ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Без ограничений по дальности: что такое ракета с ядерным двигателем. Ракетные атомные двигатели


что такое ракета с ядерным двигателем

 Российские военные успешно испытали крылатую ракету с ядерной энергетической установкой. Дальность ее полета на дозвуковой скорости не ограничена. Такие изделия способны на низкой высоте обходить районы противовоздушной и противоракетной обороны, с высокой точностью уничтожая объекты противника. О появлении новинки сообщил президент России Владимир Путин в своем послании Федеральному собранию. По мнению экспертов, эти системы относятся к оружию сдерживания. Они используют для перемещения воздух, нагретый ядерной энергетической установкой.

По информации специалистов, речь идет об изделии с индексом 9М730, разработанном ОКБ «Новатор». В угрожаемый период такие ракеты можно поднять в воздух и вывести в заданные районы. Оттуда они смогут ударить по важным объектам противника. Испытания новинки идут достаточно активно, и в них принимают участие летающие лаборатории Ил-976.

— В конце 2017 года на Центральном полигоне Российской Федерации состоялся успешный пуск новейшей российской крылатой ракеты с ядерной энергоустановкой. В ходе полета энергоустановка вышла на заданную мощность, обеспечила необходимый уровень тяги, — заявил в своем выступлении Владимир Путин. — Перспективные системы вооружения России основаны на новейших уникальных достижениях наших ученых, конструкторов, инженеров. Одно из них — создание малогабаритной сверхмощной ядерной энергетической установки, которая размещается в корпусе крылатой ракеты типа нашей новейшей ракеты Х-101 воздушного базирования или американского «Томагавка», но при этом обеспечивает в десятки раз — в десятки раз! — большую дальность полета, которая является практически неограниченной. Низколетящая, малозаметная крылатая ракета, несущая ядерную боевую часть, с практически неограниченной дальностью, непредсказуемой траекторией полета и возможностью обхода рубежей перехвата является неуязвимой для всех существующих и перспективных систем как ПРО, так и ПВО.

В представленном видеосюжете зрители смогли увидеть запуск уникальной ракеты. Полет изделия был запечатлен с борта истребителя сопровождения. Согласно представленной далее компьютерной графике, «ядерная ракета» облетела зоны морского ПРО в Атлантике, обошла с юга Южную Америку и ударила по территории Соединенных Штатов со стороны Тихого океана.

— Судя по представленному видео, это ракета либо морского, либо сухопутного базирования, — рассказал «Известиям» главный редактор-интернет проекта MilitaryRussia Дмитрий Корнев. — В России есть два разработчика крылатых ракет. «Радуга» производит только изделия воздушного базирования. Наземные и морские — в ведении «Новатора». На счету этой фирмы — линейка крылатых ракет Р-500 для комплексов «Искандер», а также легендарные «Калибры».

Не так давно в открытых документах ОКБ «Новатор» появились упоминания о двух новых изделиях — 9М729 и 9М730. Первое — это обычная дальнобойная крылатая ракета, а вот про 9М730 ничего не было известно. Но это изделие явно находится в стадии активной разработки — по данной тематике на сайте госзакупок размещено несколько тендеров. Поэтому можно предположить, что «ядерная ракета» — это и есть 9М730.

Как отметил военный историк Дмитрий Болтенков, принцип работы ядерной энергетической установки достаточно прост.

— По бортам ракеты находятся специальные отсеки с мощными и компактными нагревателями, работающими от ядерной энергоустановки, — отметил эксперт. — В них попадает атмосферный воздух, который нагревается до нескольких тысяч градусов и превращается в рабочее тело двигателя. Вытекание горячего воздуха создает тягу. Такая система действительно обеспечивает практически безграничную дальность полета.

Как заявил Владимир Путин, испытания новинки прошли на Центральном полигоне. Этот объект расположен в Архангельской области в поселке Ненокса.

