Содержание
принцип действия (кратко). Принцип работы реактивного двигателя самолета
Под реактивным понимают движение, при котором от тела с определенной скоростью отделяется одна из его частей. Возникающая в результате такого процесса сила действует сама по себе. Другими словами, у нее отсутствует даже малейший контакт с внешними телами.
Во время летнего отдыха на юге практически каждый из нас, купаясь в море, встречался с медузами. Но мало кто задумывался о том, что эти животные перемещаются так же, как реактивный двигатель. Принцип работы в природе подобного агрегата можно наблюдать при перемещении некоторых видов морских планктонов и личинок стрекоз. Причем КПД этих беспозвоночных зачастую выше, чем у технических средств.
Кто еще может наглядно продемонстрировать, какой имеет реактивный двигатель принцип работы? Кальмар, осьминог и каракатица. Подобное движение совершают и многие другие морские моллюски. Возьмем, например, каракатицу. Она вбирает воду в свою жаберную полость и энергично выбрасывает ее через воронку, которую направляет назад или вбок.
При этом моллюск способен совершать движения в нужную сторону.
Принцип работы реактивного двигателя можно наблюдать и при перемещении сальца. Это морское животное принимает воду в широкую полость. После этого мышцы его тела сокращаются, выталкивая жидкость через отверстие, находящееся сзади. Реакция получаемой при этом струи позволяет сальце совершать движение вперед.
Морские ракеты
Но самого большего совершенства в реактивной навигации достигли все-таки кальмары. Даже сама форма ракеты, кажется, скопирована именно с этого морского обитателя. При перемещении с низкой скоростью кальмар периодически изгибает свой ромбовидный плавник. А вот для быстрого броска ему приходится использовать собственный «реактивный двигатель». Принцип работы всех его мышц и тела при этом стоит рассмотреть подробнее.
У кальмаров есть своеобразная мантия. Это мышечная ткань, которая окружает его тело со всех сторон. Во время движения животное засасывает в эту мантию большой объем воды, резко выбрасывая струю через специальное узкое сопло.
Такие действия позволяют кальмарам двигаться толчками назад со скоростью до семидесяти километров в час. Во время перемещения животное собирает в пучок все свои десять щупалец, что придает телу обтекаемую форму. В сопле имеется специальный клапан. Животное поворачивает его при помощи сокращения мышц. Это позволяет морскому обитателю менять направление движения. Роль руля во время перемещений кальмара играют и его щупальца. Их он направляет влево или вправо, вниз или вверх, легко уклоняясь от столкновений с различными препятствиями.
Существует вид кальмаров (стенотевтис), которому принадлежит звание лучшего пилота среди моллюсков. Опишите принцип работы реактивного двигателя — и вы поймете, почему, преследуя рыб, это животное порой выскакивает из воды, попадая даже на палубы судов, идущих по океану. Как же это происходит? Кальмар-пилот, находясь в водной стихии, развивает максимальную для него реактивную тягу. Это и позволяет ему пролететь над волнами на расстояние до пятидесяти метров.
Если рассматривать реактивный двигатель, принцип работы какого животного можно упомянуть еще? Это, на первый взгляд, мешковатые осьминоги. Пловцы из них не такие быстрые, как кальмары, но в случае опасности их скорости могут позавидовать даже лучшие спринтеры. Биологи, изучавшие миграции осьминогов, установили, что перемещаются они наподобие того, какой имеет реактивный двигатель принцип работы.
Животное с каждой струей воды, выброшенной из воронки, делает рывок на два или даже на два с половиной метра. При этом плывет осьминог своеобразно – задом наперед.
Другие примеры реактивного движения
Существуют свои ракеты и в мире растений. Принцип реактивного двигателя можно наблюдать тогда, когда даже при очень легком прикосновении «бешеный огурец» с высокой скоростью отскакивает от плодоножки, одновременно отторгая клейкую жидкость с семенами. При этом сам плод отлетает на значительное расстояние (до 12 м) в противоположном направлении.
Принцип работы реактивного двигателя можно наблюдать также, находясь в лодке.
Если из нее в воду в определенном направлении бросать тяжелые камни, то начнется движение в противоположную сторону. Такой же имеет и ракетный реактивный двигатель принцип работы. Только там вместо камней используются газы. Они создают реактивную силу, обеспечивающую движение и в воздухе, и в разряженном пространстве.
Фантастические путешествия
О полетах в космос человечество мечтало давно. Об этом свидетельствуют произведения писателей-фантастов, которые для достижения этой цели предлагали самые разнообразные средства. Например, герой рассказа французского писателя Эркюля Савиньена Сирано де Бержерака достиг Луны на железной повозке, над которой постоянно подбрасывался сильный магнит. До этой же планеты добрался и знаменитый Мюнхгаузен. Совершить путешествие ему помог гигантский стебель боба.
