ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

многоступенчатый осевой компрессор авиационного двигателя. Компрессор авиационного двигателя


Компрессор авиационного двигателя — курсовая работа

Министерство образования и науки Украины

Национальный аэрокосмический университет

им. Н.Е. Жуковского «ХАИ»

кафедра 203

Расчетно-пояснительная записка к курсовому проекту

по дисциплине: «Конструкция АД»

КОМПРЕССОР АВИАЦИОННОГО ДВИГАТЕЛЯ

ХАИ.203.244.07О.260.07002171

Выполнил: студент гр.244

Тимченко Д. В.

Руководитель: преподаватель каф. 203

Марценюк Е. В.

Харьков 2011

Содержание

Введение

1. Основные сведения о двигателе и краткое описание

2. Расчет на прочность лопатки первой ступени КВД

3. Расчет на прочность диска компрессора

4. Расчет на прочность замка крепления лопатки типа «Ласточкин хвост»

5. Расчет на прочность наружного корпуска камеры сгорания

6. Расчет динамической частоты первой формы изгибных колебаний лопатки компрессора и построение частотной диаграммы

Список используемой литературы

ВВЕДЕНИЕ

В настоящее время интенсивность развития авиационной техники довольно высока. Это обусловлено потребностями мирового авиарынка и высоким уровнем конкуренции между фирмами-производителями. Существовавшие ранее промышленно-производственные и материальные связи Украины со странами бывшего СССР делают актуальной проблему поддержания отечественного авиастроения на современном уровне. Мировая обстановка складывается таким образом, что авиапромышленность в Украине ориентирована на «мирную» авиацию. А значит, нам необходимы разработки по созданию дешевых и эффективных двигателей для самолетов пассажирского и транспортного назначения, соответствующих европейским и мировым стандартам. Таким требованиям очень хорошо отвечают турбовентиляторные и двухконтурные двигатели с большой степенью двухконтурности m 5. Их основные преимущества: низкий удельный расход топлива и соответствие современным экологическим требованиям.

Темой данного проекта является разработка конструкции компрессора высокого давления ТРДД для транспортного самолета на базе существующего ТРДД - Д 18Т. Выбор этого двигателя в качестве прототипа связан с тем, что он сможет обеспечить необходимые параметры при относительно низком удельном расходе топлива и уровне шумности за счет большой степени двухконтурности.

1. Основные сведения о двигателе и краткое описание

В качестве прототипа двигателя принят ТРДД Д-18Т - трёхвальный турбореактивный двухконтурный двигатель. Особенность трёхвальной схемы -разделение ротора компрессора на три самостоятельных ротора, каждый из которых приводится во вращение своей турбиной.

Конструкция двигателя выполнена с учетом обеспечения принципа модульной (блочной) сборки. Двигатель состоит из 12-ти модулей, каждый из которых - законченный конструктивно-технологический узел и может быть (кроме главного 12-го модуля) демонтирован и заменен на двигателе без разборки соседних модулей в условиях авиационно-технических баз, имеющихся на всех крупных аэродромах. Модульность конструкции двигателя обеспечивает возможность восстановления его эксплуатационной пригодности заменой деталей и узлов в условиях эксплуатации, а высокая контролепригодность способствует переходу от планово-предупредительного обслуживания к обслуживанию по состоянию.

Компрессор двигателя.

Компрессор двигателя - осевой, трехкаскадный, состоит из сверхзвукового вентилятора, околозвукового КНД и дозвукового КВД.

Одноступенчатый вентилятор не имеет ВНА и состоит из рабочего колеса, статора со спрямляющим аппаратом, вала с подшипниковым узлом и вращающегося обогреваемого воздухом кока.

Соединение диска рабочего колеса с валом - болтовое, лопатки крепятся к дискам хвостовиками типа «ласточкин хвост».

Рабочие лопатки вентилятора имеют бандажные антивибрационные полки, расположенные в тракте наружного контура.

Спрямляющий аппарат - разборной конструкции. Внутренняя поверхность наружного кольца спрямляющего аппарата имеет акустическую облицовку. К переднему фланцу корпуса вентилятора крепится самолетный воздухозаборник.

Вал вентилятора соединен с валом турбины вентилятора шлицами. Вентилятор и турбина вентилятора образуют ротор вентилятора, установленный на 2-х подшипниках. Оба подшипниковых узла ротора вентилятора имеют масляные демпферы.

Компрессор низкого давления - семиступенчатый, состоит из статора и ротора. Статор своим обтекателем разделяет поток воздуха за рабочим колесом вентилятора по контурам. В статоре смонтированы неподвижный и поворотный ВНА, узлы передних подшипников роторов вентилятора и КНД, спрямляющие аппараты ступеней, рабочие кольца и клапаны перепуска воздуха из КНД. Наличие поворотных лопаток ВНА КНД позволяет производить отладку двигателя в стендовых условиях. После отладки лопатки ВНА фиксируются в выбранном положении. Ротор компрессора - барабанно-дисковой конструкции, соединен с передним и задним валами с помощью болтов, рабочие лопатки соединены с венцами дисков хвостовиками типа «ласточкин хвост». Ротор КНД соединен с турбиной НД с помощью шлицев и образует ротор низкого давления. Ротор НД установлен на 2-х подшипниковых узлах, имеющих масляные демпферы.