— Это историческое место испытания дальнобойного оружия, — отметил Дмитрий Болтенков. — Оттуда маршруты ракет проходят вдоль северного побережья России. Их протяженность может доходить до нескольких тысяч километров. Для снятия телеметрических параметров с ракет на таких расстояниях нужны специальные самолеты — летающие лаборатории.

По словам эксперта, не так давно были восстановлены два уникальных самолета Ил-976. Это специальные машины, созданные на базе транспортного Ил-76, долгое время использовались для испытания дальнобойного ракетного оружия. В 1990-е годы они были законсервированы.

— В сети Интернет были опубликованы фото Ил-976, перелетевших на аэродром вблизи Архангельска, — отметил эксперт. — Примечательно, что машины несли эмблему «Росатома». В это же время Россия выпустила специальное международное предупреждение NOTAM (Notice to Airmen) и закрыла район для судов и самолетов.

По мнению военного эксперта Владислава Шурыгина, новая «ядерная ракета» — это не наступательный боевой комплекс, а оружие сдерживания.

— В угрожаемый период (обострение обстановки, как правило, предшествующее началу войны) российские военные смогут вывести в заданные районы патрулирования эти изделия, — отметил эксперт. — Это позволит предотвратить попытки противника нанести удар по России и ее союзникам. «Ядерные» ракеты смогут выполнить роль оружия возмездия или нанести превентивный удар.

Вооруженные силы России располагают несколькими линейками дозвуковых низковысотных крылатых ракет. Это Х-555 и Х-101 воздушного, Р-500 наземного и 3М14 «Калибр» морского базирования.

Алексей Рамм

tehnowar.ru

Физика крылатой атомной ракеты (обзор)

Показанная же на презентации Путина ракета околозвуковая или слабосверхзвуковая (если, конечно, верить, что на видео именно она). Но при этом габарит реактора уменьшился значительно по сравнению с TORY-II от ракеты SLAM, где он составлял аж 2 метра включая радиальный отражатель нейтронов из графита.slam2Схема ракеты SLAM. Все приводы пневматические, аппаратура управления находится в капсуле, ослабляющей излучение.

Можно ли вообще уложить реактор в диаметр 0,4-0,6 метра? Начнем с принципиально минимального реактора - болванки из Pu239. Хороший пример реализации такой концепции - космический реактор Kilopower, где, правда, используется U235. Диаметр активной зоны реактора всего 11 сантиметров! Если перейти на плутоний 239 размеры АЗ упадут еще в 1,5-2 раза.Теперь от минимального размера мы начнем шагать к реальном ядерному воздушному реактивному двигателю, вспоминая про сложности. Самым первым к размеру реактора добавляется размер отражателя - в частности в Kilopower BeO утраивает размеры. Во-вторых мы не можем использовать болванку U или Pu - они элементарно сгорят в потоке воздуха буквально через минуту. Нужна оболочка, например из инкалоя, который противостоит мгновенному окислению до 1000 С или других никелевых сплавов с возможным покрытием керамикой. Внесение большого количества материала оболочек в АЗ сразу в несколько раз увеличивает необходимое количество ядерного топлива - ведь "непродуктивное" поглощение нейтронов в АЗ теперь резко выросло!Более того, металлическая форма U или Pu теперь не годится - эти материалы и сами не тугоплавкие (плутоний вообще плавится при 634 С), так еще и взаимодействуют с материалом металлических оболочек. Переводим топливо в классическую форму UO2 или PuO2 - получаем еще одно разбавление материала в АЗ, теперь уже кислородом.

Наконец, вспоминаем предназначение реактора. Нам нужно прокачивать через него много воздуха, которому мы будем отдавать тепло. примерно 2/3 пространства займут "воздушные трубки". В итоге минимальный диаметр АЗ вырастает до 40-50 см (для урана), а диаметр реактора с 10-сантиметровым бериллиевым отражателем до 60-70 см.

