ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Как был создан пороховой ракетный двигатель. Ракетный двигатель пороховой


Как был создан пороховой ракетный двигатель. Ракетные двигатели

Как был создан пороховой ракетный двигатель

Пороховые ракетные двигатели исторически появились значительно раньше, чем какие бы то ни было другие реактивные двигатели.

Нельзя достоверно сказать, кто и когда изобрел первый пороховой ракетный двигатель.

Имеются указания о том, что уже много веков тому назад пороховые ракеты применялись в Китае в качестве увеселительных огней. Точно так же уже давно пороховые ракеты стали применять и в качестве боевого оружия, в виде своеобразных ракетных снарядов, в первое время зажигательных. По свидетельству англичан, при завоевании Индии (XVIII век) им много неприятностей причинили действия отрядов индусов, вооруженных ракетными стрелами — оружием, дотоле совершенно неизвестным в Европе. Эти стрелы представляли собой бамбуковые трубки, заполненные горючим составом и открытые с задней стороны. Индусы поджигали горючее и бросали ракеты во врагов, причем реактивный эффект струи выходящих из трубки газов значительно увеличивал дальность полета стрелы и силу удара. Один из руководителей англичан, Конгрев, называл действие этих примитивных снарядов потрясающим.

Англичане заимствовали у индусов эту идею и организовали у себя под руководством Конгрева производство реактивных снарядов.

Ведущую роль в применении и развитии пороховых ракет, начиная с конца XVII века, играла Россия. Особенно широкое развитие получило ракетное дело при Петре I. Иностранцы, посещавшие в то время Россию, писали в своих записках, что ни одно государство не может в этом отношении соревноваться с Россией. Петр I ввел пороховые ракеты на вооружение русской армии в качестве сигнальных. Через 100 лет после этого пороховые ракеты стали применяться в русской армии и в качестве боевого оружия. Впервые боевые гранаты-ракеты были применены русскими в 1825 г. на Кавказе и в войне с Турцией 1828–1829 гг. Создателем этих первых отечественных боевых ракет был суворовский генерал Александр Дмитриевич Засядко.

Но особенно много сделал для создания ракетного вооружения русской армии талантливый изобретатель, инженер, исследователь и организатор — генерал Константин Иванович Константинов, живший и работавший в середине прошлого века 1818–1872 гг.). Работы Константинова, в частности, его книга «О боевых ракетах», получили широкую известность в России и за рубежом, были переведены на многие языки и в течение долгого времени служили настольными книгами для всех артиллеристов.

Константинов организовал в России заводы для производства ракет, радикальным образом изменил технологию их изготовления (в частности, устранил ручную набивку ракет порохом), сконструировал ряд машин по производству ракет; эти машины так и назывались «машинами Константинова». Константинов создал ряд новых, усовершенствованных образцов боевых ракет со значительно увеличенной дальностью полета, а также ракет для различных вспомогательных целей — спасательных, сигнальных и других; разработал тактику применения ракетного оружия. В частности, по его предложению этот род оружия был выделен в качестве самостоятельного — были созданы отдельные части в дополнение к артиллерийским.

Ракетные снаряды применялись русской армией при обороне Севастополя в 1855–1856 гг. и в военных действиях в более позднее время — до русско-турецкой войны 1877-78 гг.

Применение ракетного вооружения в первое время имело особые преимущества, так как орудийная артиллерия, имевшая на вооружении гладкоствольные орудия, стрелявшие круглыми ядрами, была весьма несовершенна — дальность полета ядер была невелика, меткость стрельбы оставляла желать много лучшего. Легкое ракетное оружие было к тому же очень удобно для вооружения им кавалерии, использования в горных условиях и т. д.

Однако, начиная со второй половины прошлого века, когда были изобретены нарезные орудия, стреляющие цилиндрическими снарядами, что значительно увеличивало дальность и улучшало точность артиллерийского огня, ракетное оружие стало быстро вытесняться артиллерийским и к концу века было повсеместно снято с вооружения.

Тем не менее, несмотря на огромный прогресс, имевший место с тех пор в ствольной артиллерии, в последние годы ракетное оружие снова получает все более широкое распространение. Большой толчок в этом отношении дал опыт минувшей воины, где в ряде случаев ракетное оружие показало себя с наилучшей стороны благодаря присущим ему принципиальным преимуществам по сравнению со ствольным оружием.

И снова, как и ранее, Россия была пионером в деле развития и широкого разнообразного применения ракетного оружия. Впервые в этой войне именно Советская армия, по достоинству оценив возможности ракетной артиллерии, широко применила это грозное оружие на поле брани.

Основное преимущество ракетной артиллерии заключается в том, что для выстрела ракетным снарядом не требуется массивного, тяжелого орудия, вес которого в обычной ствольной артиллерии превышает вес снаряда в сотни раз[6]. Поэтому ракетную артиллерию называют иногда «артиллерией без пушек».

Фиг. 9. Гвардейские минометы («катюши») на Красной площади.

Большой вес обычного артиллерийского орудия объясняется массивностью основных элементов этого орудия — ствола, в котором при выстреле газы развивают давления в тысячи атмосфер, необходимые для сообщения снаряду огромных ускорений, и станины, которая должна воспринимать значительные усилия отдачи при выстреле.

Ракетное орудие не имеет ствола, нагруженного изнутри высоким давлением газов, так как сгорание пороха происходит не в орудии, а в самом снаряде. По этой же причине орудие не воспринимает никаких усилий отдачи. Роль ракетного орудия заключается лишь в сообщении должного направления ракетному снаряду при выстреле. Вследствие этого ракетное орудие представляет собой весьма легкий станок с направляющими — трубой, лотком или салазками, по которым движется снаряд при выстреле.