Компрессор высокого давления - семиступенчатый, состоит из ВНА, ротора, статора и клапанов перепуска воздуха. Ротор КВД - барабанно-дисковой конструкции. Сварной барабан, диски последних ступеней, поставки и валы соединены между собой болтами, лопатки с дисками соединены хвостовиками «ласточкин хвост». КВД соединяется с турбиной ВД с помощью болтов и образует ротор высокого давления, установленный на 2-х подшипниках.

Передний шариковый подшипник установлен в упругой опоре с жестким ограничителем хода. Задний роликовый подшипник ротора ВД установлен на масляном демпфере.

Поворотные лопатки ВНА КВД позволяют производить отладку двигателя в стендовых условиях. После отладки лопатки ВНА фиксируются в выбранном положении. Промежуточный корпус служит для формирования переходного тракта от КНД к КВД и тракта наружного контура, размещения агрегатов и приводов к ним, а также размещения передней опоры ротора КВД и переднего пояса подвески двигателя. Кольцевые оболочки, формирующие тракт внутреннего и наружного контуров, соединены между собой 8-ю полыми рёбрами, внутри которых проходят коммуникации. Промежуточный корпус состоит из корпуса, центрального привода, коробки приводов и колонки приводов. Все приводные агрегаты двигателя получают вращение от ротора ВД. К заднему фланцу наружной оболочки промежуточного корпуса крепится болтами выходное сопло наружного контура, являющееся элементом конструкции самолетной мотогондолы, или реверсивное устройство. К внутреннему силовому корпусу спереди крепится корпус КНД, а сзади - корпус КВД.

В трехвальном турбореактивном двухконтурном двигателе Д-18Т весь воздух, поступающий на вход двигателя через самолетный воздухозаборник, проходит через вентилятор, в котором происходит некоторое повышение давления и температуры воздуха. Это повышение температуры и давления различно по длине лопатки вентилятора: у хвостовика оно меньше, на периферии рабочего колеса - больше.

За вентилятором поток воздуха делится на два: наружный и внутренний. По наружному контуру проходит около 85% всего воздуха, который, расширяясь и увеличивая свою скорость в канале и сопле наружного контура, создает приблизительно 77% общей тяги.

Во внутреннем контуре воздух дополнительно сжимается в компрессорах низкого и высокого давления и попадает в камеру сгорания, где, перемешиваясь с тонкораспыленным топливом, создает топливно-воздушную смесь. Газ поступает на турбину, где происходит преобразование энергии газового потока в механическую энергию, используемую для привода компрессора высокого и низкого давления и вентилятора. При прохождении газа через проточную часть турбины его энергия уменьшается, при этом температура и давление газа понижаются. В реактивном сопле внутреннего контура происходит расширение газа с падением давления до атмосферного, сопровождающееся увеличением скорости газового потока, создающего тягу внутреннего контура.

Промежуточный корпус.

Промежуточный корпус служит для формирования переходного канала от КНД к КВД и проточной части наружного контура, размещения агрегатов и приводов к ним, а также размещения передней опоры ротора КВД и узлов переднего пояса подвески двигателя. Кольцевые оболочки промежуточного корпуса, формирующие проточную часть внутреннего и наружного контуров, соединены между собой восемью полыми стойками, внутри которых проходят коммуникации систем двигателя. Промежуточный корпус состоит из собственно промежуточного корпуса, центрального привода, коробки приводов и промежуточного привода.

Все приводные агрегаты двигателя установлены на коробке приводов и получают вращение от ротора ВД через систему зубчатых передач и шлицевых рессор. К переднему фланцу наружной оболочки промежуточного корпуса крепится корпус СА вентилятора. К внутренней кольцевой оболочке, спереди, крепится корпус КНД, а сзади - корпус КВД. На промежуточном корпусе установлены также элементы капота газогенератора, формирующие внутреннюю поверхность наружного контура между стойками промежуточного корпуса.

Камера сгорания.

Камера сгорания состоит из корпуса, входного диффузора со спрямляющим аппаратом седьмой ступени КВД, жаровой трубы, топливного коллектора, топливных форсунок и пусковых воспламенителей. Жаровая труба кольцевого типа, с восемнадцатью топливными форсунками, имеет сварную конструкцию, состоит из отдельных, сваренных встык, колец, имеющих ряд отверстий для прохода вторичного воздуха.

Топливные форсунки _ центробежного типа, одноканальные, четыре из них - аэрофорсунки (с пневмораспылом топлива), которые обеспечивают устойчивое горение при обеднении топливовоздушной смеси.

Топливный коллектор и трубки подвода топлива к форсункам имеют защитный кожух, предотвращающий попадание топлива на горячие корпусные детали в случае нарушения герметичности коллектора и трубок подвода топлива. На корпусе камеры сгорания установлены два воспламенителя факельного типа со свечами зажигания.

В передней части корпуса камеры сгорания установлены два клапана перепуска воздуха из-за КВД при запуске двигателя; на одном из клапанов установлен патрубок для отбора воздуха из-за КВД на нужды самолета.