Воздушный ядерный реактивный двигатель можно впихнуть в ракету диаметром около метра, что впрочем, все же не кардинально больше озвученных 0,6-0,74 м, но все же настораживает.

Так или иначе, ЯЭУ будет иметь мощность ~несколько мегаватт, питаемые   ~10^16 распадов в секунду. Это означает, что сам реактор будет создавать радиационное поле в несколько десятков тысяч рентген у поверхности, и до тысячи рентген вдоль всей ракеты. Даже установка нескольких сот кг секторной защиты не сильно снизит эти уровни, т.к. нейтронны и гамма-кванты будут отражаться от воздуха и "обходить защиту".  За несколько часов такой реактор наработает ~10^21-10^22 атомов продуктов деления c  активностью в несколько (несколько десятков) петабеккерелей который и после остановки создадут фон в несколько тысяч рентген возле реактора. Конструкция ракеты будет активирована до примерно 10^14 Бк, хотя изотопы будут в основном бета-излучателями и опасны только тормозным рентгеном. Фон от самой конструкции может достигать десятки рентген на расстоянии 10 метров от корпуса ракеты.

Все эти сложности дают представление, что и разработка и испытания подобной ракеты - задача на грани возможного. Необходимо создать целый набор радиационно-стойкого навигационного и управляющего оборудования, испытать это все довольно комплексным образом (радиация, температура, вибрации - и все это на статистику). Летные испытания с работающим реактором в любой момент могут превратиться в радиационную катастрофу с выбросом от сотен террабеккерелей до единиц петабеккерелей.  Даже без катастрофических ситуаций весьма вероятная разгерметизация отдельных твэлов и выброс радионуклидов.Из за всех этих сложностей американцы отказались от ракеты с ядерным двигателем SLAM в 1964 г.

Конечно, в России до сих пор есть Новоземельский полигон на котором можно проводить такие испытания, однако это будет противоречить духу договора о запрещении испытаний ядерного оружия в трех средах (запрещение вводилось с целью недопущения планомерного загрязнения атмосферы и океана радинуклидами).

Наконец, интересно, кто в РФ мог бы заниматься разработкой подобного реактора. Традиционно изначально высокотемпературными реакторами занимался Курчатовский институт (общее проектирование и расчеты), Обнинский ФЭИ (экспериментальная отработка и топливо), НИИ "Луч" в Подольске (топливо и технологии материалов). Позже к проектированию подобных машин подключается коллектив НИКИЭТ (например реакторы ИГР и ИВГ - прообразы активной зоны ядерного ракетного двигателя РД-0410). Сегодня НИКИЭТ обладает коллективом конструкторов, которые выполняют работы по проектированию реакторов (высокотемпературный газоохлаждаемый РУГК, быстрые реакторы МБИР, БРЕСТ), а ФЭИ и "Луч" продолжают заниматься сопутствующими расчетами и технологиями соотвественно. Курчатовский институт же в последние десятилетия больше перешел к теории ядерных реакторов.

Резюмируя, можно сказать, что создание крылатой ракеты с воздушным реактивным двигателеям с ЯЭУ является в целом выполнимой задачей, но одновременно крайне дорогой и сложной, требующей значимой мобилизации людских и финансовых ресурсов, как мне кажется в большей степени, чем все остальные озвученные проекты ("Сармат", "Кинжал", "Статус-6", "Авангард"). Очень странно, что эта мобилизация не оставила ни малейшего следа. А главное, совершенно непонятно, в чем польза от получения подобных образцов вооружений (на фоне имеющихся носителей), и как они могут перевесить многочисленные минусы - вопросы радиционной безопасности, дороговизны, несовместимости с договорами о сокращении стратегических вооружений.

Малогабаритный реактор разрабатывается с 2010 года, об этом докладывал Кириенко в Госдуме. Предполагалось, что его установят на космический аппарат с ЭРД для полетов к Луне и Марсу и испытают на орбите в этом году.Очевидно, что для крылатых ракет и подводных лодок используется аналогичное устройство.

