. Их разделяет воздушный зазор. Обычно магниты встроены в статор, а проводник намотан на ротор, но они взаимозаменяемы. Магнитные двигатели также оснащены коммутатором для смещения электрического потока и модуляции индуцированного магнитного поля при вращении ротора для поддержания вращения.
Пьезоэлектрические приводы — это типы двигателей, которые используют свойство некоторых материалов генерировать ультразвуковые колебания при воздействии на них электрического тока для создания работы. Электростатические двигатели используют одноименные заряды, чтобы отталкивать друг друга и генерировать вращение в роторе. Поскольку в первом используются дорогие материалы, а для работы второго требуется сравнительно высокое напряжение, они не так распространены, как магнитные приводы.
Классические электрические двигатели обладают одним из самых высоких показателей энергоэффективности среди всех двигателей, преобразуя до 90% энергии в работу.
Ионные приводы
Ионные приводы представляют собой нечто среднее между реактивным двигателем и электростатическим. Этот класс приводов ускоряет ионы (плазму), используя электрический заряд для создания движения. Они не работают, если вокруг корабля уже есть ионы, поэтому они бесполезны вне космического вакуума.
Подруливающее устройство Холла.
Изображение предоставлено NASA / JPL-Caltech.
Они также имеют очень ограниченную выходную мощность. Однако, поскольку в качестве топлива они используют только электричество и отдельные частицы газа, их тщательно изучают для использования в космических кораблях. Deep Space 1 и Dawn успешно использовали ионные двигатели. Тем не менее, эта технология лучше всего подходит для небольших аппаратов и спутников, поскольку электронный след, оставляемый этими приводами, отрицательно влияет на их общую производительность.
Приводы EM/Cannae
Приводы EM/Cannae используют электромагнитное излучение, содержащееся в микроволновом резонаторе, для создания доверия. Это, наверное, самый необычный среди всех типов двигателей. Его даже называют «невозможным» драйвом , поскольку это нереакционный драйв — это означает, что он не производит никакого разряда для создания тяги, по-видимому, в обход третьего закона.
«Вместо топлива он использует микроволны, отражающиеся от тщательно настроенного набора отражателей для достижения небольшой силы и, следовательно, достижения тяги без пороха», — сообщил Андрей о приводе.
Было много споров о том, работает ли этот тип двигателя на самом деле или нет, но тесты НАСА подтвердили его работоспособность. Он даже получит обновление в будущем. Поскольку он использует только электрическую энергию для создания тяги, хотя и в небольших количествах, он кажется наиболее подходящим двигателем для исследования космоса.
Но это в будущем. Давайте посмотрим, как все начиналось. Давайте взглянем на:
Физические двигатели
Для работы этих двигателей требуется накопленная механическая энергия. Заводные двигатели , пневматические и гидравлические двигатели — все это физические приводы.
Модель Le Plongeour с огромными воздушными баками.
Изображение предоставлено Национальным морским музеем.
Они не очень эффективны. Они также обычно не могут использовать большие запасы энергии. Например, заводные двигатели накапливают упругую энергию в пружинах, и их необходимо заводить каждый день. Пневматические и гидравлические типы двигателей должны таскать с собой здоровенные трубки со сжатой жидкостью, которых, как правило, хватает ненадолго. Например, Plongeur , первая в мире подводная лодка с механическим двигателем, построенная во Франции между 1860 и 1863 годами, несла поршневой воздушный двигатель, питаемый от 23 баков при давлении 12,5 бар. Они занимали огромное пространство (153 кубических м / 5 403 кубических фута), и их было достаточно только для того, чтобы привести корабль в движение на 5 морских миль (9 км / 5,6 миль) со скоростью 4 узла.
Тем не менее, физические диски были, вероятно, первыми в мире. Катапульты, требушеты или тараны полагаются на этот тип двигателей. То же самое относится и к кранам, приводимым в движение людьми или животными, — все они использовались задолго до появления любых других видов двигателей.
Это далеко не полный список всех машин, созданных человеком. Не говоря уже о том, что биология тоже создала приводы — и они одни из самых эффективных, которые мы когда-либо видели. Но если вы читаете все это, я почти уверен, что к этому моменту у вас заканчивается топливо. Так что отдохните, расслабьтесь, и в следующий раз, когда вы столкнетесь с двигателем, намойте руки и нос, исследуя его — мы рассказали вам основы.
Теги: ДвигателиТехнологииВиды двигателейЧто такое двигательная установка
Что такое двигатель внутреннего сгорания? и его тип — GaugeHow
Двигатель внутреннего сгорания — это двигатель, в котором воспламенение и сгорание топлива происходит внутри двигателя. Он работает по принципу воспламенения заряда внутри камеры сгорания под очень высоким давлением.
ОСНОВЫ И.К. ДВИГАТЕЛЬ
В первобытные времена мышцы человека были основным источником силы для работы. Затем животных дрессировали и использовали их силу для выполнения определенных работ. Позже было введено преобразование энергии из одной формы в другую с использованием машины, называемой «двигателем».
Двигатель — это механический компонент, который преобразует один вид энергии (особенно тепловую энергию) в механическую энергию. Эти типы двигателей широко известны как «тепловые двигатели». В основном двигатели бывают двух типов, т. Е. Двигатель EC и двигатель IC. Двигатель. И двигатели внутреннего сгорания, и двигатели ЕС бывают двух типов: поршневые и роторные.
I.C.Engine, аббревиатура от двигателя внутреннего сгорания, представляет собой двигатель, в котором воспламенение и сгорание топлива происходит внутри двигателя. Он работает по принципу воспламенения заряда внутри камеры сгорания под очень высоким давлением.
Узнайте больше в онлайн-курсе по двигателю внутреннего сгорания Нажмите здесь
Примером дизельного двигателя, в котором рабочим телом является воздух. Этот двигатель широко применяется в автомобилестроении, авиации, энергетике и т. д. Двигатель состоит из различных компонентов, а именно. цилиндр, свеча зажигания, клапаны, поршень, поршневые кольца, шатун, коленчатый вал и масляный поддон (поддон).
Основная классификация двигателей внутреннего сгорания
(на основе типов зажигания): бензиновый двигатель с искровым зажиганием и дизельный двигатель с воспламенением от сжатия. В двигателе с искровым зажиганием топливо смешивается с воздухом и подается в цилиндр в процессе впуска.
Узнайте больше в онлайн-курсе по двигателю внутреннего сгорания
Когда поршень сжимает смесь, зажигается искра, которая приводит к процессу сгорания. во время рабочего такта газы сгорания расширяются и толкают поршень. Тогда как в дизельном двигателе вводится только воздух, а затем сжимается. После этого двигатель распыляет топливо в горячий сжатый воздух, что вызывает воспламенение.
(на основе числа тактов): двухтактный двигатель и четырехтактный двигатель. В большинстве двигателей используется четырехтактный двигатель, что означает, что для завершения цикла требуется четыре хода поршня. Этот цикл включает в себя четыре процесса: впуск, сжатие, сгорание, рабочий ход и выпуск.
В настоящее время предпринимаются различные усовершенствования, такие как усовершенствование конструкции двигателя, системы впрыска топлива, используемых материалов и т. д., направленные на повышение эффективности использования топлива, снижение веса транспортного средства, уменьшение загрязнения окружающей среды и сокращение выбросов.
Присоединяйтесь к нашему онлайн-курсу по двигателю внутреннего сгорания
ТИПЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
Двигатель внутреннего сгорания имеет очень разнообразную классификацию на основе различных критериев.
Ниже приведены основные критерии и их подразделения, по которым классифицируются двигатели внутреннего сгорания:
1. КОЛИЧЕСТВО ХОДОВ В ЦИКЛ:
A) ЧЕТЫРЕХТАКТНЫЙ ДВИГАТЕЛЬ:
Этот двигатель совершает четыре такта поршня, т.е. впуск, сжатие, рабочий цикл и выпуск для завершения рабочего цикла. Рабочий цикл требует двух оборотов коленчатого вала (720 градусов). Это наиболее распространенный тип двигателя, используемый в автомобилестроении.
B) ДВУХТАКТНЫЙ ДВИГАТЕЛЬ:
Как следует из названия, для завершения рабочего цикла этому двигателю требуется два хода поршня. Это такты сжатия и расширения. Требуется только один оборот коленчатого вала.
C) ШЕСТИТАКТНЫЙ ДВИГАТЕЛЬ:
Этот двигатель введен для усовершенствования обычных двухтактных и четырехтактных двигателей. Это увеличивает эффективность использования топлива, снижает выбросы и т. д. В этом двигателе один из цилиндров совершает два такта, а другие — четыре такта, всего шесть тактов за цикл.
2. ПРИРОДА ТЕРМОДИНАМИЧЕСКОГО ЦИКЛА:
A) ДВИГАТЕЛЬ С ЦИКЛОМ ОТТО
Цикл Отто представляет собой идеализированный цикл для двигателей SI.
Он состоит из двух квазистатических и изоэнтропических процессов и двух изохорных процессов. Двигатель, который следует этому термодинамическому циклу для работы, известен как двигатель с циклом Отто.
B) ДИЗЕЛЬНЫЙ ЦИКЛ ДВИГАТЕЛЯ
Дизельный цикл представляет собой идеализированный цикл дизельного двигателя, состоящий из двух изоэнтропических процессов, одного изобарического и одного изохорного.
C) ДВУХЦИКЛНЫЙ ДВИГАТЕЛЬ
Двойной цикл, или смешанный цикл, или цикл ограниченного давления представляет собой комбинацию двухтактного и дизельного циклов. Подвод тепла частично осуществляется за счет процесса постоянного объема и постоянного давления. Двигатель внутреннего сгорания, работающий по этому циклу, называется двухтактным двигателем.
3. ТИПЫ ИСПОЛЬЗУЕМОГО ТОПЛИВА
A) БЕНЗИНОВЫЙ ИЛИ БЕНЗИНОВЫЙ ДВИГАТЕЛЬ
Этот двигатель вырабатывает энергию за счет сжигания бензина (или другого летучего жидкого топлива с аналогичными свойствами), воспламеняемого от электрической искры. Как правило, в качестве заряда используется смесь топлива и воздуха.
B) ДИЗЕЛЬНЫЙ ДВИГАТЕЛЬ
В этом двигателе в качестве топлива используется дизельное топливо, воспламенение которого происходит само по себе, без искры. Следовательно, происходит сжатие впускной воздушной смеси и последующий впрыск топлива.
C) ДВУХТОПЛИВНЫЙ ДВИГАТЕЛЬ
Этот двигатель является более продвинутой версией двигателя otto. Этот двигатель может работать как на природном газе, так и на бензине, что означает, что он работает как на природном газе, так и на бензиновой системе, то есть на двойной топливной системе. Следовательно, эти виды двигателей известны как двухтопливные или двухтопливные двигатели.
4. СПОСОБ ЗАЖИГАНИЯ
A) ДВИГАТЕЛЬ С ИСКРОВЫМ ЗАЖИГАНИЕМ
В двигателях S.I зажигание происходит с помощью свечи зажигания. Это механическое устройство, называемое свечой зажигания, воспламеняет смесь воздуха и топлива (заряд), которая сжимается и сгорает в камере сгорания.
B) ДВИГАТЕЛЬ С ЗАЖИГАНИЕМ ОТ СЖАТИЯ
В двигателе с воспламенением от сжатия используется процесс самовоспламенения или самовоспламенения, при котором заряд топлива воспламеняется за счет собственной теплоты сжатия. Здесь воздух подается в камеру сгорания и сжимается до очень высокого давления. Отсюда и степень сжатия у этого двигателя высокая (до 22).