Реактивное движение использовалось в Китае еще в первом тысячелетии до нашей эры. Своеобразными ракетами для забавы при этом служили бамбуковые трубки, которые начинялись порохом.
Кстати, проект первого на нашей планете автомобиля, созданный Ньютоном, был также с реактивным двигателем.
История создания РД
Только в 19-м в. мечта человечества о космосе стала приобретать конкретные черты. Ведь именно в этом столетии русским революционером Н. И. Кибальчичем был создан первый в мире проект летательного аппарата с реактивным двигателем. Все бумаги были составлены народовольцем в тюрьме, куда он попал после покушения на Александра. Но, к сожалению, 03.04.1881 г. Кибальчич был казнен, и его идея не нашла практического воплощения.
В начале 20-го в. мысль об использовании ракет для полетов в космос выдвинул русский ученый К. Э. Циолковский. Впервые его работа, содержащая описание движения тела переменной массы в виде математического уравнения, была опубликована в 1903 г. В дальнейшем ученый разработал саму схему реактивного двигателя, приводящегося в движение при помощи жидкого топлива.
Также Циолковским была изобретена многоступенчатая ракета и высказана идея о создании на околоземной орбите настоящих космических городов.
Циолковский убедительно доказал, что единственным средством для космических полетов является ракета. То есть аппарат, оборудованный реактивным двигателем, заправляемый горючим и окислителем. Только такая ракета способна преодолеть силу тяжести и совершать полеты за пределами атмосферы Земли.
Освоение космоса
Статья Циолковского, опубликованная в периодическом издании «Научное обозрение», утвердила за ученым репутацию мечтателя. Его доводов никто не принял всерьез.
Идею Циолковского реализовали советские ученые. Возглавляемые Сергеем Павловичем Королевым, они осуществили запуск первого искусственного спутника Земли. 4 октября 1957 г. этот аппарат доставила на орбиту ракета с реактивным двигателем. Работа РД была основана на преобразовании химической энергии, которая передается топливом газовой струе, превращаясь в энергию кинетическую. При этом ракета совершает движение в обратном направлении.
Реактивный двигатель, принцип работы которого используется уже много лет, находит свое применение не только в космонавтике, но и в авиации.
Но более всего его используют для запуска ракет. Ведь только РД способен перемещать аппарат в пространстве, в котором отсутствует любая среда.
Жидкостный реактивный двигатель
Тот, кто стрелял из огнестрельного оружия или просто наблюдал этот процесс со стороны, знает, что существует сила, которая непременно оттолкнет ствол назад. Причем при большем количестве заряда отдача непременно увеличивается. Так же работает и реактивный двигатель. Принцип работы его схож с тем, как происходит отталкивание ствола назад под действием струи раскаленных газов.
Что касается ракеты, то в ней процесс, во время которого происходит воспламенение смеси, является постепенным и непрерывным. Это самый простой, твердотопливный двигатель. Он хорошо знаком всем ракетомоделистам.
В жидкостном реактивном двигателе (ЖРД) для создания рабочего тела или толкающей струи применяется смесь, состоящая из топлива и окислителя. Последним, как правило, выступает азотная кислота или жидкий кислород.
Топливом в ЖРД служит керосин.
Принцип работы реактивного двигателя, который был в первых образцах, сохранен и до настоящего времени. Только теперь в нем используется жидкий водород. При окислении этого вещества удельный импульс увеличивается по сравнению с первыми ЖРД сразу на 30%. Стоит сказать о том, что идея применения водорода была предложена самим Циолковским. Однако существующие на тот момент трудности работы с этим чрезвычайно взрывоопасным веществом были просто непреодолимы.
Каков принцип работы реактивного двигателя? Топливо и окислитель попадают в рабочую камеру из отдельных баков. Далее происходит превращение компонентов в смесь. Она сгорает, выделяя при этом колоссальное количество тепла под давлением в десятки атмосфер.
Компоненты в рабочую камеру реактивного двигателя попадают по-разному. Окислитель вводится сюда напрямую. А вот топливо проходит более длинный путь между стенками камеры и сопла. Здесь оно разогревается и, уже имея высокую температуру, вбрасывается в зону горения через многочисленные форсунки.
Далее струя, сформированная соплом, вырывается наружу и обеспечивает летательному аппарату толкающий момент. Вот так можно рассказать, какой имеет реактивный двигатель принцип работы (кратко). В данном описании не упоминаются многие компоненты, без которых работа ЖРД была бы невозможной. Среди них компрессоры, необходимые для создания нужного для впрыска давления, клапана, питающие турбины и т. д.
Современное использование
Несмотря на то что работа реактивного двигателя требует большого количества топлива, ЖРД продолжают служить людям и сегодня. Их применяют в качестве основных маршевых двигателей в ракетоносителях, а также маневровых для различных космических аппаратов и орбитальных станций. В авиации же используются другие виды РД, которые имеют несколько иные рабочие характеристики и конструкцию.