Да, ставить атомный движок можно, и успешные 5 минутные испытания 500 мегаватного движка, сделанные в штатах много лет назад для крылатой ракеты с рам джетом для скорости 3 маха это, в общем-то, это подтвердили (проект Плуто). Стендовые испытания, понятно (движок "обдували" подготовленным воздухом нужного давления/температуры). Только вот зачем? Существующих (и проектируемых) балличтических ракет достаточно для ядерного паритета. Зачем создавать потенциально более опасное (для "своих") в использовании (и тестировании) оружие? Даже в проекте Плуто подразумевалось, что над своей территорией такая ракета летит на значительной высоте, снижаясь на под-радарные высоты только близко к территории противника. Не очень хорошо находиться рядом с незащищенным 500 мегаватным воздушно охлаждаемым урановым реактором про температуре материалов более 1300 цельсиев. Правда, упомянутые ракеты (если они действительно разрабатываются) будут меньшей мощности чем Плутон (Slam).Ролик-анимация 2007 г., выданный в презентации Путина за показ новейшей крылатой ракеты с атомной энергетической установкой.Возможно, все это подготовка к северо корейскому варианту шантажа. Мы перестанем разрабатывать наше опасное оружие - а вы с нас снимаете санкции.Что за неделя - китайский босс пробивает пожизненное правление, российский грозит всему миру.

Обзор по материалам знатоков из социальных сетей подготовил Валерий Лебедев

lebed.com

Крылатая ракета с ядерным двигателем / Назад в СССР / Back in USSR

История создания ядерного ракетного двигателя Ядерный ракетный двигатель (ЯРД) — разновидность ракетного двигателя, которая использует энергию деления или синтеза ядер для создания реактивной тяги. Рабочее тело (как правило — водород) подаётся из бака в активную зону реактора, где, проходя через нагретые реакцией ядерного распада каналы, разогревается до высоких температур, около 3000К и затем выбрасывается через сопло, создавая реактивную тягу. В СССР постановление правительства о разработке «крылатых ракет с прямоточным двигателем с использованием атомной энергии» было подписано в 1953 году, руководство работами было возложено на академиков Келдыша М. В., Курчатова И. В. и Королёва С. П. В РД-0410 был применён гетерогенный реактор на тепловых нейтронах, конструкция включала в себя 37 тепловыделяющих сборок, покрытых теплоизоляцией, отделявшей их от замедлителя. В 1972 году уже произошёл физический пуск реактора ИВГ на комплексе «Байкал».

Основные параметры

Тяга в пустоте: 3,59 тс (35,2 кН)

Число включений: 10

Ресурс работы: 1 час

Компоненты топлива: рабочее тело — жидкий водород, вспомогательное вещество — гептан

Масса с радиационной защитой: 2 тонны

Габариты двигателя: высота 3,5 м, диаметр 1,6 м.

В США была своя программа NERVA (англ. Nuclear Engine for Rocket Vehicle Application) — совместная программа Комиссии по атомной энергии США и НАСА по созданию ядерного ракетного двигателя (ЯРД), продолжавшаяся до 1972 года.Первый NERVA NRX в 1966 году был запущен в течение почти 2 часов, в том числе 28 минут на полную мощность. Финансирование программы было несколько сокращено в 1969 году, а новая администрация Никсона сократила его ещё больше в 1970-м, прекратив производство ракет «Сатурн» и отменив полёты по программе «Аполлон» после «Аполлона-17». Без ракеты Saturn S-N, которая должна была выносить NERVA на орбиту проект потерял смысл.

Характеристики Диаметр: 10,55 м Длина: 43,69 м Сухая масса: 34 019 кг. Полная масса: 178 321 кг Тяга в вакууме: 333,6 кН Время работы: 1200 с Рабочее тело: жидкий водород.