Турбина

Турбина _ трехкаскадная, шестиступенчатая, реактивная, состоит из одноступенчатой турбины высокого давления (ТВД), одноступенчатой турбины низкого давления (ТНД) и четырехступенчатой турбины вентилятора (ТВ).

Каждая из турбин приводит во вращение соответствующий ротор компрессора: ТВД _ ротор КВД, ТНД _ ротор КНД, ТВ _ ротор вентилятора.

ТВД состоит из соплового аппарата (СА) и ротора. СА набирается из десяти отдельных секторов. В секторах по три (в одном секторе две) сопловые лопатки соединены между собой с помощью пайки. Сопловые лопатки пустотелые, охлаждаемые воздухом из-за КВД, имеют дефлекторы для поджатия охлаждающего воздуха к внутренним стенкам лопаток и систему перфорационных отверстий в стенках профиля и трактовых полок лопаток, через которые охлаждающий воздух выходит на наружную поверхность лопатки и защищает ее от горячих газов.

Ротор ТВД состоит из рабочего колеса (диска с рабочими лопатками), лабиринтного диска, вала ТВД.

Рабочая лопатка ТВД _ охлаждаемая, состоит из хвостовика, ножки, пера и бандажной полки с гребешками. Воздух на охлаждение подводится к хвостовику, проходит по радиальным каналам в теле пера лопатки и выходит через отверстия в передней и задней части пера лопатки в проточную часть. В каждом пазу диска устанавливается по две лопатки. Соединяются лопатки с диском замками «елочного» типа. Лабиринтный диск и диск ТВД охлаждается воздухом из-за КВД.

Турбина низкого давления состоит из ротора и корпуса опор турбин с сопловым аппаратом ТНД. Ротор ТНД состоит из рабочего колеса (диска с рабочими лопатками) и вала ТНД, соединённых между собой болтами. Рабочие лопатки ротора ТНД неохлаждаемые, соединяются с диском замками «елочного» типа. Диск охлаждается воздухом, отбираемым из КВД.

В корпусе опор турбин наружная и внутренняя оболочки соединены между собой стойками, проходящими внутри полых лопаток соплового аппарата второй ступени турбины. Через лопатки проходят также трубопроводы масляных и воздушных коммуникаций. В корпусе опор турбин имеются узлы задних подшипников опор роторов низкого и высокого давления.

Сопловые лопатки, отлитые в виде секторов по три лопатки в секторе, охлаждаются воздухом, отбираемым из-за четвертой ступени КВД.

Турбина вентилятора состоит из ротора и статора. Статор турбины вентилятора состоит из корпуса и пяти сопловых аппаратов, набранных из отдельных литых секторов, по пять лопаток в секторе. Ротор турбины вентилятора дисково-барабанной конструкции. Диски соединяются между собой и с валом турбины вентилятора болтами. Лопатки, как сопловые, так и рабочие, неохлаждаемые; диски турбины вентилятора охлаждаются воздухом, отбираемым из КВД. Рабочие лопатки всех ступеней ротора ТВ бандажированы, соединены с дисками замками «елочного типа».

Выходное устройство турбины состоит из корпуса задней опоры, реактивного сопла внутреннего контура и стекателя.

На корпусе задней опоры турбины имеются места крепления узлов заднего пояса подвески двигателя к самолету. Задний узел подвески двигателя установлен на силовом кольце, которое является частью внешней оболочки корпуса задней опоры. Внутри корпуса расположен подшипниковый узел ротора вентилятора.

В стойках, соединяющих внутреннюю и наружную оболочки корпуса, расположены коммуникации задней опоры ротора вентилятора.

2. Расчет на прочность лопатки первой ступени КВД

Рабочие лопатки осевого компрессора являются весьма ответственными деталями газотурбинного двигателя, от надежной работы которых зависит надежность работы двигателя в целом.

При работе газотурбинного двигателя на рабочие лопатки действуют статические, динамические и температурные нагрузки, вызывая сложную картину напряжений.

Расчет на прочность пера лопатки выполняем, учитывая воздействие только статических нагрузок. К ним относятся центробежные силы масс лопаток, которые появляются при вращении ротора, и газовые силы, возникающие при обтекании газом профиля пера лопатки и в связи с наличием разности давлений газа перед и за лопаткой. Центробежные силы вызывают деформации растяжения, изгиба и кручения, газовые - деформации изгиба и кручения. Напряжения кручения от центробежных, газовых сил слабозакрученных рабочих лопаток компрессора малы, и ими пренебрегаем. Напряжения растяжения от центробежных сил являются наиболее существенными. Напряжения изгиба обычно меньше напряжений растяжения, причем при необходимости для уменьшения изгибающих напряжений в лопатке от газовых сил ее проектируют так, чтобы возникающие изгибающие моменты от центробежных сил были противоположны по знаку моментам от газовых сил и, следовательно, уменьшали последние.

При расчете лопатки на прочность принимаем следующие допущения:

- лопатку рассматриваем как консольную балку, жестко заделанную в ободе диска;

- напряжения определяем по каждому виду деформации отдельно;

myunivercity.ru

Многоступенчатый осевой компрессор авиационного двигателя

 

Многоступенчатый осевой компрессор авиационного двигателя содержит две или более последовательно установленные ступени. Компрессор также снабжен средством для отключения части ступеней, выполненным в виде средства для отключения одной или более последних ступеней. Изобретение улучшает регулирование компрессора. 5 ил.