Это свойство ракетного орудия позволяет осуществлять залп несколькими ракетными снарядами с. помощью одной легкой установки представляющей собой сочетание нескольких ракетных орудий (фиг. 9). Установленный на автомобиле один такой пакетный миномет заменял большое число артиллерийских орудий. Благодаря значительно большей по сравнению с пушками подвижности этих установок и возможности в короткое время концентрировать большое число их в нужном месте, гвардейские минометы представляли собой грозное для врага оружие, позволявшее осуществлять неожиданно для него мощные огневые налеты.

После первого же успешного применения «катюш» в боях под Смоленском, в августе 1941 г., товарищ Сталин, предвосхитив их будущую роль в войне, сразу же дал указание всячески развивать этот новый вид вооружения, и оно получило самое широкое распространение в нашей армии.

Большой интерес ракетные орудия, благодаря их весьма малому весу, представляют также для самолетов (фиг. 10), так как создание артиллерийских орудий авиационного типа, т. е. весьма облегченных, представляет собой очень трудную задачу. Однако не меньшее достоинство ракетных орудий в качестве авиационных заключается в том, что они не передают самолету усилий отдачи. Для обычных орудий с увеличением калибра эти усилия становятся столь большими, что создают при выстреле значительные перегрузки самолета. Как показали испытания, легкие самолеты — истребители, — имеющие пушки, стреляющие вперед, при выстреле на мгновение почти останавливаются. Это резкое торможение, естественно, вызывает большие перегрузки в конструкции самолета, могущие привести к полному его разрушению, что иногда и наблюдалось. В то же время самолет средней величины, подобно изображенному на фиг. 11, может произвести залп ракетными снарядами среднего калибра, например, в 125 мм, равный по своей огневой мощи бортовому залпу эсминца, и это вовсе не скажется на его полете.

Наряду с этими несомненными достоинствами ракетные орудия имеют и весьма большой недостаток по сравнению с артиллерийскими — гораздо меньшую точность огня. Артиллерийский снаряд благодаря получаемому им в нарезном стволе орудия вращению обладает большой устойчивостью в полете. Ракетный же снаряд не обладает такой устойчивостью. Кроме того, незначительные изменения в характере горения пороха в ракетном двигателе такого снаряда, носящие случайный характер, значительно влияют на форму траектории. Правда, точность ведения огня ракетными снарядами с помощью ряда мер может быть значительно повышена. В частности, тщательная технология производства и строгий контроль обеспечивают тождественность пороховых зарядов и вследствие этого более или менее одинаковую работу двигателей разных снарядов, снарядам может быть сообщено вращение в полете и так далее. Тем не менее в настоящее время большой разброс при стрельбе из ракетных орудий не обеспечивает достаточной прицельности огня, который поэтому ведется только по сравнительно большим целям. Главной особенностью такого огня является его массированность.

Фиг. 10. Залп ракетных орудий с самолета.

Следует отметить, что наряду с ракетными орудиями, предназначенными для стрельбы снарядами большого калибра, этой, так сказать, ракетной артиллерией, в годы войны применялось и индивидуальное ракетное оружие для стрельбы с ближних дистанций по технике (танкам и др.) и живой силе противника.

Развитие порохового ракетного двигателя связано не только с артиллерией.

На заре развития авиации, когда создание управляемых летательных аппаратов как легче, так и тяжелее воздуха во многом задерживалось из-за отсутствия легкого и достаточно мощного двигателя, взоры изобретателей не раз обращались к реактивному двигателю. Одними из первых в этом направлении были работы русских изобретателей Третесского и Соковнина, относящиеся к середине прошлого века, в которых предполагалось использование реакции струи пара или сжатого воздуха.

Приоритет в отношении идеи использования порохового ракетного двигателя для летательного аппарата тяжелее воздуха принадлежит русской науке и связан с именем революционера-народовольца, студента института инженеров путей сообщения, Николая Ивановича Кибальчича.

Как известно, Кибальчич был активным участником террористического акта, осуществленного народовольцами 1 марта 1881 г. Кибальчич изготовил бомбу, которой был убит Александр II. Находясь в камере смертников, двадцатисемилетний Кибальчич за десять дней до казни подал записку с изложением существа своего предложения, идея которого у него возникла, очевидно, в процессе работы над бомбой.

Фиг. 11. Ракетные снаряды пошли на цель.

Фиг. 12. Так выглядел бы в полете ракетный летательный аппарат Кибальчича.

По мысли Кибальчича, как подъем, так и полет его аппарата должен был осуществляться под действием реактивного эффекта струи газов, образующихся при горении пороха в специальном ракетном двигателе, который должен был поворачиваться для управления полетом (фиг. 12). Помимо того, что в своей записке Кибальчич впервые излагал идею управляемого ракетного полета, чрезвычайно важным и ценным было его указание, что в ракетном двигателе должен применяться медленно горящий порох, спрессованный в виде ряда цилиндрических шашек. Предложение Кибальчича не подверглось рассмотрению, так как чиновники полиции считали, что «это едва ли будет своевременно и может вызвать только неуместные толки» и решили приобщить его к «делу 1 марта». Записка Кибальчича была обнаружена в полицейских архивах, где она пролежала более 36 лет, только в августе 1917 года.

Пороховой ракетный двигатель не нашел себе применения в качестве авиационного главным образом потому, что такой двигатель работает лишь в течение нескольких секунд или даже десятых долей секунды, а регулирование его тяги, необходимое для осуществления управляемого полета, представляет значительные трудности.