Развитие авиации
С начала 20-го столетия, вплоть до того периода, когда разразилась Вторая мировая война, люди летали только на винтомоторных самолетах. Эти аппараты были оснащены двигателями внутреннего сгорания.
Однако прогресс не стоял на месте. С его развитием появилась потребность в создании более мощных и быстрых самолетов. Однако здесь авиационные конструкторы столкнулись с, казалось бы, неразрешимой проблемой. Дело в том, что даже при незначительном увеличении мощности двигателя значительно возрастала масса самолета. Однако выход из создавшего положения был найден англичанином Френком Уиллом. Он создал принципиально новый двигатель, названный реактивным. Это изобретение дало мощный толчок для развития авиации.
Принцип работы реактивного двигателя самолета схож с действиями пожарного брандспойта. Его шланг имеет зауженный конец. Вытекая через узкое отверстие, вода значительно увеличивает свою скорость. Создающаяся при этом сила обратного давления настолько сильна, что пожарный с трудом удерживает в руках шланг. Таким поведением воды можно объяснить и то, каков принцип работы реактивного двигателя самолета.
Прямоточные РД
Этот тип реактивного двигателя является самым простым.
Представить его можно в виде трубы с открытыми концами, которая установлена на движущемся самолете. В передней части ее поперечное сечение расширяется. Благодаря такой конструкции входящий воздух снижает свою скорость, а его давление увеличивается. Самое широкое место такой трубы является камерой сгорания. Здесь происходит впрыскивание топлива и его дальнейшее сгорание. Такой процесс содействует нагреванию образовавшихся газов и их сильному расширению. При этом возникает тяга реактивного двигателя. Ее производят все те же газы, когда с силой вырываются наружу из узкого конца трубы. Именно эта тяга и заставляет самолет лететь.
Проблемы использования
Прямоточные реактивные двигатели имеют некоторые недостатки. Они способны работать только на том самолете, который находится в движении. Летательный аппарат, находящийся в состоянии покоя, прямоточные РД привести в действие не могут. Для того чтобы поднять в воздух такой самолет нужен любой другой стартовый двигатель.
Решение проблемы
Принцип работы реактивного двигателя самолета турбореактивного типа, который лишен недостатков прямоточного РД, позволил авиационным конструкторам создать самый совершенный летательный аппарат.
Как действует это изобретение?
Основной элемент, находящийся в турбореактивном двигателе, – газовая турбина. С ее помощью приводится в действие воздушный компрессор, проходя через который, сжатый воздух направляется в специальную камеру. Полученные в результате сгорания топлива (обычно это керосин) продукты попадают на лопасти турбины, чем приводят ее в действие. Далее воздушно-газовый поток переходит в сопло, где разгоняется до больших скоростей и создает огромнейшую реактивную силу тяги.
Увеличение мощности
Реактивная сила тяги может значительно возрасти за короткий промежуток времени. Для этого используется дожигание. Оно представляет собой впрыскивание дополнительного количества топлива в поток газа, вырывающийся из турбины. Неиспользованный в турбине кислород способствует сгоранию керосина, что и увеличивает тягу двигателя. На больших скоростях прирост ее значения достигает 70%, а на малых – 25-30%.
Авиационные газотурбинные двигатели / Хабр
Всем привет! В этой статье я хочу рассказать о том, как работают авиационные газотурбинные двигатели (ГТД).
Я постараюсь сделать это наиболее простым и понятным языком.
Авиационные ГТД можно можно разделить на:
- турбореактивные двигатели (ТРД)
- двухконтурные турбореактивные двигатели (ТРДД)
- Турбовинтовые двигатели (ТВД)
- Турбовальные двигатели (ТВаД)
Притом, ТРД и ТРДД могут содержать в себе форсажную камеру, в таком случае они будут ТРДФ и ТРДДФ соответственно. В этой статье мы их рассматривать не будем.
Начнём с турбореактивных двигателей.
Турбореактивные двигатели
Такой тип двигателей был создан в первой половине 20-го века и начал находить себе массовое применение к концу Второй мировой войны. Первым в мире серийным турбореактивным самолетом был немецкий Me.262. ТРД были популярны вплоть до 60-ых годов, после чего их стали вытеснять ТРДД.
Современная фотография Me-262, сделанная в 2016 году
Самый простой турбореактивный двигатель включает в себя следующие элементы:
- Входное устройство
- Компрессор
- Камеру сгорания
- Турбину
- Реактивное сопло (далее просто сопло)
Можно сказать, что это минимальный набор для нормальной работы двигателя.
А теперь рассмотрим что для чего нужно и зачем.