Изобретение относится к области авиационного двигателестроения. Может быть использовано в многорежимных сверхзвуковых и в дозвуковых газотурбинных авиационных двигателях.

Известен дозвуковой авиационный двигатель с большой степенью двухконтурности двухвальный ПС-90А [1]. В двигателе установлен вентилятор, приводимый турбиной низкого давления. Компрессор высокого давления состоит из 13 последовательных осевых ступеней, при этом входной направляющий аппарат и направляющие аппараты первой, второй и третьей ступеней выполнены регулируемыми. Осуществляется перепуск воздуха из промежуточных ступеней компрессора высокого давления. Недостатком данного двухкаскадного компрессора является сложность конструкции и ненадежность в работе. Невозможен быстрый и надежный переход с режима пониженной тяги на режим максимальной тяги. Известен многоступенчатый осевой компрессор по патентному документу SU 1677375. При работе этого компрессора для обеспечения его беспомпажной работы в условиях повышения сопротивления сети за компрессором часть воздуха из-за последней ступени подается на вход промежуточных ступеней по каналу перепуска через регулируемый клапан, являющийся дроссельным устройством. Недостатком этого компрессора является неизбежное уменьшение расхода воздуха через компрессор при увеличении сопротивления сети за компрессором и невозможность быстро изменить степень сжатия компрессора. Известен многоступенчатый осевой компрессор по патентному документу US 4038818. Указанный компрессор снабжен средством для отключения части ступеней, а именно двух передних ступеней. Это дает возможность при повышении температуры поступающего в компрессор воздуха, не меняя оборотов ротора, сделать работу неотключенных ступеней более расчетной. Но данная конструкция не позволяет восстановить или увеличить расход воздуха через компрессор при увеличении сопротивления сети за компрессором. Заявляемое изобретение представляет собой новое средство механизации компрессора. Предлагается снабдить многоступенчатый осевой компрессор средством для отключения части ступеней, причем средством для отключения одной или более последних ступеней. В сверхзвуковых двигателях целесообразна замена двухвальной схемы двигателя одновальной одноконтурной. В дозвуковых двухвальных двухконтурных двигателях предлагается применять отключение последних ступеней в последнем каскаде компрессора. Отключение и подключение последних ступеней в компрессоре сверхзвуковых двигателей позволяет отказаться от других средств механизации компрессора: двухкаскадного компрессора и регулируемых направляющих аппаратов статора. Поддерживая приведенное число оборотов ротора равным расчетному значению, есть возможность практически мгновенно менять степень сжатия компрессора путем отключения или подключения последних ступеней. Это позволит быстро менять температуру газов перед турбиной и тягу двигателя без изменения оборотов ротора, регулируя степень расширения газов в турбине. Условия работы оставшихся работать ступеней компрессора будут расчетными или близкими к расчетным. Подключение ранее отключенных последних ступеней в последнем каскаде дозвукового двухконтурного двигателя позволяет практически мгновенно увеличить расход воздуха через внутренний контур и дает возможность поднять температуру газов перед турбиной, регулируя подачу топлива. При этом увеличивается тяга двигателя без опасности появления помпажа компрессора. Для отключения ступеней предлагается использовать устройства перепуска воздуха в последних ступенях. При этом скорость выхода воздуха из рабочего колеса отключаемой ступени возрастает настолько, что рабочая нагрузка с рабочего колеса снимается. Вместо перепуска воздуха возможно использование различных сцепных муфт приводов. При помощи сцепной муфты рабочее колесо соединяется с ротором двигателя в режиме включения и разъединяется с ротором в режиме отключения ступени. При этом воздушный поток проходит через рабочее колесо, которое не оказывает на него силового воздействия. На фиг. 1 изображена схема трех последних ступеней каскада компрессора с отключением двух последних ступеней с помощью устройства перепуска воздуха; на фиг. 2 изображена схема варианта отключения трех последних ступеней каскада компрессора; на фиг. 3 изображен треугольник скоростей ступени компрессора с осевым входом в режиме отключения; на фиг. 4 изображен треугольник скоростей ступени компрессора с предварительной закруткой потока по вращению колеса в режиме отключения. Однокаскадный осевой компрессор одноконтурного сверхзвукового реактивного двигателя содержит двенадцать последовательных ступеней. Схема последней части компрессора изображена на фиг. 1. На роторе 1 компрессора закреплены рабочие лопатки 2. Каждый ряд лопаток 3, закрепленный на статоре компрессора, может быть заменен двумя последовательными рядами неподвижных лопаток с целью уменьшения сопротивления течению воздушного потока в режиме отключения данной ступени. Две последние ступени компрессора снабжены устройствами перепуска воздуха 4 и 5. Кольцевая полость 6 вокруг отключаемых ступеней предназначена для обеспечения свободного движения воздуха в режиме отключения. Направляющий аппарат 7 на входе в полость 6 может быть использован для возможной закрутки потока. Кольцевая полость 6 соединена вместе с выходом компрессора со входом в камеру сгорания 8 двигателя. Размер, количество и конкретное расположение окон перепуска 4 и 5 определяется исходя из условия обеспечения наилучшего отключения ступеней. Перепуск возможно осуществить с помощью гибкой стальной ленты, закрывающей отверстия в корпусе компрессора в сечении, где необходим перепуск. Также перепуск возможно осуществить с помощью клапанов перепуска воздуха. Окна перепуска в этих клапанах закрываются заслонками, управляемыми гидроцилиндрами. Устройства перепуска воздуха 4 и 5 являются средством для отключения двух последних ступеней в компрессоре. Компрессор соединен валом с турбиной. Двигатель имеет регулируемое сопло, оборудован системой автоматического управления. С целью упрощения запуска раскрутку ротора 1 двигателя целесообразно начинать с отключенными