Тем не менее пороховой ракетный двигатель довольно широко применялся в авиации во время войны и применяется сейчас. Однако он служит не в качестве основного двигателя самолета, обеспечивающего его полет, а в качестве вспомогательного двигателя, тяга которого используется лишь при необходимости. Такая необходимость в эксплоатации может встретиться, например, когда требуется осуществить взлет перегруженного самолета, либо взлетная площадка мала (применение порохового двигателя может вдвое сократить разбег при взлете), загрязнена и так далее. В этих случаях пороховой двигатель носит название стартового (фиг. 13). В частности, пороховой двигатель может быть использован для запуска самолета или снаряда с прямоточным воздушно-реактивным двигателем, который не в состоянии обеспечить самостоятельный старт.

Пороховой двигатель может быть использован и в качестве ускорителя, когда он включается с целью кратковременного увеличения скорости полета; например, когда нужно догнать противника или уйти от него.

Часто после использования пороховые двигатели сбрасываются; для этой цели они размещаются под крылом самолета (фиг. 14).

Фиг 13. Взлет пассажирского самолета с помощью стартовых ракет (ракеты размещены в фюзеляже).

Фиг. 14. Пороховые ракетные двигатели под крылом бомбардировщика.

Преимущества порохового РД в качестве вспомогательного авиационного двигателя заключаются в его простоте, дешевизне, безотказности, малом весе и вместе с тем значительной тяге, которую такой двигатель развивает в течение короткого времени, что от него в данном случае и требуется.

В заключение следует упомянуть о попытках установить пороховой РД на различных автомобилях, мотоциклах, катерах и так далее, которые делались чаще всего с целью установления новых рекордов скорости и в рекламных целях. Научное и практическое значение этих попыток невелико, так как известно, что применение пороховых ракетных двигателей целесообразно лишь при больших скоростях передвижения, свойственных авиации и артиллерии. На фиг. 15 представлена схема рекордного автомобиля, имевшего сзади батарею пороховых ракетных двигателей. Испытания таких экипажей часто кончались катастрофой.

Фиг. 15. Автомобиль с пороховыми ракетными двигателями.

Поделитесь на страничке

Следующая глава >

tech.wikireading.ru

Пороховой ракетный двигатель. Большая энциклопедия техники

Пороховой ракетный двигатель

Пороховой ракетный двигатель – ракетный двигатель, использующий в качестве топлива порох, который, сгорая, образует реактивную струю, создающую тягу. Прообразом порохового ракетного двигателя являлись боевые ракеты, применяемые в Китае и Индии во время боевых действий. В России первые успехи были заложены во времена Петра I, который лично принимал участие в работе «ракетного заведения». В марте 1881 г. в тюремной камере революционером и ученым Н. И. Кибальчичем (1853—1881) был создан первый проект аппарата, в основе которого был пороховой ракетный двигатель, при помощи которого человек мог побывать в космосе. К сожалению, 3 апреля 1881 г. Кибальчич был казнен, и проект остался незавершенным. По его мнению, человека в воздушное пространство смогла бы поднять сила, которой «являются медленно горящие взрывчатые вещества».

Аппарат, изобретенный Кибальчичем, представлял собой платформу, которая снабжалась ракетным двигателем. В камеру сгорания при помощи часового механизма с определенной периодичностью должны подаваться пороховые шашки («свечи»). Управление аппаратом осуществляется при помощи изменения положения двигателя относительно платформы. Ценнейшие идеи Кибальчича остались надолго похоронены в архивах царской полиции и были открыты для ученых лишь с наступлением революции.

Основной характеристикой пороха как топлива для ракетного двигателя является объем газообразных продуктов, выделяемых при сгорании 1 кг пороха, при определении величины газ приводится к нормальным условиям. Порох подразделяется на два класса: нитроцеллюлозный (бездымный) и смесевый (в том числе и дымный). Пороха, применяющиеся в ракетных двигателях, и называются твердыми ракетными топливами. В зарядах к ракетным двигателям и газогенераторам применяют баллиститный порох.

Основу этого типа пороха составляют нитроцеллюлоза и труднолетучий растворитель, за что он получил название двухосновного. Отличается быстротой изготовления, возможностью получения крупных зарядов и высокой физической стойкостью. Главным недостатком является большая взрывоопасность в производстве, так как в состав входит мощное взрывчатое вещество – нитроглицерин. Смесевые пороха перед баллиститными порохами обладают несколькими преимуществами, среди которых более высокая удельная тяга и большой диапазон регулирования скорости горения с помощью различных присадок и т. д.

Поделитесь на страничке

Следующая глава >

info.wikireading.ru

Пороховой ракетный двигатель - это... Что такое Пороховой ракетный двигатель?

 Пороховой ракетный двигатель         простейший вид твёрдотопливного ракетного двигателя (См. Твердотопливный ракетный двигатель), в котором в качестве топлива используется бездымный порох (См. Пороха), обладающий большой теплотой сгорания и высоким удельным импульсом. П. р. д. устанавливаются на баллистических ракетах, крылатых ракетах, на самолётах и др. летательных аппаратах в качестве стартовых силовых установок и ускорителей.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Пороховой ракетный двигатель" в других словарях:

dic.academic.ru

Пороховой ракетный двигатель

 

Пороховой ракетный двигатель состоит из ступеней, вложенных одна в другую и армированных кордом для повышения механической прочности. Каждая ступень выполнена тонкостенной, стенки которой профилированы в виде полутеплового сопла-камеры. Глухая конусная или конусоидная часть ступени выполнена из ракетного пороха. Сверхзвуковая часть ступени выполнена из абляционного материала. Для разделения пороховых частей ступени применена абляция в виде тонкого слоя на внешней поверхности пороха, в которой имеются отверстия перфорации для передачи пламени от ступени к ступени. Изобретение позволяет создать ракетный двигатель, отличающийся малым весом и габаритами. 3 з.п. ф-лы, 3 ил.

Изобретение относится к ракетостроению, в частности к двигателестроению.