Входное устройство — это расширяющийся* канал, в котором происходит подвод воздуха к компрессору и его предварительное сжатие. В нём кинетическая энергия входящего воздуха частично преобразуется в давление.
*здесь и дальше мы будем говорить про дозвуковые скорости. На сверхзвуковой скорости физика меняется, и там все совсем не так.
Компрессор — это устройство, в котором происходит повышение давление воздуха. Компрессор можно характеризовать такой величиной, как степень повышения давления. В современных двигателях оно уже начинает переступать за 40 единиц. Кроме того, в нем увеличивается температура (может быть, где-то до 400 градусов Цельсия).
Камера сгорания — устройство, в котором к сжатому воздуху (после компрессора) подводится тепло из-за горения топлива. Температура в камере сгорания очень высокая, может достигать 2000 градусов Цельсия. Вам может показаться, что давление газа в камере тоже сильно увеличивается, но это не так.
Теоретически принято считать, что подвод тепла осуществляется при постоянном давлении. В реальности оно немного падает из-за потерь (проблема несовершенства конструкции).
Турбина — устройство, превращающее часть энергии газа после камеры сгорания в энергию привода компрессора. Так как турбины используются не только в авиации, можно дать более общее определение: это устройство, преобразующее внутреннюю энергию рабочего тела (в нашем случае рабочее тело — это газ) в механическую работу на валу. Как вы могли понять, турбина и компрессор находятся на одном валу и жестко связаны между собой. Если в компрессоре происходит повышение давления газа, то в турбине, наоборот, понижение, то есть газ расширяется.
Сопло — суживающийся канал, в котором происходит преобразование потенциальной энергии газа в кинетическую (оставшийся запас энергии газа после турбины). Как и в турбине, в сопле происходит расширение газа. Образуется струя, которая, вытекая из сопла, движет самолёт.
С основными элементами разобрались.
Но все равно не очень понятно как оно работает? Тогда давайте ещё раз и коротко.
Воздух из атмосферы попадает во входное устройство, где немного сжимается и поступает в компрессор. В компрессоре давление воздуха растёт ещё сильнее, растёт и температура. После компрессора воздух поступает в камеру сгорания и, смешиваясь там с топливом, воспламеняется, что приводит к сильному возрастанию температуры, при, можно сказать, постоянном давлении. После камеры сгорания горячий сжатый газ попадает в турбину. Часть энергии газа расходуется на вращение компрессора турбиной (чтобы он мог выполнять свою функцию, описанную выше), другая часть энергии расходуется на, нужное нам, движение самолёта, из-за того, что газ, пройдя турбину, превращается в реактивную струю в сопле и вырывается из него (сопла) в атмосферу. На этом цикл завершается. Конечно, в реальности все процессы цикла проходят непрерывно.
Такой цикл называется циклом Брайтона, или термодинамическим циклом с непрерывным характером рабочего процесса и подводом тепла при постоянном давлении.
По такому циклу работают все ГТД.
Цикл Брайтона в P-V координатах
Н-В — процесс сжатия во входном устройстве
В-К — процесс сжатия в компрессоре
К-Г — изобарический подвод тепла
Г-Т — процесс расширения газа в турбине
Г-С — процесс расширения газа в сопле
С-Н — изобарический отвод тепла в атмосферу
Схематичная конструкция турбореактивного двигателя, где 0-0 — ось двигателя
ТРД может иметь и два вала. В таком случае компрессор состоит из компрессора низкого давления (КНД) и компрессора высокого давления (КВД), а подвод работы будут осуществлять турбина низкого давления (ТНД) и турбина высокого давления (ТВД) соответственно. Такая схема более выгодная газодинамически.
Реальный двигатель такого вида в разрезе
Мы рассмотрели принцип работы самой простой схемы авиационного газотурбинного двигателя. Естественно, на современных «Эйрбасах и Боингах» устанавливаются ТРДД, конструкция которых заметно сложнее, но работает все по таким же законам.
Давайте рассмотрим их.
Двухконтурный турбореактивный двигатель
ТРДД, прежде всего, отличается от ТРД тем, что имеет два контура: внешний и внутренний. Внутренний контур содержит в себе то же самое, что и ТРД: компрессор (разделенный на КНД и КВД), камеру сгорания, турбину (разделенную на ТВД и ТНД) и сопло. Внешний контур представляет собой канал, с соплом в конце. В нем нет ни камеры сгорания, ни турбины. Перед обоими контурами (сразу после входного устройства двигателя) стоит ступень компрессора, работающая на оба контура.
Не очень понятная картина выходит, да? Давайте разберемся как оно работает.
Схематичная конструкция двухвального двухконтурного турбореактивного двигателя
Воздух, попадающий в двигатель, пройдя через первую ступень компрессора низкого давления, разбивается на два потока. Одна часть воздуха идет по внутреннему контуру, где происходят те же процессы, которые были описаны, когда мы разбирали ТРД.