последними ступенями. После предварительной раскрутки ротора 1 стартером следует закрыть окна перепуска 4 и 5 и одновременно подать - воспламенить топливо в камере сгорания двигателя. Обороты двигателя быстро достигнут расчетного значения. Система автоматического управления поддерживает режим постоянства приведенных оборотов двигателя nпр= const, регулируя, например, подачу топлива в камеру сгорания по сигналу центробежного регулятора и сигнала от датчика температуры воздуха, поступающего на вход компрессора. В зависимости от того, какая требуется тяга двигателя в данный момент времени, осуществляется регулировка температуры газов перед турбиной Tг* путем регулировки степени расширения газов в турбине Пт* при помощи регулируемого сопла. При этом предлагается регулировать степень сжатия компрессора Пк* путем закрытия или открытия окон перепуска 4 и 5 ступеней. Таким образом, чтобы увеличение или уменьшение степени сжатия в раз соответствовало увеличению или уменьшению соответственно Тг* в k раз. В этом случае режим работы работающих ступеней и расход воздуха через компрессор будет поддерживаться расчетным или близким к нему. Например, увеличению Тг* с 1069 до 1400K должно соответствовать увеличение степени сжатия компрессора раза. Для этого достаточно подключить одну ступень (фиг.5). Подключение еще одной ступени к работе соответственно позволит дополнительно увеличить Тг* без уменьшения расхода воздуха через компрессор. Закрытие окон перепуска 4 и 5 соотвествует подключению этих ступеней к работе, а открытие - к отключению. Сверхзвуковой двигатель с регулируемым соплом, у которого несколько последних ступеней в осевом компрессоре выполнены отключаемыми, имеет не один, а несколько расчетных режимов - в зависимости от того, сколько ступеней компрессора подключено к работе. Вследствие этого есть возможность отказаться от других средств механизации компрессора. Увеличение тяги двигателя происходит быстро на любой возможной высоте полета. Для запуска двигателя в полете с режима авторотации следует одновременно закрыть окна перепуска 4 и 5 и начать подачу топлива с воспламенением. Кроме указанного выше варианта регулировки двигателя возможно применение специальных команд, регулирующих подачу топлива при отключении и подключении ступеней компрессора. На фиг. 2 изображена схема варианта отключения последних ступеней в компрессоре, при котором кольцевая полость 6 непосредственно не соединена со входом в камеру сгорания двигателя. Окна перепуска 5 открыты при отключении последней ступени, окна перепуска 4 и 5 отрыты при отключении двух последних ступеней, окна 4, 5 и 9 - при отключении трех последних ступеней. Отключение и подключение ступеней компрессора может быть применено в качестве эффективного средства против помпажа компрессора в дозвуковых многовальных газотурбинных двигателях двухконтурных и турбовинтовых в последнем каскаде компрессора при быстром восстановлении тяги двигателя. Подключение ступеней дает возможность неограниченно быстро увеличить расход топлива, расход воздуха через внутренний контур и тягу двигателя. Увеличивается скорость восстановления оборотов роторов от пониженных до номинальных. Свободное течение воздуха в каналах рабочего колеса отключенной ступени будет соответствовать фиг. 3 или 4. Для того, чтобы снять рабочую нагрузку с рабочего колеса отключаемой ступени, необходимо выполнить условие C1u = C2u, то есть окружные составляющие абсолютной скорости на входе в рабочее колесо и на выходе из него должны стать равны. В случае осевого входа воздушного потока в рабочее колесо (фиг. 3) осевым должен быть и выход. Для этого, в результате открытия окон перепуска воздух в межлопаточных каналах рабочего колеса должен не сжиматься, как это имеет место при рабочем режиме работы ступени, а расширяться и ускоряться под действием градиента статического давления при сужении канала течения от F1 на входе до F2 на выходе из рабочего колеса. Если абсолютная скорость C2 достигнет величины C2= tg2u, выход воздуха из рабочего колеса станет осевым, значит крутящий момент на данном рабочем колесе станет равен практически нулю. U = скорость окружная рабочего колеса; индексы 1 и 2 обозначают значения параметров на входе и выходе из рабочего колеса соответственно; 2 - угол между относительной скоростью на выходе W2 и фронтом рабочего колеса. Эти обозначения относятся также к схеме на фиг. 4. Но в этом случае воздушный поток имеет предварительную закрутку перед рабочим колесом в сторону вращения рабочего колеса. В результате открытия окон перепуска воздуха при данном угле 2 должно выполниться условие C1u= C2u. Следует учитывать при расчете компрессора, что скорость потока при сужении канала течения не может стать выше критической. Обтекание лопаток рабочего колеса и лопаток направляющего аппарата отключенной ступени будет проходить без заметного гидравлического сопротивления. На рабочем колесе отключенных ступеней останется незначительная нагрузка, связанная с необходимостью поддерживать циркуляцию воздуха. В том случае, если для отключения ступеней вместо перепуска воздуха применяются сцепные муфты приводов, происходит уменьшение частоты вращения рабочего колеса отключенной ступени независимо от частоты вращения ротора 1 до величины, при которой C1u станет равной C2u. В качестве сцепных муфт приводов могут быть использованы различные управляемые муфты: фрикционные, кулачковые, гидравлические. Управление муфтами может быть гидравлическим, пневматическим, электромагнитным. Из приведенного описания совершенно очевидно, что возможны многие модификации и варианты настоящего изобретения. Число ступеней в компрессоре, число отключаемых ступеней, режимы регулирования, расчетные режимы двигателей могут быть различными. Конструкция компрессора позволяет отказаться от сложных автоматов приемистости, гидрозамедлителей и ограничителей нарастания давления топлива перед форсунками. Появляется возможность поднять температуру газов перед турбиной до максимального значения при сниженной температуре воздуха на входе в компрессор. Источники информации 1) Пивоваров В.А. Авиационный двигатель ПС-90А, Москва, 1989 год.