Известны топливные ступени, состоящие из ракетного пороха, форма которых позволяет вкладывать их друг в друга, образуя топливный заряд ракеты (см. патент США 3439613, МПК F 02 К 9/04, 1969). Недостатком подобного решения является большой вес двигателя, и конструкции ракеты, которые после отработки топлива превращаются в балластную массу, из-за чего ракеты делают многоступенчатыми и сбрасывают ступени как лишний вес в полете. При этом полезная нагрузка этих ракет невелика из-за наличия этого балласта. Предложенное изобретение направлено на устранение указанных недостатков. Предложенный пороховой ракетный двигатель состоит из ступеней, вложенных друг в друга и армированных для повышения механической прочности ступеней сгораемым тканевым или нитяным кордом. Каждая ступень выполнена тонкостенной, стенки ступени профилированы в виде полутеплового сопла-камеры. Дозвуковая глухая конусная или конусоидная часть ступени выполнена из ракетного пороха, сверхзвуковая часть ступени выполнена из абляционного материала. Абляционный материал способен испаряться при нагревании от истекающих из сопла пороховых газов и имеет армирование для повышения прочности ступени. Для разделения выполненных из пороха частей ступеней двигателя применена абляция в виде тонкого слоя на внешней поверхности, выполненной из пороха, части ступени, в которой имеются отверстия перфорации для передачи пламени от ступени к ступени. Разделение ступеней друг от друга выполняется для обеспечения сохранности неизменной геометрии профиля сопла-камеры двигателя. Поскольку известно, что ракетные пороха имеют тенденцию к неравномерному горению в случае различного давления на разных участках сопла-камеры, то разделение двигателя на разделенные друг от друга ступени способствует тому, что после выгорания пороха в одной ступени и прохождения пламени через перфорацию в тонком слое абляции, разделяющим пороховые части ступеней, происходит запуск и загорание пороха в сопле-камере следующей ступени, а недогоревшие остатки отработавшей ступени выбрасываются из двигателя струей газов из следующего работающей ступени двигателя. Внутренняя поверхность пороховой части ступени покрыта инициирующим составом, и ступени имеют средства для электрозапуска. Основным способом запуска ступеней двигателя является загорание от выгоревшей предыдущей ступени, при передаче пламени из сопла-камеры предыдущей ступени в сопло-камеру последующей ступени, при этом каждая ступень двигателя может быть снабжена собственным средством для принудительного запуска. В стенках сверхзвуковой части ступени выполнены отверстия, образующие в двигателе продольные каналы для вдува в сопло-камеру газов с целью управления вектором тяги двигателя. Предложенный двигатель может быть выполнен в виде комбинированного ракетного двигателя, где выполненные из пороха части ступеней способны гореть при подаче в их сопло-камеру дополнительного вещества. В таком двигателе в сопле-камере ступени, в его дозвуковой части выполнены отверстия, совпадающие друг с другом и образующие продольные каналы для подачи в полутепловое сопло-камеру дополнительного вещества, например окислителя из бака ракеты. При использовании ядерной энергии в качестве источника энергии для двигателя ступени выполнены из тугоплавкого аблирующего материала, в осевой части сопла-камеры сквозь каналы для подачи в сопло-камеру дополнительного вещества пропущены сборки тепловыделяющих элементов (ТВЭЛов) ступеней и имеются зазоры для прокачивания рабочего тела ядерного ракетного двигателя (ЯРД). На фиг.1 приведен чертеж заявляемого порохового ракетного двигателя. На фиг.2 приведен чертеж заявляемого двигателя, выполненного в виде комбинированного ракетного двигателя. На фиг.3 приведен чертеж заявляемого двигателя, использующего в качестве источника энергии ядерную энергию. Изображенный на фиг.1 двигатель состоит из ступеней 1, где каждая ступень состоит из выполненной из пороха части 2, где происходит горение и газы разгоняются до скорости в М=1, и сверхзвуковой части сопла-камеры, которая выполнена из абляционного материала 3 и имеет форму раструба. Обе части ступеней двигателя армированы нитяным кордом 4, а выполненные из пороха части ступеней покрыты тонким слоем абляции 5, в котором имеются отверстия перфорации 6. Для обеспечения автоматического запуска ступеней в работе двигателя внутренние стенки выполненных из пороха частей каждой ступени покрыты инициирующим составом 7, который способен быстро воспламеняться и поджигать основной пороховой слой ступени. Средства электрозапуска ступеней 8 расположены на внутренней поверхности каждой ступени двигателя и предназначены для запуска первой ступени при пуске ракеты, а также для запуска тех ступеней двигателя, которые по какой-то причине не запустились самостоятельно во время работы двигателя. На фиг. 2 изображен двигатель, выполненный в виде комбинированного ракетного двигателя. Двигатель состоит из ступеней 1, состоящих из выполненной из пороха части 2 и сверхзвуковой части сопла-камеры, выполненной из абляционного материала, имеющей форму раструба 3. Корд 4 служит для повышения прочности ступени, выполненная из пороха часть ступени покрыта тонким слоем абляции 5 с перфорацией 6. Инициация горения ступени происходит за счет возгорания инициирующего слоя 7, а средство электрозапуска 8 служит для запуска ракеты. Двигатель имеет каналы 9 для подачи в сопло-камеру дополнительного вещества и каналы 10 в сверхзвуковой части сопла-камеры, предназначенные для вдува в сопло газа для управления вектором тяги двигателя. На фиг.3 изображен ЯРД, состоящий из ступеней 1, выполненных из тугоплавкого аблирующего материала 11 в зоне реактора и более легкого абляционного материала 3 в сверхзвуковой части сопла-камеры ступени. Каждая ступень ЯРД армирована кордом 4 и покрыта тонким слоем абляции 5, служащим также и для поглощения радиации при работе ЯРД. В каналы 9, совпадающие с каналами для прокачивания рабочего тела двигателя, пропущены ТВЭЛы 12. Через каналы 10 производится вдув газа в сопло ЯРД. При работе ЯРД после запуска реактора и начала прокачивания рабочего тела двигателя начинает происходить испарение стенок сопла-камеры от контакта с разогретым рабочим телом ЯРД. Рабочее тело и испаренные газы истекают из сопла-камеры ЯРД и создают двигателю тягу. Изобретение достаточно простое, для его использования достаточно имеющихся наработок в ракетном деле.