5. КОЛИЧЕСТВО ЦИЛИНДРОВ
A) ОДНОЦИЛИНДРОВЫЙ ДВИГАТЕЛЬ
Это базовая конфигурация поршневого цилиндра двигателя, в которой используется только один цилиндр двигателя. Конструкция этого двигателя компактна и проста.
B) МНОГОЦИЛИНДРОВЫЙ ДВИГАТЕЛЬ
Здесь используется более чем одноцилиндровая система. Он используется для обеспечения более непрерывного потока мощности. Популярный многоцилиндровый двигатель содержит четыре, шесть и восемь двигателей в различных конфигурациях.
6. РАСПОЛОЖЕНИЕ ЦИЛИНДРОВ
A) ДВИГАТЕЛЬ С ГОРИЗОНТАЛЬНЫМ РАЗМЕЩЕНИЕМ:
Эти двигатели имеют расположение цилиндров в два ряда по обе стороны от одного коленчатого вала. Это означает, что они имеют общий коленчатый вал. Другие названия этого цилиндра — плоские двигатели или «оппозитные» двигатели.
B) ВЕРТИКАЛЬНЫЙ ДВИГАТЕЛЬ
Вертикальный двигатель — это двигатель, в котором движение поршня является вертикальным, а именно. вертикально вверх и вниз, а расположение коленчатого вала ниже цилиндра.
C) V-ОБРАЗНЫЙ ДВИГАТЕЛЬ:
В этой конструкции двигателя цилиндры расположены под некоторым углом. Из-за наличия угла между ними он образует «v-образную форму». Этот угол варьируется от 60 градусов до 90 градусов. Обычно в этой конструкции используется четное количество цилиндров. Они используются в дорогих спортивных мотоциклах, дорогих автомобилях и т. д.
D) РАДИАЛЬНЫЙ ДВИГАТЕЛЬ
Это поршневой двигатель внутреннего сгорания. Конфигурация похожа на «колесо и спицы», в которой цилиндры размещены наружу от центрального картера. Он напоминает звезду, поэтому его называют «звездным двигателем».
E) РЯДНЫЙ ДВИГАТЕЛЬ:
В этом двигателе цилиндры расположены по прямой линии, поэтому его также называют «прямым двигателем». Эти двигатели могут иметь 2,3,4,5,6 или до 8 цилиндров. Эта конструкция двигателя традиционна и довольно проста.
F) ДВИГАТЕЛЬ X:
Когда два двигателя V соединяются одним коленчатым валом, мы получаем двигатель X. Таким образом, этот двигатель сделан из двух V-образных двигателей. Этот двигатель имеет свое историческое значение, поскольку они использовались в самолетах во время Второй мировой войны.
G) ДВИГАТЕЛЬ С ПРОТИВОПОЛОЖНЫМИ ПОРШНЯМИ:
В этом двигателе пары соосных поршней имеют общую камеру сгорания. Головка цилиндра отсутствует, а цилиндр имеет поршень на обоих концах.
H) W ДВИГАТЕЛЬ:
Как и двигатель V, двигатель W похож на свое название, то есть похож на букву W, если смотреть спереди. Двигатель W — это тип двигателя, в котором используется более одного (обычно три или четыре) ряда цилиндров с общим коленчатым валом.
7. СИСТЕМА ОХЛАЖДЕНИЯ
A) ДВИГАТЕЛЬ С ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ
Этот тип двигателя охлаждения зависит от объема воздушного потока, проходящего через внешнюю поверхность двигателя для предотвращения рассеивания тепла. Мы делаем тонкие ребра охлаждения, чтобы увеличить площадь поверхности.
B) ДВИГАТЕЛЬ С ВОДЯНЫМ ОХЛАЖДЕНИЕМ
Если в качестве охлаждающей жидкости в двигателе внутреннего сгорания используется вода, то такой двигатель называется двигателем с водяным охлаждением. Эта система охлаждения работает за счет прохождения воды (в качестве охлаждающей жидкости) через предусмотренные каналы в блоках цилиндров. Для этого двигателя мы изготавливаем водяные рубашки, водяные насосы и т.д.
C) ДВИГАТЕЛЬ С МАСЛЯНЫМ ОХЛАЖДЕНИЕМ
Это еще один двигатель с жидкостной системой охлаждения, в котором моторное масло действует как охлаждающая жидкость для уменьшения рассеивания тепла. Для этой цели мы используем радиатор (масляный радиатор), где горячее масло после охлаждения двигателя проходит через теплообменник.
com» frameborder=»0″ allow=»accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»>
Узнайте больше в онлайн-курсе двигателей внутреннего сгорания здесь
Нравится:
Нравится Загрузка…
Руководство по выбору двигателей внутреннего сгорания: типы, характеристики, области применения
Двигатели внутреннего сгорания давление от реакции горения для выработки механической энергии. Большинство двигателей внутреннего сгорания работают, вызывая контролируемое сжигание топлива и воздуха в камере сгорания. Горение генерирует тепло и давление, которые прямо или косвенно приводят в движение вал, который действительно работает. Механическая энергия, производимая двигателем внутреннего сгорания, может быть вращательной, вибрационной или иметь другую форму в зависимости от конструкции компонентов. Двигатели внутреннего сгорания используются в бесчисленных типах продуктов, от автомобилей до больших промышленных машин.
Типы двигателей внутреннего сгорания
Двигатели внутреннего сгорания первоначально классифицируются на основе того, как они сжигают топливо (внутреннее или внешнее). В каждой категории есть несколько различных типов дизайна.
Двигатели внутреннего сгорания
Двигатели внутреннего сгорания — это двигатели внутреннего сгорания, в которых топливо сжигается внутри камеры сгорания.
Двухтактные двигатели
Двухтактные двигатели завершают рабочий цикл за два хода поршня в цилиндре или за один оборот коленчатого вала. В этих двигателях поток впуска и выпуска происходят одновременно.
Изображение предоставлено: Procarcare — ALLDATA LLC.
Часто двухтактные двигатели маркируются как более простые по конструкции и имеющие более высокое отношение мощности к весу, чем четырехтактные двигатели. Они также считаются менее экономичными и более загрязняющими окружающую среду. Однако есть много исключений из этих обобщений, и производительность сильно различается в зависимости от конструкции двигателя. Двухтактные двигатели используются для выработки энергии в различных приложениях, включая небольшие товары для ландшафтного дизайна (например, бензопилы, триммеры), работу электростанций и большие корабли.
Четырехтактные двигатели
Четырехтактные двигатели завершают рабочий цикл четырьмя ходами поршня в цилиндре или двумя оборотами коленчатого вала. В этих двигателях отдельные фазы разделены, и впуск и выпуск происходят отдельно во время рабочего цикла.
Изображение предоставлено: Dieselduck.ca, Martin Leduc.
Четырехтактные двигатели часто более экономичны и чище, чем эквивалентные двухтактные двигатели, но могут быть тяжелее и сложнее в конструкции. Они являются наиболее распространенным типом двигателя внутреннего сгорания, используемым в самых разных областях, от автомобилей до промышленного оборудования.
Совет по выбору : Теоретически двухтактный двигатель может генерировать в два раза больше мощности, чем четырехтактный двигатель, для того же двигателя и того же числа оборотов. На самом деле это почти верно только для очень больших систем, где соотношение мощности составляет около 1,8: 1. Средний двухтактный двигатель страдает от потерь мощности из-за менее полного впуска и выпуска и более короткого эффективного сжатия и рабочего хода, что делает выходную мощность почти эквивалентной.
Роторные двигатели Ванкеля
Роторные двигатели Ванкеля работают с использованием ротора и вала вместо поршня. Вращение вала приводит в движение трехсторонний ротор, который обеспечивает движение топлива по системе. В этих двигателях разные фазы (впуск, сжатие, мощность и выпуск) происходят в разных местах двигателя. Приводной вал вращается один раз при каждом запуске двигателя в конструкции Ванкеля.
Изображение предоставлено: Википедия — Y_tambe
Двигатели Ванкеля часто легче и проще по конструкции, чем эквивалентные поршневые двигатели. Кроме того, они, как правило, более надежны (из-за меньшего количества движущихся частей) и имеют более высокое отношение мощности к весу. Однако они страдают от менее эффективной герметизации, что снижает их эффективность и срок службы. Эти двигатели используются в основном в гоночных и спортивных автомобилях, где надежность и легкость считаются более важными, чем эффективность и срок службы двигателя.
Турбинные двигатели
Турбинные двигатели – это двигатели внутреннего сгорания, в которых продукты сгорания направляются в турбину внутри двигателя. Поток газа вращает лопасти турбины, которая вырабатывает энергию или выполняет другую механическую работу. Они меньше, чем большинство эквивалентных поршневых двигателей, и имеют очень высокое отношение мощности к весу. Они также имеют меньше движущихся частей, создают меньшую вибрацию и рассеивают значительное количество отработанного тепла в выхлопных газах, которое можно использовать для других целей обогрева. Однако у них также есть затраты, более длительное время запуска и более низкая эффективность при простое. Чаще всего они используются для питания военных кораблей.
Реактивные двигатели — это разновидность газотурбинных двигателей, оптимизированных для создания тяги. Чтобы совершить работу, горячие газы, генерируемые источником горения, выбрасываются через сопло с высокой скоростью. Они используются в качестве двигательных установок для самолетов.
Двигатели внешнего сгорания
Двигатели внешнего сгорания – это двигатели внутреннего сгорания, которые сжигают топливо снаружи и используют это тепло для перемещения внутренней жидкости, выполняющей работу.
Двигатели Стирлинга
Двигатели Стирлинга представляют собой однофазные двигатели внешнего сгорания, в которых в качестве рабочего тела используется воздух, гелий или водород. Каждый двигатель Стирлинга имеет герметичный цилиндр, одна часть которого горячая, а другая холодная. Рабочий газ внутри двигателя перемещается с помощью механизма с горячей стороны на холодную. Когда газ находится на горячей стороне, он расширяется и давит на поршень. Когда он возвращается на холодную сторону, он сжимается. Правильно сконструированные двигатели Стирлинга имеют два импульса мощности на один оборот, что делает их работу очень плавной. Двигатели Стирлинга могут достигать гораздо более высокого КПД, чем типичные двигатели внутреннего сгорания, и производят меньше шума и вибрации во время работы. Однако они не могут начать работать мгновенно, как двигатели внутреннего сгорания, что делает их менее полезными для таких приложений, как транспортные средства и самолеты. Чаще всего они используются для обогрева, охлаждения и подводных энергетических систем.
Стирлинговый двигатель — изображение Кредит: MIT
Паровые двигатели
Паровые двигатели являются двумя фазами. жидкость. Паровые двигатели также могут использовать источники тепла без сжигания, такие как солнечная энергия, ядерная энергия или геотермальная энергия, для нагрева пара. Современные паровые двигатели используются в основном в виде турбин для выработки электроэнергии.
Типы топлива
Двигатели внутреннего сгорания также различаются в зависимости от типа топлива, которое они сжигают.