Формула изобретения

Многоступенчатый осевой компрессор авиационного двигателя, содержащий две или более установленные последовательно ступени, причем компрессор снабжен средством для отключения части ступеней, отличающийся тем, что средство для отключения части ступеней выполнено в виде средства для отключения одной или более последних ступеней.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5

MM4A Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины заподдержание патента в силе

Дата прекращения действия патента: 09.10.2009

Дата публикации: 10.12.2011

www.findpatent.ru

Компрессор авиационного двигателя - Курсовой проект

Министерство образования и науки Украины

Национальный аэрокосмический университет

им. Н.Е. Жуковского ХАИ

кафедра 203

 

 

 

 

 

Расчетно-пояснительная записка к курсовому проекту

по дисциплине: Конструкция АД

 

КОМПРЕССОР АВИАЦИОННОГО ДВИГАТЕЛЯ

 

ХАИ.203.244.07О.260.07002171

 

 

 

 

Выполнил: студент гр.244

Тимченко Д. В.

Руководитель: преподаватель каф. 203

Марценюк Е. В.

 

 

 

 

 

Харьков 2011

Содержание

 

Введение

. Основные сведения о двигателе и краткое описание

. Расчет на прочность лопатки первой ступени КВД

. Расчет на прочность диска компрессора

. Расчет на прочность замка крепления лопатки типа Ласточкин хвост

. Расчет на прочность наружного корпуска камеры сгорания

. Расчет динамической частоты первой формы изгибных колебаний лопатки компрессора и построение частотной диаграммы

Список используемой литературы

 

ВВЕДЕНИЕ

 

В настоящее время интенсивность развития авиационной техники довольно высока. Это обусловлено потребностями мирового авиарынка и высоким уровнем конкуренции между фирмами-производителями. Существовавшие ранее промышленно-производственные и материальные связи Украины со странами бывшего СССР делают актуальной проблему поддержания отечественного авиастроения на современном уровне. Мировая обстановка складывается таким образом, что авиапромышленность в Украине ориентирована на мирную авиацию. А значит, нам необходимы разработки по созданию дешевых и эффективных двигателей для самолетов пассажирского и транспортного назначения, соответствующих европейским и мировым стандартам. Таким требованиям очень хорошо отвечают турбовентиляторные и двухконтурные двигатели с большой степенью двухконтурности m 5. Их основные преимущества: низкий удельный расход топлива и соответствие современным экологическим требованиям.

Темой данного проекта является разработка конструкции компрессора высокого давления ТРДД для транспортного самолета на базе существующего ТРДД - Д 18Т. Выбор этого двигателя в качестве прототипа связан с тем, что он сможет обеспечить необходимые параметры при относительно низком удельном расходе топлива и уровне шумности за счет большой степени двухконтурности.

1. Основные сведения о двигателе и краткое описание

 

В качестве прототипа двигателя принят ТРДД Д-18Т - трёхвальный турбореактивный двухконтурный двигатель. Особенность трёхвальной схемы -разделение ротора компрессора на три самостоятельных ротора, каждый из которых приводится во вращение своей турбиной.

Конструкция двигателя выполнена с учетом обеспечения принципа модульной (блочной) сборки. Двигатель состоит из 12-ти модулей, каждый из которых - законченный конструктивно-технологический узел и может быть (кроме главного 12-го модуля) демонтирован и заменен на двигателе без разборки соседних модулей в условиях авиационно-технических баз, имеющихся на всех крупных аэродромах. Модульность конструкции двигателя обеспечивает возможность восстановления его эксплуатационной пригодности заменой деталей и узлов в условиях эксплуатации, а высокая контролепригодность способствует переходу от планово-предупредительного обслуживания к обслуживанию по состоянию.