Формула изобретения

1. Пороховой ракетный двигатель, состоящий из ступеней, вложенных одна в другую и армированных кордом для повышения механической прочности ступеней, отличающийся тем, что каждая ступень выполнена тонкостенной, стенки которой профилированы в виде полутеплового сопла-камеры, глухая конусная или конусоидная часть ступени выполнена из ракетного пороха и сверхзвуковая часть ступени выполнена из абляционного материала, для разделения пороховых частей ступени применена абляция в виде тонкого слоя на внешней поверхности пороха, в которой имеются отверстия перфорации для передачи пламени от ступени к ступени. 2. Пороховой ракетный двигатель по п. 1, отличающийся тем, что в стенках сверхзвуковой части ступени выполнены отверстия, образующие в двигателе продольные каналы, для вдува в сопло газов и с целью управления вектором тяги двигателя, внутренняя поверхность пороховой части ступени покрыта инициирующим составом и ступени имеют средства для электрозапуска. 3. Пороховой ракетный двигатель по пп. 1 и 2, отличающийся тем, что в сопле-камере ступени, в его дозвуковой части выполнены отверстия, образующие каналы для подачи в сопло-камеру дополнительного вещества, например окислителя. 4. Пороховой ракетный двигатель по пп. 1-3, отличающийся тем, что ступени выполнены из аблирующего материала, в осевой части сквозь каналы пропущены сборки тепловыделяющих элементов (ТВЭЛов) и имеются зазоры для прокачивания рабочего тела ЯРД.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3

Похожие патенты:

Изобретение относится к ракетной технике и может быть использовано при создании твердотопливных двигателей различного назначения

Изобретение относится к ракетной технике и может быть использовано в конструкциях маршевых ступеней ракетных двигателей на твердом топливе (РДТТ)

Изобретение относится к ракетной технике и может быть использовано при создании космического РДТТ с отческой тяги гашением посредством впрыска жидкого охладителя в камеру сгорания

Изобретение относится к ракетной технике и может быть использовано в конструкциях маршевых ступеней ракетных двигателей на твердом топливе (РДТТ)

Изобретение относится к области ракетной техники, а именно к конструкциям твердотопливных зарядов, предназначенных для обеспечения ступенчатого изменения тяги ракетного двигателя, и может быть использовано для твердотопливных изделий различного назначения

Изобретение относится к конструкциям ракетных двигателей на твердом топливе

Изобретение относится к ракетным двигателям для ракетно-космического моделирования в сфере технических видов творчества молодежи и детских развивающих игр

Изобретение относится к ракетной технике и может быть использовано в конструкциях маршевых ступеней ракетных двигателей на твердом топливе

Изобретение относится к конструкциям ракетных двигателей на высокоэнергетических составах

Изобретение относится к оружейной технике, а именно к реактивным гранатометам и ракетам для реактивных гранатометов. Ракета для гранатомета содержит ракетный двигатель с кольцевым или цилиндрическим каналом или кольцевыми бронированными с одной стороны шашками, боевую часть, два или более реактивных сопла, два тандемных кумулятивных заряда, бесконтактный лазерный взрыватель. В двигателе расположены коаксиальные и не коаксиальные слои топлива, поперечные плоские или вогнутые слои топлива. Слои топлива имеют разную толщину, разную скорость горения, разное тепловыделение. Реактивный гранатомет содержит трубчатую направляющую, механизм и барабан револьверного типа, рычаг или шток с лопаткой, пружину. Шток с лопаткой содержит ролик, входящий в паз зигзагообразной формы. На разветвлениях паза находятся подпружиненные храповики. Изобретение позволяет повысить точность стрельбы. 11 н. и 6 з.п. ф-лы, 9 ил.

Изобретение относится к ракетной технике и может быть использовано при создании стартово-разгонных ступеней для ракет с прямоточными воздушно-реактивными двигателями и во вспомогательных ракетных двигателях твердого топлива. Бессопловой ракетный двигатель твердого топлива включает камеру сгорания с передним днищем, цилиндрической частью и задним торцом, а также скрепленный с камерой сгорания заряд с центральным каналом. Заряд состоит из двух последовательно расположенных частей. Большая часть заряда расположена у переднего днища и выполнена с цилиндрическим центральным каналом. Меньшая часть заряда расположена у заднего торца камеры сгорания, имеет центральный канал, площадь проходного сечения которого плавно увеличивается в сторону выходного сечения, и изготовлена из топлива, имеющего скорость горения, на 30%÷50% меньшую, чем скорость горения большей части заряда. Масса меньшей части заряда составляет 2%÷10% от общей массы заряда. Изобретение позволяет повысить эффективность использования заряда твердого топлива, за счет уменьшения разгара критического сечения его канала. 4 з.п. ф-лы, 2 ил.

Изобретение относится к ракетной технике, а именно к конструкциям крупногабаритных ракетных двигателей со скрепленным с корпусом зарядом смесевого твердого топлива. Ракетный двигатель твердого топлива включает корпус, скрепленный с ним основной канально-щелевой заряд с частичной бронировкой, в канале которого соосно основному размещен дополнительный заряд твердого топлива. На цилиндрическую часть канала основного заряда нанесена бронировка. Дополнительный заряд имеет звездообразную форму внутреннего канала и вклеен в коническую часть канала основного заряда через промежуточный слой эластичного термостойкого материала. Изобретение позволяет повысить коэффициент заполнения корпуса ракетного двигателя топливом, а также упростить схему размещения дополнительного заряда. 2 з.п. ф-лы, 2 ил.