Vought SLAM (Supersonic Low-Altitude Missile — низковысотная сверхзвуковая ракета) — проект американской стратегической крылатой ракеты с прямоточным ядерным двигателем. Нерешённой проблемой SLAM являлось радиоактивное заражение местности в процессе полёта ракеты и разрушения по пути её следования, в мирное время это чрезвычайно затрудняло испытания и учебные запуски SLAM. Непрерывный вынос частиц рабочего тела из реактора воздушным потоком приводил к тому, что ракета оставляла за собой чудовищный шлейф радиоактивных осадков. В верхней части фюзеляжа SLAM располагались в два ряда 26 пусковых устройств для термоядерных боеголовок. В 1964 году проект SLAM был закрыт.

back-in-ussr.com

Ядерный двигатель глобальной крылатой ракеты. История и современность.: cycyron

Оригинал взят у moris_levran в Ядерный двигатель глобальной крылатой ракеты. История и современность. https://moris-levran.livejournal.com/341632.html

В пятидесятых годах XX века человечество мечтало о ядерных двигателях для машин, самолётов. В многочисленных фантастических повестях говорилось о покорении космоса с помощью фотонных и ядерных ракетах, имеющих неограниченный запас хода. А в это время в секретных арсеналах стран – соперниц США и СССР разрабатывались ядерные реакторы, которые должны были приводить в движение самолёты и крылатые ракеты, несущие атомное оружие. В Америке стартовали разработки беспилотного атомного бомбардировщика (или ракеты), который сможет преодолевать ПВО на низкой высоте. Проект был назван SLAM (Supersonic Low-Altitude Missile) – сверхзвуковая низковысотная ракета с прямоточным ядерным двигателем. Разработка называлась «Плутон».

Это ракета, летящая на сверхнизкой высоте со сверхзвуковой скоростью 3М (три маха). В её арсенале находились термоядерные заряды (около 14 шт), которые в нужной точке должны были выстреливаться вверх, и дальше двигаться по баллистической траектории к намеченной цели. При этом поражающим эффектом были не только ядерные заряды. Движущиеся со сверхзвуковой скоростью ракеты создавали воздушную ударную волну, достаточную для поражения людей по ходу траектории. Кроме этого, существовала проблема радиоактивных осадков – выхлоп ракеты содержал радиоактивные продукты деления. Необходимость длительного полёта со скоростью М3 на сверхмалой высоте требовала материалов, которые не расплавятся и не разрушатся в таких условиях (по расчётам, давление на ракету должно было быть в 5 раз больше давления на сверхзвуковую X-15).Для разгона до скорости, на которой начнёт работать прямоточный двигатель, применялись несколько обычных химических ускорителей, которые потом отстыковывались, как на космических запусках. После старта и ухода из населённых районов ракета должна была включить ядерный двигатель и кружить над океаном (о топливе можно было не беспокоиться), ожидая приказа для разгона до М3 и полёта к СССР.Поскольку КПД прямоточного двигателя растет с температурой, 500-МВт реактор под названием «Тори» проектировался очень горячим, с рабочей температурой в 2500F (более 1600С). Компании по производству фарфора Coors Porcelain Company была поставлена задача сделать около 500000 керамических топливных элементов, похожих на карандаши, которые должны были выдержать такую температуру и обеспечить равномерное распределение тепла внутри реактора. 14 Мая 1961 года первый в мире атомный ПРД, смонтированный на ж/д платформе, включился. Прототип Tory-IIA проработал всего несколько секунд и развил только часть расчётной мощности, но эксперимент признали полностью успешным. Готовились начать работы над новым, улучшенным проектом - Tory-III. Однако, уточнённые данные о радиоактивном заражении местности при испытаниях привели к закрытию этого проекта в 1964 году. Общая стоимость составила $260 миллионов долларов.