Вторая часть воздуха попадает во внешний контур, получив энергию от первой ступени КНД (та, которая работает на два контура). Во внешнем контуре энергия воздуха тратится только на преодоление гидравлических потерь (за счёт трения). В конце этот воздух попадает в сопло внешнего контура, создавая огромную тягу. Тяга, созданная внешним контуром, может составлять 80% тяги всего двигателя.
Одной из важнейших характеристик ТРДД является степень двухконтурности. Степень двухконтурности — это отношение расхода воздуха во внешнем контуре, к расходу воздуха во внутреннем контуре. Это число может быть как больше, так и меньше единицы. На современных двигателях это число переступает за значение в 12 единиц.
Двигатели, степень двухконтурности которых больше двух, принято называть турбовентиляторными, а первую ступень компрессора (ту, что работает на оба контура) вентилятором.
ТРДД самолета Boeing 757-200. На переднем плане видно входное устройство и вентилятор
На некоторых двигателях вентилятор приводится в движение отдельной турбиной, которая ставится ближе всего к соплу внутреннего контура.
Тогда двигатель получается трехвальным. Например, по такой схеме выполнены двигатели Rolls Royce RB211 (устанавливались на L1011, B747, B757, B767), Д-18Т (Ан-124), Д-36 (Як-42)
Д-18Т в разрезе изнутри
Главное достоинство ТРДД заключается в возможности создания большой тяги и хорошей экономичности, по сравнению с ТРД.
На этом я хотел бы закончить про ТРДД и перейти к следующему виду двигателей — ТВД.
Турбовинтовые двигатели
Турбовинтовой двигатель, как и турбореактивный, относится к газотурбинным двигателям. И работает он почти как турбореактивный. Элементарный турбовинтовой двигатель состоит из уже знакомых нам элементов: компрессора, камеры сгорания, турбины и сопла. К ним добавляются редуктор и винт.
Принцип работы работы такой же, как у турбореактивного, с разницей в том, что практически вся энергия газа расходуется на турбине на вращение компрессора и на вращение винта через редуктор (здесь винт и редуктор находятся на одном валу с компрессором).
Винт создаёт основную долю тяги. Оставшаяся, после турбины, часть энергии направляется в сопло, образуя реактивную тягу, но она мала, может составлять десятую часть от общей. Редуктор в этой схеме нужен для того, чтобы понизить обороты и передать момент, так как турбина может вращаться с очень высокой частотой, например, 10000 оборотов в минуту, а винту нужно только 1500. И винт достаточно тяжелый.
Схематичная конструкция ТВД
Но бывает и другая схема турбовинтовых двигателей: со свободной турбиной.
Её суть в том, что за обычной турбиной компрессора ставится отдельная турбина, которая механически не связана с турбиной компрессора. Такая турбина называется свободной. Связь между турбиной компрессора и свободной турбиной только газодинамическая. От свободной турбины идёт отдельный вал, на который устанавливаются редуктор с винтом. Все остальное работает так же, как и в первом случае. Большинство современных двигателей выполняют именно по такой схеме. Одним из плюсов такой схемы является возможность использования двигателя на земле, как вспомогательную силовую установку (ВСУ), не приводя винт в движение.
Схематичная конструкция ТВД со свободной турбиной
Хочу отметить, что не нужно смотреть на турбовинтовые двигатели как на малоэффективный пережиток прошлого. Я несколько раз слышал такие высказывания, но они неверны.
Турбовинтовой двигатель в некоторых случаях обладает наивысшим КПД, как правило, на самолетах с не очень большими скоростями (например, на 500 км/ч), притом, самолет может быть внушительных размеров. В таком случае, турбовинтовой двигатель может быть в разы выгоднее, рассмотренного ранее, турбореактивного двигателя.
На этом про турбовинтовые двигатели можно заканчивать. Мы потихоньку подошли к понятию турбовального двигателя.
Турбовальный двигатель
Должно быть, большинство читателей здесь вообще впервые слышат такое название. Такой тип двигателей устанавливается на вертолёты.
Турбовальный двигатель очень схож с турбовинтовым двигателем со свободной турбиной. Он также состоит из компрессора, камеры сгорания, турбины компрессора, далее идёт свободная турбина, связанная со всем предыдущем только газодинамически.
А вот реактивную тягу такой двигатель не создаёт, реактивного сопла у него нет, только выхлоп. Свободная турбина имеет свой вал, который соединяется к главному редуктору вертолёта (несущего винта). Да, у всех известных мне вертолетов есть такой редуктор, и, как правило, он внушительных размеров. Дело в том, что обороты несущего винта вертолёта очень низкие. Если у самолета, как я писал выше, они могут достигать 1500 об/мин, то у вертолёта, например у Ми-8, всего 193 об/мин.