- Бензин — жидкое топливо, полученное из нефти (сырой нефти). Марки бензина различаются в зависимости от октанового числа (премиум или «этилированный» по сравнению с обычным или «неэтилированным»). Бензин с более высоким октановым числом может выдерживать большее сжатие перед сгоранием и необходим в некоторых двигателях, предназначенных для более высокой степени сжатия, чтобы предотвратить детонацию (неконтролируемое сгорание в цилиндре). Бензиновые двигатели также называют двигателями с искровым зажиганием, что означает, что топливо сгорает за счет образования искры от свечи зажигания в цилиндре.
Дизельное топливо — это жидкое топливо, изготовленное из длинных углеводородов, полученных из сырой нефти. Дизель имеет высокую удельную энергию и, следовательно, лучше экономит топливо (более чем на 33 % эффективнее), чем бензин, но сгорает более грязно. Дизельное топливо со сверхнизким содержанием серы (ULSD) является стандартом дизельного топлива с низким содержанием серы; большинство марок дизельного топлива, используемых сегодня, являются ULSD. Дизельные двигатели – это двигатели с воспламенением от сжатия, то есть топливо сжигается с использованием сжатого воздуха (высокого давления) для повышения температуры выше точки самовоспламенения (самовоспламенения) топлива. Поскольку в дизельных двигателях не используется источник воспламенения (искра), перед использованием часто требуется прогрев в очень холодных условиях. Дизельные двигатели также обеспечивают больший крутящий момент, чем бензиновые двигатели.
Сжиженный газ пропан (LPG) представляет собой смесь пропана и бутана , которая является газом при стандартных условиях, но может храниться и превращаться в жидкость при более высоком давлении. Его можно использовать в двигателях внутреннего сгорания в качестве альтернативы бензину или дизелю, который сгорает более чисто, но имеет меньшую плотность энергии (что означает более высокий расход эквивалентного топлива). Некоторые двигатели не подходят для СНГ, потому что он обеспечивает меньше смазки, чем другие стандартные виды топлива, вызывая чрезмерный износ клапанов в цилиндрах.
Сжатый природный газ (СПГ) представляет собой смесь метана и других углеводородов, хранящихся в виде газа высокого давления. Природный газ является относительно чистым горючим топливом с меньшей плотностью энергии, чем бензин и дизельное топливо. Двигатели на природном газе аналогичны стандартным бензиновым или дизельным двигателям; но они содержат соединители, которые подают природный газ из баллонов для хранения, и включают регуляторы для снижения давления. Как и сжиженный газ, СПГ не обеспечивает такое же количество смазки, как стандартное жидкое топливо, и двигатели должны проектироваться и обслуживаться соответствующим образом, чтобы предотвратить износ клапанов.
Этанол представляет собой спирт, полученный путем ферментации и дистилляции крахмалистых культур, таких как кукуруза, или из целлюлозной биомассы, такой как просо просо. Часто этанол смешивают с бензином в количестве до девяти или десяти процентов (E10), хотя некоторые двигатели могут быть рассчитаны на сжигание смесей с содержанием этанола до 85% (E85). Этанол имеет немного более низкое содержание энергии, чем бензин, что приводит к более высокому расходу эквивалентного топлива. Однако этанол выделяет меньше загрязняющих веществ, чем бензин, а также обладает большей устойчивостью к детонации двигателя, чем бензин.
Топливо для реактивных двигателей представляет собой смесь различных углеводородов. Он используется специально для газотурбинных двигателей и реактивных двигателей, используемых в авиации. Смеси различаются в зависимости от свойств, необходимых для продукта. Турбинные и дизельные двигатели, используемые для питания самолетов, используют реактивное топливо на основе керосина, а самолеты с поршневыми двигателями или двигателями Ванкеля используют так называемый avgas (авиационный бензин).
Другие виды топлива, которые можно использовать для питания определенных типов двигателей, включают растительное масло, водород, бутан и древесину (путем газификации).
Технические характеристики
Наиболее важными характеристиками, которые следует учитывать при выборе двигателей внутреннего сгорания, являются крутящий момент, мощность в лошадиных силах и об/мин (частота вращения вала), которые являются взаимозависимыми. Для двигателей внутреннего сгорания также важно учитывать рабочий объем и количество цилиндров.
Крутящий момент (τ) — это мера силы вращения, создаваемой на валу двигателя во время рабочего такта, выраженная в единицах силы-расстояния (фут-фунт, дюйм-фунт, м-Н и т. д.). Он определяет величину физической нагрузки, которую может генерировать двигатель. Спецификация крутящего момента обычно представляет собой показатель максимального номинального крутящего момента двигателя в соответствии со стандартами SAE. Крутящий момент измеряет способность двигателя справляться с нагрузками и ускоряться и, возможно, является лучшим показателем производительности двигателя. Двигатели создают полезный крутящий момент только в ограниченном диапазоне скоростей вращения (обсуждается ниже). Оптимальное использование крутящего момента двигателя часто во многом зависит от зубчатой передачи трансмиссии соответствующей системы.
Совет по выбору: Важно проверить стандарты, которые производитель использует для измерения крутящего момента. Рекламируемые рейтинги, не основанные на определенных стандартах, могут быть обманчивыми и неточными.
об/мин или скорость вала – это скорость, с которой вращается вал, диск или ротор в двигателе, измеряемая в об/мин (оборотов в минуту). Поскольку скорость и крутящий момент взаимозависимы, число оборотов в минуту для двигателей часто определяет скорость, при которой возникает максимальный крутящий момент. Автомобильные двигатели обычно работают со скоростью около 2500 об/мин. Остановка происходит, когда двигатели работают ниже минимальной скорости, а повреждение или отказ могут произойти при работе выше рекомендованной максимальной. Двигатели, работающие на более низких скоростях, могут работать дольше, чем аналогичные двигатели на более высоких скоростях, поскольку они совершают меньше циклов и меньше изнашиваются с течением времени. В автомобилях обороты измеряются тахометром.
Лошадиная сила (л.с.) – это производная спецификация, которая указывает на производительность двигателя. В частности, он определяет скорость передачи энергии в двигателе. Как и крутящий момент, номинальная мощность указана для различных частот вращения двигателя. Мощность в лошадиных силах зависит от частоты вращения двигателя и крутящего момента по уравнению:
л.с. = (τ×об/мин)÷5252
где:
л.с. — мощность в л.с.
τ — крутящий момент в футо-фунтах
об/мин — скорость в об/мин.
5252 — коэффициент преобразования единиц измерения.
Вот упрощенный пример того, как будут выглядеть кривые крутящего момента и мощности для небольшого двигателя внутреннего сгорания: Изображение предоставлено: Woodbank Communications Ltd
Мощность и крутящий момент увеличиваются с частотой вращения двигателя и достигают пика, когда начинают действовать физические ограничения. Эти ограничения включают размер/форму впускного и выпускного каналов, эффективность смешивания топлива, скорость распространения пламени, трение и прочность механических компонентов.
Рабочий объем — это объем, перемещаемый всеми поршнями в двигателе внутреннего сгорания за один ход. Обычно он измеряется в кубических сантиметрах (cc) и кубических дюймах (CID). Рабочий объем является основной частью конструкции двигателя, которая определяет, сколько топлива может быть впрыснуто или смешано в цилиндре во время каждого рабочего цикла. Это существенно влияет на максимальную мощность, которую может развивать двигатель.
Число цилиндров описывает количество цилиндров сгорания в двигателе внутреннего сгорания. Количество цилиндров в двигателе напрямую влияет на количество производимой мощности, поскольку большее количество цилиндров означает большее сгорание топлива и большее количество рабочих тактов. В результате двигатели с большим количеством цилиндров будут потреблять больше топлива, чем двигатели с меньшим количеством цилиндров.
Прочие характеристики двигателя
В дополнение к основным характеристикам, покупателям следует учитывать ряд других характеристик и параметров двигателя.
Расход топлива — Расход топлива определяет количество потребляемого топлива. Подобно крутящему моменту и мощности, расход топлива изменяется в зависимости от частоты вращения двигателя. Производители часто указывают его как диапазон значений на кривой производительности.
Эффективность двигателя — Эффективность использования энергии описывает количество энергии топлива, используемого двигателем для выполнения полезной работы. Для бензиновых двигателей максимальный КПД обычно находится в диапазоне 25-30%, поскольку 70-75% теряется в виде неиспользованной тепловой энергии. Более эффективные двигатели будут иметь лучшую экономию топлива (т.е. более низкий общий расход топлива).
Выбросы — Газообразные выбросы загрязняющих веществ и твердых частиц выбрасываются в потоки выхлопных газов двигателей внутреннего сгорания после сгорания топлива. Состав этого выхлопа важно учитывать при соблюдении стандартов и требований по загрязнению и выбросам. Факторы, влияющие на выбросы выхлопных газов, включают состав топлива и условия сгорания (например, соотношение воздух-топливо, полностью ли сгорает топливо).
Вес — Вес двигателя важен с точки зрения портативности и размещения. Более легкие двигатели идеально подходят для приложений, в которых приводная система должна быть портативной или требует транспортировки, поскольку для перемещения более тяжелых систем требуется больший крутящий момент. Для стационарных приложений вес часто не так важен.
Размеры — Размеры двигателя должны соответствовать требованиям соответствующей системы или среды. Размеры включают ширину, длину и высоту двигателя.
Степень сжатия — Отношение максимального объема камеры сгорания двигателя к наименьшему объему. Он определяет степень сжатия в камере. Высокая степень сжатия приводит к лучшему смешиванию топлива и воздуха и воспламенению, что приводит к увеличению мощности и повышению общей эффективности двигателя. Однако более высокая степень сжатия делает двигатели более восприимчивыми к детонации при использовании топлива с более низким октановым числом, что может снизить эффективность или привести к повреждению.
Параметры двигателя
Существует ряд параметров, определяющих различные требования к двигателю, которые необходимо учитывать при выборе.
Требования к воздуху — Качество или состав воздуха, используемого в двигателе для смешивания с топливом во время сгорания. Хотя большинство двигателей работают с использованием стандартного окружающего воздуха, в определенных условиях может потребоваться использование фильтров для удаления твердых частиц или нежелательных газов из воздуха.
Требования к охлаждению — Двигатели требуют охлаждения для отвода отработанного тепла, выделяемого во время работы. Двигатели внутреннего сгорания охлаждаются либо воздухом, либо жидкостью. Двигатели с воздушным охлаждением могут работать в более широком диапазоне температур, чем некоторые двигатели с жидкостным охлаждением, потому что воздух не подвержен замерзанию или кипению. Однако системы с жидкостным охлаждением часто более гибки для удовлетворения потребностей в охлаждении различных частей двигателя, уменьшая точки перегрева и большие перепады температур. Сегодня большинство двигателей внутреннего сгорания имеют жидкостное охлаждение.
Требования к маслу — Двигатели требуют смазки для защиты движущихся частей от чрезмерного износа во время работы. Для обеспечения этой смазки используется масло, которое подается либо в независимую систему, либо непосредственно смешивается со сгораемым топливом. Разным двигателям для правильной эксплуатации и технического обслуживания требуются разные марки масел и смазочных материалов. Кроме того, поскольку смазочные материалы со временем загрязняются и ухудшаются, их необходимо регулярно заменять после определенного количества циклов или часов работы.
Особенности
Двигатели внутреннего сгорания имеют ряд различных характеристик, которые важно учитывать при выборе.
Карбюраторные двигатели — это двигатели с карбюраторами, предназначенными для смешивания воздушно-топливной смеси в камере сгорания. В карбюраторах используется всасывание, создаваемое всасываемым воздухом, проходящим через трубку Вентури, для всасывания топлива в воздушный поток. По сравнению с топливными форсунками карбюраторы намного проще регулировать, ремонтировать и восстанавливать. Они также стоят меньше, чем системы впрыска топлива, и более надежны.