Расчётные тактико-технические характеристики : длина-26,8 м, диаметр-3,05 м, вес-28000 кг, скорость : на высоте 300 м-3М, на высоте 9000 м-4,2М, потолок-10700 м, дальность : на высоте 300 м - 21300 км, на высоте 9000 м - более 100000 км, боевая часть - от 14 до 26 термоядерных боевых блоков. Ракета должна была запускаться с наземной пусковой установки с помощью твердотопливных ускорителей, которые должны были работать пока ракета не достигнет скорости достаточной для запуска атомного прямоточного двигателя. Конструкция была бескрылой, с небольшими килями и небольшим горизонтальным оперением расположенным по схеме утка. Ракета была оптимизирована для полёта низкой высоте (25-300 м) и была оборудована системой следования по рельефу местности.

Данные испытаний: 155 мегаватт, около 300 кг/сек поток воздуха, температура внутри 1300 С, температура выхлопа около 1000 C. Диаметр рабочей зоны реактора 90 см, длина 120 см. 100 тыс шестигранных топливных элементов. Керамическая структура с молибденовым каркасом. Водяное охлаждение (поскольку реактор испытательный и стационарный). Первый тест на мощность состоялся в мае 1961 года, реактор достиг 50 мегаватт при температуре 1100 С.Реактор TORY-IIС предназначался для испытаний уже в условиях ракеты с воздушным охлаждением. Испытывался в 1964 году на полной мощности, работал 5 минут. Радиация при 160 Мегаватт - 1000 рентген в час. Остаточная радиация в области теста через 24 часа: внутри камеры (непосредственный контакт с выхлопом) - 200 р/часДоза персонала в трех километрах от реактора - 20 миллирентген/час при работе на полную мощность. В СССР велись разработки атомолёта (самолёта с ядерной энергетической установкой). 12 августа 1955 года выходит постановление Совета министров СССР №1561-868, предписывающее авиационным предприятиям начать проектирование советского атомолета. Бюро А. Н. Туполева и В. М. Мясищева должны были разработать летательные аппараты, способные работать на ядерных силовых установках. А бюро Н. Д. Кузнецова и А. М. Люльки поручили построить те самые силовые установки. Курировал эти, как и все прочие атомные проекты СССР, «отец» советской атомной бомбы Игорь Курчатов.Было предложено несколько вариантов сверхзвуковых бомбардировщиков. КБ Мясищева предложили проект сверхзвукового бомбардировщика М-60. Фактически речь шла об оснащении уже существовавшего М-50 ядерной силовой установкой открытого типа, сконструированной в бюро Архипа Люльки. Однако трудность в эксплуатации «грязного» двигателя, необходимости его «цеплять» к самолету прямо перед полетом в автоматическом режиме и другие технические трудности заставили отказаться от этого проекта. Был начат разрабатываться новый проект – атомолёт М-30 с ядерной установкой закрытого типа. Конструкция реактора при этом была гораздо сложнее, зато вопрос с защитой от радиации стоял не так остро. Самолет должны были оснастить шестью турбореактивными двигателями, питавшимися от одного ядерного реактора. В случае необходимости силовая установка могла работать и на керосине. Масса защиты экипажа и двигателей была почти вдвое меньше, чем у М-60, благодаря чему самолет мог нести полезную нагрузку в 25 тонн.Конструкторское бюро А. Н. Туполева разрабатывало третий проект - дозвуковой бомбардировщик на ядерной установке. За основу брался уже существующий самолёт Ту-95, который надо было дооснастить атомным реактором. Остро возник вопрос о защите от радиоактивного излучения. Защитна представляла собой покрытие из свинцовых плит толщиной 5 сантиметров и 20-сантиметрового слоя из полиэтилена и церезина — продукта, получаемого из нефтяного сырья и отдаленно напоминающего хозяйственное мыло.