Ракетный двигатель бессоплового типа содержит шашку твердого ракетного топлива, имеющую один или несколько продольных каналов на всю длину шашки заполненных более быстро горящим топливом, чем основное топливо. Наружная поверхность шашки упрочнена трубой из плавящегося или сгораемого материала либо армирована высокомодульными волокнами, причем волокна ориентированы поперечно оси шашки, или и поперечно, и продольно, или по объемной спирали в разных направлениях. Изобретение позволяет повысить эффективность бессоплового ракетного двигателя, а также повысить прочность его шашки. 1 н. и 4 з.п. ф-лы, 1 ил.

Изобретение относится к ракетостроению, в частности к двигателестроению

www.findpatent.ru

пороховой ракетный двигатель - патент РФ 2195567

Пороховой ракетный двигатель состоит из ступеней, вложенных одна в другую и армированных кордом для повышения механической прочности. Каждая ступень выполнена тонкостенной, стенки которой профилированы в виде полутеплового сопла-камеры. Глухая конусная или конусоидная часть ступени выполнена из ракетного пороха. Сверхзвуковая часть ступени выполнена из абляционного материала. Для разделения пороховых частей ступени применена абляция в виде тонкого слоя на внешней поверхности пороха, в которой имеются отверстия перфорации для передачи пламени от ступени к ступени. Изобретение позволяет создать ракетный двигатель, отличающийся малым весом и габаритами. 3 з.п. ф-лы, 3 ил. Изобретение относится к ракетостроению, в частности к двигателестроению. Известны топливные ступени, состоящие из ракетного пороха, форма которых позволяет вкладывать их друг в друга, образуя топливный заряд ракеты (см. патент США 3439613, МПК F 02 К 9/04, 1969). Недостатком подобного решения является большой вес двигателя, и конструкции ракеты, которые после отработки топлива превращаются в балластную массу, из-за чего ракеты делают многоступенчатыми и сбрасывают ступени как лишний вес в полете. При этом полезная нагрузка этих ракет невелика из-за наличия этого балласта. Предложенное изобретение направлено на устранение указанных недостатков. Предложенный пороховой ракетный двигатель состоит из ступеней, вложенных друг в друга и армированных для повышения механической прочности ступеней сгораемым тканевым или нитяным кордом. Каждая ступень выполнена тонкостенной, стенки ступени профилированы в виде полутеплового сопла-камеры. Дозвуковая глухая конусная или конусоидная часть ступени выполнена из ракетного пороха, сверхзвуковая часть ступени выполнена из абляционного материала. Абляционный материал способен испаряться при нагревании от истекающих из сопла пороховых газов и имеет армирование для повышения прочности ступени. Для разделения выполненных из пороха частей ступеней двигателя применена абляция в виде тонкого слоя на внешней поверхности, выполненной из пороха, части ступени, в которой имеются отверстия перфорации для передачи пламени от ступени к ступени. Разделение ступеней друг от друга выполняется для обеспечения сохранности неизменной геометрии профиля сопла-камеры двигателя. Поскольку известно, что ракетные пороха имеют тенденцию к неравномерному горению в случае различного давления на разных участках сопла-камеры, то разделение двигателя на разделенные друг от друга ступени способствует тому, что после выгорания пороха в одной ступени и прохождения пламени через перфорацию в тонком слое абляции, разделяющим пороховые части ступеней, происходит запуск и загорание пороха в сопле-камере следующей ступени, а недогоревшие остатки отработавшей ступени выбрасываются из двигателя струей газов из следующего работающей ступени двигателя. Внутренняя поверхность пороховой части ступени покрыта инициирующим составом, и ступени имеют средства для электрозапуска. Основным способом запуска ступеней двигателя является загорание от выгоревшей предыдущей ступени, при передаче пламени из сопла-камеры предыдущей ступени в сопло-камеру последующей ступени, при этом каждая ступень двигателя может быть снабжена собственным средством для принудительного запуска. В стенках сверхзвуковой части ступени выполнены отверстия, образующие в двигателе продольные каналы для вдува в сопло-камеру газов с целью управления вектором тяги двигателя. Предложенный двигатель может быть выполнен в виде комбинированного ракетного двигателя, где выполненные из пороха части ступеней способны гореть при подаче в их сопло-камеру дополнительного вещества. В таком двигателе в сопле-камере ступени, в его дозвуковой части выполнены отверстия, совпадающие друг с другом и образующие продольные каналы для подачи в полутепловое сопло-камеру дополнительного вещества, например окислителя из бака ракеты. При использовании ядерной энергии в качестве источника энергии для двигателя ступени выполнены из тугоплавкого аблирующего материала, в осевой части сопла-камеры сквозь каналы для подачи в сопло-камеру дополнительного вещества пропущены сборки тепловыделяющих элементов (ТВЭЛов) ступеней и имеются зазоры для прокачивания рабочего тела ядерного ракетного двигателя (ЯРД). На фиг.1 приведен чертеж заявляемого порохового ракетного двигателя. На фиг.2 приведен чертеж заявляемого двигателя, выполненного в виде комбинированного ракетного двигателя. На фиг.3 приведен чертеж заявляемого двигателя, использующего в качестве источника энергии ядерную энергию. Изображенный на фиг.1 двигатель состоит из ступеней 1, где каждая ступень состоит из выполненной из пороха части 2, где происходит горение и газы разгоняются до скорости в М=1, и сверхзвуковой части сопла-камеры, которая выполнена из абляционного материала 3 и имеет форму раструба. Обе части ступеней двигателя армированы нитяным кордом 4, а выполненные из пороха части ступеней покрыты тонким слоем абляции 5, в котором имеются отверстия перфорации 6. Для обеспечения автоматического запуска ступеней в работе двигателя внутренние стенки выполненных из пороха частей каждой ступени покрыты инициирующим составом 7, который способен быстро воспламеняться и поджигать основной пороховой слой ступени. Средства электрозапуска ступеней 8 расположены на внутренней поверхности каждой ступени двигателя и предназначены для запуска первой ступени при пуске ракеты, а также для запуска тех ступеней двигателя, которые по какой-то причине не запустились самостоятельно во время работы двигателя. На фиг. 2 изображен двигатель, выполненный в виде комбинированного ракетного двигателя. Двигатель состоит из ступеней 1, состоящих из выполненной из пороха части 2 и сверхзвуковой части сопла-камеры, выполненной из абляционного материала, имеющей форму раструба 3. Корд 4 служит для повышения прочности ступени, выполненная из пороха часть ступени покрыта тонким слоем абляции 5 с перфорацией 6. Инициация горения ступени происходит за счет возгорания инициирующего слоя 7, а средство электрозапуска 8 служит для запуска ракеты. Двигатель имеет каналы 9 для подачи в сопло-камеру дополнительного вещества и каналы 10 в сверхзвуковой части сопла-камеры, предназначенные для вдува в сопло газа для управления вектором тяги двигателя. На фиг.3 изображен ЯРД, состоящий из ступеней 1, выполненных из тугоплавкого аблирующего материала 11 в зоне реактора и более легкого абляционного материала 3 в сверхзвуковой части сопла-камеры ступени. Каждая ступень ЯРД армирована кордом 4 и покрыта тонким слоем абляции 5, служащим также и для поглощения радиации при работе ЯРД. В каналы 9, совпадающие с каналами для прокачивания рабочего тела двигателя, пропущены ТВЭЛы 12. Через каналы 10 производится вдув газа в сопло ЯРД. При работе ЯРД после запуска реактора и начала прокачивания рабочего тела двигателя начинает происходить испарение стенок сопла-камеры от контакта с разогретым рабочим телом ЯРД. Рабочее тело и испаренные газы истекают из сопла-камеры ЯРД и создают двигателю тягу. Изобретение достаточно простое, для его использования достаточно имеющихся наработок в ракетном деле.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Пороховой ракетный двигатель, состоящий из ступеней, вложенных одна в другую и армированных кордом для повышения механической прочности ступеней, отличающийся тем, что каждая ступень выполнена тонкостенной, стенки которой профилированы в виде полутеплового сопла-камеры, глухая конусная или конусоидная часть ступени выполнена из ракетного пороха и сверхзвуковая часть ступени выполнена из абляционного материала, для разделения пороховых частей ступени применена абляция в виде тонкого слоя на внешней поверхности пороха, в которой имеются отверстия перфорации для передачи пламени от ступени к ступени. 2. Пороховой ракетный двигатель по п. 1, отличающийся тем, что в стенках сверхзвуковой части ступени выполнены отверстия, образующие в двигателе продольные каналы, для вдува в сопло газов и с целью управления вектором тяги двигателя, внутренняя поверхность пороховой части ступени покрыта инициирующим составом и ступени имеют средства для электрозапуска. 3. Пороховой ракетный двигатель по пп. 1 и 2, отличающийся тем, что в сопле-камере ступени, в его дозвуковой части выполнены отверстия, образующие каналы для подачи в сопло-камеру дополнительного вещества, например окислителя. 4. Пороховой ракетный двигатель по пп. 1-3, отличающийся тем, что ступени выполнены из аблирующего материала, в осевой части сквозь каналы пропущены сборки тепловыделяющих элементов (ТВЭЛов) и имеются зазоры для прокачивания рабочего тела ЯРД.