Двигатели с впрыском топлива — это двигатели, которые оснащены топливными форсунками, предназначенными для подачи топлива в камеру сгорания. Топливные форсунки распыляют топливо на капли в камере, проталкивая его через сопло под высоким давлением. Они полагаются на компьютеры, которые постоянно меняют соотношение воздух-топливо для оптимизации. По сравнению с карбюраторами, топливные форсунки более точны и эффективны, а также меньше загрязняют окружающую среду.
Двигатели с турбонаддувом — это те, которые включают турбонагнетатели, предназначенные для повышения эффективности двигателя внутреннего сгорания. Турбокомпрессоры чаще всего встречаются вместе с бензиновыми и дизельными двигателями внутреннего сгорания.
Многотопливные или многотопливные двигатели спроектированы так, чтобы быть совместимыми с несколькими различными типами или смесями топлива. Например, двигатель с искровым зажиганием для автомобиля может работать на различных смесях бензина с содержанием этанола до 85% или может иметь дополнительные компоненты, позволяющие сжигать сжатый природный газ.
Стандарты
API RP 7C-11F — Рекомендуемая практика установки, обслуживания и эксплуатации двигателей внутреннего сгорания.
SAA AS 4591.1 — Двигатели внутреннего сгорания. Словарь компонентов и систем. Конструкция и внешние покрытия.
Найдите в магазине стандартов IHS дополнительные документы, относящиеся к двигателям внутреннего сгорания.
Ссылки
DeepScience.com — Двигатели
Electropaedia — Поршневые (поршневые) двигательные электростанции
Исследование энергетических систем — Руководство по спецификациям двигателей
Изображения.
German-Bliss Equipment, Inc. | John Deere Power Systems
Двигатель внутреннего сгорания — Энциклопедия Нового Света
Четырехтактный цикл (или цикл Отто)
1. впуск
2. сжатие
3. силовой
4. выхлопной
Двигатель внутреннего сгорания представляет собой двигатель, в котором сжигание топлива происходит в замкнутом пространстве, называемом камерой сгорания. Эта экзотермическая реакция топлива с окислителем создает газы высокой температуры и давления, которые могут расширяться. Отличительной чертой двигателя внутреннего сгорания является то, что полезная работа выполняется расширяющимися горячими газами, непосредственно вызывающими движение, например, воздействуя на поршни, роторы или даже за счет давления и перемещения всего двигателя.
Это отличается от двигателей внешнего сгорания, таких как паровые двигатели, которые используют процесс сгорания для нагрева отдельной рабочей жидкости, обычно воды или пара, которая затем, в свою очередь, работает, например, путем нажатия на паровой поршень.
Термин Двигатель внутреннего сгорания (ДВС) почти всегда используется для обозначения поршневых двигателей, двигателей Ванкеля и аналогичных конструкций, в которых сгорание прерывистое. Однако двигатели непрерывного сгорания, такие как реактивные двигатели, большинство ракет и многие газовые турбины, также являются двигателями внутреннего сгорания.
Двигатели внутреннего сгорания в основном используются в транспорте. Несколько других применений предназначены для любой портативной ситуации, когда вам нужен неэлектрический двигатель. Самым большим применением в этой ситуации будет двигатель внутреннего сгорания, приводящий в действие электрический генератор. Таким образом, вы можете использовать стандартные электроинструменты с приводом от двигателя внутреннего сгорания.
Содержание
- 1 История
- 1.1 Применение
- 2 Операция
- 3 Процесс воспламенения бензина
- 4 Процесс зажигания дизельного двигателя
- 5 Энергия
- 6 деталей
- 7 Классификация
- 7. 1 Принцип работы
- 7.2 Цикл двигателя
- 7.2.1 Двухтактный
- 7.2.2 Четырехтактный
- 7.2.3 Пятитактный
- 7.2.4 Двигатель Бурка
- 7.2.5 Двигатель внутреннего сгорания с регулируемым двигателем
- 7.2.6 Ванкель
- 7.2.7 Газовая турбина
- 7.2.8 Вышедшие из употребления методы
- 7.3 Типы топлива и окислителя
- 7.4 Водород
- 7,5 Цилиндры
- 7.6 Система зажигания
- 7.7 Топливные системы
- 7.8 Конфигурация двигателя
- 7.9 Объем двигателя
- 7.10 Системы смазки
- 7.11 Загрязнение двигателя
- 8 КПД двигателя внутреннего сгорания
- 9 Примечания
- 10 Каталожные номера
- 11 Внешние ссылки
- 12 кредитов
Преимуществом этого является портативность. Использовать этот тип двигателя в транспортных средствах удобнее, чем на электричестве. Даже в случае гибридных автомобилей они по-прежнему используют двигатель внутреннего сгорания для зарядки аккумулятора. Недостатком является загрязнение, которое они выделяют. Не только очевидное загрязнение воздуха, но и загрязнение сломанными или устаревшими двигателями и отработанными деталями, такими как масло или резиновые изделия, которые необходимо выбросить. Еще одним фактором является шумовое загрязнение, многие двигатели внутреннего сгорания очень громкие. Некоторые из них настолько громкие, что люди нуждаются в средствах защиты органов слуха, чтобы не повредить уши. Еще один минус — размер. Очень нецелесообразно иметь маленькие двигатели, которые могут иметь любую мощность. Электродвигатели для этого гораздо практичнее. Вот почему более вероятно увидеть газовый электрогенератор в районе, где нет электричества для питания небольших предметов.
История
Раскрашенный автомобильный двигатель
Демонстрация непрямого или всасывающего принципа внутреннего сгорания. Это может не соответствовать определению двигателя, потому что процесс не повторяется.
Ранние двигатели внутреннего сгорания использовались для питания сельскохозяйственного оборудования, аналогичного этим моделям.
Первые двигатели внутреннего сгорания не имели компрессии, а работали на той воздушно-топливной смеси, которую можно было всосать или вдуть во время первой части такта впуска. Наиболее существенное различие между современных двигателей внутреннего сгорания и ранних конструкций является использование компрессии и в особенности внутрицилиндровой компрессии.
- 1509: Леонардо да Винчи описал двигатель без сжатия. (Его описание может не подразумевать, что идея исходила от него или что она была построена на самом деле.)
- 1673: Кристиан Гюйгенс описал двигатель без сжатия. [1]
- 1780-е годы: Алессандро Вольта построил игрушечный электрический пистолет, в котором электрическая искра взрывала смесь воздуха и водорода, выбивая пробку из конца пистолета.
- Семнадцатый век: английский изобретатель сэр Сэмюэл Морланд использовал порох для привода водяных насосов.
- 1794: Роберт Стрит построил двигатель без сжатия, принцип работы которого доминировал почти столетие.
- 1806: Швейцарский инженер Франсуа Исаак де Риваз построил двигатель внутреннего сгорания, работающий на смеси водорода и кислорода.
- 1823: Сэмюэл Браун запатентовал первый промышленный двигатель внутреннего сгорания. Он был без сжатия и основан на том, что Харденберг называет «циклом Леонардо», который, как следует из этого названия, в то время уже устарел. Как и сегодня, раннее крупное финансирование в области, где стандарты еще не были установлены, досталось лучшим шоуменам раньше, чем лучшим работникам.
- 1824: Французский физик Сади Карно создал термодинамическую теорию идеализированных тепловых двигателей. Это научно установило необходимость сжатия для увеличения разницы между верхней и нижней рабочими температурами, но неясно, знали ли конструкторы двигателей об этом до того, как сжатие уже стало широко использоваться. Это могло ввести в заблуждение дизайнеров, которые пытались подражать циклу Карно бесполезными способами.
- 18:26 1 апреля: Американец Сэмюэл Мори получил патент на «газовый или паровой двигатель» без сжатия.
- 1838: Уильяму Барнету был выдан патент (англ.). Это было первое зарегистрированное предположение о компрессии в цилиндре. Он, по-видимому, не осознавал его преимуществ, но его цикл был бы большим достижением, если бы он был достаточно развит.
- 1854: Итальянцы Эудженио Барсанти и Феличе Маттеуччи запатентовали в Лондоне первый работающий эффективный двигатель внутреннего сгорания (номер 1072), но не запустили его в производство. По концепции он был похож на успешный непрямой двигатель Отто Лангена, но не так хорошо проработан в деталях.
- 1860: Жан Жозеф Этьен Ленуар (1822-1900) создал газовый двигатель внутреннего сгорания, очень похожий по внешнему виду на горизонтальный паровой лучевой двигатель двойного действия, с цилиндрами, поршнями, шатунами и маховиком, в котором газ в основном место пара. Это был первый серийный двигатель внутреннего сгорания. Его первый двигатель с компрессией развалился на части.
- 1862: Николаус Отто разработал свободнопоршневой двигатель без сжатия непрямого действия, чья большая эффективность завоевала поддержку Langen, а затем и большей части рынка, который в то время был в основном для небольших стационарных двигателей, работающих на зажигательном газе.
- 1870: В Вене Зигфрид Маркус поместил на тележку первый передвижной бензиновый двигатель.
- 1876: Николаус Отто в сотрудничестве с Готлибом Даймлером и Вильгельмом Майбахом разработал практичный двигатель с четырехтактным циклом (цикл Отто). Однако немецкие суды не получили его патент на все двигатели с компрессией в цилиндре или даже на четырехтактный цикл, и после этого решения компрессия в цилиндре стала универсальной.
Карл Бенц
- 1879: Карл Бенц, работая независимо, получил патент на свой двигатель внутреннего сгорания, надежный двухтактный газовый двигатель, основанный на конструкции четырехтактного двигателя Николауса Отто. Позже Бенц разработал и построил свой собственный четырехтактный двигатель, который использовался в его автомобилях, ставших первыми серийными автомобилями.
- 1882: Джеймс Аткинсон изобрел двигатель цикла Аткинсона. Двигатель Аткинсона имел одну фазу мощности на оборот вместе с различными объемами впуска и расширения, что делало его более эффективным, чем цикл Отто.
- 1891: Герберт Акройд Стюарт оформляет свои права на лизинг нефтяных двигателей в Хорнсби в Англии для производства двигателей. Они строят первые двигатели с холодным пуском и воспламенением от сжатия. В 1892 году они устанавливают первые на водонасосной станции. Экспериментальная версия с более высоким давлением обеспечивает самоподдерживающееся воспламенение только за счет сжатия в том же году.
- 1892: Рудольф Дизель разрабатывает свой двигатель типа тепловой машины Карно, работающий на угольной пыли.
- 1893 23 февраля: Рудольф Дизель получил патент на дизельный двигатель.
- 1896: Карл Бенц изобрел оппозитный двигатель, также известный как горизонтально-оппозитный двигатель, в котором соответствующие поршни достигают верхней мертвой точки одновременно, таким образом уравновешивая друг друга по инерции.
- 1900: Рудольф Дизель продемонстрировал дизельный двигатель в 1900 году Exposition Universelle (Всемирная выставка) с использованием арахисового масла (биодизель).
- 1900: Вильгельм Майбах разработал двигатель, построенный в Daimler Motoren Gesellschaft, в соответствии со спецификациями Эмиля Еллинека, который потребовал, чтобы двигатель был назван Daimler-Mercedes в честь его дочери. В 1902 году автомобили с этим двигателем были запущены в производство компанией DMG.