В мае 1961 года в небо поднялся нашпигованный датчиками бомбардировщик Ту-95М №7800408 с ядерным реактором на борту и четырьмя турбовинтовыми двигателями мощностью по 15 000 лошадиных сил каждый. Атомная силовая установка не была подсоединена к моторам — самолет летел на авиакеросине, а работающий реактор пока нужен был для того, чтобы оценить поведение техники и уровень облучения пилотов. Всего с мая по август бомбардировщик совершил 34 испытательных полета.Выяснилось, что в течение двухдневного полета пилоты получали облучение в 5 бэр. Для сравнения, сегодня для работников АЭС считается нормой облучение до 2 бэр, но не в течение двух дней, а за год. Предполагалось, что в экипаж атомолетов будут входить мужчины старше 40 лет, у которых уже есть дети.Радиацию вбирал в себя и корпус бомбардировщика, который после полета надо было изолировать для «очистки» на несколько дней. В целом радиационную защиту признали эффективной, однако недоработанной. Кроме того, долгое время никто не знал, как быть с возможными авариями атомолетов и последующим заражением больших пространств ядерными компонентами. Впоследствии реактор предлагалось оснастить парашютной системой, способной в экстренном случае отделить ядерную установку от корпуса самолета и мягко ее приземлить.В конце концов от этого проекта отказались. Первый в мире атомолёт находился на стоянке на аэродроме под Семипалатинском, потом был разрушен. Приоритетным направлением было признанно создание ракет.

Но, видимо, разработки крылатых ракет с ядерной энергетической установкой были продолжены. Новые материалы, выдерживающие высокие температуры – до 2 000 градусов, новые схемы реакторов закрытого типа, новая конструкция позволили преодолеть технические трудности, которые не смогли преодолеть в 50 – 60 года XX века. Новейшие достижения современных технологий позволили воплотить в металле крылатые ракеты с ядерной энергетической установкой.

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19640019868.pdfhttps://digital.library.unt.edu/ark:/67531/metadc100752/m2/1/high_res_d/metadc100752.pdfhttps://ntrs.nasa.gov/https://youtu.be/w_SCuPId8KAhttps://allnokia.ru/news/242353/https://raigap.livejournal.com/193488.htmlhttps://ru.wikipedia.org/wiki/Supersonic_Low-Altitude_Missilehttps://ru.wikipedia.org/wiki/%D0%AF%D0%B4%D0%B5%D1%80%D0%BD%D1%8B%D0%B9_%D1%80%D0%B0%D0%BA%D0%B5%D1%82%D0%BD%D1%8B%D0%B9_%D0%B4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D1%8C

=============================[Сделать перепост всего текста ]Перепост всего текста

Скопируйте весь текст в рамке и введите его в поле HTML-редактора у себя в ЖЖ, войдя туда через кнопку "Новая запись". И не забудьте внести название в заголовок и нажать на кнопку "Отправить в ...".

Оригинал взят у <lj user="cycyron" /> в <a href="">Ядерный двигатель глобальной крылатой ракеты. История и современность.</a> <span></span> </lj-cut>=============================

cycyron.livejournal.com

Есть ли у России крылатая ракета с ядерным двигателем? / Techdiver

1 марта 2018 года президент Российской Федерации Владимир Путин обратился с посланием к Федеральному собранию. Та часть его речи, в которой затрагивались вопросы обороны, стала предметом для оживленной дискуссии. Глава государства представил новое вооружение.

Речь идет о размещении малогабаритной сверхмощной ядерной энергетической установки в корпусе крылатой ракеты Х-101 «воздух-земля».

militaryrussia.ru

Крылатая ракета Х-101

Поскольку такая ракета, несущая ядерную боевую часть, не имеет ограничения по дальности полета, а траекторию ее движения невозможно предсказать, она сводит на нет результативность любой ПРО и ПВО, а значит, имеет потенциальную возможность нанести непоправимый ущерб любой стране мира. По словам президента, в конце 2017 года прошло успешное испытание этого оружия. И ничего подобного ни у кого в мире пока нет.