А обороты двигателя у вертолёта зачастую очень высокие (из-за небольших размеров), и понижать их приходится в сотню и более раз. Бывает такое, что редуктор стоит и на двигателе, и на самом вертолете, например, у Ми-2 и его двигателя ГТД-350.
Схематичная конструкция турбовального двигателя
Двигатель ТВ3-117 от вертолета Ми-8. Справа видны выхлопная труба и приводной вал
Итак, мы рассмотрели четыре типа газотурбинных двигателей. Надеюсь, мой текст был понятен и полезен для вас.
Все вопросы и замечания можете писать в комментариях.
Спасибо за внимание.
Как работают авиационные двигатели?
Назад к ресурсам
Современные самолеты приводятся в движение газотурбинными двигателями, которые пропускают воздух через ряд стадий, где он сжимается, воспламеняется и выбрасывается. Этот процесс создает выхлоп высокого давления, который используется для приведения в движение вращающихся частей двигателя и создания тяги.
Опубликовано: 30 августа 2017 г.
Автор: ehoffman
Работает на воздухе
Airbus A380 — самый большой в мире пассажирский самолет
Для взлета и полета самолетам требуется огромная мощность двигателя. Полностью загруженный Airbus A380 — самый большой пассажирский самолет в эксплуатации — может весить более 500 тонн на взлете, для чего требуется четыре массивных двигателя, обеспечивающих 300 000 фунтов тяги.
Двигатели должны разгонять самолет достаточно быстро, чтобы создать достаточную подъемную силу для преодоления силы тяжести.
Но в отличие от наземных транспортных средств, которые толкают землю с помощью приводных колес, самолеты создают тягу с помощью винтов или двигателей, которые толкают воздух.
Газотурбинные двигатели заполнены аэродинамическими профилями или «лопастями» различных размеров, прикрепленными к вращающейся оси. Лопасти перемещают воздух через различные ступени двигателя, сжимая и расширяя газ, создавая тягу, которая толкает самолет вперед.
Как выглядит газотурбинный двигатель?
Ниже приведена схема типичного газотурбинного двигателя. Воздухозаборник слева часто сопровождается большим вентилятором для увеличения всасывания. Затем воздух сжимается до меньшего объема перед тем, как смешаться с топливом в камере сгорания. Смесь воспламеняется искрой или пламенем, и горячий газ проходит через турбину, которая вращается для питания компрессора и вентилятора. Затем выхлоп высокого давления выходит из задней части двигателя, создавая тягу и толкая самолет вперед. Ступени газовой турбины более подробно описаны ниже.
Схема газотурбинного двигателя
Ступени газотурбинного реактивного двигателя
Большой впускной вентилятор
Вентилятор: Вентилятор расположен в передней части двигателя и является основным воздухозаборником. Большие вращающиеся лопасти всасывают огромное количество воздуха, ускоряя газ и разделяя его на два отдельных потока. Часть воздуха направляется в заднюю часть двигателя для создания тяги, а остальная часть направляется в ядро двигателя, где поступает на следующую ступень.
Компрессор: Компрессор сжимает воздух, всасываемый лопастями вентилятора, сжимая его до меньшего объема и повышая давление. Секция компрессора имеет несколько рядов лопастей, которые нагнетают воздух во все более мелкие каналы. Сжатие воздуха увеличивает потенциальную энергию и концентрирует молекулы кислорода для более эффективного сгорания на следующем этапе.
Камера сгорания: Камера сгорания подает топливо в сжатый воздух и воспламеняет смесь, создавая расширяющийся газ под высоким давлением.
Это самая горячая часть двигателя, где энергия высвобождается при сгорании топлива, а температура может достигать 2000 градусов по Фаренгейту. Камера сгорания снабжена форсунками для впрыска топлива и воспламенителем, чтобы вызвать реакцию. После воспламенения постоянный поток топлива обеспечивает поддержание горения, а расширяющийся газ направляется вниз по потоку в секцию турбины.
Этот вид внутри реактивного двигателя показывает секции компрессора, камеры сгорания и турбины.
Турбина: Секция турбины представляет собой еще один набор вращающихся лопастей, которые приводятся в движение воздухом под высоким давлением, выходящим из камеры сгорания. Лопасти турбины ловят быстрый воздушный поток и вращаются, приводя в движение вращающийся вал, который вращает вентилятор и компрессор в передней части двигателя. Турбина по существу питает остальную часть двигателя, используя энергию камеры сгорания для поддержания постоянного впуска и сжатия воздуха. Воздух, проходящий через турбину, теряет энергию на вращающиеся лопасти, но то, что остается, перемещается в последнюю ступень выхлопа двигателя, где он выбрасывается для создания тяги.