Области применения
Двигатели внутреннего сгорания чаще всего используются для мобильных двигателей в автомобилях, оборудовании и другой переносной технике. В мобильных сценариях внутреннее сгорание является предпочтительным, поскольку оно может обеспечить высокое отношение мощности к весу вместе с превосходной плотностью энергии топлива. Эти двигатели появились почти во всех автомобилях, мотоциклах, лодках, а также в самых разных самолетах и локомотивах. Там, где требуется очень большая мощность, например, в реактивных самолетах, вертолетах и больших кораблях, они появляются в основном в виде турбин. Они также используются для электрических генераторов и в промышленности.
Эксплуатация
Все двигатели внутреннего сгорания зависят от экзотермического химического процесса сгорания: реакция топлива, обычно с воздухом, хотя могут использоваться и другие окислители, такие как закись азота.
Наиболее распространенное используемое сегодня топливо состоит из углеводородов и производится в основном из нефти. К ним относятся виды топлива, известные как дизельное топливо, бензин и нефтяной газ, а также редкое использование пропана. Большинство двигателей внутреннего сгорания, предназначенных для бензина, могут работать на природном газе или сжиженных нефтяных газах без серьезных модификаций, за исключением компонентов подачи топлива. Также можно использовать жидкое и газообразное биотопливо, такое как этанол и биодизель, форма дизельного топлива, которое производится из сельскохозяйственных культур, дающих триглицериды, таких как соевое масло. Некоторые из них также могут работать на газообразном водороде.
Все двигатели внутреннего сгорания должны иметь метод обеспечения воспламенения в их цилиндрах для создания сгорания. В двигателях используется либо электрический метод, либо система воспламенения от сжатия.
Бензиновое зажигание Процесс
Электрические/бензиновые системы зажигания (которые также могут работать на других видах топлива, как упоминалось ранее) обычно полагаются на комбинацию свинцово-кислотной батареи и индукционной катушки для обеспечения высоковольтной электрической искры для воспламенения топливно-воздушной смеси в цилиндрах двигателя. Эту батарею можно заряжать во время работы с помощью устройства, вырабатывающего электричество, например, генератора переменного тока или генератора, приводимого в движение двигателем. Бензиновые двигатели всасывают смесь воздуха и бензина и сжимают ее до давления менее 170 фунтов на квадратный дюйм, а для воспламенения смеси используется свеча зажигания, когда она сжимается головкой поршня в каждом цилиндре.
Процесс воспламенения дизельного двигателя
Системы воспламенения от сжатия, такие как дизельный двигатель и двигатели HCCI (воспламенение от сжатия с однородным зарядом), полагаются исключительно на тепло и давление, создаваемые двигателем в процессе его сжатия для воспламенения. Возникающая компрессия обычно более чем в три раза выше, чем у бензинового двигателя. Дизельные двигатели всасывают только воздух, и незадолго до пикового сжатия небольшое количество дизельного топлива впрыскивается в цилиндр через топливную форсунку, которая позволяет топливу мгновенно воспламеняться. Двигатели типа HCCI будут потреблять как воздух, так и топливо, но по-прежнему будут полагаться на процесс самовоспламенения без посторонней помощи из-за более высокого давления и тепла. Вот почему дизельные двигатели и двигатели HCCI также более подвержены проблемам с холодным запуском, хотя после запуска они будут работать так же хорошо в холодную погоду. У большинства дизелей также есть аккумуляторная батарея и системы зарядки, однако эта система является вторичной и добавляется производителями как роскошь для облегчения запуска, включения и выключения топлива, что также может выполняться с помощью переключателя или механического устройства, а также для запуска вспомогательных электрических компонентов и аксессуаров. . Однако большинство современных дизелей полагаются на электрические системы, которые также контролируют процесс сгорания для повышения эффективности и снижения выбросов.
Энергия
После успешного воспламенения и сгорания продукты сгорания, горячие газы, имеют больше доступной энергии, чем исходная сжатая топливно-воздушная смесь (которая имеет более высокую химическую энергию). Доступная энергия проявляется в виде высокой температуры и давления, которые могут быть преобразованы двигателем в работу. В поршневом двигателе газообразные продукты высокого давления внутри цилиндров приводят в движение поршни двигателя.
После удаления доступной энергии оставшиеся горячие газы удаляются (часто путем открытия клапана или открытия выпускного отверстия), что позволяет поршню вернуться в предыдущее положение (ВМТ). Затем поршень может перейти к следующей фазе своего цикла, который варьируется в зависимости от двигателя. Любое тепло, не переведенное в работу, обычно считается отходами и удаляется из двигателя воздушной или жидкостной системой охлаждения.
Детали
Иллюстрация нескольких ключевых компонентов типичного четырехтактного двигателя.
Детали двигателя различаются в зависимости от типа двигателя. Для четырехтактного двигателя ключевыми частями двигателя являются коленчатый вал (фиолетовый), один или несколько распределительных валов (красный и синий) и клапаны. Для двухтактного двигателя вместо системы клапанов может быть просто выпускной патрубок и впускной патрубок для топлива. В обоих типах двигателей есть один или несколько цилиндров (серый и зеленый), и для каждого цилиндра есть свеча зажигания (темно-серый), поршень (желтый) и кривошип (фиолетовый). Однократное движение поршня вверх или вниз по цилиндру называется тактом, а ход вниз, который происходит непосредственно после воспламенения топливно-воздушной смеси в цилиндре, называется рабочим тактом.
Двигатель Ванкеля имеет треугольный ротор, который вращается в эпитрохоидальной камере (в форме восьмерки) вокруг эксцентрикового вала. Четыре фазы работы (впуск, сжатие, мощность, выпуск) происходят в разных местах, а не в одном месте, как в поршневом двигателе.
В двигателе Bourke используется пара поршней, встроенных в кулисный механизм, который передает возвратно-поступательное усилие через специально разработанный подшипниковый узел для поворота кривошипно-шатунного механизма. Впуск, сжатие, мощность и выпуск происходят при каждом ходе этого хомута.
Классификация
Существует широкий спектр двигателей внутреннего сгорания, соответствующих их многочисленным областям применения. Точно так же существует широкий спектр способов классификации двигателей внутреннего сгорания, некоторые из которых перечислены ниже.
Хотя термины иногда вызывают путаницу, реальной разницы между «двигателем» и «мотором» нет. Когда-то слово «двигатель» (от латыни, через старофранцузское, ingenium, «способность») означало любую часть машины. «Мотор» (от латинского двигатель, «двигатель») — любая машина, производящая механическую энергию. Традиционно электродвигатели не называют «двигателями», но двигатели внутреннего сгорания часто называют «двигателями». (Электродвигатель относится к локомотиву, работающему на электричестве.)
С учетом сказанного следует понимать, что обычное использование часто диктует определения. Многие люди рассматривают двигатели как те вещи, которые генерируют свою энергию изнутри, а двигатели требуют внешнего источника энергии для выполнения своей работы. Очевидно, что корни слов действительно указывают на реальное различие. Кроме того, как и во многих определениях, корневое слово объясняет только начало слова, а не его текущее использование. Конечно, можно утверждать, что так обстоит дело со словами мотор и двигатель.
Принцип работы
Бензиновый двигатель 1906.
Поршневые:
- Двигатель на сырой нефти
- Двухтактный цикл
- Четырехтактный цикл
- Двигатель с горячей лампой
- Тарельчатые клапаны
- Манжетный клапан
- Цикл Аткинсона
- Предлагаемый
- Двигатель Бурка
- Улучшения
- Управляемый двигатель внутреннего сгорания
Роторный:
- Продемонстрировано:
- Двигатель Ванкеля
- Предлагаем:
- Орбитальный двигатель
- Квазитурбина
- Роторный двигатель с циклом Аткинсона
- Тороидальный двигатель
Непрерывное горение:
- Газовая турбина
- Реактивный двигатель
- Ракетный двигатель
Цикл двигателя
Двухтактный
Двигатели, основанные на двухтактном цикле, используют два такта (один вверх, один вниз) на каждый рабочий такт. Поскольку нет специальных тактов впуска или выпуска, необходимо использовать альтернативные методы для продувки цилиндров. Наиболее распространенным методом в двухтактных двигателях с искровым зажиганием является использование движения поршня вниз для создания давления в картере свежего заряда, который затем продувается через цилиндр через отверстия в стенках цилиндра. Двухтактные двигатели с искровым зажиганием маленькие и легкие (для своей выходной мощности) и очень простые механически. Общие области применения включают снегоходы, газонокосилки, машины для уборки сорняков, цепные пилы, водные мотоциклы, мопеды, подвесные моторы и некоторые мотоциклы. К сожалению, они также, как правило, громче, менее эффективны и гораздо больше загрязняют окружающую среду, чем их четырехтактные аналоги, и они плохо масштабируются до больших размеров. Интересно, что самые большие двигатели с воспламенением от сжатия являются двухтактными и используются в некоторых локомотивах и больших кораблях. Эти двигатели используют принудительную индукцию для продувки цилиндров. двухтактные двигатели менее экономичны, чем двигатели других типов, потому что неизрасходованное топливо, распыляемое в камеру сгорания, может иногда выходить из выхлопного канала вместе с ранее израсходованным топливом. Без специальной обработки выхлопных газов это также приведет к очень высокому уровню загрязнения, требуя, чтобы во многих небольших двигателях, таких как газонокосилки, использовались четырехтактные двигатели, а в некоторых юрисдикциях — двухтактные двигатели меньшего размера, оснащенные каталитическими нейтрализаторами.
Четырехтактный
Двигатели, основанные на четырехтактном цикле или цикле Отто, имеют один рабочий такт на каждые четыре такта (вверх-вниз-вверх-вниз) и используются в автомобилях, больших лодках и многих легких самолетах. Как правило, они тише, эффективнее и больше, чем их двухтактные аналоги. Существует ряд вариаций этих циклов, в первую очередь циклы Аткинсона и Миллера. В большинстве дизельных двигателей грузовых автомобилей и автомобилей используется четырехтактный цикл, но с системой воспламенения с подогревом от сжатия. Этот вариант называется дизельным циклом.
Пятитактный
Двигатели, основанные на пятитактном цикле, представляют собой вариант четырехтактного цикла. Обычно четыре цикла: впуск, сжатие, сгорание и выпуск. Пятый цикл, добавленный Delautour [2] , — это охлаждение. Двигатели, работающие по пятитактному циклу, на 30 процентов более эффективны, чем эквивалентный четырехтактный двигатель.
Двигатель Бурка
В этом двигателе два диаметрально противоположных цилиндра соединены с кривошипом с помощью шатунной шейки, проходящей через общую шпильку. Цилиндры и поршни сконструированы таким образом, что, как и в обычном двухтактном цикле, за один оборот приходится два рабочих такта. Однако, в отличие от обычного двухтактного двигателя, сгоревшие газы и поступающий свежий воздух не смешиваются в цилиндрах, что способствует более чистой и эффективной работе. Кривошипный механизм также имеет низкую боковую тягу и, таким образом, значительно снижает трение между поршнями и стенками цилиндра. Фаза сгорания двигателя Бурка более точно соответствует сгоранию при постоянном объеме, чем четырехтактный или двухтактный цикл. В нем также используется меньше движущихся частей, поэтому он должен преодолевать меньшее трение, чем два других возвратно-поступательных типа. Кроме того, его более высокая степень расширения также означает, что используется больше тепла от фазы сгорания, чем используется в четырехтактных или двухтактных циклах.