Некоторые западные СМИ со скепсисом отнеслись к информации, которую озвучил Путин. Так некий американский чиновник, знающий состояние российского ВПК, в разговоре с CNN усомнился в том, что описанное оружие существует. Собеседник агентства сообщил, что США наблюдали небольшое количество российских испытаний ядерной крылатой ракеты и видели все аварии, которыми те сопровождались. «В любом случае, если Россия когда-либо нападет на США, она будет встречена подавляющей силой», — резюмировал чиновник.

Не остались в стороне и эксперты в России. Так, издание The Insider взяло комментарий у руководителя Института космических проблем Ивана Моисеева, который счел, что у крылатой ракеты не может быть ядерного двигателя.

«Такие вещи невозможны, да и не нужны, в общем-то. Нельзя на крылатую ракету ставить ядерный двигатель. Да и нет таких двигателей. Есть в разработке один такой двигатель мегаваттного класса, но он космический и, конечно, никаких испытаний в 2017 году не могло проводиться», — рассказал изданию Моисеев.

«Были некие подобные разработки в Советском Союзе, но все идеи поставить ядерные двигатели на воздушные, а не космические средства — самолеты, крылатые ракеты — были отброшены в 50-х годах прошлого века», — добавил он.

У СССР действительно были ядерные энергетические установки для ракет. Работа по их созданию стартовала в 1947 году. Не отставала от СССР и Америка. В 1961 Джон Кеннеди назвал программу по созданию ракеты с ядерным ракетным двигателем одним из четырех приоритетных направлений в завоевании космоса. Но поскольку финансирование было сфокусировано на Лунной программе, денег на разработку ядерного двигателя не хватило, и программа была закрыта.

В отличие от США Советский Союз работу над ядерными двигателями продолжил. Их разработкой занимались такие ученые, как Мстислав Келдыш, Игорь Курчатов и Сергей Королев, которые, в отличие от эксперта из Института космических проблем, оценивали возможности создания ракет с ядерными источниками энергии достаточно высоко.

В 1978 году состоялся пуск первого ядерного ракетного двигателя 11Б91, затем последовали еще две серии испытаний — второго и третьего аппаратов 11Б91-ИР-100.

Словом, у СССР появились спутники с ядерными источниками энергии. 24 января 1978 разразился грандиозный международный скандал. На территорию Канады рухнул «Космос-954» — советский спутник космической разведки с ядерной энергетической установкой на борту. Часть территорий признали радиоактивно зараженными. Жертв среди населения не было. Оказалось, что за спутником пристально следила американская разведка, которая знала, что на устройстве есть ядерный источник энергии.

Схема спутника «Космос-954»

Из-за скандала СССР пришлось почти на три года отказаться от запусков подобных спутников и серьезно усовершенствовать систему радиационной безопасности.

30 августа 1982 года с Байконура стартовал еще один спутник-шпион с ядерным двигателем — Космос-1402. После выполнения задания устройство было уничтожено системой радиационной безопасности реактора, которая раньше отсутствовала.

После развала Советского Союза все разработки были заброшены. Но, очевидно, какое-то время назад были возобновлены.

Так, в марте 2016 года, тогда еще генеральный директор Росатома Сергей Кириенко заявил, что ядерная энергодвигательная установка, создаваемая в России совместно Росатомом и Роскосмосом, позволит долететь до Марса за небывало короткий срок — около полутора месяцев.

На этом фоне применение ядерных силовых установок в военной сфере выглядит вполне логичным. Так что, может, стоит верить не анонимным американским чиновникам и эксперту Института космических проблем, а официальному представителю Пентагона Дане Уайт, заявившей о том, что Минобороны США не удивлено сообщениями президента России о новых видах вооружения. «Мы не удивлены этими заявлениями. Эти (российские) вооружения разрабатывались уже давно. И это нами все учтено в ядерной доктрине», — подчеркнула Уайт.

← Нажмите «Нравится» и читайте нас в Facebook

techdiver.ru