Содержание

Как устроена система питания дизельного двигателя

Содержание

  1. Дизельный двигатель: устройство системы питания
  2. Особенности дизельного топлива
  3. Схема устройства системы питания дизельного ДВС
  4. Система питания турбодизеля
  5. Система питания дизельного двигателя
  6. Особенности дизельного ДВС
  7. Краткий рабочий цикл топливной системы дизельного агрегата:
  8. Классификация дизельного топлива по температуре застывания:
  9. Работа системы питания дизельного ДВС
  10. Функции системы питания дизеля следующие:
  11. Устройство системы питания дизеля
  12. Из чего состоит топливная дизельная система:
  13. Система питания дизельного двигателя состоит из двух основных частей:
  14. Система питания дизельного ДВС оснащается двумя насосами:
  15. Нераздельная система подачи топлива
  16. Раздельная система подачи топлива
  17. Классификация дизельных форсунок по конструкции:
  18. Схема питания турбодизеля
  19. Классификация турбонаддува по давлению:
  20. Видео
  21. Система питания дизельного двигателя- Устройство и неисправности
  22. Функции системы питания дизельного ДВС
  23. Особенности дизтоплива и двигателей на нем
  24. Как устроена система питания
  25. Питание турбодизеля
  26. Неисправности топливной системы
  27. Затрудненный пуск двигателя.
  28. Двигатель потерял мощность.
  29. Слишком большой расход солярки
  30. Жирный черный выхлоп из трубы
  31. Выхлоп белого или серого цвета, очень дымный.
  32. Мотор по ощущениям работает слишком «жестко»
  33. Двигатель шумит
  34. Неровная работа на холостую и при езде
  35. Двигатель внезапно глохнет
  36. Двигатель невозможно заглушить
  37. Приходится часто менять свечи
  38. Завоздушивание системы
  39. Устройство топливной системы дизельного двигателя
  40. О конструктивных особенностях дизелей, в сравнении с бензомоторами
  41. Принцип и общая схема работы топливной системы
  42. Основная функция топливной системы, описание её работы
  43. Главные составные части топливной системы дизельного двигателя
  44. Топливоподкачивающий насос
  45. Топливный насос высокого давления
  46. Форсунки
  47. Несколько слов о системе «КоммонРэйл»
  48. Заключение
  49. Видео

Дизельный двигатель: устройство системы питания

Система питания современного дизельного ДВС представляет собой целый комплекс устройств. Основной задачей становится не просто подача топлива к инжекторным форсункам, а еще и подача горючего под высоким давлением. Давление необходимо для высокоточного дозированного впрыска в камеру сгорания цилиндра. Система питания дизеля выполняет следующие важнейшие функции:

Особенности дизельного топлива

Большинство требований к системе питания дизельного мотора выдвигается с учетом того, что дизельное топливо имеет ряд специфических особенностей. Горючее такого рода представляет собой смесь керосиновых и газойлевых соляровых фракций. Дизельное топливо получают после того, как из нефти реализуется отгон бензина.

Дизельное топливо обладает целым рядом свойств, главным из которых принято считать показатель самовоспламеняемости, который оценивается цетановым числом. Представленные в продаже виды дизельного топлива имеют цетановое число на отметке 45–50. Для современных дизельных агрегатов наилучшим топливом является горючее с большим показателем цетанового числа.

Система питания дизельного ДВС обеспечивает подачу хорошо очищенного дизельного топлива к цилиндрам, ТНВД сжимает горючее до высокого давления, а форсунка подает его в распыленном на мельчайшие частицы виде в камеру сгорания. Распыленное дизельное топливо смешивает с горячим (700–900 °С) воздухом, который нагревается до такой температуры от высокого сжатия в цилиндрах (3–5 МПа) и самовоспламеняется.

Дизельное топливо имеет еще и более высокую плотность сравнительно с бензином, а также обладает лучшей смазывающей способностью. Не менее важной характеристикой выступает вязкость, температура застывания и чистота дизельного топлива. Температура застывания позволяет делить топливо на три базовых сорта горючего: летнее дизельное топливо, зимний дизель и арктическое дизельное топливо.

Схема устройства системы питания дизельного ДВС

Система питания дизельного двигателя состоит из следующих базовых элементов:

Дополнительными элементами частично становится электронасосы, выпуск отработанных газов, сажевые фильтры, глушители и т. д. Систему питания дизельных ДВС принято делит на две группы топливной аппаратуры:

Топливоподводящая аппаратура может иметь различное устройство, но сегодня наиболее распространена система разделенного типа. В такой системе топливный насос высокого давления (ТНВД) и форсунки реализованы в виде отдельных устройств. Топливо подается в дизельный двигатель по магистралям высокого и низкого давления.

Дизельное топливо хранится, фильтруется и подается к ТНВД под невысоким давлением посредством магистрали низкого давления. В магистрали высокого давления ТНВД поднимает давление в системе для осуществления подачи и впрыска строго определенного количества топлива в рабочую камеру сгорания дизельного двигателя в заданный момент.

В системе питания дизеля присутствуют сразу два насоса:

Топливоподкачивающий насос обеспечивает подачу топлива из топливного бака, прокачивает горючее через фильтр грубой и тонкой очистки. Давление, которое создает топливоподкачивающий насос, позволяет осуществить подачу топлива по топливопроводу низкого давления к топливному насосу высокого давления.

ТНВД реализует подачу топлива к форсункам под высоким давлением. Подача происходит в соответствии с порядком работы цилиндров дизельного мотора. Топливный насос высокого давления имеет определенное количество одинаковых секций. Каждая из таких секций ТНВД соответствует определенному цилиндру дизельного двигателя.

Данные моторы работают жестко и шумно, имеют небольшой срок службы. В конструкции их системы питания отсутствуют топливопроводы магистрали высокого давления. Указанный тип ДВС не имеет большого распространения.

Вернемся к массовой конструкции дизельного мотора. Дизельные форсунки располагаются в головке блока цилиндров (ГБЦ) дизельного двигателя. Основной их задачей становится точное распыление горючего в камере сгорания двигателя. Топливоподкачивающий насос подает к ТНВД большое количество топлива. Получившиеся избытки горючего и проникающий в систему топливоподачи воздух возвращаются в топливный бак по специальным трубопроводам, которые называются дренажными.

Инжекторные дизельные форсунки бывают двух видов:

Четырехтактные дизельные моторы преимущественно получают форсунки закрытого типа. В таких устройствах сопла форсунки, которые представляют собой отверстие, закрываются особой запорной иглой.

Получается, что внутренняя полость, расположенная внутри корпуса распылителей форсунок, сообщается с камерой сгорания только во время открытия форсунки и в момент впрыска дизельного топлива.

Ключевым элементом в конструкции форсунки выступает распылитель. Распылитель получает от одного до целой группы сопловых отверстий. Именно эти отверстия и образуют факел топлива в момент впрыска. От их количества и расположения зависит форма факела, а также пропускная способность форсунки.

Система питания турбодизеля

Система турбонаддува активно применяется для эффективного повышения мощности как бензинового, так и дизельного двигателя без увеличения рабочего объема камеры сгорания в конструкции силового агрегата. Топливоподводящая система в турбированных ДВС остается практически без изменений, зато схема и способ подачи воздуха в турбомоторах существенно меняется по сравнению с атмосферными агрегатами.

Наддув в дизельном двигателе реализован путем использования турбокомпрессора. Турбина в дизельном моторе использует энергию отработавших газов. Воздух в турбокомпрессоре сжимается, далее охлаждается и нагнетается в камеру сгорания дизельного ДВС под давлением на отметке от 0,15 до 0,2 МПа.

Величина давления позволяет разделить системы турбонаддува на:

Использование турбокомпрессора для ДВС улучшает наполнение цилиндров двигателя воздухом. Автоматически происходит повышение эффективности сгорания порции впрыскиваемого топлива. Турбонаддув позволяет увеличить мощность силового агрегата на 30% и более.

Негативными последствиями в результате использования турбонаддува, особенно с высокими показателями давления нагнетаемого воздуха, является увеличение общей температуры в камере сгорания в результате интенсивного горения топлива, а также значительно возрастающие механические нагрузки на детали кривошипно-шатунного механизма (КШМ) и газораспределительного механизма (ГРМ) по сравнению с атмосферными силовыми установками.

Завоздушивание топливной системы дизеля: признаки неисправности и диагностика. Как самостоятельно найти место подсоса воздуха, способы решения проблемы.

Конструкция дизельного топливного насоса высокого давления, потенциальные неисправности, схема и принцип работы на примере устройства системы топливоподачи.

Виды дизельных форсунок в разных системах подачи топлива под высоким давлением. Принцип работы, способы управления форсунками, конструктивные особенности.

Распространенные неисправности дизельного двигателя и диагностика агрегатов данного типа. Проверка топливной системы дизельного мотора, полезные советы.

Линейка дизельных двигателей CRDi Hyundai/KIA: сильные и слабые стороны моторов данного типа, особенности эксплуатации, ремонта и обслуживания.

Назначение топливного насоса высокого давления в системе топливного впрыска дизельного двигателя. Виды ТНВД, конструктивные особенности насосов.

Источник

Система питания дизельного двигателя

Система питания современного двигателя внутреннего сгорания — это совокупность электронных и механических узлов, функция которых заключается не только в стабильной подаче топлива к форсункам, но и делать это под давлением. Если топливо нагнетается под определенным давлением, то оно распыляется и не капает в одну точку, поэтому называется дозированный многоточечный впрыск в рабочие камеры сгорания цилиндров.

Особенности дизельного ДВС

По составу дизельное топливо сильно отличается от всех марок бензина. В диз топливе содержится керосин и газойлевые соляровые фракции. При получении солярки, из нефти сначала отделяют бензин.

Качество бензина зависит от октанового числа, а солярка зависит от значения цетаного числа. На автозаправочных станция сегодня продают дизельное топливо в ценатом от 45 до 50. Для новых дизельных двигателей требуется солярка с высоким цетаном.

Краткий рабочий цикл топливной системы дизельного агрегата:

Кто не знает, основное отличие дизельного двигателя от бензинового не только в топливе, но в система поджига топлива. Если бензин поджигается за счет образования искры свечи, то солярка поджигается от сильного сжатия и высокой температуры.

Классификация дизельного топлива по температуре застывания:

Так же, эти сорта солярки немного отличаются по цвету. Опытные шофера определяют по цвету. Вязкость и плотность дизель топлива намного больше, чем у бензина. Также, солярка обладает смазывающим эффектом, поэтому оно не является обезжиривающей жидкостью, как бензин.

Работа системы питания дизельного ДВС

Функции системы питания дизеля следующие:

Устройство системы питания дизеля

Из чего состоит топливная дизельная система:

Эти элементы есть во всех модификациях дизельных агрегатов. Некоторые моторы оснащаются доп элементами: электрический насос, фильтры сажевые, глушители и т.д.

Система питания дизельного двигателя состоит из двух основных частей:

Устройство для подачи топлива может быть в едином корпусе, а может быть раздельным. Современное устройство выполнено в раздельном типе, то есть насос ТНВД и форсунки расположены в разных корпусах. Солярка нагнетается по магистралям низкого, затем высокого давления. Все, что до ТНВД, это трубопроводы низкого давления. После ТНВД начинается сжатие топлива.

Система питания дизельного ДВС оснащается двумя насосами:

Насос для подкачки начинает качать топливо из бака, прогоняет его через фильтры грубой и тонкой очистки и поставляет его в топливный насос высокого давления.

Насос ТНВД подает топливо под давлением в инжекторные форсунки в порядке, характерном для данного дизельного мотора. В устройстве ТНВД есть много одинаковых секций.

Нераздельная система подачи топлива

Система питания дизельного двигателя нераздельного типа, то есть ТНВД и форсунки расположены в одном корпусе, устанавливается в двухтактные дизельные моторы. Устройство, в котором есть и насос ТНВД и форсунка называется насос-форсункой.

Такие двигатели с нераздельной подачей топлива не распространились массово. Они часто ломаются. Хотя конструкция и проще, отсутствует магистраль высокого давления. Моторы работают с высоким уровнем шума.

Раздельная система подачи топлива

В таких двигателях форсунки устанавливают в головке блока цилиндров. Форсунки должны качественно распылять топливо по рабочим камерам сгорания цилиндров, поэтому частой проблемой плохой работы дизеля является засорение форсунок.

Насос подкачки топлива нагнетает много жидкости в ТНВД, насос высокого давления берет нужный ему объем, а остальное оттекает по дренажным линиям обратно в топливный бак.

Классификация дизельных форсунок по конструкции:

В четырех тактных двигателях устанавливаются форсунки закрытого вида. Внутреннее пространство форсунки сообщается с камерой сгорания только во время подачи топлива.

Главный элемент форсунок — это распылитель. Распылитель может иметь только одно отверстие или несколько. Впрыск топлива через эти отверстия создают факел в цилиндре. От пропускной способности, количества отверстий зависит форма и расположение факела.

Схема питания турбодизеля

Чтобы увеличить мощность дизельного аппарата, устанавливают турбину. Конструкция топливной системы дизельного двигателя не изменяется, если мотор с турбонаддувом. Меняется схема и вариант подачи топлива в мотор от схемы атмосферного двигателя.

Турбированный двигатель получается путем установки турбокомпрессора. В дизельном моторе турбина работает на отработавших газах. Сначала турбокомпрессор сжимает воздух, охлаждает его и подает в рабочую камеру сгорания цилиндров дизельного силового агрегата. Воздух нагнетается под давлением 0,15-0,2 МПа (Мега Паскаль).

Классификация турбонаддува по давлению:

Как в бензиновых, так и дизельных двигатель турбина служит для дополнительной подачи воздуха в камеры сгорания. Чем больше воздуха, тем больше и качественнее догорает топливо. Мощность двигателя с турбиной увеличивается на 30%.

Минус турбированных моторов в том, что такие агрегаты работают в более трудных условиях: повышается температура; детали, особенно цилиндро-поршневой группы (ЦПГ), кривошипно-шатунного механизма (КШМ), газораспределительного механизма (ГРМ) испытывают больше давления и, саму турбину обычно надо менять через 100 000 км пробега.

Видео

В этом видео подробно рассказывается о системе подачи топлива в дизель мотор.

Топливная система дизельных двигателей.

Система питания двигателя КАМАЗ.

Источник

Система питания дизельного двигателя- Устройство и неисправности

Дизельные двигатели имеют большую историю: еще в 1897 Рудольф Дизель, именем которого были названы эти силовые агрегаты, создал первую рабочую модель. За годы развития дизельные моторы претерпели множество изменений, в том числе изменилась и система питания дизельного двигателя: эти модификации сделали «дизели» пригодными не только для тяжелой техники и грузовиков, как предназначалось раньше, но и для массовых легковых автомобилей. Широкое распространение автомобилей с дизельными ДВС обусловлено их экономичностью, высоким КПД и относительной дешевизной солярки.

Функции системы питания дизельного ДВС

Назначение системы питания дизельного двигателя – подать горючее к форсункам и далее в цилиндры под высоким давлением. За это отвечает комплекс устройств, обеспечивающих непрерывность, точность и согласованность процесса. Особенности систем питания дизелей:

Особенности дизтоплива и двигателей на нем

Как и бензиновый двигатель, дизель работает на принципе сгорания жидкого топлива в цилиндрах. Но солярка обладает некоторыми специфическими особенностями, из которых происходят и отличия в конструкции дизельных и бензиновых моторов.

С точки зрения состава дизтопливо – смесь газойлевых и керосиновых фракций, получаемая после того, как из сырой нефти отгонят бензин.

Основное свойство дизтоплива – показатель воспламеняемости, который называют цетановым числом (аналогично октановому числу для бензина). Стандартные типы дизтоплив, имеющиеся в продаже на АЗС, имеют это число в пределах от 45 до 50.

Важно: для современных дизельных агрегатов чем выше цетановое число солярки, тем лучше.

Дизтопливо проходит предварительную очистку уже на заводе, а устранением посторонних фракций «на месте» занимается топливный фильтр. Очищенное горючее поступает по магистрали к ТНВД (входящий в состав дизельного мотора топливный насос высокого давления, назначение которого – создать давление на выходе), подающему его в форсунки, которые распыляют топливо в камеру сгорания. Там частицы дизтоплива смешиваются с разогретым от сжатия воздухом, и происходит воспламенение.

Важно: этот принцип отличается от бензиновых двигателей, где топливо воспламеняется от свечей зажигания: системы питания дизельных двигателей предназначена для работы от самовоспламенения топлива под давлением. Но и в дизелях есть свечи: там используются специальные элементы накаливания, обеспечивающие пуск двигателя «на холодную» и поддерживающие нужную температуру – они предварительно подогревают поступающий в цилиндры воздух.

Среди прочих важных особенностей дизтоплива – его повышенная плотность и хорошая смазывающая способность. Другие существенные характеристики:

По последнему параметру принято делить солярку на:

Как устроена система питания

Рассмотрим устройство системы питания дизельного двигателя на примере дизельного двигателя ЗМЗ-5143.10, которым комплектуются автомобили УАЗ.

Схема питания дизельного двигателя:

Эта схема системы питания дизельного двигателя показывает основные конструктивные элементы и направления линий циркуляции солярки.

Схематическое устройство насоса высокого давления:

Основные технические элементы системы питания:

Система питания делится на два больших блока:

Механизм подвода топлива реализуется разными системами, в зависимости от двигателя, но в общем случае сегодня используется аппаратура разделенной компоновки, с отдельно реализованными ТНВД и форсунками.

Работа системы питания дизельного двигателя описывается следующими этапами:

Интересно: в системах неразделенного типа форсунки и насос реализованы одним узлом – насос-форсункой. Такая схема используется в двухтактных моторах на дизтопливе. Широкого распространения эти агрегаты не получили из-за некомфортной для человека вибрации, шумности и недолговечности конструкции.

Форсунки расположены в головке блока цилиндров. Их основная задача – точное распыление топливного факела в пространство камеры сгорания.

Важно: подкачивающий насос подает на ТНВД солярку в избыточном количестве. Избытки горючего и воздух возвращаются обратно в бак по специальным дренажным трубопроводам.

Форсунки дизельного ДВС бывают:

Основная масса двигателей получает закрытые форсунки, у которых сопла в неактивном состоянии закрыты запорной иглой. Таким образом, непосредственное сообщение полости форсунки и камеры сгорания происходит только в момент впрыска или открытия форсунки.

Питание турбодизеля

Выше уже упоминалась возможность оснащения дизельного ДВС системой турбонаддува. Такое решение позволяет значительно повысить мощность любого силового агрегата – и на бензине, и на солярке. При этом нет необходимости в серьезных доработках, таких, например, как расточка цилиндров для увеличения рабочего объема. Система топливоподачи турбированного дизеля практически не меняется, но воздухоподающий тракт подвергается кардинальной переделке.

Наддув осуществляется с помощью одного или нескольких воздушных компрессоров, работающих на энергии выхлопных газов. Компрессор сжимает воздух, который затем поступает в интеркулер (промежуточный блок, охлаждающий сжатую воздушную массу), и затем нагнетается в цилиндры под давлением 0.15… 0.2 Мпа, и выше.