Двигатель внутреннего сгорания с регулируемым двигателем
Это также цилиндровые двигатели, которые могут быть одно- или двухтактными, но вместо коленчатого вала и поршневых штоков используют две соединенные шестерни, концентрические кулачки, вращающиеся в противоположных направлениях, для преобразования возвратно-поступательного движения во вращательное. Эти кулачки практически нейтрализуют боковые силы, которые в противном случае оказывались бы на цилиндры поршнями, значительно повышая механический КПД. Профили выступов кулачка (всегда нечетные и не менее трех) определяют ход поршня в зависимости от передаваемого крутящего момента. В этом двигателе есть два цилиндра, которые расположены на 180 градусов друг от друга для каждой пары кулачков, вращающихся в противоположных направлениях. Для однотактных версий на пару цилиндров приходится столько же циклов, сколько кулачков на каждом кулачке, и вдвое больше для двухтактных агрегатов.
Ванкеля
Двигатель Ванкеля работает с тем же разделением фаз, что и четырехтактный двигатель (но без поршневых ходов, его правильнее было бы назвать четырехфазным двигателем), поскольку фазы происходят в разных местах двигателя. . Этот двигатель обеспечивает три «такта» мощности на оборот на ротор, что дает ему в среднем большее отношение мощности к весу, чем поршневые двигатели. Этот тип двигателя используется в современной Mazda RX8 и более ранней RX7, а также в других моделях.
Газовая турбина
В газотурбинных циклах (в частности, в реактивных двигателях) вместо того, чтобы использовать один и тот же поршень для сжатия и последующего расширения газов, вместо этого используются отдельные компрессоры и газовые турбины; дающий постоянную мощность. По сути, всасываемый газ (обычно воздух) сжимается, а затем сгорает с топливом, что значительно повышает температуру и объем. Затем больший объем горячего газа из камеры сгорания подается через газовую турбину, которая затем легко приводит в действие компрессор.
Вышедшие из употребления методы
В некоторых старых двигателях внутреннего сгорания без сжатия: В первой части хода поршня вниз всасывалась или вдувалась топливно-воздушная смесь. На остальной части хода поршня вниз впускной клапан закрывался и топливо/ сгорела воздушная смесь. При движении поршня вверх выпускной клапан был открыт. Это была попытка имитировать работу поршневого парового двигателя.
Типы топлива и окислителя
Используемые виды топлива включают уайт-спирит (североамериканский термин: бензин, британский термин: бензин), автогаз (сжиженный нефтяной газ), сжатый природный газ, водород, дизельное топливо, топливо для реактивных двигателей, свалочный газ, биодизель, биобутанол, арахисовое масло и другие растительные масла, биоэтанол, биометанол (метиловый или древесный спирт) и другое биотопливо. Даже псевдоожиженные металлические порошки и взрывчатые вещества нашли некоторое применение. Двигатели, которые используют газы в качестве топлива, называются газовыми двигателями, а те, которые используют жидкие углеводороды, называются масляными двигателями. Однако бензиновые двигатели, к сожалению, также часто в просторечии называют «газовыми двигателями».
Основные ограничения для топлива заключаются в том, что топливо должно легко транспортироваться через топливную систему в камеру сгорания, и что топливо выделяет достаточно энергии в виде тепла при сгорании, чтобы сделать использование двигателя практичным.
Окислитель обычно представляет собой воздух, и его преимущество заключается в том, что он не хранится внутри транспортного средства, что увеличивает удельную мощность. Однако воздух можно сжимать и перевозить на борту транспортного средства. Некоторые подводные лодки предназначены для перевозки чистого кислорода или перекиси водорода, что делает их независимыми от воздуха. Некоторые гоночные автомобили используют закись азота в качестве окислителя. Другие химические вещества, такие как хлор или фтор, использовались в экспериментах; но большинство непрактично.
Дизельные двигатели обычно тяжелее, шумнее и мощнее на низких скоростях, чем бензиновые двигатели. Они также более экономичны в большинстве случаев и используются в тяжелых дорожных транспортных средствах, некоторых автомобилях (все чаще из-за их более высокой топливной экономичности по сравнению с бензиновыми двигателями), кораблях, железнодорожных локомотивах и легких самолетах. Бензиновые двигатели используются в большинстве других дорожных транспортных средств, включая большинство автомобилей, мотоциклов и мопедов. Обратите внимание, что в Европе сложные автомобили с дизельными двигателями стали широко распространены с 19 века.90-х годов, что составляет около 40 процентов рынка. Как бензиновые, так и дизельные двигатели производят значительные выбросы. Существуют также двигатели, работающие на водороде, метаноле, этаноле, сжиженном нефтяном газе (СНГ) и биодизеле. Двигатели, работающие на парафине и тракторном масле (ТВО), больше не видны.
Водород
Некоторые предполагают, что в будущем такое топливо может заменить водород. Кроме того, с внедрением технологии водородных топливных элементов использование двигателей внутреннего сгорания может быть прекращено. Преимущество водорода в том, что при его сгорании образуется только вода. Это отличается от сжигания ископаемого топлива, при котором выделяется двуокись углерода, основная причина глобального потепления, угарный газ в результате неполного сгорания и другие местные и атмосферные загрязнители, такие как двуокись серы и оксиды азота, вызывающие проблемы с дыханием в городах, кислотные дожди. и проблемы с озоном. Однако свободный водород в качестве топлива не встречается в природе, при его сжигании выделяется меньше энергии, чем требуется для производства водорода в первую очередь самым простым и распространенным методом — электролизом. Хотя существует несколько способов получения свободного водорода, они требуют преобразования в настоящее время горючих молекул в водород, поэтому водород не решает ни одного энергетического кризиса, более того, он решает только проблему портативности и некоторые проблемы загрязнения. Большим недостатком водорода во многих ситуациях является его хранение. Жидкий водород имеет чрезвычайно низкую плотность — в 14 раз меньше плотности воды и требует обширной изоляции, в то время как газообразный водород требует очень тяжелых резервуаров. Хотя водород имеет более высокую удельную энергию, объемный запас энергии по-прежнему примерно в пять раз ниже, чем у бензина, даже в сжиженном состоянии. (Процесс «Водород по запросу», разработанный Стивеном Амендолой, создает водород по мере необходимости, но у него есть другие проблемы, такие как относительно дорогое сырье.) Другие виды топлива, более безопасные для окружающей среды, включают биотопливо. Они не могут дать чистого прироста углекислого газа.
Одноцилиндровый бензиновый двигатель (ок. 1910 г.).
Цилиндры
Двигатели внутреннего сгорания могут содержать любое количество цилиндров, обычно от одного до двенадцати, хотя используется до 36 (Lycoming R-7755). Наличие большего количества цилиндров в двигателе дает два потенциальных преимущества: во-первых, двигатель может иметь больший рабочий объем с меньшими отдельными возвратно-поступательными массами (то есть масса каждого поршня может быть меньше), что обеспечивает более плавную работу двигателя (поскольку двигатель имеет тенденцию вибрация в результате движения поршней вверх и вниз). Во-вторых, при большем рабочем объеме и большем количестве поршней может быть сожжено больше топлива и может быть больше событий сгорания (то есть больше рабочих тактов) за заданный период времени, а это означает, что такой двигатель может генерировать больший крутящий момент, чем аналогичный двигатель. с меньшим количеством цилиндров. Недостатком большего количества поршней является то, что в целом двигатель будет весить больше и создавать большее внутреннее трение, поскольку большее количество поршней трется о внутреннюю часть цилиндров. Это имеет тенденцию снижать эффективность использования топлива и лишать двигатель части его мощности. Для высокопроизводительных бензиновых двигателей, использующих современные материалы и технологии (таких как двигатели, используемые в современных автомобилях), кажется, что точка разрыва составляет около 10 или 12 цилиндров, после чего добавление цилиндров становится общим ущербом для производительности и эффективности, хотя есть исключения. такие как двигатель W16 от Volkswagen существуют.
- Большинство автомобильных двигателей имеют от четырех до восьми цилиндров, в некоторых высокопроизводительных автомобилях их десять, двенадцать или даже шестнадцать, а в некоторых очень маленьких автомобилях и грузовиках — два или три. В предыдущие годы некоторые довольно большие автомобили, такие как DKW и Saab 92, имели двухцилиндровые двухтактные двигатели.
- Радиальные авиадвигатели, ныне устаревшие, имели от трех до 28 цилиндров, например Pratt & Whitney R-4360. Ряд содержит нечетное количество цилиндров, поэтому четное число указывает на двух- или четырехрядный двигатель. Самым крупным из них был Lycoming R-7755 с 36 цилиндрами (четыре ряда по девять цилиндров), но он так и не был запущен в производство.
- обычно имеют от одного до четырех цилиндров, а некоторые высокопроизводительные модели имеют шесть (хотя существуют некоторые «новинки» с 8, 10 и 12 цилиндрами).
- Снегоходы обычно имеют два цилиндра. У некоторых более крупных (не обязательно высокопроизводительных, но и туристических машин) их четыре.
- Небольшие переносные приборы, такие как бензопилы, генераторы и бытовые газонокосилки, чаще всего имеют один цилиндр, хотя существуют цепные пилы с двумя цилиндрами.
Мотоциклы
Система зажигания
Двигатели внутреннего сгорания можно классифицировать по системе зажигания. Точка в цикле, в которой воспламеняется смесь топлива и окислителя, напрямую влияет на эффективность и мощность ДВС. Для типичного 4-тактного автомобильного двигателя максимальное давление горючей смеси должно достигаться, когда коленчатый вал находится в положении 90 градусов после ВМТ (верхней мертвой точки). Скорость фронта пламени напрямую зависит от степени сжатия, температуры топливной смеси и октанового или цетанового числа топлива. Современные системы зажигания предназначены для воспламенения смеси в нужное время, чтобы фронт пламени не соприкасался с опускающейся головкой поршня. Если фронт пламени соприкасается с поршнем, возникает порозовение или стук. Более обедненные смеси и более низкое давление смеси сгорают медленнее, что требует более опережающего опережения зажигания. Сегодня в большинстве двигателей для зажигания используется электрическая или компрессионная система подогрева. Однако исторически использовались системы с внешним пламенем и горячими трубами. Никола Тесла получил один из первых патентов на механическую систему зажигания с патентом США 609.250 (PDF), «Электрический воспламенитель для газовых двигателей», 16 августа 1898 г.
Топливные системы
Топливо сгорает быстрее и полнее, когда большая площадь его поверхности соприкасается с кислородом. Для того чтобы двигатель работал эффективно, топливо должно испаряться в поступающий воздух в виде так называемой топливно-воздушной смеси. Существует два широко используемых метода испарения топлива в воздух: один — карбюратор, а другой — впрыск топлива.
Часто в более простых поршневых двигателях для подачи топлива в цилиндр используется карбюратор. Однако точный контроль правильного количества топлива, подаваемого в двигатель, невозможен. Карбюраторы в настоящее время являются наиболее распространенным устройством для смешивания топлива, используемым в газонокосилках и других небольших двигателях. До середины 1980-х карбюраторы также были распространены в автомобилях.
Более крупные бензиновые двигатели, например, используемые в автомобилях, в основном перешли на системы впрыска топлива. Дизельные двигатели всегда используют впрыск топлива.
Двигатели, работающие на газе (СНГ), используют либо системы впрыска топлива, либо карбюраторы с открытым или закрытым контуром.