www.freepatent.ru

пороховой ракетный двигатель

 пороховой ракетный двигатель adj

1) milit. engin à poudre , propulseur à poudre

2) eng. fusée chimiaue à propergol solide, fusée solide, fusée à poudre, fusée à propergol solide, moteur à poudre

Dictionnaire russe-français universel. 2013.

Regardez d'autres dictionnaires:

russian_french.academic.ru

Ракетные двигатели. Содержание - Как устроен и работает пороховой ракетный двигатель

Фиг. 10. Залп ракетных орудий с самолета.

Следует отметить, что наряду с ракетными орудиями, предназначенными для стрельбы снарядами большого калибра, этой, так сказать, ракетной артиллерией, в годы войны применялось и индивидуальное ракетное оружие для стрельбы с ближних дистанций по технике (танкам и др.) и живой силе противника.

Развитие порохового ракетного двигателя связано не только с артиллерией.

На заре развития авиации, когда создание управляемых летательных аппаратов как легче, так и тяжелее воздуха во многом задерживалось из-за отсутствия легкого и достаточно мощного двигателя, взоры изобретателей не раз обращались к реактивному двигателю. Одними из первых в этом направлении были работы русских изобретателей Третесского и Соковнина, относящиеся к середине прошлого века, в которых предполагалось использование реакции струи пара или сжатого воздуха.

Приоритет в отношении идеи использования порохового ракетного двигателя для летательного аппарата тяжелее воздуха принадлежит русской науке и связан с именем революционера-народовольца, студента института инженеров путей сообщения, Николая Ивановича Кибальчича.

Как известно, Кибальчич был активным участником террористического акта, осуществленного народовольцами 1 марта 1881 г. Кибальчич изготовил бомбу, которой был убит Александр II. Находясь в камере смертников, двадцатисемилетний Кибальчич за десять дней до казни подал записку с изложением существа своего предложения, идея которого у него возникла, очевидно, в процессе работы над бомбой.

Фиг. 11. Ракетные снаряды пошли на цель.