Истребитель с форсажной камерой
Сопло: Сопло представляет собой конусообразный канал в задней части двигателя. Здесь воздушный поток от ядра двигателя и перепускаемый воздух из секции вентилятора выбрасываются для создания тяги. Сопло двигателя обычно сужается для ускорения выходящего газа, а воздух, выходящий из сопла, воздействует на двигатель, толкая самолет вперед.
В некоторых двигателях используется форсажная камера для создания дополнительной тяги. Форсажная камера впрыскивает больше топлива и воспламеняет смесь после того, как она прошла через турбину. Этот процесс значительно увеличивает скорость воздуха, выходящего из сопла, но потребляет избыточное топливо и используется только в течение коротких периодов времени на специализированных военных самолетах.
Как работает реактивный двигатель – Резюме видео
Вот забавное видео, созданное CFM International, в котором анимированные частицы воздуха прослеживаются на каждой ступени турбовентиляторного двигателя с большим двухконтуром.
Улучшение аэродинамического профиля
Один реактивный двигатель может иметь сотни лопастей в секциях вентилятора, компрессора и турбины. Эти лопасти различаются по размеру, форме и составу материала, но все они выполняют важные функции в работе двигателя. Учитывая экстремальные силы и температуры, присутствующие в газотурбинном двигателе, методы улучшения качества металла, такие как лазерная наплавка, имеют жизненно важное значение для безопасности и производительности двигателя и его компонентов.
Лопасти вентилятора бомбардировщика B-1 обработаны лазером для обеспечения устойчивости к ППП
Устойчивость к ППП: Повреждение посторонними предметами (ППП) представляет серьезную опасность для авиационных двигателей.
Мощное всасывание, создаваемое вентилятором и компрессором, может затягивать твердые предметы, такие как куски льда или обломки взлетно-посадочной полосы, потенциально повреждая компоненты двигателя. Лазерная наплавка обеспечивает непревзойденную устойчивость к FOD и, как было показано, значительно предотвращает растрескивание и разрушение, связанные с FOD, в титановых лопастях вентилятора. Лазерная наплавка применялась более 20 лет для защиты важнейших компонентов двигателя бомбардировщика B-1.
Предотвращение усталостного растрескивания: Усталостное растрескивание является еще одной серьезной опасностью для лопаток авиационных двигателей. Поскольку компоненты вращаются с высокой скоростью, каждое лезвие испытывает растягивающее напряжение, которое повторяется в течение миллионов циклов. Если в металле развивается трещина, даже в микроскопическом масштабе, повторяющееся нагружение каждого цикла может постепенно расширять трещину, пока она не станет настолько большой, что лезвие сломается.
Лазерная наплавка часто применяется к лопастям вентиляторов, компрессоров и турбин в местах, подверженных растрескиванию и усталости. Глубокие сжимающие остаточные напряжения, создаваемые лазерной наклепом, препятствуют зарождению и распространению трещин, продлевая срок службы лопаток и предотвращая неожиданные поломки.
На следующей неделе мы обсудим различные типы авиационных двигателей: от турбовентиляторных и турбовинтовых до прямоточных и ГПВРД.
Подпишитесь на нас в LinkedIn, чтобы не пропустить ни одной статьи или блога.
Свяжитесь с LSPT, чтобы узнать больше о лазерной обработке компонентов газотурбинного двигателя.
Назад к ресурсам
Хотите увидеть больше?
Расскажите нам о своем применении, материале или механизме отказа, и один из наших экспертов свяжется с вами. Наша обширная библиотека исследований и многолетний опыт дают нам уникальное преимущество в применении анализа конечных элементов, чтобы помочь диагностировать наилучшее приложение для вашей ситуации.
Контактная форма
Как работает ваш двигатель
Джеймс Уильямс
Источник: Брифинг по безопасности FAA, январь/февраль 2020 г.
Двигатель самолета ближе всего к сердцу. Двигатель обеспечивает энергию, которая не только приводит в движение самолет, но и приводит в действие все остальные системы. Двигатель вращает генератор, который обеспечивает электричество. Он управляет различными насосами, питающими такие системы, как гидравлика, нагнетание давления и т. д.
Для большинства из нас, работающих в авиации общего назначения, двигатель означает двигатель внутреннего сгорания. В частности, это означает поршневой двигатель, термин, который просто обозначает возвратно-поступательное движение поршней. Задача двигателя — преобразовать потенциальную энергию, хранящуюся в топливе, в механическую энергию, приводящую в движение ваш самолет, с помощью воздуха.
Базовая анатомия
Двигатель состоит из нескольких основных компонентов.
Во-первых, это цилиндр, где происходит сгорание. Далее идет поршень, который вставляется внутрь цилиндра снизу и обеспечивает сжатие и поглощение энергии сгорания. Поддерживает поршень шатун, который передает энергию вниз к коленчатому валу, передавая ее из двигателя, обычно к гребному винту.