В других двигателях внутреннего сгорания, таких как реактивные двигатели, используются горелки, а в ракетных двигателях используются различные идеи, включая ударные струи, сдвиг газа/жидкости, предварительные горелки и многие другие идеи.
Конфигурация двигателя
Двигатели внутреннего сгорания можно классифицировать по их конфигурации, которая влияет на их физический размер и плавность хода (более плавные двигатели производят меньшую вибрацию). Общие конфигурации включают прямую или встроенную конфигурацию, более компактную V-образную конфигурацию и более широкую, но более гладкую плоскую или оппозитную конфигурацию. Авиационные двигатели также могут иметь радиальную конфигурацию, обеспечивающую более эффективное охлаждение. Также использовались более необычные конфигурации, такие как «H», «U», «X» или «W».
Конфигурации с несколькими коленчатыми валами вообще не обязательно нуждаются в головке цилиндра, но вместо этого могут иметь поршень на каждом конце цилиндра, что называется конструкцией с оппозитным поршнем. Эта конструкция использовалась в дизельном авиационном двигателе Junkers Jumo 205 с двумя коленчатыми валами, по одному на каждом конце одного ряда цилиндров, и, что наиболее примечательно, в дизельных двигателях Napier Deltic, в которых использовались три коленчатых вала для обслуживания трех рядов двухсторонних цилиндров. цилиндры расположены равносторонним треугольником с коленчатыми валами по углам. Он также использовался в однорядных локомотивных двигателях и продолжает использоваться в судовых двигателях, как для силовых установок, так и для вспомогательных генераторов. Роторный двигатель Gnome, использовавшийся в нескольких ранних самолетах, имел неподвижный коленчатый вал и ряд радиально расположенных цилиндров, вращающихся вокруг него.
Рабочий объем двигателя
Рабочий объем двигателя — это смещение или рабочий объем поршней двигателя. Обычно он измеряется в литрах (л) или кубических дюймах (т.е. или дюйма³) для больших двигателей и в кубических сантиметрах (сокращенно см3) для двигателей меньшего размера. Двигатели с большей мощностью обычно более мощные и обеспечивают больший крутящий момент при более низких оборотах, но также потребляют больше топлива.
Помимо разработки двигателя с большим количеством цилиндров, есть два способа увеличить мощность двигателя. Во-первых, это удлинение хода, а во-вторых, увеличение диаметра поршня. В любом случае может потребоваться дополнительная регулировка подачи топлива в двигатель для обеспечения оптимальной производительности.
Указанная мощность двигателя может быть больше вопросом маркетинга, чем инженерии. Morris Minor 1000, Morris 1100 и Austin-Healey Sprite Mark II были оснащены двигателем BMC A-Series с одинаковым ходом поршня и диаметром цилиндра в соответствии с их спецификациями и были произведены одним и тем же производителем. Однако объем двигателя был указан как 1000 куб.см, 1100 куб.см и 1098 куб.см соответственно в литературе по продажам и на значках автомобилей.
Системы смазки
Используется несколько различных типов систем смазки. Простые двухтактные двигатели смазываются маслом, смешанным с топливом или впрыскиваемым в всасывающий поток в виде распыления. Ранние низкоскоростные стационарные и морские двигатели смазывались под действием силы тяжести из небольших камер, подобных тем, которые использовались в то время в паровых двигателях, с пополнением их по мере необходимости тендером двигателя. Поскольку двигатели были адаптированы для использования в автомобилях и самолетах, потребность в высоком соотношении мощности к весу привела к увеличению скорости, более высоким температурам и большему давлению на подшипники, что, в свою очередь, потребовало смазки под давлением подшипников кривошипа и шатунных шеек, при условии либо за счет прямой смазки от насоса, либо косвенно за счет струи масла, направленной на приемные чашки на концах шатуна, что имело то преимущество, что обеспечивало более высокое давление при увеличении скорости двигателя.
Загрязнение двигателя
Как правило, двигатели внутреннего сгорания, особенно поршневые двигатели внутреннего сгорания, производят умеренно высокие уровни загрязнения из-за неполного сгорания углеродсодержащего топлива, что приводит к образованию угарного газа и некоторого количества сажи вместе с оксидами азота и серы и некоторыми несгоревшими углеводородами в зависимости от от условий эксплуатации и соотношения топливо/воздух. Основными причинами этого являются необходимость работы бензиновых двигателей, близких к стехиометрическому соотношению, чтобы добиться сгорания (топливо сгорало бы более полно в избытке воздуха) и «гашение» пламени относительно холодными стенками цилиндра.
Дизельные двигатели производят широкий спектр загрязняющих веществ, включая аэрозоли, состоящие из множества мелких частиц (PM10), которые, как считается, глубоко проникают в легкие человека. Двигатели, работающие на сжиженном нефтяном газе (СНГ), имеют очень низкий уровень выбросов, поскольку сжиженный нефтяной газ сгорает очень чисто и не содержит серы или свинца.
- Многие виды топлива содержат серу, что приводит к образованию оксидов серы (SOx) в выхлопных газах, вызывая кислотные дожди.
- Высокая температура горения приводит к увеличению содержания оксидов азота (NOx), которые опасны как для растений, так и для животных.
- Чистое производство двуокиси углерода не является необходимой характеристикой двигателей, но, поскольку большинство двигателей работают на ископаемом топливе, это обычно происходит. Если двигатели работают на биомассе, то чистый углекислый газ не образуется, поскольку растущие растения поглощают столько же или больше углекислого газа во время роста.
- Водородные двигатели должны производить только воду, но когда в качестве окислителя используется воздух, также образуются оксиды азота.
Эффективность двигателя внутреннего сгорания
Эффективность различных типов двигателей внутреннего сгорания различается. Общепризнанно, что большинство двигателей внутреннего сгорания, работающих на бензине, даже при наличии турбонагнетателей и средств повышения эффективности запаса имеют механический КПД около 20 процентов. Большинство двигателей внутреннего сгорания тратят около 36 процентов энергии бензина в виде тепла, отводимого в систему охлаждения, и еще 38 процентов через выхлопные газы. Остальное, около шести процентов, теряется из-за трения. Большинство инженеров не смогли успешно использовать потраченную энергию для какой-либо значимой цели, хотя существуют различные дополнительные устройства и системы, которые могут значительно повысить эффективность сгорания.
Система впрыска водородного топлива, или HFI, представляет собой дополнительную систему двигателя, которая, как известно, улучшает топливную экономичность двигателей внутреннего сгорания за счет впрыска водорода для улучшения сгорания во впускной коллектор. Можно увидеть экономию топлива от 15 до 50 процентов. Небольшое количество водорода, добавляемого во впускной воздушно-топливный заряд, повышает октановое число комбинированного топливного заряда и увеличивает скорость пламени, что позволяет двигателю работать с более опережающим опережением зажигания, более высокой степенью сжатия и более бедной смесью воздуха. топливной смеси, чем это возможно в противном случае. Результатом является меньшее загрязнение окружающей среды при большей мощности и повышении эффективности. Некоторые системы HFI используют встроенный электролизер для производства используемого водорода. Также можно использовать небольшой резервуар с водородом под давлением, но этот метод требует повторного заполнения.
Также обсуждались новые типы двигателей внутреннего сгорания, такие как двигатель с разделенным циклом Scuderi, которые используют высокое давление сжатия, превышающее 2000 фунтов на квадратный дюйм, и сгорают после верхней мертвой точки (самой высокой и наиболее сжатой точки в ход поршня внутреннего сгорания). Ожидается, что такие двигатели достигнут КПД до 50-55%.
Notes
- ↑ Thinkquest, http://library.thinkquest.org/C006011/english/sites/huygens.php3?v=2 Huygens.] Проверено 16 июля 2008 г.
- ↑ Тони Уильямс, 101 Гениальные киви (Reed Publishing NZ Ltd, 2006), с. 83.
Ссылки
Ссылки ISBN поддерживают NWE за счет реферальных сборов
- Харденберг, Хорст О. 1999. Средневековье двигателя внутреннего сгорания . Уоррендейл, Пенсильвания: SAE International Publishing. ISBN 0768003911.
- Хейвуд, Джон. 1988. Основы двигателя внутреннего сгорания. Нью-Йорк: McGraw-Hill Science/Engineering/Math. ISBN 007028637X.
- Стоун, Ричард. 1999. Введение в двигатели внутреннего сгорания . Уоррендейл, Пенсильвания: SAE International Publishing. ISBN 0768004950.
- Тейлор, Чарльз Файет. 1985. Двигатель внутреннего сгорания в теории и на практике . Кембридж, Массачусетс: MIT Press. ISBN 0262700263.
Внешние ссылки
Все ссылки получены 4 марта 2018 г.
- Знакомство с автомобильными двигателями — изображения в разрезе и хороший обзор двигателя внутреннего сгорания
- Библия о топливе и двигателе — хороший ресурс по различным типам двигателей и видам топлива
- youtube — Анимация компонентов 4-цилиндрового двигателя
- youtube — Анимация внутренних движущихся частей 4-цилиндрового двигателя
.
Авторы
Энциклопедия Нового Света авторы и редакторы переписали и дополнили статью в Википедии
в соответствии со стандартами New World Encyclopedia . Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с надлежащим указанием авторства. Кредит должен соответствовать условиям этой лицензии, которая может ссылаться как на участника Энциклопедии Нового Света участника и самоотверженные добровольные участники Фонда Викимедиа. Чтобы процитировать эту статью, щелкните здесь, чтобы просмотреть список допустимых форматов цитирования. История более ранних вкладов википедистов доступна исследователям здесь:
- Двигатель внутреннего сгорания история
История этой статьи с момента ее импорта в New World Encyclopedia :
- История «Двигатель внутреннего сгорания»
Примечание. На использование отдельных изображений, которые лицензируются отдельно, могут распространяться некоторые ограничения.
ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ
Двигатель внутреннего сгорания (ВС) был доминирующим первичным двигателем в нашем обществе с момента его изобретения в последней четверти 19-го века [подробнее см., например, Heywood (1988)]. Его цель состоит в том, чтобы генерировать механическую энергию из химической энергии, содержащейся в топливе и высвобождаемой при сгорании топлива внутри двигателя. Именно этот конкретный момент, когда топливо сжигается внутри рабочей части двигателя, дает двигателям внутреннего сгорания их название и отличает их от других типов, таких как двигатели внешнего сгорания. Хотя газовые турбины удовлетворяют определению двигателя внутреннего сгорания, этот термин традиционно ассоциируется с с искровым зажиганием (иногда называемые Отто, бензиновые или бензиновые двигатели ) и дизельные двигатели (или двигатели с воспламенением от сжатия ).
Двигатели внутреннего сгорания используются в различных устройствах, начиная от судовых силовых установок и электростанций мощностью более 100 МВт и заканчивая ручными инструментами, мощность которых составляет менее 100 Вт. Это означает, что размер и характеристики современных двигателей сильно различаются между от крупных дизелей с диаметром цилиндра более 1000 мм, совершающих возвратно-поступательные движения со скоростью до 100 об/мин, до небольших бензиновых двухтактных двигателей с диаметром цилиндра около 20 мм. В эти две крайности входят среднеоборотные дизельные двигатели, автомобильные дизели большой мощности, двигатели грузовых и легковых автомобилей, авиационные двигатели, двигатели мотоциклов и небольшие промышленные двигатели. Из всех этих типов бензиновые и дизельные двигатели для легковых автомобилей занимают видное место, поскольку они, безусловно, являются самыми крупными двигателями, производимыми в мире; как таковые, их влияние на социальную и экономическую жизнь имеет первостепенное значение.