Компрессорные системы принято делить на два вида:

Турбокомпрессор позволяет лучше наполнять цилиндры воздухом, что ведет к повышению эффективности сгорании солярки при ее подаче. Это положительно влияет на мощность двигателя: с турбодизелей снимается на 30% больше лошадиных сил, по сравнению с нетурбированными атмосферными аналогами.

Но есть и некоторые минусы: турбонаддув, особенно развивающий высокие показатели давления, приводит к увеличению температуры в пространстве цилиндра, поскольку топливо горит интенсивнее. Кроме того, увеличиваются механические нагрузки на компоненты двигателя – механизм газораспределения и кривошипно-шатунный блок.

Неисправности топливной системы

Основная причина любых неисправностей системы питания дизельного двигателя – износ конструктивных элементов и узлов. Типичные неисправности, возникающие после определенного пробега двигателя – износ оси рычага регулятора и выход из строя резинового кольца уплотнения в магистрали низкого давления.

Еще одна распространенная проблема – накопление в узлах и магистралях грязи и нагара, от которых следует регулярно избавлять двигатель путем промывки.

Другие типичные неисправности:

Затрудненный пуск двигателя.
Двигатель потерял мощность.
Слишком большой расход солярки
Жирный черный выхлоп из трубы
Выхлоп белого или серого цвета, очень дымный.
Мотор по ощущениям работает слишком «жестко»
Двигатель шумит
Неровная работа на холостую и при езде
Двигатель внезапно глохнет
Двигатель невозможно заглушить

Причина, скорее всего, в неисправном электромагнитном запорном клапане.

Приходится часто менять свечи

Обычно это происходит из-за неисправности форсунок в цилиндрах, соответствующих неисправным свечам.

Большинства неисправностей можно избежать путем своевременного технического обслуживания системы питания дизельного двигателя.

Завоздушивание системы

Выше неоднократно говорилось о попадании воздуха в топливную магистраль. Это крайне опасное для дизельного ДВС явление:

Воздух попадает в систему чаще всего из-за нарушения герметичности одного из элементов аппаратуры топливоподачи. Также возможно возникновение подобной ситуации при опустевшем баке. Если есть проблемы с герметичностью, требуется их устранить, возможно, понадобится также произвести удаление воздуха из системы питания дизельного двигателя.

Прокачку желательно осуществлять вдвоем.

Сначала нужно определить, есть ли в системе воздух: для диагностирования от форсунок отсоединяют топливопроводы высокого давления и отворачивают гайки последних. Затем один из участников проверки крутит стартер, а второй наблюдает за шлангами: если подачи солярки нет, система, скорее всего, нуждается в прокачке.

Следует также продиагностировать все соединения и трубопроводы, заменив негерметичные узлы и укрепив, при необходимости, слабые места.

Для прокачки в корпусе фильтрующего элемента предусмотрен специальный механизм продувания – насос подкачки. Сначала прокачивается фильтр:

Некоторые авто не предусматривают наличия насоса ручной подкачки, тогда вместо него для проведения обслуживания придется крутить коленвал стартером до достижения результата.

Далее делают удаление воздуха из самого ТНВД:

Дальше можно полностью отвинтить болт и покрутить коленчатый вал при помощи стартера. При этом будет видно, как поступает топливо:

Если все в порядке, то болт устанавливается на штатное место и закручивается до конца. После этого отводятся топливопроводы штуцера (9 на рисунке), у 4-цилиндрового ДВС их должно быть 4. Теперь нужно вращать коленвал, из штуцера должна пойти солярка. Шланг ставится на место, операция повторяется с остальными штуцерами.

Источник

Устройство топливной системы дизельного двигателя

Дизельные двигатели изначально имели ярко выраженное «тракторное происхождение», и до сих пор поэтому ассоциируются у многих с шумностью, «львиным рычанием», повышенными показателями вибрации и детонации. Но это явно устаревшее представление. Современные дизели, благодаря применению новых автоматических систем управления и подкорректированным принципам работы топливной системы, в значительной степени избавились от пресловутых дрожи и звука. Сохранив при этом свои лучшие качества – мощную тягу и экономичность. Как эволюционировала, вместе с дизельным мотором, его топливная система, и что она из себя представляет на данный момент, рассмотрим в этой статье.

О конструктивных особенностях дизелей, в сравнении с бензомоторами

И дизель, и бензиновый мотор являются двигателями внутреннего сгорания. В глобальном смысле, по своей конструкции дизель не отличается от бензомотора: и там, и здесь – цилиндры, поршни и шатуны в них. Однако в дизелях степень сжатия гораздо выше (19-24 единицы, а у бензинового – 9-11). Потому и все детали, и клапаны в значительной степени усилены (чтобы противостоять намного более высоким нагрузкам). Потому и вес, и габариты дизельного мотора гораздо более внушительны, чем бензинового.

Главное же различие состоит в способах формирования топливно/воздушной смеси, её воспламенения и сгорания. В бензиновых моторах смесь топлива с воздухом формируется во впускной системе, а воспламеняется она от искры свечи зажигания. В дизельных же моторах горючее и воздух подаются в рабочие полости цилиндров по отдельности. Сначала воздух. Он накаляется до семи-восьми сотен градусов и сжимается. Когда затем в камеру сгорания под большим давлением впрыскивается топливо, то оно самовоспламеняется, практически мгновенно.

Таким образом, искры никакой не требуется. А свечи накаливания, которые установлены в цилиндрической головке представляют собой нагревательные элементы, типа паяльника, и предназначены они для быстрого обогрева воздуха в камере сгорания, покуда мотор ещё не прогрелся. Это называется системой предпускового подогрева.

Когда включается зажигание, свечи накаливания за несколько мгновений разогреваются до 800-900 градусов, прогревая воздух и обеспечивая процесс самовоспламенения. Сигналы о работе данной системы подаёт водителю контрольная лампа. Электропитание снимается со свечей в автоматическом режиме, спустя 15-20 секунд после запуска непрогретого двигателя, когда его устойчивая и стабильная работа уже вполне обеспечена. Решающая же роль в обеспечении подобных показателей работы мотора принадлежит его топливной системе, об устройстве которой и пойдёт речь.

Принцип и общая схема работы топливной системы

Последовательность работы топливной системы дизельного двигателя следующая. Солярка закачивается из топливного бака при помощи топливоподкачивающего насоса (шестерёнчатого, либо помпового типа), а после фильтрации она подаётся топливным насосом высокого давления (ТНВД) на форсунки. Топливо после закачки из бака проходит сначала через фильтр грубой очистки, избавляясь от крупных включений. Далее, уже непосредственно перед топливным насосом высокого давления – сквозь фильтр тонкой очистки. В связке с ТНВД работают форсунки, через которые солярка в распылённом состоянии и впрыскивается в цилиндры.

Схему топливной системы дизельного двигателя двигателя можно не условно, а вполне чётко разделить на два отсека: высокого давления и низкого. На участке низкого давления осуществляется предварительная подготовка, фильтрация топливной смеси, перед его отправкой в отдел высокого давления. Отсек высокого давления, в свою очередь, дорабатывает смесь до конца и переводит её в рабочую камеру.

Основная функция топливной системы, описание её работы

Предназначение топливной системы дизельного двигателя состоит в том, чтобы подавать в цилиндры чётко отмеренный объём дизтоплива, в конкретный момент времени и под определённым давлением. Поэтому, из-за необходимости обеспечения постоянно высокого давления, а также за счёт высоких требований к точности работы, топливная система дизельного двигателя будет посложнее в конструкции, чем у бензинового, и достаточно дорого стоит.

Теперь попробуем представить себе бесперебойную работу топливной системы в поэтапном режиме, а для этого разберём по порядку отдельные её составные части. Итак, топливный бак служит для размещения солярки и обеспечения бесперебойной её подачи в систему. Эту функцию выполняют трубопроводы. Вначале топливоподкачивающий насос высасывает из бака горючее и через фильтры подаёт его в распределительную магистраль низкого давления. При этом в системе поддерживается стабильное давление в три атмосферы. Топливо дважды проходит фильтрацию, проходя через фильтры грубой и тонкой очистки.

В задачу топливных фильтров входит контроль за чистотой горючего и избавлением его от возможных посторонних примесей – от частичек грязи, воды, песчинок. Прошли те времена, когда дизели были весьма непритязательными к качеству топлива. Современные дизельные моторы требуют очень чистой солярки для сохранения достойных показателей своей работы. Чистота горючего сейчас – одно из основных и непременных условий эффективной работы двигателя. Топливо подаётся только в том случае, если в системе нет воздуха.

После фильтрации солярка попадает в магистраль высокого давления. Эта часть топливной системы обеспечивает подачу и впрыскивание необходимого количества топлива в цилиндры двигателя в определённые моменты. Топливный насос высокого давления, в соответствии с порядком работы цилиндров, по топливопроводам высокого давления подаёт солярку к форсункам.

Форсунки, размещённые в головках цилиндров, впрыскивают и распыляют горючее в камеры сгорания двигателя. Так как топливоподкачиваюший насос постоянно подаёт топливному насосу высокого давления топлива «с запасом», то есть несколько больше, чем нужно, то его избыток, а с ним – и попавший в систему воздух, по специальным дренажным трубопроводам, отводится обратно в бак.

Для обеспечения синхронного впрыска горючего устроена специальная топливная рамка, к которой и подсоединяются форсунки. Они своими головками находятся во впускной трубе и распыляют топливо, сразу же в момент его подачи.

Да, нажимая на педаль, водитель или механизатор уже не увеличивает этим непосредственную подачу топлива, как это было в карбюраторных движках прошлых лет. А только изменяет тем самым программы работы регуляторов, которые уже сами варьируют объём единовременной подачи горючего, по строго определённым зависимостям от числа оборотов, давления наддува, от положения рычага регулятора и т.п.

Главные составные части топливной системы дизельного двигателя

Итак, помимо топливного бака и магистральных топливопроводов, с которыми всё более или менее ясно, основными составными частями топливной системы дизельного мотора являются: топливоподкачивающий насос, фильтры грубой и тонкой очистки горючего, топливный насос высокого давления (ТНВД) и форсунки.

Топливоподкачивающий насос

Устройство подкачивающего насоса дизельного топлива довольно несложное. Оно представляет собою две находящиеся в постоянном зацеплении шестерни. Когда происходит процесс вращения, зубья этих шестерней выполняют функцию лопастей, создавая и поддерживая ток горючего по направлению к ТНВД. Главным же действующим элементом подкачивающего насоса, который и непосредственно нагнетает топливо, является поршень. Как уже было отмечено, производительность топливоподкачивающего насоса устроена превышающей производительность насоса высокого давления, поэтому и оборудованы специальные топливопроводы для слива излишков обратно в топливный бак.

Топливный насос высокого давления

ТНВД предназначается для подачи топлива к форсункам под давлением, в соответствии со строго определенной программой, в зависимости от заданных режимов работы двигателя и от управляющих действий водителя. По своей сути, современный всережимный ТНВД совмещает в себе функции сложной системы автоматического управления работой двигателя и, в то же время, главного исполнительного механизма, реагирующего на команды шофера.

Далее: по всей длине насоса, во внутренней его полости, расположен вращающийся вал, снабжённый специальными кулачками. Этот вал ТНВД получает энергию вращения от распределительного вала двигателя. Его кулачки при движении воздействуют на толкатели, которые, в свою очередь, и стимулируют нагнетающую работу поршня-плунжера. При своём продвижении вверх этот плунжер создаёт высокое давление топлива внутри цилиндра. Сила этого давления и выталкивает горючее, которое направляется по топливной магистрали к форсункам.

Внутри корпуса, или гильзы, топливного насоса высокого давления расположен плунжер, иначе – специальный поршень, обладающий диаметром, значительно меньшим, чем его длина. Это называется плунжерной парой. Её детали притёрты друг к другу таким образом, что зазор не превышает 4-х мкм.

Поскольку работа дизеля в разных режимах и на разных оборотах требует, соответственно, и разного количества горючего, устройство плунжера было немного изменено: по его поверхности «пустили» специальную спиральную выточку, позволяющую менять величину активного хода при помощи механизма поворота плунжеров.

Это сделано было для того, чтобы плунжер мог не только нагнетать топливо под давлением по направлению к форсункам, но и регулировать количество, объём этой подачи. Для этого служит подвижная часть плунжера, которая, в зависимости от изменения параметров, может открывать или закрывать канавки внутри него. Данная подвижная часть соединена с педалью «газа» в кабине механизатора.

В зависимости от того, каков угол поворота плунжера, устанавливается и соответствующая степень открытия каналов прохождения топлива, и его непосредственное количество, подаваемое на форсунки.

Форсунки

Другой важнейший элемент топливной системы дизельного двигателя – это форсунки, на каждом из его цилиндров. Они, совместно с ТНВД, обеспечивают подачу строго дозированного количества топлива в камеры сгорания. Регулировки давления открытия форсунки формируют рабочее давление в топливной системе, а типы распылителей определяют форму факела топлива, которая имеет важное значение для активизации процессов самовоспламенения и сгорания. В современных дизельных моторах обычно применяются форсунки двух типов: со шрифтовым, или с многодырчатым распределителем.

Форсункам на двигателе приходится работать в очень тяжёлых условиях: игла распылителя совершает возвратно/поступательные движения с частотою в половину меньшей, чем обороты двигателя, и при этом распылитель всё время непосредственно контактирует с камерой сгорания. Поэтому распылитель форсунки изготавливается из специальных, высоко-жаропрочных сплавов, делается с особой точностью и является прецизионным элементом.

Распределитель форсунок выполняет функцию равномерного поступления топлива в камеры сгорания и наиболее эффективное его воспламенение. Чем более мелко распыляется топливная смесь, тем устойчивее, в целом, получается работа силового агрегата. Не менее важный фактор – это равномерность распыления горючего, во всех возможных направлениях. Современные форсунки производятся с многочисленными мельчайшими отверстиями, как раз для того, чтобы распыление топливной смеси происходило во всех направлениях, и в равномерном режиме.

Кроме того, работа форсунок поддерживает следующие процессы, с которыми напрямую связана эффективная работа двигателя:

Форсунки бывают с механическим, либо с электромагнитным управлением. В обычных форсунках открытие отверстия распылителя связано с тем давлением, которое имеется на тот момент в топливной магистрали. Отверстие форсунки перекрывается иглой, соединённой со специальным поршнем вверху форсунки. Пока давления нет, игла перекрывает выход топлива через отверстие распылителя. Когда происходит поступление топлива под давлением, поршень перемещается вверх и тянет за собою иглу. Отверстие раскрывается, и распыление начинается.

На эти электромагнитные элементы форсунок поступают сигналы от электронного бока управления (ЭБУ), который, в соответствии с информацией от целого ряда датчиков, подаёт ту или иную команду на установку нужной степени распыления.

Несколько слов о системе «КоммонРэйл»

Говоря о топливной системе современных дизельных двигателей, нельзя не упомянуть такую её модификацию, как «Аккумуляторная топливная система CommonRail» («Общая рамка», или «Общая магистраль» в переводе с английского). Она проявляет очень хорошие показатели экономичности и эффективности, и вполне заслуженно завоёвывает всё большую популярность. В первую очередь – на дизельных двигателях коммерческого автотранспорта, разумеется.

В ней также используется ТНВД, подающий горючее в напорную магистраль, которая играет роль аккумулятора давления. Электронный блок управления регулирует производительность насоса, для поддержания необходимого давления в магистрали по мере расхода топлива.

В «КоммонРэйл» управляемые электроникой электрогидравлические форсунки с электромагнитным или пьезоэлектрическим приводом управляющих клапанов впрыскивают выверенные дозы дизельного топлива под высоким давлением в рабочие полости цилиндров.

Компьютерная система управления подачей горючего позволяет впрыскивать его в камеры сгорания цилиндров максимально точно дозированными дозами. Сначала впрыскивается микроскопическая, всего лишь в районе миллиграмма, порция, которая своим сгоранием накаляет температуру в камере, а за ней следует основной «заряд». Как результат – дизельные двигатели, оснащённые системой «КоммонРэйл», показывают лучшую экономичность (до 20 процентов). Доля новых дизельных двигателей, оснащённых системой «CommonRail», год от года неуклонно растёт.

Заключение

В целом, именно усовершенствованиям, которым подверглась топливная система дизельных двигателей в наше время, значительно укрепили позиции дизельных двигателей на рынке и в экономике. Дизели стали более экономичными и менее шумными, чем были прежде, а потому завоёвывают всё больше сегментов своего непосредственного применения на рынке.

Источник

Видео

Система питания дизельного двигателя.

Принцип работы дизельного двигателя

Устройство и принцип работы дизельного двигателя Основные неисправности

1. (Камаз 740) Система питания дизеля

Система питания дизельного двигателя

Обслуживание и ремонт системы питания дизельных двигателей

Система питания дизельного двигателя

Что такое Common Rail? Принцип работы, строение и особенности

Топливная система дизельного двигателя

СИСТЕМА ПИТАНИЯ ДВИГАТЕЛЯ

Системы питания дизельных двигателей производства АЗПИ – Рейс.РФ

Российский производитель систем питания
дизельных двигателей расширяет производство
новых моделей топливной аппаратуры, совершает
экспансию на зарубежные рынки и плодотворно
сотрудничает с западными лидерами отрасли. Знакомим с Алтайским заводом прецизионных изделий

Топливная система, собранная из качественных комплектующих, гарантирует безотказную, стабильную и экономичную работу дизельного двигателя на протяжении длительного периода времени. Однако из-за применения топлива несоответствующего качества, пренебрежения сроками выполнения регламентного технического обслуживания и использования, в первую очередь, топливных фильтров низкого качества, прецизионные изделия нередко выходят из строя раньше расчетного срока эксплуатации. В итоге перевозчики и эксплуатирующие организации вынуждены заниматься ремонтом узлов и агрегатов системы питания, решать вопрос выбора запасных частей. От их качества будет зависеть ресурс отремонтированных узлов и агрегатов, а также надежность системы питания в целом. Чтобы сделать грамотный выбор компонентов, важно не только хорошо ориентироваться в многообразии игроков рынка запасных частей, но и владеть информацией о качестве предлагаемой ими продукции. А это непросто. Ведь помимо производителей рынок насыщен фирмами-упаковщиками. Какого качества товар они предлагают – ​сказать сложно. Именно по этой причине выбор стоит делать в пользу тех, кто производит компоненты систем питания. Одним из таких игроков российского рынка запасных частей в сегменте топливных систем является Алтайский завод прецизионных изделий (АЗПИ). Крупнейшие мировые производители автокомпонентов размещают свои заказы на производственных площадках АЗПИ, а его продукция поставляется на сборочные конвейеры российских производителей дизельных двигателей.
Расположенный в городе Барнаул завод производит широкий спектр компонентов топливных систем: электрогидроуправляемые инжекторы, механические форсунки, распылители, управляющие клапаны, иные детали, из которых формируются ремкомплекты. Особое место в продуктовой линейке предприятия занимают различные модели электронноуправляемой системы питания Common Rail, которая предназначена для установки на современные двигатели российского производства. В частности, предприятие выпускает полнокомплектные системы для автомобилей КАМАЗ 6520. Эти «V» образные восьмицилиндровые силовые агрегаты монтируются на широкий спектр выпускаемой автозаводом техники. Отметим, что на данный момент полнокомплектные системы Altay Common Rail экологического класса Евро‑4 и Евро-5 поставляются исключительно на сборочный конвейер «КАМАЗ». Параллельно с началом конвейерных поставок положено начало по обеспечению сети авторизованных сервисных центров необходимыми запасными частями, оснасткой и методикой обслуживания.
На АЗПИ понимают, что для развития предприятия нужно делать ставку на современные системы питания, которые получили наибольшее распространение у ведущих авто и двигателестроителей. Помимо выпуска Common Rail для отечественных моторных заводов предприятие участвует в разработке и готовится к производству отдельных компонентов (насос, аккумулятор-рампа, форсунки, распылители) систем питания импортных силовых агрегатов, которые собираются на совместных предприятиях в РФ.