Как следует из названия, головка блока цилиндров расположена сверху цилиндра и содержит важные компоненты, такие как клапаны и свечи зажигания. Клапаны открываются, чтобы впустить топливно-воздушную смесь в цилиндр (впускной клапан) и выпустить сгоревшие газы (выпускной клапан). Свеча зажигания воспламеняет сжатое топливо и воздух, преобразуя эту химическую энергию в механическую энергию, которая вращает коленчатый вал и гребной винт. Теперь, когда мы знаем основы, давайте посмотрим, как эти части работают вместе.
И раз, два, три, четыре, повтор!
Авиационные двигатели, за некоторыми исключениями, представляют собой четырехтактные двигатели с четырьмя отдельными фазами: впуск, сжатие, мощность и выпуск.
Во время такта впуска поршень опускается из верхней части цилиндра, а впускной клапан открывается, чтобы впустить топливно-воздушную смесь. Такт сжатия начинается, когда впускной клапан закрывается и поршень начинает подниматься к верхней части цилиндра. Рабочий ход начинается, когда свеча зажигания воспламеняет сжатую топливно-воздушную смесь, вызывая сгорание, которое с силой толкает поршень вниз. Такт выпуска начинается, когда поршень достигает нижней мертвой точки и снова начинает подниматься, чтобы вытолкнуть сгоревшие газы через открытый выпускной клапан. Потом начинаем все заново. Хотя мы разбиваем процесс на отдельные этапы, реальность такова, что это скорее непрерывный процесс.
Опорный гипс
Охлаждение двигателя — одна из систем, которая помогает вашему двигателю работать. Двигатели внутреннего сгорания превращают большую часть энергии сгорания в отработанное тепло. В то время как большая часть этого выбрасывается через выхлопные газы, остается значительное количество тепла.
Наши двигатели обычно имеют воздушное охлаждение, поэтому логика подсказывает, что чем больше воздуха, тем лучше охлаждение. Следовательно, гондола содержит воздуховоды и перегородки, которые направляют воздушный поток равномерно по охлаждающим поверхностям двигателя, тем самым поддерживая сбалансированную рабочую температуру двигателя. Если эти перегородки сняты или повреждены, чрезмерное накопление тепла в части двигателя может привести к дополнительному износу и, возможно, выходу из строя.
Помимо охлаждения двигателю нужен воздух и топливо. Впускной коллектор направляет смесь в цилиндр, а топливо добавляется через карбюратор или топливные форсунки. Карбюратор остается наиболее распространенным решением. Карбюраторы — это более старая технология, но они имеют то преимущество, что они являются хорошо проверенными, менее сложными и очень надежными решениями.
Впрыск топлива обеспечивает больший контроль и большую эффективность, но является более сложным. У карбюраторов есть один явный недостаток: обледенение карбюратора может задушить двигатель.
Углеводное тепло — простое решение этой конкретной проблемы, но вам нужно активировать его.
Затем идет выхлопная система, которая выводит отработавшие газы и тепло из цилиндра. Выхлопная система безопасно выводит горячие газы сгорания из моторного отсека в глушитель. Несмотря на свое скромное описание, выхлопная система абсолютно важна для безопасности.
Одним из способов увеличения мощности двигателя является увеличение количества воздуха и топлива в цилиндре во время сгорания. Это можно сделать с помощью принудительной индукции, чаще называемой турбонаддувом или наддувом. Турбонаддув более распространен в современных самолетах АОН, но оба метода, по сути, делают одно и то же. Они сжимают всасываемый воздух, чтобы нагнетать в двигатель больше воздуха и топлива, чем позволяют нормальные атмосферные условия. Разница в том, что турбонаддув использует выхлопные газы двигателя для питания компрессора, а нагнетатель использует выходную мощность двигателя.
Здоровье сердца
Теперь, когда мы знаем, как работает двигатель самолета, давайте посмотрим, как это «сердце» может столкнуться с проблемами.
Во время предполетной подготовки важно проверить наличие утечек или повреждений топливных или маслопроводов. Визуально проверьте соединения в максимально возможной степени; незакрепленные провода или линии могут натереться и быстро превратить незначительную проблему в серьезную аварийную ситуацию.
Никогда не забывайте проверять масло, которое является источником жизненной силы двигателя. Он помогает передавать тепло от горячих частей двигателя к областям, где его можно безопасно рассеять. Что еще более важно, оно смазывает двигатель, чтобы он мог эффективно работать. Масляное голодание, будь то из-за утечки, возгорания или просто поломки, является одной из частых причин «сердечных» событий в самолетах. Также имейте в виду, что масло со временем разлагается, становясь менее эффективным в своей работе. Независимо от причины, недостаточная смазка может привести к серьезным повреждениям. Контроль не только количества масла, но и его состояния во время предполетной подготовки имеет решающее значение.