Большинство поршневых двигателей внутреннего сгорания работают по так называемому четырехтактному циклу (рис. 1), который подразделяется на четыре процесса: впуск, сжатие, расширение/мощность и выпуск. Каждый цилиндр двигателя требует четырех ходов поршня, что соответствует двум оборотам коленчатого вала, чтобы завершить последовательность, которая приводит к производству мощности.
Рисунок 1. Цикл четырехтактного двигателя.
Такт впуска начинается с движения поршня вниз, который всасывает в цилиндр свежую топливно-воздушную смесь через порт/клапан в сборе, и заканчивается, когда поршень достигает нижней мертвой точки (НМТ). Смесь образуется либо с помощью карбюратора (как в обычных двигателях), либо путем впрыска бензина под низким давлением во впускной канал через форсунку игольчатого типа с электронным управлением (как в более совершенных двигателях). По сути, процесс впуска начинается с открытия впускного клапана непосредственно перед верхней мертвой точкой (ВМТ) и заканчивается, когда впускной клапан (или клапаны в двигателях с четырьмя клапанами на цилиндр) закрывается вскоре после НМТ. Время закрытия впускного клапана (клапанов) зависит от конструкции впускного коллектора, которая влияет на газодинамику и объемный КПД двигателя, а также на частоту вращения двигателя.
За тактом впуска следует такт сжатия , который фактически начинается при закрытии впускного клапана. Его целью является подготовка смеси к горению за счет повышения ее температуры и давления. Сгорание инициируется энергией, выделяемой через свечу зажигания в конце такта сжатия, и связано с быстрым повышением давления в цилиндре.
Такт мощности или расширения начинается с поршня в ВМТ сжатия и заканчивается в НМТ. В этот момент газы высокой температуры и высокого давления, образующиеся при сгорании, толкают поршень вниз, тем самым заставляя кривошип вращаться. Непосредственно перед тем, как поршень достигает НМТ, выпускной клапан (клапаны) открывается, и сгоревшие газы выходят из цилиндра из-за перепада давления между цилиндром и выпускным коллектором.
Этот такт выхлопа завершает цикл двигателя, удаляя из цилиндра сгоревшие, частично сгоревшие или даже несгоревшие газы, выходящие из процесса сгорания; следующий цикл двигателя начинается, когда впускной клапан открывается около ВМТ, а выпускной клапан закрывается на несколько градусов позже угла поворота коленчатого вала.
Важно отметить, что свойства бензина в сочетании с геометрией камеры сгорания оказывают существенное влияние на продолжительность сгорания, скорость повышения давления и образование загрязняющих веществ . При определенных условиях смесь на конце газа может самовоспламениться до того, как пламя достигнет этой части цилиндра, что приведет к стуку , что порождает колебания давления высокой интенсивности и частоты.
Склонность бензинового топлива сопротивляться самовоспламенению и тем самым предотвращать возможное повреждение двигателя в результате детонации характеризуется его октановым числом . До недавнего времени добавление небольшого количества свинца в бензин было предпочтительным методом подавления детонации, но связанные с этим риски для здоровья в сочетании с необходимостью использования катализаторов для снижения выбросов выхлопных газов обусловили необходимость использования неэтилированного бензина. Это требует уменьшения степени сжатия двигателя (отношение объема цилиндра в НМТ к объему в ВМТ), чтобы предотвратить детонацию с нежелательным влиянием на тепловой КПД.
Как уже упоминалось, четырехтактный цикл, также известный как цикл Отто в честь его изобретателя Николауса Отто, построившего первый двигатель в 1876 году, производит рабочий такт за каждые два оборота коленчатого вала. Одним из способов увеличения выходной мощности двигателя данного размера является преобразование его в двухтактный цикл (рис. 2), в котором мощность вырабатывается при каждом обороте двигателя.
Рисунок 2. Цикл двухтактного двигателя.
Поскольку этот режим работы приводит к увеличению выходной мощности, хотя и не до двойного уровня, ожидаемого при простых расчетах, он широко используется в мотоциклах, легковых автомобилях и морских судах как с искровым зажиганием, так и с дизельными двигателями. Дополнительным преимуществом является простая конструкция двухтактных двигателей, поскольку они могут работать с боковыми отверстиями в гильзе, закрывающимися и открываемыми движением поршня, вместо громоздкой и сложной конструкции с верхним кулачком.
В двухтактном цикле такт сжатия начинается после того, как впускное и выпускное отверстия закрываются поршнем; топливно-воздушная смесь сжимается, а затем воспламеняется свечой зажигания, аналогично воспламенению в четырехтактном бензиновом двигателе, чтобы инициировать сгорание вблизи ВМТ. При этом допускается поступление в картер свежего заряда перед последующим его сжатием движущимся вниз поршнем во время рабочего такта или такта расширения . В этот период сгоревшие газы толкают поршень до тех пор, пока он не достигнет НМТ, что позволяет открыть сначала выпускные, а затем впускные (перекачивающие) каналы. Открытие выпускных отверстий позволяет сгоревшим газам выходить из цилиндра, в то время как частично в то же время свежий заряд, сжатый в картере, поступает в цилиндр через правильно ориентированные передаточные отверстия.
Перекрытие тактов впуска и выпуска в двухтактных двигателях является причиной того, что часть свежего заряда вытекает непосредственно из цилиндра в процессе продувки. Несмотря на различные попытки уменьшить масштабы этой проблемы путем введения дефлектора в поршень (рис. 2) и направления поступающего заряда в сторону от расположения выпускных отверстий, эффективность наддува в обычных двухтактных двигателях остается относительно низкой. Решение этой проблемы состоит в том, чтобы подавать топливо непосредственно в цилиндр, отдельно от свежего воздуха, через пневматические форсунки в период, когда и выпускное, и перепускное отверстия закрыты. Несмотря на короткий период, доступный для смешивания, распылители с подачей воздуха могут обеспечить гомогенную обедненную смесь во время воспламенения, генерируя капли бензина со средним диаметром менее 40 мкм, которые очень легко испаряются во время такта сжатия.
Среди различных типов двигателей внутреннего сгорания дизельный двигатель или двигатель с воспламенением от сжатия известен своим высоким КПД, сниженным расходом топлива и относительно низким общим выбросом газов. Его название происходит от имени немецкого инженера Рудольфа Дизеля (1858−1913 гг. ), который в 1892 г. описал в своем патенте форму двигателя внутреннего сгорания, не требующего внешнего источника воспламенения и в котором сгорание инициируется самовоспламенением жидкого топлива, впрыскиваемого в двигатель. высокая температура и давление воздуха в конце такта сжатия.
Неотъемлемые преимущества эффективности дизельного двигателя проистекают из его общих соотношений обедненной смеси, высокой степени сжатия двигателя, обеспечиваемой отсутствием воспламенения конечных газов (детонации) и более высокими степенями расширения. Как следствие, дизельные двигатели в двухтактной или четырехтактной конфигурации традиционно были предпочтительными силовыми установками для коммерческого применения, такого как корабли/лодки, энергогенераторы, локомотивы и гусеницы, и за последние 20 лет или около того , легковых автомобилей, а особенно в Европе.
Недостаток дизельных двигателей с низкой выходной мощностью был устранен за счет использования нагнетателей или турбонагнетателей, которые увеличивают отношение мощности к весу двигателя за счет увеличения плотности воздуха на входе. Ожидается, что турбокомпрессоры станут стандартными компонентами всех будущих дизельных двигателей, независимо от области применения.
Работа дизельного двигателя отличается от работы двигателя с искровым зажиганием главным образом способом образования смеси перед сгоранием. Только воздух вводится в двигатель через спиральный или направленный порт, а топливо смешивается с воздухом во время такта сжатия, после его впрыска под высоким давлением в форкамерный дизель с непрямым впрыском или IDI) или в основную камеру (дизель с непосредственным впрыском). или DI) непосредственно перед началом горения.
Потребность в хорошем смешивании топлива с воздухом в дизельных двигателях удовлетворяется системами впрыска топлива под высоким давлением, которые создают капли со средним диаметром около 40 мкм. Для легковых автомобилей системы впрыска топлива состоят из роторного насоса, нагнетательных трубок и форсунок топливных форсунок, которые различаются по своей конструкции в зависимости от применения; в дизельных двигателях с непосредственным впрыском используются форсунки с отверстиями, а в дизелях с непрямым впрыском используются форсунки игольчатого типа. В более крупных дизельных двигателях используются рядные топливные насосы высокого давления, насос-форсунки (насос и форсунка, объединенные в один блок) или отдельные одноствольные насосы, которые устанавливаются рядом с каждым цилиндром.
За последние 20 лет или около того осознание того, что ресурсы сырой нефти ограничены и что окружающая среда, в которой мы живем, становится все более и более загрязненной, побудило правительства принять законы, ограничивающие уровни выбросов выхлопных газов транспортных средств. и двигателей всех типов. С момента их введения в Японии и США в конце 60-х годов и в Европе в 1970 году нормы выбросов постоянно становятся все более строгими, и производители двигателей сталкиваются с самой сложной задачей, связанной со стандартами, согласованными для 19 лет.96 и далее, которые обобщены для легковых автомобилей в Таблице 1. Ожидается, что новые стандарты, которые будут введены в Европе на 2000 год, будут еще ниже после калифорнийских уровней, которые требуют нулевых уровней выбросов после начала века. Однако неясно, удовлетворят ли существующие двигатели этим ограничениям, несмотря на отчаянные попытки инженеров по всему миру.
Таблица 1. Европейские нормы выбросов за 1996 год
Рисунок 3. Модель трехкомпонентного каталитического нейтрализатора.
Из таблицы 1 видно, что основными загрязняющими веществами в двигателях с искровым зажиганием являются углеводороды (HC), монооксид углерода (CO) и оксиды азота (NO x = NO + NO 2 ), а в дизельных двигателях , NO x и твердые частицы, состоящие из частиц сажи, образующихся при сгорании смазочного масла и углеводородов, являются наиболее вредными.
В настоящее время трехкомпонентные катализаторы, являющиеся стандартным компонентом современных легковых автомобилей, оснащенных двигателями с искровым зажиганием, работающими на неэтилированном бензине, пропускают около 90% сокращение выбросов HC, CO и NO x путем их преобразования в диоксид углерода (CO 2 ), воду (H 2 O) и N 2 .
К сожалению, эти катализаторы требуют стехиометрической (соотношение воздух-топливо ~14,5) работы двигателя, что нежелательно как с точки зрения расхода топлива, так и с точки зрения выбросов CO 2 . Альтернативным подходом является концепция сжигания обедненной смеси, которая обещает одновременное снижение расхода топлива и выбросов выхлопных газов за счет удовлетворительного сжигания бедных смесей с соотношением воздух-топливо намного выше 20. Ожидается, что разработка катализаторов сжигания обедненной смеси с эффективностью преобразования более 60% может позволить двигателям, работающим на обедненной смеси, соответствовать требованиям будущего законодательства по выбросам; это область активных исследований как в промышленности, так и в научных кругах. С другой стороны, новые дизельные двигатели зависят от двухкомпонентных или окислительных катализаторов для снижения содержания твердых частиц в выхлопных газах за счет преобразования углеводородов в CO 9 .1734 2 и H 2 O, а также по рециркуляции отработавших газов и замедленному впрыску для снижения уровней NO x .