Выход на зарубежные рынки

Оснащенное современным технологическим и производственным оборудованием предприятие объединило под своим крылом опытных специалистов, обеспечило высокое качество выпускаемой продукции и вышло на мировые рынки. Причем речь идет не о продаже запасных частей в страны, где уже многие годы продаются и эксплуатируются российские грузовики, а о поставках деталей топливных систем для ведущих западных производителей дизельной топливной аппаратуры и торговых компаний, которые успешно работают на рынке запасных частей.
Показательно сотрудничество Алтайского завода с американской компанией Ambac Int, которая практически четверть века приобретает у АЗПИ широкий спектр продукции, в частности, форсунки и распылители для топливной аппаратуры дизельных двигателей. На сегодняшний день номенклатура отгружаемых заокеанскому партнеру деталей превышает 50 наименований.
Существенно большие объемы продукции уходят в Германию по линии совместной работы с фирмой Bosch, которая размещает свои заказы на АЗПИ. Готовая продукция с фирменной маркировкой и в брендовой упаковке с обозначением «Made in Russia» отправляется на центральный склад в г. Карлсруэ, а далее распространяется через дилерскую сеть по всему миру. Сотрудничество со всемирно признанным производителем систем питания для дизельных двигателей различной мощности и назначения открывает для российского предприятия далеко идущие перспективы в развитии. В 2016 году компания R. Bosch GmbH присвоила статус привилегированного поставщика в группе «Подразделение автомобильных запчастей. Дизельные запчасти»
Отметим, что отечественный завод производит большую часть технологического оборудования и оснастки своими силами. Для этого на предприятии есть отдельный конструкторский отдел и достаточная производственная мощность. Инженерные кадры для решения данных задач также имеются. В Барнауле, где расположен завод, работают учебные заведения, которые готовят инженеров и средний технический персонал. Выпускники вузов проходят дополнительное обучение на предприятии. Опыт и знания передаются от опытных наставников к ученикам.

Курсом на импортозамещение

Одним из самых интересных и, пожалуй, перспективных направлений развития предприятия является программа импортозамещение, которая на предприятии стартовала задолго до реализации на гос. уровне. В условиях высокой стоимости валюты и цен на зарубежные автокомпоненты производить запасные части к импортной технике в рублевой зоне стало делом выгодным. На сегодняшний день завод освоил более двухсот позиций по компонентам топливной аппаратуры, применяемой на различных моделях импортных дизельных двигателей дорожных машин и специальной техники. Так, благодаря этому владельцы популярных в России европейских грузовиков и автобусов имеют возможность практически на треть снизить затраты на приобретение деталей топливной системы. Отрадно, что останавливаться на достигнутом заводчане не намерены. Уже утверждены планы по расширению номенклатуры производимых компонентов по линии импортозамещения. В частности, речь идет о выпуске управляющих клапанов для определенных моделей форсунок и распылителей к ним.

Текущий ремонт системы питания дизельного двигателя

Специфичность ремонта топливной аппаратуры дизельных двигателей объясняется наличием в ней прецизионных (высокоточных) пар. Детали каждой из этих пар не являются взаимозаменяемыми и поставляются заводами попарно. Поэтому при износе деталей, входящих в прецизионную пару, их ремонтируют или заменяют комплектами.

Необходимость в разборке и ремонте топливного насоса выявляют во время его предварительного испытания. Основными деталями топливного насоса, состояние которых влияет на его работоспособность, являются детали прецизионных пар; плунжер-гильза, нагнетательный клапан—гнездо (седло) клапана. Плунжерная пара изнашивается под воздействием твердых абразивных частиц, находящихся в топливе, вследствие плохой его гильзы имеет местный характер.

Наибольший износ плунжера в виде матовых пятен наблюдается на участке поверхности у верхней кромки против впускного отверстия и у косой кромки против отсечного отверстия. На внутренней поверхности гильзы наибольшему износу подвержены места вокруг впускного и отсечного отверстий. При зазоре между плунжером и втулкой свыше 10 мкм вместо 1,5…2,5 мкм у новой пары необходима их замена.

Измерить столь малые местные износы или зазоры трудно, поэтому определение технического состояния плунжерной пары проводят косвенным путем следующим образом: вставив плунжер в гильзу и закрыв в ней пальцами отверстие, постепенно выводят плунжер из гильзы, создавая в ее внутренней поверхности разрежение, если после этого плунжер отпустить, то он должен за счет разности давлений возвратиться в исходное положение без всяких признаков заедания. Состояние плунжерной пары проверяется специальным прибором по скорости просачивания топлива. Установленную в прибор гильзу заполняют до краев смесью, состоящей из двух частей зимнего дизельного масла и одной части дизельного топлива. Плунжер, вставленный в гильзу, нагружают специальным рычагом. По мере просачивания смеси через зазор между плунжером и гильзой плунжер будет опускаться, а когда косая кромка сравняется с отсечным отверстием, он резко «провалится». Время в секундах от начала погружения до его проваливания является характеристикой плотности плунжерной пары. Пары, имеющие плотность менее 3 с, выбраковываются. По развиваемому давлению, определяемому максиметром или манометром на собранном насосе, судят о техническом состоянии плунжерной пары.

Изношенные плунжеры и гильзы восстанавливают притиркой и хромированием. При.этом вначале их притирают с помощью чугунных разрезных притиров до выведения следов износа. Затем плунжер хромируют и притирают по гильзе до получения нормального сопряжения прецизионной пары. При притирке плунжеру, установленному в патроне небольшого станка или закрепленному особым захватом на валу электромоторка, сообщают вращательное движение. Гильзу удерживают в руках и равномерно перемещают вдоль плунжера, на который нанесен слой пасты. Применяя различные номера пасты ГОИ (вначале грубые, затем тонкие), доводят рабочие поверхности до такого состояния, при котором становятся незаметными риски и круговые линии.

Восстановление изношенных плунжеров и гильз можно производить и без хромирования. Для этого изношенные гильзы и плунжеры раскомплектовывают и подбирают в пары заново так, чтобы диаметр плунжера был несколько больше диаметра гильзы. Затем с помощью чугунного разрезного притира доводят плунжер до диаметра, примерно соответствующего внутреннему диаметру гильзы, с которой он должен быть скомплектован. Окончательную притирку плунжера производят по гильзе. Несмотря на то что при этом способе восстановления часть деталей в пары скомплектовать не удается, этот метод ремонта прецизионных пар может быть рекомендован для тех ремонтных мастерских, которые не располагают установками для хромирования.

Нагнетательный клапан и его седло также изнашиваются под действием твердых частиц, находящихся в топливе. В результате износа запорных конических фасок клапана и седла нарушается герметичность пары. Износ поверхности отверстия в седле клапана приводит к подтеканию и закоксовыванию форсунки, увеличению количества топлива, подаваемого насосным элементом.

Притирка обратного клапана выполняется так же, как и клапанов двигателя. Ее производят вручную при помощи оправок, показанных на рис. 1. Пасту наносят в небольших количествах только на залориую фаску, чтобы исключить возможность ее попадания на разгрузочный поясок клапана. Притертый клапан должен садиться на свое гнездо под действием собственной массы из любого положения. Плотность посадки клапана проверяют опрессовкой сжатым воздухом или дизельным топливом на специальном приспособлении.

Отремонтированный и собранный топливный насос обкатывают, испытывают и регулируют на испытательных стендах СДТА-1 и СДТА-2. Во время обкатки проверяют давление топлива, отсутствие ненормальных шумов, стуков, заеданий, подтекания топлива, масла и при необходимости устраняют замеченные неисправности. Испытывают и регулируют топливный насос в определенной последовательности. Вначале регулируют ход рейки, проверяют и налаживают регулятор топливного насоса. Затем проверяют и регулируют количество топлива, подаваемого насосными элементами, угол начала впрыска топлива. После этого рекомендуется снова проверить количество топлива, подаваемого насосными элементами.

Нарушения в работе форсунок чаще всего являются следствием износов и других неисправностей деталей распылителей. Износ деталей вызывается твердыми частицами, находящимися в топливе, протекающем через форсунку.

К характерным дефектам прецизионной пары корпус распылителя — игла распылителя (рис. 2) относятся закоксовывание ее деталей, увеличение зазора между иглой и корпусом, износ торца иглы и донышка распылителя у отверстия.

Нагар и грязь с деталей распылителя после их размягчения бензином очищают деревянными или латунными «чистиками». Категорически запрещается для очистки пользоваться стальными инструментами (ножами, шабером, проволокой и т.д.), а также наждачной бумагой.

Восстановление необходимого зазора между иглой распылителя и его корпусом производят притиркой иглы до выведения следов износа с последующим хромированием и притиркой иглы к корпусу распылителя. Кроме того, восстановление может производиться перестановкой иглы с одного распылителя в другой. При этом к распылителю подбирают иглу с несколько увеличенным диаметром так, чтобы она перемещалась в корпусе с трудом.

Подобранные таким образом детали притирают друг к другу с помощью паст ГОИ, наносимых на притираемые поверхности. Нормально притертые детали, смазанные профильтрованным дизельным топливом, должны обеспечивать такую посадку, при которой под действием собственной массы игла плавно опускается в отверстие корпуса.

Плотность посадки торца распылителя на его донышко восстанавливают раздельной притиркой этих деталей к чугунным притирочным плитам.

Для притирки из корпуса распылителя вынимают два установочных штифта, после чего его устанавливают в специальную державку, изготовленную из листовой латуни (рис. 3). Державка состоит из корпуса и пластинчатой пружины, обеспечивающей давление на вставленную в корпус иглу с небольшим усилием.

Притирка производится вручную. Для этого на притирочную плиту наносят пасту ГОИ, растворенную керосином, после чего державке с деталями сообщают круговые движения. Притирка донышка производится в том же приспособлении. Для этого перед притиркой донышко поворачивают рабочей поверхностью к плите и устанавливают на штифты корпуса распылителя.

После притирки восстановленные детали тщательно моют в бензине и проверяют на отсутствие рисок и перекосов рабочих поверхностей. Наличие рисок на притираемых поверхностях указывает на необходимость продолжения притирки с обязательным переходом на более мелкие номера пасты. Окончательная проверка качества восстановления прецизионных деталей распылителя производится испытанием его в собранной форсунке на герметичность на приборах К.П-160, KJI-1609A (КИ-562) или приборе КИ-3333 (рис. 4). Собранную форсунку устанавливают в прибор и плотно зажимают в нем. Прокачивая через форсунку ручным насосом прибора дизельное топливо или его смесь с маслом, создают определенное давление и затем измеряют время падения давления.

На специализированных ремонтных предприятиях испытание и регулировку форсунок проводят на стендах КИ-1404 с механическим приводом.

После испытания у форсунок, показавших удовлетворительную герметичность, регулируют давление впрыска. Для этого, изменяя затяжку пружины форсунки с помощью винта, регулируют давление впрыска по манометру прибора или стенда в соответствии с техническими условиями.

Одновременно проверяют качество распыла при нормальном давлении впрыска, а также при давлениях, на 2…2,5 МПа выше и ниже нормального. Скорость подкачивания топлива равна 60…80 впрыскам в минуту. Топливо, выходящее из распылителя, должно быть в туманообразном состоянии, без заметных на глаз капель, струек и подтекания распылителя. Конус распыла должен быть ровным, без смещений.

У многодырчатых форсунок проверяют наличие и равномерность впрыска топлива через все отверстия, проводя впрыск на темный металлический экран.

Отрегулированные форсунки соединяют с топливным насосом и обкатывают в течение 10 мин при полной подаче топлива и номинальной частоте вращения кулачкового валика. Обкатанные форсунки вновь устанавливают на тот же прибор или стенд для испытания и проверяют их на герметичность и качество распыла.

Распылители форсунок одной марки могут отличаться друг от друга своей пропускной способностью. Поэтому топливный насос должен устанавливаться на двигатель с теми же форсунками, с которыми проводилась его регулировка на стенде, и в том же порядке по насосным элементам.

Основными дефектами топливо-провода высокого давления являются износ или смятие конусных наконечников, сужение топливопроводного канала вследствие отложений на внутренних стенках или смятия трубки. Отложения внутри трубок удаляют промывкой и продувкой сжатым воздухом. Неисправный конусный наконечник отрезают, и высаживают новый наконечник под прессом с помощью специального приспособления. Отсутствие сужения канала трубки можно проверить проволокой диаметром 1,3 мм, которая должна свободно проходить через канал трубки, или шариком диаметром 1,3 мм, который прогоняют через трубку сжатым воздухом. Трубки, имеющие трещины, выбраковывают и заменяют новыми.

Система питания дизельного двигателя служит для раздельной подачи в требуемые моменты времени и в требуемом количестве воздуха и топлива в цилиндры двигателя, где и происходит смесеобразование, а также для удаления отработавших газов и глушения их на выпуске. Основными элементами ее являются: топливный бак, фильтры грубой и тонкой очистки топлива, воздушный фильтр, подкачивающий насос, топливный насос высокого давления (ТНВД) с регулятором частоты вращения и муфтой опережения впрыска топлива, форсунки, трубопроводы низкого и высокого давления, выпускной тракт. На них приходится около 5…10 % неисправностей автомобилей с дизельными двигателями. Характерными неисправностями являются: нарушение герметичности, загрязнение фильтрующих элементов, разрегулировка и износ плунжерных пар ТНВД, разрегулировка и негерметичность форсунок (табл.2.5)

Таблица 2.5 – Основные неисправности системы питания дизельного двигателя

ПризнакНеисправностьСпособ устранения
1. Затруднен пуск двигателя, неустойчивая работа двигателя.Нарушена герметичность системы питания. Засорение топливных фильтров. Неисправности ТНВД. Нарушение работы форсунок. Неправильно отрегулирована частота вращения холостого хода.Проверить герметичность и устранить неплотности. Промыть или заменить фильтрующие элементы. Проверить и отрегулировать ТНВД. При необходимости заменить изношенные детали. Снять форсунки и проверить на работоспособность. Заменить изношенные элементы или форсунки в целом. Проверить и отрегулировать частоту вращения холостого хода.
2. Неравномерная и «жесткая» работа двигателя. Отработавшие газы – черного цветаНеправильный угол опережения впрыска топлива. Разрегулировка цикловой подачи ТНВДПроверить и отрегулировать угол опережения впрыска топлива. Проверить и отрегулировать цикловую подачу ТНВД
3. Двигатель не развивает мощность, повышенный расход топливаЗагрязнение воздушного фильтра. Разрегулировка цикловой подачи. Износ или загрязнение форсунок. Разрегулировка угла опережения впрыска топлива.Очистить или заменить фильтрующий элемент. Проверить и отрегулировать цикловую подачу ТНВД. Проверить работу форсунок. Очистить форсунки, отрегулировать давление впрыска. При необходимости заменить изношенные элементы или форсунки в целом. Проверить и отрегулировать угол опережения впрыска топлива.
4. Двигатель чрезмерно увеличивает частоту вращенияНарушение работы регулятораПроверить работу и отрегулировать регулятор частоты вращения.

В процессе эксплуатации наиболее интенсивно изнашиваются плунжерные пары ТНВД и форсунки, теряют свою упругость пружины.

При возникновении признаков неисправностей необходимо провести поэлементное диагностирование системы питания. Ее негерметичность проверяется визуально по наличию подтеканий. Далее запускают двигатель, устанавливают малую частоту вращения коленчатого вала и слегка отворачивают пробку фильтра тонкой очистки. Если в системе есть воздух, то из-под пробки будет вытекать пена. После появления струи топлива пробку заворачивают. Герметичность системы можно проверять методом опрессовки. Для этого отсоединяют подводящий трубопровод от топливного бака и подсоединяют к прибору, подающему в него топливо под давлением 300 кПа, а отводящий трубопровод глушат. В негерметичных местах соединений наблюдают подтекание топлива. Герметичность восстанавливают подтяжкой резьбовых соединений, заменой уплотнений и трубопроводов.

Форсунки диагностируют по показателям герметичности, давления впрыска и качества распыливания топлива на приборах типа КИ-3333А, КИ-22203М, КИ-562, ESP-100, М-106 и других.

При проверке герметичности форсунки ее устанавливают на прибор (рис.2.30), заворачивают регулировочный винт и рычагом 6 плунжерного насоса 2 прибора доводят давление до 30 МПа, которое контролируют манометром 1. Наблюдают за снижением давления и замеряют время его уменьшения от 28 до 23 МПа. Для новых форсунок время падения должно быть не менее 15…20 секунд, для подношенных – не менее 5 с.

При регулировке давления начала подъема иглы форсунки отворачивают регулировочный винт пружины, одновременно приводят в действие плунжерный насос 2 прибора и фиксируют давление, при котором осуществляется впрыск по манометру 1.

1 – манометр; 2 – плунжерный насос; 3 – гайка крепления форсунки; 4 – штуцер; 5 – основание; 6 – рычаг насоса; 7 – кран; 8 – запорный вентиль; 9 – топливный бачок

Рисунок 2. 30 – Схема прибора для проверки форсунок

Оно должно быть для легковых автомобилей 11…15 МПа, для грузовых – 16…22 МПа, причем большие значения устанавливаются для двигателей с турбонаддувом. После регулировки необходимо затянуть контргайку регулировочного винта и вновь проверить правильность регулировки на приборе. На некоторых форсунках давление впрыска изменяется с помощью регулировочных шайб, устанавливаемых под пружину распылителя.

При проверке качества распыливания делают несколько впрысков топлива через форсунку. Оно должно впрыскиваться в туманообразном виде, равномерно распределяясь по поперечному сечению конуса струи и по каждому отверстию распылителя. Неравномерное распыливание или подтекание топлива в начале и в конце впрыска не допускается.

Диагностирование топливоподкачивающего насоса осуществляется по его производительности при заданном протидавлении (0,05…0,17 МПа) и развиваемому давлению при закрытом нагнетательном канале.

Диагностирование можно осуществить на стендах типа КИ-921М, КИ5205, «Стар-12», ESP-707 и других, после демонтажа насоса с двигателя. Его закрепляют с помощью винтового зажима 6 (рис.2.34) и подключают к питающей системе стенда (рис.2.31)

Частота вращения привода стенда (в мин -1 ) при испытаниях должна соответствовать

, (2.13)

где wmax – максимальная частота вращения коленчатого вала двигателя.