Фиг. 12. Так выглядел бы в полете ракетный летательный аппарат Кибальчича.

По мысли Кибальчича, как подъем, так и полет его аппарата должен был осуществляться под действием реактивного эффекта струи газов, образующихся при горении пороха в специальном ракетном двигателе, который должен был поворачиваться для управления полетом (фиг. 12). Помимо того, что в своей записке Кибальчич впервые излагал идею управляемого ракетного полета, чрезвычайно важным и ценным было его указание, что в ракетном двигателе должен применяться медленно горящий порох, спрессованный в виде ряда цилиндрических шашек. Предложение Кибальчича не подверглось рассмотрению, так как чиновники полиции считали, что «это едва ли будет своевременно и может вызвать только неуместные толки» и решили приобщить его к «делу 1 марта». Записка Кибальчича была обнаружена в полицейских архивах, где она пролежала более 36 лет, только в августе 1917 года.

Пороховой ракетный двигатель не нашел себе применения в качестве авиационного главным образом потому, что такой двигатель работает лишь в течение нескольких секунд или даже десятых долей секунды, а регулирование его тяги, необходимое для осуществления управляемого полета, представляет значительные трудности.

Тем не менее пороховой ракетный двигатель довольно широко применялся в авиации во время войны и применяется сейчас. Однако он служит не в качестве основного двигателя самолета, обеспечивающего его полет, а в качестве вспомогательного двигателя, тяга которого используется лишь при необходимости. Такая необходимость в эксплоатации может встретиться, например, когда требуется осуществить взлет перегруженного самолета, либо взлетная площадка мала (применение порохового двигателя может вдвое сократить разбег при взлете), загрязнена и так далее. В этих случаях пороховой двигатель носит название стартового (фиг. 13). В частности, пороховой двигатель может быть использован для запуска самолета или снаряда с прямоточным воздушно-реактивным двигателем, который не в состоянии обеспечить самостоятельный старт.

Пороховой двигатель может быть использован и в качестве ускорителя, когда он включается с целью кратковременного увеличения скорости полета; например, когда нужно догнать противника или уйти от него.

Часто после использования пороховые двигатели сбрасываются; для этой цели они размещаются под крылом самолета (фиг. 14).

Фиг 13. Взлет пассажирского самолета с помощью стартовых ракет (ракеты размещены в фюзеляже).

Фиг. 14. Пороховые ракетные двигатели под крылом бомбардировщика.

Преимущества порохового РД в качестве вспомогательного авиационного двигателя заключаются в его простоте, дешевизне, безотказности, малом весе и вместе с тем значительной тяге, которую такой двигатель развивает в течение короткого времени, что от него в данном случае и требуется.

В заключение следует упомянуть о попытках установить пороховой РД на различных автомобилях, мотоциклах, катерах и так далее, которые делались чаще всего с целью установления новых рекордов скорости и в рекламных целях. Научное и практическое значение этих попыток невелико, так как известно, что применение пороховых ракетных двигателей целесообразно лишь при больших скоростях передвижения, свойственных авиации и артиллерии. На фиг. 15 представлена схема рекордного автомобиля, имевшего сзади батарею пороховых ракетных двигателей. Испытания таких экипажей часто кончались катастрофой.

Фиг. 15. Автомобиль с пороховыми ракетными двигателями.

Как устроен и работает пороховой ракетный двигатель

Основными конструктивными элементами порохового, как и любого другого ракетного двигателя, являются камера сгорания и сопло (фиг. 16).

Благодаря тому, что подача пороха, как и вообще всякого твердого топлива, в камеру сгорания представляет весьма трудную задачу, в пороховых РД весь запас топлива (пороха) размещается в камере сгорания и затем постепенно сгорает. Таким образом, объем камеры сгорания порохового РД определяется количествам размещаемого в ней пороха. По этой причине количество пороха в двигателе не может быть очень большим и пороховой РД обычно работает только несколько секунд (а иногда даже доли секунды).

Порох принадлежит к так называемым метательным взрывчатым веществам, которые в отличие от бризантных взрывчатых веществ не производят дробящего действия при своем разложении. Это объясняется значительно более медленным течением реакции разложения метательных ВВ. Тем не менее скорость горения пороха в стволах артиллерийских орудий весьма значительна. Если бы порох, размещенный в ракетной камере, горел с такой же скоростью, то давление пороховых газов было столь велико, что несомненно разорвало камеру, прочность которой неизмеримо меньше прочности артиллерийских стволов.

Если произойдет такой разрыв камеры, то ракета, конечно, никуда не полетит. С другой стороны, если порох будет гореть очень медленно, то секундный расход газов, а следовательно и тяга, будут малы. Поэтому должны быть приняты специальные меры, обеспечивающие нужную скорость горения пороха в камере сгорания РД. Эти меры в основном сводятся к определенной технологии изготовления пороха для ракетных двигателей.

Как известно, порох был изобретен в XIV веке. Этот порох, так называемый черный, представлял собой смесь селитры, серы и угля и в таком виде применялся в течение более 500 лет. Около 100 лет тому назад был изобретен так называемый бездымный порох, который имеет ряд преимуществ перед черным — он, как показывает его название, не образует дыма и, что очень важно, выделяет больше тепла при сгорании, что в случае ракетного двигателя обеспечивает большую скорость истечения и потому большую тягу. К числу бездымных порохов относятся пироксилиновый, нитроглицериновый и другие пороха. Они отличаются от черного пороха тем, что представляют собой уже не смесь, а однородные химические соединения, которые при реакции горения разлагаются, выделяя значительное количество тепла и образовывая много пороховых газов. В ракетных двигателях в настоящее время обычно применяются различные сорта бездымного пороха. Черный порох иногда применяется в простейших ракетах — фейерверочных и других.

www.booklot.ru