1 – мерный сосуд; 2 – трехходовой кран; 3 – испытуемый насос

Рисунок 2.31 – Схема соединений топливопроводов при диагностировании подкачивающего насоса на стенде типа КИ-5205

Значение счетчика-автомата стенда 6 (рис.2.32), считающего количество оборотов привода, а, соответственно, и число рабочих ходов подкачивающего насоса (т.к. за один оборот привода осуществляется один рабочий ход насоса) устанавливают равным wс. Включают стенд, устанавливают частоту вращения привода wс, затем одновременно кнопкой 3 на пульте стенда включают счетчик-автомат и поворачивают трехходовой кран в положение «замер». При достижении счетчиком-автоматом положения «0» (контролируется по табло 4) перекрывают поступление топлива в мерный цилиндр. Так как один рабочий ход делается за один оборот привода, а подача топлива осуществляется за n оборотов при частоте вращения wс (в мин -1 ), причем n = wс, то эти рабочие ходы были сделаны за одну минуту. Следовательно, в мерном сосуде будет топливо, поступившее от насоса за одну минуту. Нормативное значение производительности топливоподкачивающих насосов лежит в пределах 2…4 л/мин. При перекрытом нагнетательном трубопроводе и включенном стенде определяют максимально развиваемое давление. Для разных типов насосов оно лежит в пределах 0,1…0,4 МПа.

1 – тумблер «сеть»; 2 – кнопка остановки счетчика-автомата; 3 – кнопка включения счетчика-автомата; 4 – табло измеряемых параметров; 5 – табло электронного тахометра; 6 – устройство задания числа циклов; 7 – кнопка измерения подачи; 8 – кнопка измерения углов впрыска; 9 – кнопка измерения длительности впрыска

Рисунок 2.32 – Схема пульта стенда

Техническое состояние фильтра определяется по снижению производительности насоса при его работе без фильтра и с фильтром. Для этого в напорный трубопровод насоса подключают фильтр (рис.2.33) и снова оценивают его производительность.

Уменьшение производительности определяется:

, (2.14)

где Qн – производительность насоса без фильтра, л/мин;

Qф – производительность насоса с фильтром, л/мин.

Допускается снижение производительности насоса не более 60%. При больших значениях DQ фильтрующий элемент очищают или заменяют.

1 – мерный цилиндр; 2 – трехходовой кран; 3 – насос; 4 – испытуемый фильтр

Рисунок 2.33 – Схема соединений топливопроводов при диагностировании фильтров

При диагностировании ТНВД определяются углы подачи секциями насоса, величина и равномерность подачи отдельными секциями, работоспособность муфты опережения впрыска топлива и работоспособность регулятора ТНВД на начало и полное отключение подачи. Насос проверяют на стенде (рис.2.34) совместно с комплектом исправных и отрегулированных форсунок при температуре топлива в системе стенда 25…30 °С.

1 – корпус; 2 – подставка для ТНВД; 3 – привод насоса;

4 – манометр; 5 – тахометр; 6 – кронштейн для подкачивающего насоса; 7 – поворотная ось держателя мензурок; 8 – датчик моментов впрыска; 9 – держатель форсунки; 10 – включатель стенда; 11 – тумблер включения датчика впрыска; 12 – держатель трубопроводов низкого давления; 13 – мерная мензурка; 14 – стробоскопическое устройство; 15 – распределительный кран; 16 – штуцера для подключения напорных и сливных трубопроводов; 17 – маховичок вариатора; 18 – пульт включения стендового насоса; 19 – пульт включения электродвигателя привода стенда

Рисунок 2.34 – Схема стенда для диагностирования топливной аппаратуры дизельного двигателя

Перед диагностированием насос устанавливают на подставку 2, кулачковый вал ТНВД соединяют с валом привода стенда, подключают питающие и отводящие трубопроводы. Рычаг управления подачи топлива устанавливают и фиксируют в положении максимальной топливоподачи. При определении углов начала подачи к каждой секции присоединяют прозрачные трубопроводы низкого давления, а их вторые концы вставляют в держатели 12. включают привод стенда, чтобы трубопроводы заполнились топливом, и в них не было пузырьков воздуха. Останавливают стенд и медленно, вручную проворачивая привод стенда, наблюдают за началом вытекания топлива из трубопроводов, фиксируя при этом по подвижной шкале стробоскопа 14 углы начала подачи. Для 4-х секционного насоса топливо должно подаваться секциями через 90°, для 6-ти секционного – через 60°, для 8-ми секционного – через 45°. Отклонение интервала между началами подачи секциями насоса относительно первой не должно превышать ± 0,5° при минимальной топливоподаче, а при максимальной – не более 3…5°. В противном случае осуществляют их регулировку (например, для топливной аппаратуры ЯМЗ – болтами толкателя насоса).

При проверке производительности и равномерности подачи секциями ТНВД отсоединяют от насосных секций трубопроводы низкого давления и подключают трубопроводы высокого давления длиной 400 ± 3 мм, а вторые их концы подключают к форсункам, установленным в держателях 9. На счетчике-автомате устанавливают число циклов, равное wс и нажимают кнопку «подача» на пульте стенда. Запускают стенд и устанавливают маховичком вариатора требуемую (wс) частоту вращения. Включают кнопку «пуск» на пульте стенда (рис.2.32), при этом открывается шторка, открывающая подачу топлива в мерные мензурки 13 (рис.2.34). После выполнения требуемого числа циклов (оборотов привода стенда) шторка автоматически перемещается, закрывая подачу топлива от форсунок в мензурки. Величина топливоподачи составляет для различных двигателей 60…122 см 3 .

Неравномерность подачи секциями не должна превышать 2%:

(2.15)

где Vmax – максимальная подача;

Vmin – минимальная подача.

При необходимости осуществляют регулировку (как правило, путем поворота плунжера относительно его оси).

Работу автоматической муфты опережения впрыска топлива проверяют на стенде с помощью стробоскопического устройства. Для этого запускают стенд, включают кнопку «углы» на пульте стенда и по табло 4 (рис.2.32) определяют углы впрыска первой секции на частоте вращения 600 ± 10 мин -1 и wс. Их разность при исправной муфте должна быть в пределах 5…6°.

При проверке регулятора на начало и полное отключение подачи топлива определяют цикловую топливоподачу при частотах вращения примерно wс + 25 мин -1 , wс + 50 мин -1 и wс + 100 мин -1 . При wс + 25 должно произойти некоторое снижение топливоподачи по сравнению с подачей на частоте вращения wс , при wс + 50 — топливоподача должна снизиться на 30…50%, при wс + 100 — подача секциями должна быть полностью прекращена. При необходимости проводят регулировку регулятора.

Указанные диагностические работы выполняются в топливном участке на снятых с автомобиля агрегатах топливной системы. Некоторые из них могут проводиться непосредственно на автомобиле. Проверка угла опережения впрыска проверяется с помощью индикатора момента впрыска (для одноплунжерных насосов легковых автомобилей) или моментоскопа (рис.2.35), устанавливаемого на штуцер первой секции ТНВД вместо трубопровода, идущего к первой форсунке. Он представляет собой небольшой топливопровод 3, заканчивающийся стеклянной трубкой 1 для наблюдения за движением топлива. Медленно проворачивают коленчатый вал двигателя до момента начала движения топлива в стеклянной трубке и определяют угол опережения впрыска (метки углов опережения впрыска нанесены на маховике, а риска или стрелка – на картере сцепления в лючке, который как правило закрывается крышкой). Если он не соответствует рекомендованному значению (15…22°), то осуществляют регулировку. Для этого отпускают болты крепления привода насоса и поворачивают вал насоса по направлению вращения — если необходимо уменьшить угол или против направления вращения – для увеличения угла опережения впрыска. После затяжки болтов проверку повторяют.

1 – стеклянная трубка; 2 – уплотнительная переходная трубка; 3 – топливопровод; 4 – гайка; 5 – ТНВД

Рисунок 2.35 – Схема подключения моментоскопа

Диагностирование топливной аппаратуры непосредственно на автомобиле может осуществляться с помощью мотор-тестеров типа М2-3. Он обеспечивает определение: частоты вращения коленчатого вала; угол опережения подачи топлива (УОПТ), параметров впрыскивания топлива. По характеру получаемых осциллограмм давления дополнительно можно определить: износ нагнетательного клапана и плунжерной пары, поломку пружины толкателя плунжера, техническое состояние распылителя форсунки и др. При испытаниях к первой форсунке подключается датчик давления. Далее запускают двигатель и для измерения угла опережения подачи топлива находят в меню мотор-тестера режим «УОПТ». Одновременно освещают на двигателе метки впрыска лучом стробоскопического устройства и с помощью его потенциометра совмещают подвижную и неподвижную метки. На экране (рис.2.36, а) появится значение УОПТ. Переходя в режим другой команды, получают параметры впрыска топлива: максимальное и остаточное давление (в МПа), а также длительность впрыска в миллисекундах (рис.2.36, б). Двигатель должен работать на холостом ходу.

Рисунок 2.36 – Изображения на экране мотор-тестера при диагностировании топливной аппаратуры

Входя в режим «ВПРЫСК» можно получить на экране мотор-тестера осциллограммы давления впрыска. Сопоставляя их с осциллограммами, полученными при различных неисправностях топливной аппаратуры (рис.2.37), выявляют место и характер неисправностей в испытуемых ТНВД и форсунках. Штриховой линией на приведенных осциллограммах показана диаграмма давления для исправной топливной аппаратуры, сплошной линией — диаграммы давления при наличии различных неисправностей топливной аппаратуры.

Кроме диагностических, по элементам топливной аппаратуры проводятся профилактические и ремонтные работы. При ежедневном обслуживании необходимо, особенно в зимний период эксплуатации, сливать отстой из топливных фильтров и бака. Если смазка ТНВД осуществляется отдельно (не связана с системой смазки двигателя), то проверяется уровень масла в картерах ТНВД и регулятора частоты вращения коленчатого вала. При ТО-1 внешним осмотром проверяется состояние приборов питания, их крепление и герметичность соединений; проверяется действие привода ТНВД. При ТО-2 дополнительно проверяется исправность механизма управления топливоподачей и останова двигателя, оценивается надежность пуска двигателя и частота вращения коленчатого вала в режиме холостого хода. При необходимости ее регулируют. Определяют дымность отработавших газов. Через одно ТО-2 снимают и проверяют форсунки, определяют и регулируют угол опережения впрыска топлива. При сезонном обслуживании снимают с двигателя ТНВД, промывают его и подвергают поэлементному диагностированию с последующими регулировками.

Если при проверках выявлены неисправности элементов топливной аппаратуры, которые невозможно устранить регулировочными работами, по ним проводится ремонт. Первоначально они подвергаются наружной очистке и мойке в керосине. После разборки детали промывают в авиационном бензине или растворителе (например, в уайт-спирите), а затем в очищенном дизельном топливе. Распылители форсунок очищают от нагара деревянным бруском, пропитанным

а) б) в) г) д)

а – при износе нагнетательного клапана; б – при износе плунжерной пары; в – при суммарном износе нагнетательного клапана и плунжерной пары; г – при закоксовании сопловых отверстий распылителя форсунки; д – при уменьшении давления начала подъема иглы распылителя форсунки

Рисунок 2. 37 – Отображаемые мотор-тестером осциллограммы при наличии неисправностей топливной аппаратуры

моторным маслом. Сопловые отверстия прочищают стальной или медной калиброванной проволокой. Если обнаружено подтекание топлива при распыливании или заедание иглы при перемещении ее в корпусе распылителя, то узел заменяют.

Элементы подкачивающего насоса и ТНВД заменяют, если обнаружены значительные износы на их рабочих поверхностях.

Пружины проверяют на неперпендикулярность и усталостный износ. Неперпендикулярность определяется после установки пружины на поверочную плиту. При отклонении боковой поверхности пружины более чем на 2 мм, пружина заменяется (плунжерные пружины заменяются сразу комплектом). Усталостный износ определяется штангенциркулем по длине пружины в свободном состоянии. Если она не соответствует нормативной, пружина также заменяется новой.

Топливопроводы высокого давления выбраковываются, если имеются значительные вмятины, сквозные повреждения и радиусы изгибов менее 30 мм.

При повреждении топливных баков, их подвергают наружной очистке, промывают моющим раствором и горячей водой внутреннюю полость для удаления паров дизтоплива. Небольшие трещины устраняют пайкой оловянисто-свинцовым припоем. На большие трещины накладывают заплаты с припайкой их краев либо газовой сваркой.

Дата добавления: 2015-04-07 ; просмотров: 11649 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И ТЕКУЩИЙ РЕМОНТ СИСТЕМЫ ПИТАНИЯ ДИЗЕЛЬНЫХ ДВИГАТЕЛЕЙ

На систему питания дизельных двигателей приходится до 9 % всех неисправностей автомобилей.

Характерными неисправностями являются:

нарушение герметичности и течь топлива, особенно топливопроводов высокого давления;

загрязнение воздушных и особенно топливных фильтров;

попадание масла в турбонагнетатель;

износ и разрегулировка плунжерных пар насоса высокого давления;

потеря герметичности форсунками и снижение давления начала подъема иглы;

износ выходных отверстий форсунок, их закоксовывание и засорение.

Эти неисправности приводят к изменению момента начала подачи топлива, неравномерности работы топливного насоса по углу поворота коленчатого вала и количеству подаваемого топлива, ухудшению качества распыливания топлива, что прежде всего вызывает повышение дымности отработавших газов и приводит к незначительному повышению расхода топлива и снижению мощности двигателя на 3. 5 %.

Внешними признаками отказов и неисправностей системы питания двигателя являются: затрудненный пуск, повышенный расход топлива, неравномерная работа, дымление, снижение мощности двигателя, жесткая со стуком работа двигателя и неизменность частоты вращения коленчатого вала.

Затрудненный пуск двигателя обычно происходит в результате недостаточной подачи топлива в цилиндры двигателя, причинами чего могут быть подсос воздуха в систему питания, засорение фильтрующих элементов, неисправность топливоподкачивающего насоса, снижение давления впрыска из-за износа плунжерных пар насоса высокого давления и ухудшение распыливания топлива при закоксовывании или износе сопловых отверстий распылителя форсунки. Неустойчивая работа двигателя на малой частоте вращения коленчатого вала может происходить также в результате подсоса воздуха в систему питания, неравномерной подачи топлива секциями топливного насоса, ухудшения состояния форсунок.

Дымление (появление черного дыма) является результатом не-полноты сгорания вследствие преждевременной или большой подачи топлива насосом высокого давления, увеличения площади сопловых отверстий форсунок вследствие их износа (что снижает давление впрыска), позднего начала подачи топлива, подтекания форсунок, засорения воздушного фильтра, ухудшения распыливания вследствие закоксовывания или засорения сопел форсунки, наличия в топливе воды.

Снижение мощности двигателя может происходить из-за подсоса воздуха в топливную систему, засорения воздушного фильтра, недостаточной цикловой подачи топлива, нарушения регулировки угла опережения впрыска, ухудшения распыливания топлива форсунками, уменьшения количества и неравномерности подачи топлива насосом высокого давления, недостаточной величины компрессии и применения соответствующего топлива.

Диагностирование герметичности системы питания производится при каждом очередном обслуживании автомобиля.

Негерметичность работающих под давлением топливопроводов обнаруживается по подтеканию топлива в местах их соединений при работе двигателя на оборотах холостого хода. Негерметичность топливопроводов и соединений на участках, находящихся под разрежением, приводит к подсосу воздуха в систему. Наличие в системе воздуха может быть обнаружено по выделению пены или пузырьков воздуха из-под ослабленной контрольной пробки на крышке фильтра тонкой очистки при работе двигателя на малой частоте вращения коленчатого вала.

Неплотности в топливопроводах системы, в том числе на линии всасывания (до топливоподкачивающего насоса), можно вы¬явить при помощи бачка. Для этого отсоединяют от топливного бака топливопровод, отводящий излишек топлива, герметизируют его заглушкой, затем отсоединяют от бака подающий топливопровод и присоединяют к нему шланг бачка. Топливо из частично заполненного бачка подают в систему под давлением 0,3 МПа, которое предварительно создается имеющимся в бачке воздушным насосом. Негерметичность топливопроводов обнаруживают по появлению в местах соединений пузырьков воздуха и подтеканию топлива.

Проверка состояния фильтров заключается в ежедневном сливе отстоя из фильтров грубой и тонкой очистки в количестве 0,1. 0,15 л. После слива пускают двигатель и дают ему поработать 3. 4 мин, чтобы удалить воздух, который мог попасть в топливную систему. Через каждые 9. 14 тыс. км (при очередном ТО-2) фильтры разбирают, корпуса промывают дизельным топливом и заменяют фильтрующие элементы.

Проверку топливоподкачивающего насоса двигателя ЯМЗ-236 проводят на производительность и величину развиваемого давления. Производительность топливоподкачивающего насоса при противодавлении 0,15. 0,17 МПа и частоте вращения кулачкового вала привода 1050 мин-1 должна быть не менее 2,2 л/мин. При полностью перекрытом нагнетательном канале насоса и при частоте вращения кулачкового вала 1050 ± 10 мин-1 максимальное давление должно быть не менее 0,4 МПа.

Насос высокого давления двигателей ЯМЗ-2Э6, ЯМЗ-8238 ЯМЗ-740 испытывают также на стенде СДТА-1 и других аналогичных. При этом проверяют момент начала подачи топлива, равномерность и производительность насоса. Нарушение моментов начала подачи топлива отдельными секциями насоса вызывает несвоевременное поступление топлива через форсунки в цилиндры двигателя. В результате появляются стуки в двигателе (ранняя подача) или дымный выпуск (поздняя подача). Для проверки и регулировки момента начала подачи топлива насоса высокого давления кулачковый вал насоса соединяют с валом привода стенда.

Начало подачи топлива проверяют с помощью моментоскопа, который поочередно присоединяют к штуцеру каждой нагнетательной секции насоса в порядке работы двигателя. Для определения начала подачи топлива каждой секцией специальным градуированным от 0 до 360° (с ценой деления 1°) диском последний устанавливается в корпусе насоса со стороны привода а на валу привода закрепляют тарелку. После присоединения моментоскопа к штуцеру первой секции насоса, вращая его кулачковый вал, заполняют до половины обьема стеклянную трубку моментоскопа и фиксируют положение кулачкового вала. Это положение определяет момент начала подачи топлива первой секцией и служит началом отсчета углов поворота кулачкового вала, соответствующего подаче топлива остальными секциями насоса. Начало подачи первой секцией происходит при набегании кулачка на толкатель за 38. 39° до оси симметрии кулачка. Положение оси симметрии определяют с помощью моментоскопа. Приняв указанное положение кулачкового вала (38 . 39° до оси симметрии) условно за 0° или начало отсчета, определяют начало подачи топлива остальными секциями, которое должно быть для двигателя ЯМЗ-236 (в соответствии с порядком работы цилиндров) для четвертой секции 45°, второй — 120°, пятой — 165°, третьей — 240° и шестой — 285°.

При регулировке равномерности подачи топлива отдельными секциями насоса углы поворота его кулачкового вала регулируют при помощи болта, ввернутого в толкатель плунжера секции насоса до получения нужного значения угла.

Проверка количества и равномерности подачи топлива секциями насоса высокого давления заключается в определении количества топлива, подаваемого каждой секцией насоса в мерные цилиндры, и промежутков времени между подачами, которые должны быть одинаковыми для всех секций насоса. Проверку равномерности и количества подачи топлива нагнетательными секциями насоса производят на этом же стенде.

Количество подаваемого топлива проверяют на эталонных форсунках. Одновременно проверяют и регулируют минимальную частоту вращения кулачкового вала, соответствующую полному выдвижению рейки включения подачи топлива регулятором. Регулируют подачу топлива на частоте вращения кулачкового вала 225. 275 мин-1 изменением положения рейки подачи, пользуясь винтом регулировки, имеющимся в регуляторе частоты вращения коленчатого вала двигателя.

Проверка форсунок двигателя.

Основными неисправностями форсунки являются ухудшение качества распыливания в следствии снижения давления начала впрыска или подъема иглы, ее негерметичность или засорение, закоксовывание или засорение отверстий распылителя и попадание в него воды. В результате снижается мощность и экономичность двигателя, работа его на малой частоте вращения вала становится неустойчивой, повышается дымность отработавших газов.

Предварительно форсунки проверяют непосредственно на работающем двигателе последовательным выключением цилиндров. Для этого ослабляют накидную гайку у штуцера проверяемой форсунки с тем, чтобы топливо вытекало наружу, не поступая в форсунку, и цилиндр таким образом выключается. Если выключенная форсунка исправна, перебои в работе двигателя увеличатся, частота вращения коленчатого вала уменьшится, а дымление выпуска не станет меньше. Наоборот, если форсунка неисправна, характер работы двигателя не изменится, а дымность выпуска уменьшится. В этом случае форсунку снимают и направляют в цех топливной аппаратуры. При ТО-2, а также после ремонта форсунки проверяют на герметичность, давление начала подъема иглы и качество распыливания топлива, для чего используют стенд.

Проверка герметичности форсунки, давления впрыска и качества распыливания топлива производится на приборе КП-609А, установленном на указанном стенде. При проверке герметичности форсунки медленно завертывают ее регулировочный винт и одновременно, качая рычагом, увеличивают давление до 30 МПа. После этого прекращают подачу и наблюдают за снижением давления. Когда давление снизится до 28 МПа, включают секундомер и определяют время спада давления до 23 МПа.

Допустимое время падения давления для исправной форсунки должно быть не менее 5 с, а с новым распылителем — в среднем не менее 20. 30 с. Подтекание топлива или увлажнение торца распылителя при указанном снижении давления не допускается.

Давление впрыска или начала подъема иглы форсунки проверяют по его значению в момент впрыска топлива. Для этого ввертывают до упора запорный вентиль и рычагом насоса медленно повышают давление до 12,5 МПа, после чего повышают его со скоростью 0,5 МПа в секунду и наблюдают за началом впрыска топлива. У двигателей ЯМЗ-236 и ЯМЗ-238 начало впрыска топлива форсункой должно происходить при давлении 15 + 0,5 МПа. Регулируют форсунку регулировочным винтом, изменяя натяжение пружины, прижимающей иглу к отверстию распылителя.

Качество распыливания топлива форсункой проверяют при закрытом запорном вентиле манометра. Пользуясь рычагом насоса, производят несколько резких качков и наблюдают за характером впрыска. Топливо, выходящее из сопел распылителя, должно разбрызгиваться до туманообразного состояния. Угол конуса распыливания контролируют по линиям на защитном колпаке. Понижение давления при впрыске топлива должно быть в пределах 0,8. 1,7 МПа, при этом подтекания топлива не допускается. Начало и конец впрыска характеризуются резким звуком (треском).

На приборе КП- 1609А этого стенда можно проверить на гидравлическую плотность плунжерную пару насоса высокого давления посредством создания механической нагрузки рычагом. Время опускания плунжера характеризует степень изношенности пары и в среднем по трем замерам должно быть не менее 10 с

При диагностировании и регулировке системы питания двигателей автомобилей КамАЗ в процессе их ТО применяют методы и оборудование, аналогичные рассмотренным выше.

Насос высокого давления при ТО-2 диагностируют и регулируют на начало, величину и равномерность подачи топлива. Onpеделение момента начала подачи топлива секциями насоса производят с помощью моментоскопа, как указывалось ранее, для двигателей ЯМЗ-236. Для двигателя КАМАЗ-740 подача топлива должна происходить через 45° поворота вала насоса для восьмой секции, 90°— четвертой, 135° — пятой, 180° — седьмой, 225° — третьей, 270° — шестой и 315° — второй.

Регулировку начала подачи топлива секциями насоса производят установкой шайб различной толщины под плунжер толкателя Количество топлива, подаваемое в цилиндры за один ход плунжера, и равномерность подачи определяются на стенде типа СДТА. При этом проверяют герметичность нагнетательных клапанов каждой секции под давлением 0,15. 0,20 МПа в течение 2 мин при полностью выдвинутой рейке и давлении топлива в топливопроводе перед входом в насос 0,05. 0,10 МПа при частоте вращения кулачкового вала 1300 мин-1.

Для двигателей КАМАЗ-740 и -741 среднее количество топлива подаваемое за один ход плунжера (средняя цикловая подача) при частоте вращения кулачкового вала 1290 мин»1 при упоре рычага управления в болт ограничения максимальной частоты вращения коленчатого вала, должно составлять 72,5. 75,0 мм3/цикл.

Регулирование величины подачи осуществляется поворотом корпуса секции насоса после ослабления ее крепления. Неравномерность подачи топлива не должна превышать 3%. При диагностировании форсунки проверяется момент начала подъема иглы распылителя под давлением 18 МПа. Величину этого давления onpеделяют на приборе КП-1609А. Регулирование форсунки производят установкой различной толщины шайб под пружину при снятии гайки распылителя. При увеличении толщины набора шайб давление повышается, и наоборот.

Кроме этого, дополнительно проверяют частоту вращения кулачкового вала регулятора (1820 ± 10 мин-1), определяемую в момент начала выброса рейки подачи. Проверяется выключение подачи топлива при частоте вращения коленчатого вала двигателя 350. 400 мин-1 при упоре рычага управления регулятора частот вращения коленчатого вала двигателя в болт ограничения минимальной частоты его вращения и при 1500 ± 15 мин-1, когда рычаг управления упирается в болт ограничения максимальной частоты его вращения. Дополнительно при ТО-1 и ТО-2 промывают фильтры грубой очистки топлива, заменяют фильтрующие элементы фильтров тонкой очистки, очищают сжатым воздухом или промывают в моющем растворе фильтрующий элемент и меняют масло в воздушном фильтре.

Проверка автомобилей с дизельным двигателем на дымность отработавших газов.

Дымность отработавших газов измеряется при-борами, работающими по принципу просвечивания исследуемого газа. Нормируемым параметром дымности является оптическая плотность отработавших газов, измеряемая на холостом ходу на режиме свободного ускорения и максимальной частоте вращения коленчатого вала двигателя.

Дымность отработавших газов автомобилей с дизелями (в том числе после капитального ремонта) не должна превышать для автомобилей КамАЗ, современных моделей МАЗ, КрАЗ 40 % для режима свободного ускорения и 15 % для максимальной частоты вращения коленчатого вала; для автомобилей МАЗ, КрАЗ предшествующих модификаций — соответственно 60 и 15 %.

Под свободным ускорением подразумевается разгон двигателя от минимальной до максимальной частоты вращения коленчатого вала на холостом ходу. Максимальная частота вращения вала двигателя соответствует частоте вращения вала на холостом ходу при полностью нажатой педали подачи топлива, ограниченной регулятором.

Текущий ремонт приборов и деталей системы питания дизельных двигателей в АТО заключается в работах по их восстановлению, не требующих сложного оборудования и соответственно сложной технологии производства. К таким видам работ относятся: притирка рабочих поверхностей клапанов и их седел, запорных игл и распылителей форсунок, плунжерных пар; замена потерявших упругость пружин; восстановление трубопроводов, резьб; развальцовка топливопроводов; заделка трещин в корпусе насоса и др.

Отремонтированные детали системы питания собирают в комплект и в случае необходимости прирабатывают, испытывают и регулируют на стендах и непосредственно на двигателе.

9.Система питания дизельного двигателя.

Назначение, устройство и работа системы питания дизеля. Общее устройство и работа системы питания дизеля.

Система
питания дизельного двигателя должна
создавать высокое давление впрыска
топлива в камеру сгорания цилиндра;
дозировать порции топлива в соответствии
с нагрузкой двигателя; производить
впрыск топлива в строго определенный
момент, в течение заданного промежутка
времени и с определенной интенсивностью;
хорошо распылять и равномерно аспределять
топливо по объему камеры сгорания;
надежно фильтровать топливо перед его
поступлением в насосы и форсунки. 

Дизельное
топливо представляет
собой смесь керосиновых, газойлевых и
соляровых фракций после отгона из нефти
бензина. К основным свойствам дизельного
топлива относятся: воспламеняемость,
оцениваемая октановым числом; вязкость;
чистота и температура застывания, по
которым различают дизельное топливо
по сортам: ДЛ — летнее ДЗ — зимнее, ДА —
арктическое. 

Система
питания дизельного двигателя состоит
из:

  • топливного
    бака;

  • фильтров
    грубой и тонкой очистки воздуха;

  • топливоподкачивающего
    насоса;

  • топливного
    насоса высокого давления с регулятором
    частоты вращения и автоматической
    муфтой опережения впрыска топлива;

  • форсунок;

  • трубопроводов
    высокого и низкого давления;

  • воздушного
    фильтра;

  • выпускного
    газопровода;

  • глушителя
    шума отработавших газов.

Схема
питания дизельного двигателя

10. Смесеобразование в дизелях.

Процесс
смесеобразования происходит в течение
короткого промежутка времени внутри
цилиндра, когда поршень находится вблизи
ВМТ. К началу подачи топлива — в конце
такта сжатия давление в цилиндре
составляет примерно 3,5—4,5 МПа, а
температура — 800—900 К.

Смесеобразование
представляет собой процесс испарения
мелко распыленного топлива и перемешивание
его паров с воздухом. Каждая частица
топлива должна войти в соприкосновение
с воздухом как можно скорее, чтобы
выделение теплоты произошло в начале
хода расширения. Для улучшения
смесеобразования и повышения однородности
смеси коэффициент избытка воздуха
составляет от 1,4 до 1,7. Равномерное
распределение топлива по объему камеры
сгорания осуществляется за счет
кинематических энергий распыленного
топлива и движущегося воздуха, определяемых
формой камеры сгорания и скоростью
движения поршня.

В
современных дизелях находит применение
объемное, объемно-пленочное, пленочное,
вихрекамерное и предкамерное
смесеобразование. Способ смесеобразования
обусловлен формой камеры сгорания,
которая в сочетании с топливоподающей
аппаратурой определяет условия процессов
смесеобразования и сгорания. Двигатель
с непосредственным впрыском топлива
обеспечивает наиболее экономичный
рабочий цикл и хорошие пусковые свойства
двигателя.

11. Воздухоочистители.

Виды
воздушных фильтров для автомобилей

Первый
из них – сухой
инерционный фильтр
.
В основе процесса очистки воздуха в нем
лежит центробежная сила. В этом фильтре
воздух движется по спирали, а частицы
пыли по инерции откидываются к стенкам
фильтрующего элемента. Затем скопившаяся
пыль собирается в специальную емкость
или же высасывается с последующим
выбросом наружу. Этот тип фильтров
обычно используется на транспортных
средствах, работающих при большой
степени запыленности – грузовых
автомобилях и сельскохозяйственной
технике. Он позволяет уловить около 70%
крупнозернистой пыли.

Следующий
вид инерционно-масляный
фильтр
.
Он состоит из большого цилиндрического
корпуса с налитым на дне маслом, над
которым располагается фильтрующий
элемент. Последний изготавливается из
металлической либо капроновой сетки.
Такой фильтр дважды очищает воздух.
Последний поступает через горловину
или щели сверху корпуса, затем резко
меняет свое направление над маслом. При
этом по инерции частицы пыли оседают в
масло. Для второй очистки воздух
пропускается через сетку, промоченную
маслом, чтобы отфильтровать более мелкую
пыль. Большим «минусом» этого вида
фильтров является пропускание большой
части пыли (1-2%), особенно в условиях
неполных нагрузок (10%). Кроме того, при
работе в загрязненных условиях его
необходимо часто промывать. Потому в
наше время этот вид фильтров можно найти
разве что, на старых «Волгах», «Запорожцах»
и грузовых машинах советского производства.
В остальных же моделях они уступили
место более современным воздушным
фильтрам – бумажным.

Применение
бумажного фильтра снижает степень
износа деталей силового агрегата на
15-20 %. Отметим, что в запыленных условиях
эта цифра достигает 200%.

Основой бумажного
фильтра
 является
фильтровальная шторка из специальной
пористой бумаги. Она может «ловить»
частицы пыли не только поверхностью,
но и по всему объёму. Кроме того, волокна
бумаги, переплетаясь между собой,
способны задерживать пыль диаметром
до 1 микрона. С целью защиты фильтрующего
элемента от размокания при высокой
влажности или попадании воды, бумага
пропитывается специальной смолой.
Бумага в корпусе фильтра сложена «в
гармошку». Это дает возможность увеличить
площадь фильтрования. Для герметизации
места соединения бумаги и корпуса
уплотняются пластизолем.

В
зависимости от формы, бумажные фильтры
бывают цилиндрические,
бескаркасные, панельные
.
В цилиндрических фильтрах иногда
установлен предочиститель, изготовленный
из специального поролона или синтетического
вещества. Он размещается вокруг
фильтровальной шторки. Предочиститель
продлевает «жизнь» фильтрующего элемента
за счет задержки крупнозернистой пыли
и масляных испарений.

И
последний вид автомобильных фильтров
для очистки воздуха – фильтры
с пониженным сопротивлением.
 Эти
детали имеют минимальное сопротивление
всасываемому воздуху (на 50-60 % меньше,
чем у бумажных изделий). Они могут
изготавливаться в специальном корпусе
или служить сменным элементом для
штатного фильтра. Производятся эти
фильтры из хлопчатобумажной ткани либо
поролона. Перед применением фильтрующий
материал подлежит пропитке специальным
маслом. В отличие от бумажных, фильтры
с пониженным сопротивлением используются
многократно. Но это возможно только в
случае регулярной промывки специальным
шампунем и пропитки специальным маслом.

Система питания дизельного ДВС | АВТОСТУК.РУ






















Система питания современного двигателя внутреннего сгорания — это совокупность электронных и механических узлов, функция которых заключается не только в стабильной подаче топлива к форсункам, но и делать это под давлением. Если топливо нагнетается под определенным давлением, то оно распыляется и не капает в одну точку, поэтому называется дозированный многоточечный впрыск в рабочие камеры сгорания цилиндров.

Содержание статьи:

  1. Особенности дизельного ДВС.
  2. Работа системы питания дизельного двигателя.
  3. Устройство системы питания дизеля.
  4. Схема питания турбодизеля.
  5. Видео.

 

Особенности дизельного ДВС

По составу дизельное топливо сильно отличается от всех марок бензина. В диз топливе содержится керосин и газойлевые соляровые фракции. При получении солярки, из нефти сначала отделяют бензин.

Качество бензина зависит от октанового числа, а солярка зависит от значения цетаного числа. На автозаправочных станция сегодня продают дизельное топливо в ценатом от 45 до 50. Для новых дизельных двигателей требуется солярка с высоким цетаном.

Краткий рабочий цикл топливной системы дизельного агрегата:
  1. Топливо очищается от примесей.
  2. Попадает в топливный насос высокого давления.
  3. ТНВД сжимает топливо и оно под давлением проходит через микроотверстие в форсунке и распыляется на мелкие частички.
  4. При движении поршня вниз, открывается всасывающий клапан и воздух поступает в камеру цилиндра и моментально нагревается от сжатия (давление сжатия от 3 до 5 Мпа) при движении поршня вверх.
  5. Распыленное топливо смешивается с горячим воздухом, это от 700 до 900 градусов, и самовозгорается.

Кто не знает, основное отличие дизельного двигателя от бензинового не только в топливе, но в система поджига топлива. Если бензин поджигается за счет образования искры свечи, то солярка поджигается от сильного сжатия и высокой температуры.

Самыми надежными считаются свечи зажигания NGK.

 

 

Классификация дизельного топлива по температуре застывания:
  1. летнее дизельного горючее;
  2. зимнее;
  3. арктическое.

Так же, эти сорта солярки немного отличаются по цвету. Опытные шофера определяют по цвету. Вязкость и плотность дизель топлива намного больше, чем у бензина. Также, солярка обладает смазывающим эффектом, поэтому оно не является обезжиривающей жидкостью, как бензин.

 

Работа системы питания дизельного ДВС

Функции системы питания дизеля следующие:
  • в зависимости от нагрузки на двигатель и режима работы ДВС нагнетать солярку в строго определенном количестве;
  • распылять топливо в заданный промежуток времени с нужным давлением;
  • максимально распылять диз топливо по всей рабочей камере сгорания цилиндра;
  • до того, как топливо поступит в ТНВД и форсунки, топливо проходит фильтрацию.

 

 

Устройство системы питания дизеля

Из чего состоит топливная дизельная система:
  1. Топливный бак.
  2. Фильтр грубой очистки топлива (ГОТ).
  3. Фильтр тонкой очистки топлива (ТОТ).
  4. Насос для подкачивания дизтоплива.
  5. Топливный насос высокого давления (ТНВД).
  6. Инжекторные форсунки.
  7. Магистраль высокого давления.
  8. Трубопровод низкого давления.
  9. Фильтр очистки воздуха.

Эти элементы есть во всех модификациях дизельных агрегатов. Некоторые моторы оснащаются доп элементами: электрический насос, фильтры сажевые, глушители и т.д.

 

Система питания дизельного двигателя состоит из двух основных частей:
  • дизельное устройство для подачи топлива;
  • дизельное устройство для подачи воздуха.

 

Устройство для подачи топлива может быть в едином корпусе, а может быть раздельным. Современное устройство выполнено в раздельном типе, то есть насос ТНВД и форсунки расположены в разных корпусах. Солярка нагнетается по магистралям низкого, затем высокого давления. Все, что до ТНВД, это трубопроводы низкого давления. После ТНВД начинается сжатие топлива.

 

Система питания дизельного ДВС оснащается двумя насосами:
  • насос высокого давления;
  • насос для подкачки топлива.

Насос для подкачки начинает качать топливо из бака, прогоняет его через фильтры грубой и тонкой очистки и поставляет его в топливный насос высокого давления.

Насос ТНВД подает топливо под давлением в инжекторные форсунки в порядке, характерном для данного дизельного мотора. В устройстве ТНВД есть много одинаковых секций.

 

Нераздельная система подачи топлива

Система питания дизельного двигателя нераздельного типа, то есть ТНВД и форсунки расположены в одном корпусе, устанавливается в двухтактные дизельные моторы. Устройство, в котором есть и насос ТНВД и форсунка называется насос-форсункой.

Такие двигатели с нераздельной подачей топлива не распространились массово. Они часто ломаются. Хотя конструкция и проще, отсутствует магистраль высокого давления. Моторы работают с высоким уровнем шума.

 

Раздельная система подачи топлива

В таких двигателях форсунки устанавливают в головке блока цилиндров. Форсунки должны качественно распылять топливо по рабочим камерам сгорания цилиндров, поэтому частой проблемой плохой работы дизеля является засорение форсунок.

Насос подкачки топлива нагнетает много жидкости в ТНВД, насос высокого давления берет нужный ему объем, а остальное оттекает по дренажным линиям обратно в топливный бак.

 

 

Классификация дизельных форсунок по конструкции:
  1. закрытая форсунка, то есть сопло у нее закрывается специальное запорной иглой;
  2. открытая форсунка.

В четырех тактных двигателях устанавливаются форсунки закрытого вида. Внутреннее пространство форсунки сообщается с камерой сгорания только во время подачи топлива.

Главный элемент форсунок — это распылитель. Распылитель может иметь только одно отверстие или несколько. Впрыск топлива через эти отверстия создают факел в цилиндре. От пропускной способности, количества отверстий зависит форма и расположение факела.

 

 

Схема питания турбодизеля

Чтобы увеличить мощность дизельного аппарата, устанавливают турбину. Конструкция топливной системы дизельного двигателя не изменяется, если мотор с турбонаддувом. Меняется схема и вариант подачи топлива в мотор от схемы атмосферного двигателя.

Турбированный двигатель получается путем установки турбокомпрессора. В дизельном моторе турбина работает на отработавших газах. Сначала турбокомпрессор сжимает воздух, охлаждает его и подает в рабочую камеру сгорания цилиндров дизельного силового агрегата. Воздух нагнетается под давлением 0,15-0,2 МПа (Мега Паскаль).

 

Классификация турбонаддува по давлению:
  • до  0,15 Мпа;
  • 0,2 МПа — турбокомпрессор средней мощности;
  • > 0,2 МПа.

Как в бензиновых, так и дизельных двигатель турбина служит для дополнительной подачи воздуха в камеры сгорания. Чем больше воздуха, тем больше и качественнее догорает топливо. Мощность двигателя с турбиной увеличивается на 30%.

Минус турбированных моторов в том, что такие агрегаты работают в более трудных условиях: повышается температура; детали, особенно цилиндро-поршневой группы (ЦПГ), кривошипно-шатунного механизма (КШМ), газораспределительного механизма (ГРМ) испытывают больше давления и, саму турбину обычно надо менять через 100 000 км пробега.

 

 

Видео

В этом видео подробно рассказывается о системе подачи топлива в дизель мотор.

Топливная система дизельных двигателей.

Система питания двигателя КАМАЗ.

 

Автор публикации

СИСТЕМА ПИТАНИЯ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ — презентация на Slide-Share.ru 🎓


1


Первый слайд презентации: СИСТЕМА ПИТАНИЯ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ

Изображение слайда


2


Слайд 2: НАЗНАЧЕНИЕ

Система питания дизеля обеспечивает подачу очищенного дизельного топлива к цилиндрам, сжимает его до высокого давления, подает его в мелкораспыленном виде в камеру сгорания и смешивает с горячим (700–900 °С) от сжатия в цилиндрах (3–5 МПа) воздухом так, чтобы оно самовоспламенилось. После завершения рабочего хода необходимо очистить цилиндры от продуктов сгорания.

Изображение слайда


3


Слайд 3: УСТРОЙСТВО

Система питания дизельного двигателя состоит из:
— системы питания топливом
— системы питания воздухом
— системы вывода отработавших газов

Изображение слайда


4


Слайд 4: СИСТЕМА ПИТАНИЯ ТОПЛИВОМ

Топливный бак- каждый бак состоит из корпуса, заливной горловины с сетчатым фильтром. Заливная горловина закрывается герметичной крышкой с прокладкой. С целью увеличения жесткости бака, а также уменьшения взбалтывания топлива и образования пены в баке имеются перегородки. В нижней части бака имеется пробка сливного крана для слива отстоя.
СИСТЕМА ПИТАНИЯ ТОПЛИВОМ

Изображение слайда


5


Слайд 5: СИСТЕМА ПИТАНИЯ ТОПЛИВОМ

Фильтра грубой и тонкой очистки топлива- предназначены для очистки топлива от механических примесей и воды.
Фильтр топливный грубой очистки
К-701
Фильтр топливный тонкой очистки
К-701
Со сменным
элементом

Изображение слайда


6


Слайд 6: СИСТЕМА ПИТАНИЯ ТОПЛИВОМ

Фильтра топливные картриджи
ФТГО с отстойником

Изображение слайда


7


Слайд 7: СИСТЕМА ПИТАНИЯ ТОПЛИВОМ

Топливный насос низкого давления (ТННД) – предназначен для предварительного заполнения системы питания топливом, удаления из нее воздуха и для подачи топлива из топливного бака к насосу высокого давления.
ТННД к-701 в кабине
Тннд д-240
ТННД с фильтром

Изображение слайда


8


Слайд 8: СИСТЕМА ПИТАНИЯ ТОПЛИВОМ

Топливный насос высокого давления ( ТНВД)- предназначены для создания в топливной магистрали такого давления, которое по своей величине всегда должно быть гораздо больше давления в цилиндре двигателя, что необходимо для нормальной работы всех подобных систем впрыска топлива. Величина создаваемого давления — в диапазоне от 200 до 2000 бар. Конструктивно всегда является плунжерным насосом объёмного принципа работы с приводом от вращающихся элементов самого ДВС.
СИСТЕМА ПИТАНИЯ ТОПЛИВОМ
Рядный ТНВД
Распределительный ТНВД
ТНВД магистрального типа

Изображение слайда


9


Слайд 9: СИСТЕМА ПИТАНИЯ ТОПЛИВОМ

Топливопроводы — трубки и гибкие шланги, по которым осуществляется транспортировка топлива.
СИСТЕМА ПИТАНИЯ ТОПЛИВОМ
Топливопроводы — высокого давления от ТНВД до форсунок
Топливопроводы — низкого давления от бака до тнвд и трубки обратки

Изображение слайда


10


Слайд 10: СИСТЕМА ПИТАНИЯ ТОПЛИВОМ

Система впрыска  Common Rail  является самой современной системой впрыска топлива дизельных двигателей. Работа системы  Common Rail  основана на подаче топлива к форсункам от общего аккумулятора высокого давления – топливной рампы, наподобие бензиновых ДВС ( Common Rail  в переводе означает общая рампа).
СИСТЕМА ПИТАНИЯ ТОПЛИВОМ
1. топливный бак 2. топливный фильтр 3. топливный насос высокого давления 4. топливопроводы 5. датчик давления топлива 6. топливная рампа 7. регулятор давления топлива 8. форсунки 9. электронный блок управления 10. сигналы от датчиков

Изображение слайда


11


Последний слайд презентации: СИСТЕМА ПИТАНИЯ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ

Изображение слайда

Преимущества дизельной энергосистемы

Покупая новую энергосистему для своего бизнеса, вы обнаружите, что сегодня на рынке доступно множество вариантов. Хотя выбрать марку или модель достаточно сложно, самое важное решение, которое вам придется принять, — это источник топлива, используемый для работы генератора. Большинство промышленных предприятий выбирают систему питания на природном газе или дизельном топливе. Хотя природный газ, безусловно, имеет явные преимущества, у дизельной энергетической системы есть и ключевые преимущества.

Fuel Efficient

Поскольку цены на топливо продолжают колебаться, многие владельцы бизнеса обеспокоены своими затратами, особенно если учесть, что вам, возможно, придется поддерживать работу генератора в течение нескольких часов без остановки во время отключения электроэнергии. Имейте в виду, что дизельное топливо имеет гораздо более высокую плотность энергии, чем газ, а это означает, что генератор будет работать дольше с дизельным топливом, чем с тем же объемом газа, и при почти незначительном увеличении цены. Например, дизельный генератор мощностью 120 кВт обеспечивает эффективность использования топлива в пределах 10,9и 32,1 литра в час. Это намного лучше, чем то, что предлагают бензиновые двигатели. Вот почему дизельные двигатели являются очевидным выбором для тяжелонагруженного оборудования, такого как промышленные электрогенераторы.

Простота обслуживания

Дизельные генераторы — отличный вариант для занятых профессионалов, поскольку они требуют минимального обслуживания. Это связано с тем, что для их включения требуется меньше компонентов. В отличие от бензиновых двигателей, в которых используется искровое зажигание, в дизельных двигателях используется компрессия. Воздух обычно всасывается в двигатель и подвергается сильному сжатию, в результате чего топливо нагревается и воспламеняется. С дизельным двигателем вам не нужно менять свечи зажигания или ремонтировать карбюратор. Одним компонентом в машине меньше — на один потенциальный ремонт меньше. В зависимости от модели дизельный агрегат может работать до 30 000 часов, прежде чем потребуется какое-либо серьезное техническое обслуживание.

Еще один важный момент, на который следует обратить внимание, это то, что дизельные двигатели работают с меньшим числом оборотов в минуту, чем бензиновые двигатели. Они делают это без ущерба для выходной мощности. Меньшее количество оборотов в минуту снижает общий износ, связанный с частой и продолжительной работой генератора.

Высокая долговечность

Дизельные двигатели рассчитаны на то, чтобы выдерживать большой износ на промышленных объектах. Дизельное топливо обладает самосмазывающимися свойствами, которые в значительной степени способствуют долговечности генератора. Однако, как и бензиновые двигатели, им требуется дополнительная смазка для поддержания их эффективности с течением времени.

Наличие меньшего количества компонентов, чем у бензинового двигателя, еще больше снижает вероятность поломки. Также полезно отметить, что дизельные двигатели рассчитаны на очень высокие температуры, поэтому риск перегрева невелик, если система обслуживается надлежащим образом. Простота двигателя и конструкция делают дизельные генераторы более прочными и надежными в эксплуатации.

Бесперебойное питание

Благодаря своей долговечности дизельные генераторы могут бесперебойно работать в течение длительного периода времени. Это приводит к непрерывному электроснабжению даже после отключения электроэнергии, которое длится несколько часов. Вы сможете поддерживать работоспособность всех важных систем, не беспокоясь о высоких расходах на топливо. Без генератора ваш бизнес может понести значительные финансовые потери из-за спада производства. Отключение может длиться несколько дней, поэтому лучше подготовиться, купив дизельную систему, на которую можно положиться в случае непредвиденных обстоятельств.

Безопасно хранить

Дизельное топливо безопаснее хранить, чем бензин, поскольку оно не так легко воспламеняется. Однако он все еще легко воспламеняется, поэтому с ним следует обращаться осторожно. Топливо следует хранить вдали от любых источников тепла на случай разлива. При правильном хранении вы можете ожидать, что ваше дизельное топливо сохранит свои качества дольше, чем бензин.

Увеличенный срок службы

Известно, что дизельные двигатели обычно служат дольше, чем аналогичные бензиновые двигатели. При надлежащем обслуживании ваш дизельный генератор может прослужить десятилетие, а то и два или три десятилетия! Если вы хорошо о нем заботитесь, вы можете свести к минимуму риск дорогостоящего ремонта или необходимости замены вашей системы намного раньше, чем ожидалось.

Высокая мощность

Дизельные двигатели часто используются в промышленных условиях, поскольку они способны без проблем справляться с огромными силовыми нагрузками. Когда электричество отключится, вам не придется выбирать, что включать. Имея генератор нужного размера, вы можете поддерживать работоспособность всего важного электрического оборудования в случае отключения электроэнергии.

Есть ли недостатки у владения дизельной системой?

Несмотря на то, что преимущества очевидны, у дизельных генераторов есть и недостатки, о которых следует знать перед покупкой. Вот основные недостатки владения дизельной силовой установкой.

Высокие первоначальные затраты

Дизельные генераторы, как правило, стоят дороже, чем их газовые аналоги. Однако эта стоимость часто перевешивается тем фактом, что системы требуют меньшего обслуживания и меньше ремонтируются, если за ними правильно ухаживают.

Чрезмерный шум

Известно, что дизельные агрегаты более шумные, чем другие типы энергосистем. Однако есть способы минимизировать шум на месте, например, установить вокруг системы шумопоглощающий кожух. Это гарантирует, что вы сможете воспользоваться преимуществами дизельного генератора, не беспокоясь о том, что он будет издавать слишком много шума и отвлекать ваших сотрудников.

Увеличение выбросов

Дизельные двигатели выделяют углекислый газ и другие токсичные загрязнители, которые способствуют глобальному потеплению. Если вы покупаете дизельный генератор и чрезмерно беспокоитесь о его воздействии на окружающую среду, вам следует рассмотреть все различные способы снижения углеродного следа, например, сократить потребление энергии.

Ваш энергетический партнер в Калифорнии

Дизельные генераторы различных размеров и спецификаций для коммерческих и промышленных предприятий. Выбор подходящего генератора для вашего объекта будет зависеть главным образом от потребностей вашей компании, бюджета и индивидуальных предпочтений. Если вы ищете дизельный генератор в Калифорнии, компетентные представители Valley Power Systems готовы рассмотреть ваши варианты. Свяжитесь с нами сегодня чтобы начать.

Не забудьте подписаться на нас в Facebook и Linkedin, чтобы получать дополнительные обновления, или свяжитесь с нашим офисом для получения дополнительной информации.

Типы генераторов и двигателей и промышленное использование

Что такое дизельный двигатель?

Дизельный двигатель является разновидностью двигателя внутреннего сгорания; более конкретно, это двигатель с воспламенением от сжатия. Топливо в дизельном двигателе воспламеняется при внезапном воздействии на него высокой температуры и давления сжатого газа, содержащего кислород (обычно атмосферного воздуха), а не отдельного источника энергии воспламенения (например, свечи зажигания). Этот процесс известен как дизельный цикл в честь Рудольфа Дизеля, который изобрел его в 189 г.2. Хотя традиционные дизельные генераторы могут не подпадать под наше определение «альтернативных источников энергии», они по-прежнему являются ценным дополнением к удаленной системе электроснабжения или резервной сети.

Типы дизельных двигателей

Существует два класса дизельных двигателей: двухтактные и четырехтактные. Большинство дизельных двигателей обычно используют четырехтактный цикл, а некоторые более крупные двигатели работают по двухтактному циклу. Обычно ряды цилиндров используются в количестве, кратном двум, хотя может использоваться любое количество цилиндров, если нагрузка на коленчатый вал уравновешивается для предотвращения чрезмерной вибрации.
Генераторные установки производят либо однофазную, либо трехфазную электроэнергию. Большинству домовладельцев требуется однофазное питание, тогда как для промышленных или коммерческих приложений обычно требуется трехфазное питание. Генераторы с дизельными двигателями рекомендуются из-за их долговечности и более низких эксплуатационных расходов. Современные дизельные двигатели работают тихо и, как правило, требуют гораздо меньшего обслуживания, чем газовые (природный газ или пропан) агрегаты сопоставимого размера.

Дизельные генераторы — Коммерческое/промышленное применение

Дизель-генераторы

предназначены для удовлетворения потребностей малого и среднего бизнеса, помимо интенсивного использования в промышленности. Генератор — это революционный продукт, который обеспечивает чистую и доступную резервную энергию, доступную миллионам предприятий, домов и малых предприятий. В наши дни снижение стоимости резервного питания и упрощение установки генераторов становится нормой.

Предприятия теряют деньги, когда закрываются во время отключения электричества. Принимая во внимание последствия значительных потерь доходов, инвестиции в резервную электроэнергию выглядят убедительно. Чтобы проиллюстрировать это: если розничный бизнес в среднем тратит 1000 долларов в час на кассу, потеря дохода во время длительного простоя будет очень высокой, не говоря уже о затратах на простаивание сотрудников в течение этого времени. Однако дизельные генераторы исключают риск отключения электроэнергии. Добавьте преимущества открытости, когда конкуренты без резервного питания отключены, и анализ затрат/выгод выглядит еще лучше. Инвестирование в генераторы — это простой способ сохранить доход, обеспечить безопасность, избежать убытков и защитить прибыль.

Большинство современных генераторов спроектированы для удовлетворения потребностей в электроэнергии в чрезвычайных ситуациях. Эти блоки постоянно контролируют электрический ток и автоматически запускаются, если питание прерывается, и отключаются, когда возобновляется подача электроэнергии. В промышленности во время критических процессов генераторы могут обеспечивать аварийное питание всех жизненно важных и выбранных нагрузок по желанию. Это качество приводит к широкому использованию дизельных генераторов в рекреационных, жилых, коммерческих, коммуникационных и промышленных целях. Сегодня большинство современных больниц, пятизвездочных отелей, центров аутсорсинга бизнес-процессов, производственных предприятий, телекоммуникационных организаций, коммерческих зданий, центров обработки данных, аварийно-спасательных служб, крупных промышленных предприятий и горнодобывающих компаний требуют бесперебойного питания и резервного дизельного топлива. генераторы двигателей.

В пути:

Подавляющее большинство современных тяжелых дорожных транспортных средств, таких как грузовики и автобусы, корабли, поезда дальнего следования, крупные портативные электрогенераторы, а также большинство сельскохозяйственных и карьерных транспортных средств, имеют дизельные двигатели. Однако в некоторых странах они не так популярны в легковых автомобилях, поскольку они тяжелее, шумнее, имеют эксплуатационные характеристики, из-за которых они медленнее разгоняются. В целом, они также дороже бензиновых автомобилей. Современные дизельные двигатели прошли долгий путь, и теперь, когда в автомобилях установлены системы прямого впрыска Turbo, трудно заметить разницу между дизельными и бензиновыми двигателями.

В некоторых странах, где по налоговым ставкам дизельное топливо намного дешевле бензина, очень популярны дизельные автомобили. Новые конструкции значительно сузили различия между бензиновыми и дизельными автомобилями в этих областях. Дизельная лаборатория BMW в Австрии считается мировым лидером в разработке автомобильных дизельных двигателей. После долгого периода с относительно небольшим количеством дизельных автомобилей в линейке Mercedes Benz вернулся к автомобилям с дизельным двигателем в 21 веке с упором на высокую производительность.

В сельском хозяйстве тракторы, ирригационные насосы, молотилки и другое оборудование преимущественно работают на дизельном топливе. Строительство является еще одним сектором, который в значительной степени зависит от дизельной энергии. Все бетоноукладчики, скреперы, катки, траншеекопатели и экскаваторы работают на дизельном топливе.

В воздухе:

Несколько самолетов используют дизельные двигатели с конца 19 века.30 с. Новые автомобильные дизельные двигатели имеют отношение мощности к весу, сравнимое с древними конструкциями с искровым зажиганием, и имеют гораздо более высокую эффективность использования топлива. Использование в них электронного зажигания, впрыска топлива и сложных систем управления двигателем также делает их намного проще в эксплуатации, чем серийно выпускаемые авиационные двигатели с искровым зажиганием. Стоимость дизельного топлива по сравнению с бензином вызвала значительный интерес к небольшим самолетам авиации общего назначения с дизельным двигателем, и несколько производителей недавно начали продавать дизельные двигатели для этой цели.

На водах:

Высокоскоростные двигатели используются для питания тракторов, грузовиков, яхт, автобусов, автомобилей, компрессоров, генераторов и насосов. Самые большие дизельные двигатели используются для питания кораблей и лайнеров в открытом море. Эти огромные двигатели имеют выходную мощность до 90 000 кВт, вращаются со скоростью от 60 до 100 об / мин и имеют высоту 15 метров.

Под землей:

Сектор горнодобывающей промышленности и добычи полезных ископаемых во всем мире в значительной степени зависит от дизельной энергии для использования природных ресурсов, таких как заполнители, драгоценные металлы, железная руда, нефть, газ и уголь. Экскаваторы и буровые установки с дизельным двигателем выкапывают эти продукты и загружают их в огромные карьерные самосвалы или на ленточные конвейеры, которые также работают на том же топливе. В целом на дизель приходится 72 процента энергии, используемой горнодобывающим сектором.

Как наземные, так и подземные горные работы полагаются на дизельное оборудование для извлечения материалов и погрузки грузовиков. Самое крупное дизельное оборудование с резиновыми колесами, используемое в горнодобывающей промышленности, — это огромные внедорожные грузовики с двигателями мощностью более 2500 лошадиных сил, способные перевозить более 300 тонн груза. Эти гигантские грузовики, катящиеся по земле, представляют собой зрелище.

В больницах

Аварийные резервные генераторы

необходимы в любом крупном медицинском учреждении. Из-за критического характера работы, которую выполняют эти учреждения, и положения, в котором находятся их пациенты, перебои в подаче электроэнергии просто недопустимы. В течение многих лет как военные, так и государственные больницы полагались на генераторные установки промышленной мощности, которые брали на себя управление всякий раз, когда отключается электричество, будь то локальное отключение или крупное стихийное бедствие, такое как ураган или наводнение.

За центрами обработки данных

Компьютеры лежат в основе современной промышленности. Когда серверы и системы выходят из строя, связь может быть потеряна, бизнес останавливается, данные теряются, работники бездействуют, и почти все останавливается. Именно по этой причине почти все коммуникационные и телекоммуникационные компании всех форм обращаются к дизельным генераторам в качестве основного варианта резервного питания. Поскольку надежность их услуг затрагивает так много людей, у них действительно нет другого выбора, кроме как иметь надежный вариант резервного питания как для своего бизнеса, так и для клиентов, которых они обслуживают.

Сводка

Дизельное топливо

широко используется в большинстве промышленных секторов, потому что оно обеспечивает большую мощность на единицу топлива, а его более низкая летучесть делает его более безопасным в обращении. Одна действительно захватывающая перспектива дизельного топлива по сравнению с бензином — возможность полностью исключить потребление бензина. Большинство дизельных двигателей можно заставить сжигать растительное масло вместо дизельного топлива, и все они могут сжигать различные обработанные формы растительного масла без потери срока службы или эффективности.

С Generator Source ваш поиск экономичного и эффективного дизельного двигателя или генератора завершен. Мы предлагаем один из самых больших вариантов промышленных дизельных двигателей и генераторов в мире. Чтобы получить больше информации, просто свяжитесь с нами сегодня!

Области применения и области применения промышленных дизель-генераторов

С момента своего открытия дизельный двигатель был заново изобретен и значительно усовершенствовался, чтобы улучшить его характеристики и эффективность, одновременно расширив спектр его применения. Одним из наиболее распространенных применений сегодня являются дизельные генераторы, используемые для обеспечения резервного или резервного питания объектов и систем в случае сбоя питания. Современные дизель-генераторы предназначены для постоянного контроля электрического тока, они автоматически включаются при отключении электроэнергии и отключаются при возобновлении работы коммунальных служб.

Рынок дизельных генераторов растет, и, согласно исследованию консалтинговой фирмы Grand View Research, ожидается, что рынок продолжит расти в ближайшем будущем.

Благоприятный рост отраслей конечного потребления, таких как нефть и газ, телекоммуникации, горнодобывающая промышленность и розничная торговля, вероятно, увеличит спрос на дизельные дизельные генераторы в ближайшие годы
Доступ к знаниям: https://t.co/BPLm5fq6PA
Ключевые игроки: @AtlasCopcoGroup @WackerNeusonNA @wartsilacorp pic.twitter.com/XwnpRNvDfT

— Энергия и мощность | GVR (@Energy_gvr) 6 августа 2018 г.

Следующие отрасли в значительной степени зависят от мощности дизельных генераторов и внесли свой вклад в растущий спрос.

 

Горнодобывающая промышленность

Дизельные генераторы широко используются в горнодобывающей промышленности во всем мире. Они обеспечивают более 70% всей мощности, необходимой для добычи полезных ископаемых тяжелым оборудованием, таким как землеройная техника, буровые установки, ленточные конвейеры и краны. Независимо от того, добывается ли газ, уголь, железо или драгоценные металлы, дизельные генераторы всегда являются вариантом номер один, поскольку они портативны и могут быть легко использованы в труднодоступных горнодобывающих зонах с экстремальными условиями.

Низкая летучесть дизельного топлива также делает его более безопасным, чем бензин, на горнодобывающих месторождениях. Известно, что дизельные генераторы обеспечивают максимальную мощность, долговечность и производительность при добыче полезных ископаемых, что делает их идеальным источником питания и резервным / резервным вариантом для всех тяжелых работ на горных полях.

 

Здравоохранение

Это одна из самых чувствительных отраслей во многих отношениях. Без дизель-генераторов, обеспечивающих резервное питание в случае сбоя или отключения электроэнергии, многие пациенты в медицинских учреждениях погибли бы. Тяжелобольные и травмированные пациенты, например, находящиеся в отделении интенсивной терапии (ОИТ), будут подвергаться риску, потому что устройства жизнеобеспечения, такие как кислородные насосы, перестанут работать при малейшем отключении электроэнергии.

Дизельные генераторы являются наиболее надежным источником резервного питания для больниц, поскольку их легче обслуживать, чем генераторы, работающие на природном газе, и они обеспечивают бесперебойное электроснабжение при выходе из строя коммунальной сети (пока не будет исчерпан запас топлива). Полного бака дизельного топлива может хватить на всю больницу более чем на 8 часов в зависимости от его размера. При наличии достаточного количества топлива на объекте дизель-генераторы могут обеспечивать резервное питание более 48 часов.

 

Коммерческий

Никто в коммерческом бизнесе не хочет терять деньги, но сбой питания без резервного плана может стать занозой в теле. Отключения электроэнергии в коммерческих помещениях означают огромные потери доходов на кассе, проблемы с безопасностью людей и финансов, проблемы с ИТ и любым другим автоматизированным оборудованием, а также полную остановку операций. Все эти неудобства и потери не идут ни в какое сравнение со стоимостью инвестиций в резервный дизель-генератор.

Дизельный генератор позволяет вам защитить свои деловые интересы, доходы, обеспечить бесперебойную работу, избежать потери бизнеса конкурентами, обеспечить безопасность и защитить свою прибыль.

 

Нефть и газ

В нефтегазовой отрасли время – деньги. Каждая минута, потраченная на простои, будь то из-за отказа оборудования или отключения электроэнергии, стоит денег. Дизельные генераторы являются неотъемлемой частью этой отрасли, поскольку они используются для обеспечения электроэнергией всех видов деятельности на нефтяных и газовых месторождениях, включая бурение, откачку и погрузку.

В большинстве случаев разведка нефти и газа ведется в отдаленных районах с тяжелыми условиями. Без собственных дизель-генераторов работа в этих районах была бы практически невозможна, так как они в основном удалены от электрических сетей. Современным буровым машинам также требуются мощные, эффективные и надежные генераторы на месте, где бы они ни работали; и только дизельные генераторы отвечают этим требованиям.

 

Строительство

Дизельные генераторы необходимы в строительной отрасли. Строительные проекты часто останавливаются из-за перебоев в электроснабжении или отсутствия электроснабжения на некоторых строительных площадках. Постоянные перебои в подаче электроэнергии могут привести к задержке завершения проекта, а также к дорогостоящим расходам из-за отставания от графика.

Генераторы дают столь необходимую энергию для круглосуточного освещения строительных работ, питания машин для кондиционирования воздуха, энергокоммуникационных систем и работы строительного оборудования, такого как краны. Они также обеспечивают резервное питание основной сети в случае прерывания подачи электроэнергии как из-за внешних сил, так и из-за аварий/помех, происходящих со строительной площадки. Кроме того, портативные генераторы можно перемещать с одного места на другое за считанные минуты или часы.

 

Производство

Небольшой сбой в обрабатывающей промышленности может означать не только низкое производство, но и низкое качество продукции. Для достижения оптимального дохода любая производственная линия в производственной линии должна постоянно работать в соответствии с требованиями. Когда на производственных предприятиях происходят отключения электроэнергии, они влияют на все процессы — от поиска сырья до продажи продукции. Нормальные графики прерываются, цели не достигаются, сырье портится, безопасность ставится под угрозу, а в некоторых случаях страдает качество продукта, что может привести к потере клиентов.

Резервные дизель-генераторы обеспечивают аварийное электроснабжение в случае таких отключений электроэнергии и тем самым защищают производственные предприятия от огромных потерь продукции, финансовых и репутационных потерь.

 

Телекоммуникации и центры обработки данных

Компьютеры и центры обработки данных сегодня являются сердцем любой отрасли. Многие отрасли сейчас хранят свои данные на серверах, как вручную, так и на облачных серверах, и им необходим постоянный доступ к этим данным, чтобы их бизнес работал без сбоев. При перебоях в подаче электроэнергии эти серверы становятся недоступными, и предприятия вынуждены прекращать свою деятельность; потеря бизнеса и денег в процессе. Отключения электроэнергии также делают серверы уязвимыми для атак хакеров с целью кражи и манипулирования этими данными в личных целях.

Дизельные генераторы доказали свою надежность в этой отрасли, обеспечивая постоянное и немедленное резервное питание в случае сбоя в электросети. Они следят за тем, чтобы центры обработки данных всегда были онлайн даже во время стихийных бедствий.

 

Коммунальные службы

Коммунальные службы могут быть поставщиками электроэнергии, от которых мы все зависим в обеспечении наших сетей, но они также сталкиваются с чрезвычайными ситуациями на своих электростанциях и обращаются к дизельным генераторам. У компаний есть огромные дизельные генераторы, готовые на случай, если на их основной линии снабжения возникнет чрезвычайная ситуация. Они используют генераторы для производства электроэнергии, достаточной для питания тысяч домов, пока они не смогут снова подключиться к основному электроснабжению.

Дизельные генераторы в этой отрасли позволяют бригаде электростанции иметь достаточно времени для работы на основном источнике питания. Они также помогают предотвратить судебный иск против коммунальной компании со стороны разгневанных клиентов или их потерю конкурентами с постоянным запасным планом.

 

Образование

Школы, колледжи и другие высшие учебные заведения не будут первыми в списке отраслей, требующих резервного генератора, но на самом деле в образовательных учреждениях есть несколько систем, которые зависят от электричества. Отключение электроэнергии значит гораздо больше, чем оставшаяся часть выходного дня для студентов. Есть, конечно, перерывы в занятиях, которые необходимо изменить, что может стать серьезной проблемой, особенно в университетах. Потеря питания может поставить под угрозу центры обработки данных школы, в которых хранятся конфиденциальные данные, и если системы ИТ-безопасности выходят из строя, они подвергаются еще большей угрозе. Детекторы дыма, разбрызгиватели воды, аварийное освещение, сигнализация и звонки, а также электронные дверные системы — все это находится под угрозой, когда отключается электричество. В целом, потеря электроэнергии делает школы, учащихся и персонал уязвимыми для нескольких опасностей. Школа без электричества не может обеспечить ту безопасность, которую они должны обеспечить.

 

Военные

Это еще одна отрасль, которая сильно зависит от дизельных генераторов. Солдатам в бою нужен хороший и стабильный источник питания, который можно использовать даже в самых сложных условиях и при этом эффективно функционировать. Они используют дизельные генераторы для широкого спектра применений, включая питание своего оборудования, больниц, освещение своих лагерей и эксплуатацию своего ИТ-оборудования, среди прочего.

 

Central Power Systems & Services • Энергоснабжение американской инфраструктуры

Это заложено в нашей ДНК

С 1954 года компания Central Power поставляет и обслуживает электроэнергетическое оборудование. Это в нашей ДНК. У нас есть ресурсы и опыт, чтобы предоставить то, что нужно нашим клиентам, от аварийного резерва до основной мощности и более сложных приложений для ТЭЦ и микросетей.

Ищу возможность арендовать или приобрести собственное

Благодаря большому ассортименту оборудования Central Power от ведущих производителей найти подходящую модель для ваших задач и бюджета никогда не будет проблемой.

Узнайте больше

Ищете оборудование для аренды или собственного

Благодаря большому ассортименту оборудования Central Power от ведущих производителей найти подходящую модель для ваших задач и бюджета никогда не будет проблемой.

Узнайте больше

Ищете оборудование для аренды или владения

Благодаря большому ассортименту оборудования Central Power от ведущих производителей найти подходящую модель для ваших задач и бюджета никогда не будет проблемой.

Подробнее

Oklahoma City, OK

405-324-2330

10630 NW 4th Street Yukon, OK

Visit Branch

Woodward, OK

580-256-6014

127 U.S. 270, Woodward, OK

Visit Branch

Wichita, KS

316-943-1231

4501 West Irving Street, Wichita, KS

Visit Branch

Garden City, KS

620-765-3118

1285 Acraway, Garden City, KS

Посетите филиал

Salina, KS

785-825-8291

1944B North 9th Street, Salina, KS

.

Посетите филиал

Wichita, KS

316-943-1231

4501 West Irving Street, Wichita, KS

. Джоплин, Миссури

Visit Branch

Odessa, TX

432-248-8344

3901 N Stowe Ave, Odessa, TX

Visit Branch

Tulsa, OK

918-984-6565

15525 East Admiral Place, Tulsa, OK

Посетите филиал

Springfield, MO

417-865-0505

3100 E Kearney St, Springfield, MO

. Либерти Драйв, Либерти, Миссури

Посетите филиал

Канзас-Сити, Мис. Плезант-Вэлли, МО

Посетите филиал

Сент-Луис, Мо

314-427-4911

11745-R Lackland Road, Maryland Heights, MO

Las Vegas, NV

816-

Las Vegas, NV

816-

Las Vegas, NV

816-

. 781-8070

4325 West Patrick Avenue, Las Vegas, NV

Visit Branch

Wichita, KS

316-789-7370

3305 South West Street, Wichita, KS

Visit Branch

Riverside, MO

816-415-6787

3401 NW Tullison Road, Riverside, MO

Посетите филиал

Phoenix, AZ

480-707-6183

446 North Austin Drive, Chandler, AZA

446 North Austin Drive, Chandler, AZA

446. 0273 Оклахома-Сити, OK

405-324-2330

10630 NW 4th Street Yukon, OK

Посетите филиал

Woodward, OK

580-256-6014

17 127 U.S. 27078

580-256-6014

17 127 U.S. 27078

580-256-6014

127 127 U.S. Visit Branch

Wichita, KS

316-943-1231

4501 West Irving Street, Wichita, KS

Visit Branch

Garden City, KS

620-765-3118

1285 Acraway, Garden City , КС

Посетите филиал

Salina, KS

785-825-8291

1944B North 9th Street, Salina, KS

. Colby, KS

Visit Branch

Wichita, KS

316-943-1231

4501 West Irving Street, Wichita, KS

Visit Branch

Joplin, MO

417-726-5373

4586 State Hwy 43, Джоплин, Миссури

Посетите филиал

ODESSA, TX

432-248-8344

3901 N Stowe Ave, Odessa, TX

4465656565656565656565656565656565654654654656565656565465465465465465465465465465465465465465463465465. 6546565965965465465465639656346546546546546546563965.

. , Tulsa, OK

Посетите филиал

Springfield, MO

417-865-0505

3100 E Kearne 9200 Liberty Drive, Liberty, MO

Visit Branch

Kansas City, MO

816-415-6700

1900 Plumbers Way, Liberty, MO

Visit Branch

Liberty, MO

816-781- 8070

9200 Liberty DR, Pleasant Valley, MO

Посетите филиал

Сент-Луис, MO

314-427-4911

11745 R Lawsland Road, Maryland Heights, MO

Визит

747474747474744. Вегас, Невада

816-781-8070

4325 West Patrick Avenue, Las Vegas, NV

Посетите филиал

Wichita, KS

316-789-7370

3305 South-Street, Wichta, Wichta, Wichta, Wichta, Wichta, Wichta, Wichta, Wichta, Wichta, Wichta, Wichta, Wichta, Wichta, Wichta, Wichta, Wichta, Wichta, Wichta, Wichta, Wichta

7

Riverside, MO

816-415-6787

3401 NW Tullison Road, Riverside, MO

. США

Посетите филиал

19 филиалов Powering America’s Infrastructure

Просмотреть все офисы

С 1954 года компания Central Power Systems & Services оказывает партнерам поддержку самого высокого уровня. Независимо от ситуации, у нас есть решения для производства электроэнергии, распределения электроэнергии, промышленных двигателей, строительного и сельскохозяйственного оборудования, проектов, изготовленных по индивидуальному заказу, и услуг автомобильного транспорта.

Быстрые ссылки
  • About Us

  • Careers

  • Contact Us

  • News & Updates

  • Promotions & Specials

  • Robin Roberts Racing

Products
  • Construction Equipment

  • Изготовление на заказ

  • Распределение электроэнергии

  • Производство электроэнергии

С 1954 года Central Power Systems & Services предоставляет партнерам самый высокий уровень поддержки. Независимо от ситуации, у нас есть решения для производства электроэнергии, распределения электроэнергии, промышленных двигателей, строительного и сельскохозяйственного оборудования, проектов, изготовленных по индивидуальному заказу, и услуг автомобильного транспорта.

Central Power • Авторские права © 2022 • Все права защищены

Дизельные генераторные установки нацелены на будущее

Несмотря на то, что новые варианты распределенной генерации, такие как микротурбины, солнечные батареи и аккумуляторы, привлекли внимание заголовков, дизель остается предпочтительным вариантом из-за его установленная технология и надежность. Но растущая конкуренция и новые правила угрожают его традиционной роли. Вот что делает дизель, чтобы оставаться актуальным.

Если не обращать внимания ни на что, кроме заголовков в энергетических СМИ (включая МОЩНОСТЬ ), вас можно простить за то, что вы почти забыли о дизеле. Устойчивое и надежное дизельное поколение не очень интересно — оно всегда рядом, когда вам это нужно.

Трудно получить точные данные о том, сколько дизельных генераторов эксплуатируется во всем мире, отчасти потому, что официальная статистика Управления энергетической информации США и Международного энергетического агентства, как правило, объединяет дизельное топливо с мазутом, но нет никаких сомнений в том, что много всего. Дизель широко используется для резервного производства в развитых странах и для основного производства в развивающихся странах, где национальная сеть может быть ненадежной или просто отсутствовать, а также для островных сетей, где крупные электростанции нерентабельны.

Преимущества дизельного двигателя заключаются в его простоте, надежности, быстром реагировании и низкой стоимости. По сравнению с другими вариантами, такими как газовые двигатели, микротурбины и возобновляемые источники, такие как ветер и солнечная энергия, дизельные генераторы обычно являются наименее дорогими с точки зрения капитальных затрат. Дизельное топливо также имеет значительно более высокую плотность энергии, чем природный газ и другие варианты, что может упростить логистику поставок топлива. Благодаря простым требованиям к техническому обслуживанию и хорошо изученной 100-летней технологии дизель-генераторная установка не требует особого внимания для обеспечения многолетней надежной работы — идеальное качество для удаленных районов.

Но дизель имеет некоторые недостатки.

Дизельное топливо может быть дорогим, особенно когда его необходимо ввозить на большие расстояния, например, на отдаленный остров. Большая часть стимула к использованию возобновляемых источников энергии на таких островах, как Гавайи и Пуэрто-Рико, а также в других регионах, таких как Карибский бассейн и южная часть Тихого океана, обусловлена ​​высокими затратами на электроэнергию, обусловленными дизельным производством с использованием импортного топлива. В частности, Гавайи приняли решение отказаться от дизельного топлива и всех других видов ископаемого топлива к 2045 году9.0003

Дизельные электростанции, построенные без учета этой проблемы, могут быстро превратиться в белых слонов, как это было в случае с электростанцией Тарахил стоимостью 335 миллионов долларов, построенной Агентством США по международному развитию недалеко от Кабула, Афганистан. Поскольку импорт дизельного топлива в страну очень дорог и опасен, завод в основном простаивал, имея коэффициент мощности около 2% с момента его завершения в 2010 году, согласно правительственному отчету, опубликованному в августе.

Еще одна проблема, которая в последние годы стала вызывать беспокойство, — это выбросы. По сравнению с газовыми двигателями и микротурбинами, не говоря уже о возобновляемых источниках энергии, дизельные двигатели имеют более высокий уровень содержания твердых частиц NO 9.0695 x и выбросы SO x . На протяжении большей части своего существования дизель находился под контролем Агентства по охране окружающей среды (EPA), но это прекратилось в 2006 году с первыми национальными правилами выбросов в соответствии со стандартами производительности новых источников, которые обычно требовали сокращения выбросов твердых частиц не менее чем на 90%. и NOx для новых двигателей. С тех пор эти стандарты были ужесточены еще больше, а также были выпущены новые правила для существующих двигателей.

Эффективность и экологичность

Чтобы сохранить конкурентоспособность, за последние несколько лет в дизельное производство было внесено множество изменений, направленных на повышение эффективности и сокращение выбросов.

Эффективность дизельного двигателя самым непосредственным образом связана со скоростью сгорания, степенью полного сгорания топлива во время воспламенения. Обычно это зависит от того, насколько мелко и равномерно распределяется топливо во время впрыска в камеру сгорания. Турбонаддув, который нагнетает избыточный воздух в камеру, также улучшает скорость сгорания, поэтому двухступенчатый турбонаддув (с промежуточным охлаждением между ступенями) в настоящее время является обычным явлением для дизельных генераторных установок.

В современных дизельных двигателях используется метод, известный как впрыск топлива с общей топливной рампой высокого давления (HPCR) (рис. 1). Этот метод заменяет традиционный механический впрыск многократным впрыском под высоким давлением с электронным управлением во время каждого цикла сгорания. Вместо того, чтобы полагаться на отдельные форсунки, управляемые распределительным валом, HPCR использует единую систему, которая снабжает все форсунки в двигателе общим источником топлива. Это обеспечивает гораздо более высокое давление топлива, чем механическая система впрыска, что максимизирует испарение топлива и, следовательно, скорость сгорания.

1. Высокое давление, высокая эффективность. Современные дизельные топливные системы с общей топливной рампой высокого давления, такие как показанная здесь система Cummins XPI (впрыск экстремального давления), обеспечивают гораздо более высокое давление топлива и гораздо более точный и гибкий впрыск топлива в камеру сгорания. Предоставлено: Cummins

Кроме того, в отличие от распределительного вала, который может управлять только одним впрыском за цикл сгорания, в системе HPCR используется электронный привод, который может управлять несколькими отдельными впрысками на разных этапах цикла. Это означает гораздо лучший контроль момента впрыска и характеристик, которые можно настроить в соответствии с требованиями, которым должен соответствовать двигатель, сохраняя при этом максимальную эффективность и низкий уровень выбросов.

Дизельное топливо со сверхнизким содержанием серы (с содержанием серы около 15 частей на миллион) теперь является стандартом для дизельных генераторных установок в регионах, где необходимо контролировать выбросы. Использование биодизеля (в основном смешанного с нефтяным дизельным топливом) также растет в результате принятия Стандарта США по возобновляемым видам топлива, хотя это было несколько спорным, а общее производство в США все еще невелико, около 1 миллиарда галлонов в год.

Селективная каталитическая нейтрализация (SCR) успешно используется на новых дизельных генераторных установках для снижения NO x выбросы целых 95%. Другим часто используемым методом является рециркуляция выхлопных газов, при которой часть выхлопных газов направляется обратно в камеру сгорания. Это снижает температуру адиабатического пламени, обеспечивая более низкотемпературное сгорание и, следовательно, более низкое образование NO x .

Лучшее управление

Вся эта сложная технология требует более сложного управления, и традиционные аналоговые системы уступают место передовым цифровым системам управления. В то время как небольшие, редко используемые резервные генераторные установки могут работать на аналоговых устройствах, более крупные и сложные системы, особенно те, которые обеспечивают базовую мощность, переходят на цифровые.

Цифровое управление необходимо для новейших генераторных установок, использующих топливные системы HPCR и точное управление воспламенением и сгоранием. Они также необходимы там, где требуется строгое соблюдение требований по выбросам.

Другим преимуществом является то, что цифровое управление может контролировать в режиме реального времени состояние широкого спектра рабочих параметров и отображать их на централизованной панели, в отличие от аналоговых систем, которые полагаются на менее сложные сигналы тревоги и световые индикаторы. Это позволяет операторам гораздо быстрее выявлять и устранять неисправности, обеспечивая более надежное питание и сокращая время простоя. Они также позволяют осуществлять удаленный мониторинг и эксплуатацию (хотя необходима надлежащая кибербезопасность), что является еще одним преимуществом для генераторных установок, которые могут быть расположены в удаленных районах.

Хотя операторы должны быть обучены разбираться в более сложных системах и понимать, что могут означать сотни различных кодов неисправностей, цифровые системы в целом обеспечивают более эффективную и надежную работу. Поскольку дизельные генераторные установки обычно представляют собой либо аварийную генерацию, либо генерацию, когда может не быть резервной мощности сети, это критические соображения.

Дизельная энергия по-прежнему актуальна

Случайному наблюдателю простительно думать, что дизельные электростанции скоро исчезнут. Однако ничто не могло быть дальше от истины. Новые все еще строятся, а старые модернизируются с помощью современных средств управления и других технологических усовершенствований для увеличения производительности, повышения эффективности и сокращения выбросов.

Один из таких новых заводов строится в отдаленном районе Саудовской Аравии. United Cement Industrial Co. заключила контракт с MAN Diesel & Turbo на строительство завода мощностью 54,5 МВт, который будет обеспечивать электроэнергией новый цементный завод между Джиддой и горами Аль-Садия, недалеко от западного побережья королевства (рис. 2). Завод будет оснащен пятью дизельными двигателями MAN 20V32/44CR мощностью 11,2 МВт, которые оснащены технологией HPCR и сложным электронным управлением для обеспечения максимальной эффективности использования топлива и низкого уровня выбросов. Цементный завод находится далеко от национальной сети, поэтому двигатели MAN будут служить для него единственным источником энергии.

2. Сила пустыни. Четыре из пяти массивных дизельных двигателей MAN 20V32/44CR, которые будут работать на новом цементном заводе в Саудовской Аравии, ожидают установки на площадке складирования. Предоставлено: MAN

Дизель также был выбран из-за его традиционных преимуществ надежности и прочной технологии, которые важны для площадки, где бывает 50-градусная жара и регулярные песчаные бури. Несмотря на то, что двигатели адаптируются к суровому климату, они не нуждаются в передовых системах охлаждения и контроля окружающей среды, которые были бы необходимы для установки на основе газовой турбины. Расходы на топливо также являются гораздо меньшей проблемой в стране с достаточными запасами ископаемого топлива. Ожидается, что этот завод начнет работу в 2016 году.

Крупный завод MAN мощностью 210 МВт, завершенный в июле на карибском острове Гваделупа, показывает, насколько далеко продвинулась дизельная генерация за последние годы (рис. 3). По сравнению с заводом, который он заменил, Pointe Jarry использует на 15% меньше топлива и выбрасывает на 85% меньше NO x в результате усовершенствованной технологии и добавления системы SCR.

3. Энергия острова. Новая дизельная электростанция Pointe Jarry в Гваделупе значительно чище и эффективнее, чем та, которую она заменила. Предоставлено: MAN

Установка более совершенных систем на существующие генераторные установки также может принести значительные дивиденды. Wärtsilä недавно реализовала проект в Пакистане на электростанции Kohinoor в Лахоре (рис. 4). Электростанция мощностью 124 МВт, на которой работают восемь двигателей 18V46 Wärtsilä, эксплуатируется компанией Kohinoor Energy, одним из первых независимых производителей электроэнергии в стране. Оригинальные турбины подошли к концу, но вместо того, чтобы просто переделывать их, Kohinoor выбрал модернизацию. Замена старых турбин на новые турбокомпрессоры ABB TPL 76C позволила сэкономить 2,5 г/кВтч топлива. Надежность и производительность также увеличились. Поскольку станцию ​​нельзя было закрыть без возмещения ущерба покупателю электроэнергии, модернизация производилась по одной, каждая из которых занимала около 15 дней.

4. Высокая скорость. Компания Kohinoor Energy в Лахоре, Пакистан, добилась значительной экономии топлива за счет модернизации турбонагнетателей своих дизельных двигателей Wärtsilä. Предоставлено: Wärtsilä

Сочетание солнечной и дизельной энергии

Солнечная и дизельная энергия могут показаться конкурентами для будущих поколений, но на самом деле они прекрасно совместимы для автономных приложений. Гибридные солнечные и дизельные электростанции компенсируют два основных недостатка каждого варианта: прерывистость солнечной фотоэлектрической (PV) генерации и высокую стоимость транспортировки дизельного топлива к удаленным объектам, таким как шахта.

Электроэнергия от фотоэлектрических солнечных батарей в этих случаях стоит как минимум на 50% меньше, чем дизельная генерация, но без резервного аккумулятора она не вырабатывает электроэнергию в ночное время. Вот тут-то и появляется дизельная генераторная установка, которая дешевле на киловатт-час, чем батарея, и их сочетание может привести к существенной экономии затрат на электроэнергию. Исследование, проведенное немецкой консалтинговой фирмой THEnergy, показало, что горнодобывающие проекты с использованием солнечной и дизельной генерации могут существенно снизить общие затраты на электроэнергию для операторов шахт, особенно после первых пяти лет (поскольку многие расходы должны быть оплачены авансом).

Стационарные гибридные солнечные и дизельные электростанции существуют уже несколько лет (хотя большинство из них довольно небольшие), но в июне итальянская компания Building Energy и саудовская компания SES Smart Energy Solutions объявили, что они объединяются для разработки первого временного полевого Гибридная солнечно-дизельная электростанция в Саудовской Аравии. Первый объект будет сдан этой осенью. Контейнерная конструкция является портативной, модульной и масштабируемой. (Дополнительную информацию о гибридных электростанциях см. в разделе «Использование синергии выработки электроэнергии с помощью гибридных электростанций» в апрельском номере 2015 года.)

Недавнее падение цен на сырую нефть, вероятно, оказало некоторую поддержку дизельному производству, и поскольку стоимость аккумуляторов продолжает падать, предприимчивые проектировщики обязательно найдут эффективное сочетание дизельного топлива, возобновляемых источников энергии и хранения. Один из примеров возможного будущего можно найти в техасском коммунальном предприятии Oncor System Operating Services Facility недалеко от Далласа ( POWER , лауреат премии Smart Grid Award 2015 — см. газовой микротурбины для создания гибкой, надежной и быстродействующей системы.

Дизельная генерация не всегда может быть самым популярным вариантом среди регулирующих органов, специалистов по планированию коммунальных услуг и отраслевых экспертов, но ее многочисленные преимущества должны обеспечить ее роль в структуре энергетики в обозримом будущем. ■

Томас У. Овертон, JD , помощник редактора POWER.

Как работает дизельный резервный генератор? —

Генераторы обеспечивают непрерывный поток электроэнергии для любого здания или оборудования в любом месте в любое время.

Дизельные генераторы служат для различных целей, включая личное использование. Вы думали об инвестировании в резервный генератор? Вот подробнее о том, как они работают и какую пользу они могут вам принести!

Что такое дизельный резервный генератор?

Дизельный резервный генератор, также известный как генераторная установка, представляет собой часть оборудования, состоящую из дизельного двигателя и электрического генератора/генератора переменного тока. Эти два элемента работают вместе, чтобы преобразовать дизельное топливо в электрическую энергию. Оттуда любой, кому требуется электричество, может получить к нему доступ, даже если он не подключен к электросети.

Большинство резервных дизель-генераторов являются дополнительным источником энергии. Их цель — включить и обеспечить вас электроэнергией, если ваша электросеть выйдет из строя во время шторма или в часы пик.

 

Как работает резервный дизельный генератор?

Дизельный резервный генератор использует дизельное топливо в качестве источника топлива. Дизель горит при гораздо более высокой температуре по сравнению с другими источниками топлива, что делает его более эффективным и мощным.

Двигатель преобразует топливо в механическую энергию. Эта энергия приводит в действие генератор переменного тока, вращая ротор генератора переменного тока, который преобразует механическую энергию в электрическую.

Генератор переменного тока помимо ротора содержит статор и магнитное поле между ними. Ротор будет вращаться через это магнитное поле, создавая напряжение за счет электромагнитной индукции на статоре. При подключении к нагрузке напряжение от статора будет течь в виде электрического тока, который позволяет генератору обеспечивать мощность.

Дизельный генератор работает следующим образом:

  • В генератор вдувается воздух до тех пор, пока он не сжимается, а затем впрыскивается дизельное топливо
  • Комбинация сжатого воздуха и дизельного топлива вызывает воспламенение воздуха, запуская генератор
  • Тепло от двигателя преобразуется в механическую энергию, где оно поступает в генератор переменного тока и преобразует энергию в электричество

Резервный дизельный генератор может работать часами, днями и даже неделями при надлежащем обслуживании и подаче топлива.

Свяжитесь с компанией Central States Diesel Generators уже сегодня.

Позвоните нам! 262-955-7655 | (M) 847-997-8090|[email protected]

Элементы резервного генератора

Мощные компоненты генератора нуждаются в корпусе и нескольких других компонентах, чтобы обеспечить бесперебойную работу генератора.

Генератор содержит двигатель, генератор переменного тока и другие мелкие компоненты в корпусе из стали или алюминия. Это защищает генератор от элементов, а также приглушает шум. Корпус должен способствовать охлаждению генератора и быть устойчивым к коррозии.

Другие части генератора включают аварийный автоматический переключатель и панель управления. Основание генератора опирается на антивибрационную систему для снижения шума и защиты целостности генератора.

Топливный бак для хранения дизельного топлива. В зависимости от типа генератора в корпусе может находиться топливный бак или он может быть отдельным.

Портативный и резервный генератор

Генераторы бывают разных размеров и мощности в зависимости от их назначения. Большие резервные портативные генераторы, используемые для питания целых больниц в чрезвычайных ситуациях, намного больше, чем портативный генератор, который вы используете для своего кемпера. Два основных типа генераторов, с которыми вы столкнетесь, — это портативные и резервные генераторы.

Портативные и дизельные резервные генераторы могут выполнять ту же задачу, обеспечивая питание, когда вы отключены от сети. Когда дело доходит до удобства и стоимости, резервный и портативный генераторы имеют разные преимущества и недостатки.

Переносные автономные дизельные генераторы

Переносные генераторы обычно стоят дешевле, производят меньше энергии и, как правило, более шумны, чем их резервные дизельные аналоги. Большинство из них используют бензин в качестве источника топлива, но вы можете найти и такие, которые работают на дизельном топливе, сжиженном пропане или природном газе. В зависимости от размера генератора он может сжигать от 12 до 20 галлонов топлива в день.

Преимущество переносного генератора в том, что его можно относительно легко перемещать. Вы можете держать их в безопасности и вне поля зрения в хранилище, когда вы их не используете. Они потребуют, чтобы вы вручную подключили их к вашему дому или кемперу через переключатели.

Если вам необходимо использовать портативный генератор в ненастную погоду, вам необходимо накрыть его защитным покрытием.

Резервные генераторы

Наиболее заметная разница между переносным и резервным генератором заключается в том, что последний является стационарным. Профессионал навсегда установит их с защитой от атмосферных воздействий за пределами вашего дома, офиса или рабочего места.

Самым большим преимуществом резервного генератора является то, что он автоматически включается, когда у вас отключается электричество. Эти генераторы обеспечивают достаточную мощность, чтобы вы могли одновременно запитать все в вашем доме или на рабочем месте.

Резервные дизельные генераторы более эффективны благодаря топливу, позволяющему им работать дольше. Варианты с природным газом и пропаном могут работать еще дольше.

Более высокий уровень мощности и эффективности, предлагаемый резервными дизельными генераторами, имеет высокую цену. За дополнительную плату вы получаете надежность, удобство и более производительный генератор. Другие изгибы дизельного резервного генератора включают:

  • Топливная эффективность
  • Надежность
  • Масштабируемая конструкция
  • Локальное и удаленное использование
  • Автоматический контроль загрузки
  • Надежная сборка
  • Низкий уровень выбросов

Несмотря на отличные характеристики, большинство людей выбирают портативный генератор из-за его цены. Если вам нужно что-то более мощное и долговечное для вашего дома или бизнеса, лучшим выбором будет дизельный резервный генератор.

Использование резервного переносного генератора

Дополнительная мощность и надежность резервного дизельного генератора позволяют ему работать в различных ситуациях и при различных условиях. Вот несколько вариантов использования генератора:

  • Обеспечение резервного питания вашего дома
  • Мощность для вашего бизнеса
  • Сельское хозяйство, фермерство и животноводство
  • Предложение электроэнергии в отдаленных районах
  • Мощность для особых мероприятий, таких как свадьбы и концерты
  • Кемпинг
  • Горнодобывающая промышленность
  • Ярмарки и карнавалы
  • Праздничные дисплеи
  • Катание на лодках

Дизельные генераторы идеально подходят для любой ситуации, когда вам нужна электроэнергия, но вы не можете подключиться к обычной электросети.

Найдите резервные дизельные генераторы уже сегодня!

Вы ищете надежный источник питания для работы дома или на работе? Дизельный резервный генератор предлагает множество преимуществ, разработанных для удовлетворения практически любых потребностей с дополнительным удобством. Инвестирование в резервный дизельный генератор обеспечит бесперебойную работу вашего дома или офиса.