Компрессор двигателя.

Компрессор двигателя - осевой, трехкаскадный, состоит из сверхзвукового вентилятора, околозвукового КНД и дозвукового КВД.

Одноступенчатый вентилятор не имеет ВНА и состоит из рабочего колеса, статора со спрямляющим аппаратом, вала с подшипниковым узлом и вращающегося обогреваемого воздухом кока.

Соединение диска рабочего колеса с валом - болтовое, лопатки крепятся к дискам хвостовиками типа ласточкин хвост.

Рабочие лопатки вентилятора имеют бандажные антивибрационные полки, расположенные в тракте наружного контура.

Спрямляющий аппарат - разборной конструкции. Внутренняя поверхность наружного кольца спрямляющего аппарата имеет акустическую облицовку. К переднему фланцу корпуса вентилятора крепится самолетный воздухозаборник.

Вал вентилятора соединен с валом турбины вентилятора шлицами. Вентилятор и турбина вентилятора образуют ротор вентилятора, установленный на 2-х подшипниках. Оба подшипниковых узла ротора вентилятора имеют масляные демпферы.

Компрессор низкого давления - семиступенчатый, состоит из статора и ротора. Статор своим обтекателем разделяет поток воздуха за рабочим колесом вентилятора по контурам. В статоре смонтированы неподвижный и поворотный ВНА, узлы передних подшипников роторов вентилятора и КНД, спрямляющие аппараты ступеней, рабочие кольца и клапаны перепуска воздуха из КНД. Наличие поворотных лопаток ВНА КНД позволяет производить отладку двигателя в стендовых условиях. После отладки лопатки ВНА фиксируются в выбранном положении. Ротор компрессора - барабанно-дисковой конструкции, соединен с передним и задним валами с помощью болтов, рабочие лопатки соединены с венцами дисков хвостовиками типа ласточкин хвост. Ротор КНД соединен с турбиной НД с помощью шлицев и образует ротор низкого давления. Ротор НД установлен на 2-х подшипниковых узлах, имеющих масляные демпферы.

Компрессор высокого давления - семиступенчатый, состоит из ВНА, ротора, статора и клапанов перепуска воздуха. Ротор КВД - барабанно-дис

www.studsell.com

КОМПРЕССОРНЫЕ ВОЗДУШНО-РЕАКТИВНЫЕ ДВИГАТЕЛИ

 

Среди компрессорных ВРД наибольшее распространение получил турбо­реактивный двигатель, в котором сжатие воздуха осуществляется как за счет скоростного напора, так и с помощью осевого компрессора, находящегося на одном валу с газовой турбиной.

Принципиальная схема компрессорного ВРД, а также характер изменения давления и скорости потока, приведены на рис. 10.21. Цикл такого двигателя в pν - координатах представлен на рис. 10.22. Принципиальная схема уста­новки включает: 1 - диффузор; 2 - осевой компрессор; 3 - камеру сгорания; 4 - турбину; 5 - сопло.

 

 

Рис. 10.21

 

 

Давление набегающего потока воздуха первоначально повышается в диффузоре, а затем в компрессоре. Газовая турбина предназначена для при­вода компрессора.

Рассмотрим процессы цикла, изображенного на рис. 10,22; 1-2 - адиабат­ное сжатие воздуха в диффузоре; 2-3 - адиабатное сжатие воздуха в компрес­соре; 3-4 - изобарный подвод теплоты в камере сгорания; 4-5 - адиабатиче­ское расширение газов на лопатках турбины; 5-6 - адиабатическое расширение газов в сопловом аппарате; 6-1 - охлаждение газов в атмосфере.

Рис. 10.22

 

Термический кпд турбореактивного двигателя определяется по той же формуле, что и кпд ВРД со сгоранием топлива при постоянном давлении (см. § 10.5).

Благодаря наличию компрессора турбореактивный двигатель имеет более высокую степень сжатия и, следовательно, более высокий термический кпд. Этот тип двигателя позволяет летательному аппарату уже на старте разви­вать необходимую силу тяги, в связи с чем он стал одним из основных дви­гателей для скоростных самолетов.

 

Похожие статьи:

poznayka.org

многоступенчатый осевой компрессор авиационного двигателя - патент РФ 2165547

Многоступенчатый осевой компрессор авиационного двигателя содержит две или более последовательно установленные ступени. Компрессор также снабжен средством для отключения части ступеней, выполненным в виде средства для отключения одной или более последних ступеней. Изобретение улучшает регулирование компрессора. 5 ил. Изобретение относится к области авиационного двигателестроения. Может быть использовано в многорежимных сверхзвуковых и в дозвуковых газотурбинных авиационных двигателях. Известен дозвуковой авиационный двигатель с большой степенью двухконтурности двухвальный ПС-90А [1]. В двигателе установлен вентилятор, приводимый турбиной низкого давления. Компрессор высокого давления состоит из 13 последовательных осевых ступеней, при этом входной направляющий аппарат и направляющие аппараты первой, второй и третьей ступеней выполнены регулируемыми. Осуществляется перепуск воздуха из промежуточных ступеней компрессора высокого давления. Недостатком данного двухкаскадного компрессора является сложность конструкции и ненадежность в работе. Невозможен быстрый и надежный переход с режима пониженной тяги на режим максимальной тяги. Известен многоступенчатый осевой компрессор по патентному документу SU 1677375. При работе этого компрессора для обеспечения его беспомпажной работы в условиях повышения сопротивления сети за компрессором часть воздуха из-за последней ступени подается на вход промежуточных ступеней по каналу перепуска через регулируемый клапан, являющийся дроссельным устройством. Недостатком этого компрессора является неизбежное уменьшение расхода воздуха через компрессор при увеличении сопротивления сети за компрессором и невозможность быстро изменить степень сжатия компрессора. Известен многоступенчатый осевой компрессор по патентному документу US 4038818. Указанный компрессор снабжен средством для отключения части ступеней, а именно двух передних ступеней. Это дает возможность при повышении температуры поступающего в компрессор воздуха, не меняя оборотов ротора, сделать работу неотключенных ступеней более расчетной. Но данная конструкция не позволяет восстановить или увеличить расход воздуха через компрессор при увеличении сопротивления сети за компрессором. Заявляемое изобретение представляет собой новое средство механизации компрессора. Предлагается снабдить многоступенчатый осевой компрессор средством для отключения части ступеней, причем средством для отключения одной или более последних ступеней. В сверхзвуковых двигателях целесообразна замена двухвальной схемы двигателя одновальной одноконтурной. В дозвуковых двухвальных двухконтурных двигателях предлагается применять отключение последних ступеней в последнем каскаде компрессора. Отключение и подключение последних ступеней в компрессоре сверхзвуковых двигателей позволяет отказаться от других средств механизации компрессора: двухкаскадного компрессора и регулируемых направляющих аппаратов статора. Поддерживая приведенное число оборотов ротора равным расчетному значению, есть возможность практически мгновенно менять степень сжатия компрессора путем отключения или подключения последних ступеней. Это позволит быстро менять температуру газов перед турбиной и тягу двигателя без изменения оборотов ротора, регулируя степень расширения газов в турбине. Условия работы оставшихся работать ступеней компрессора будут расчетными или близкими к расчетным. Подключение ранее отключенных последних ступеней в последнем каскаде дозвукового двухконтурного двигателя позволяет практически мгновенно увеличить расход воздуха через внутренний контур и дает возможность поднять температуру газов перед турбиной, регулируя подачу топлива. При этом увеличивается тяга двигателя без опасности появления помпажа компрессора. Для отключения ступеней предлагается использовать устройства перепуска воздуха в последних ступенях. При этом скорость выхода воздуха из рабочего колеса отключаемой ступени возрастает настолько, что рабочая нагрузка с рабочего колеса снимается. Вместо перепуска воздуха возможно использование различных сцепных муфт приводов. При помощи сцепной муфты рабочее колесо соединяется с ротором двигателя в режиме включения и разъединяется с ротором в режиме отключения ступени. При этом воздушный поток проходит через рабочее колесо, которое не оказывает на него силового воздействия. На фиг. 1 изображена схема трех последних ступеней каскада компрессора с отключением двух последних ступеней с помощью устройства перепуска воздуха; на фиг. 2 изображена схема варианта отключения трех последних ступеней каскада компрессора; на фиг. 3 изображен треугольник скоростей ступени компрессора с осевым входом в режиме отключения; на фиг. 4 изображен треугольник скоростей ступени компрессора с предварительной закруткой потока по вращению колеса в режиме отключения. Однокаскадный осевой компрессор одноконтурного сверхзвукового реактивного двигателя содержит двенадцать последовательных ступеней. Схема последней части компрессора изображена на фиг. 1. На роторе 1 компрессора закреплены рабочие лопатки 2. Каждый ряд лопаток 3, закрепленный на статоре компрессора, может быть заменен двумя последовательными рядами неподвижных лопаток с целью уменьшения сопротивления течению воздушного потока в режиме отключения данной ступени. Две последние ступени компрессора снабжены устройствами перепуска воздуха 4 и 5. Кольцевая полость 6 вокруг отключаемых ступеней предназначена для обеспечения свободного движения воздуха в режиме отключения. Направляющий аппарат 7 на входе в полость 6 может быть использован для возможной закрутки потока. Кольцевая полость 6 соединена вместе с выходом компрессора со входом в камеру сгорания 8 двигателя. Размер, количество и конкретное расположение окон перепуска 4 и 5 определяется исходя из условия обеспечения наилучшего отключения ступеней. Перепуск возможно осуществить с помощью гибкой стальной ленты, закрывающей отверстия в корпусе компрессора в сечении, где необходим перепуск. Также перепуск возможно осуществить с помощью клапанов перепуска воздуха. Окна перепуска в этих клапанах закрываются заслонками, управляемыми гидроцилиндрами. Устройства перепуска воздуха 4 и 5 являются средством для отключения двух последних ступеней в компрессоре. Компрессор соединен валом с турбиной. Двигатель имеет регулируемое сопло, оборудован системой автоматического управления. С целью упрощения запуска раскрутку ротора 1 двигателя целесообразно начинать с отключенными последними ступенями. После предварительной раскрутки ротора 1 стартером следует закрыть окна перепуска 4 и 5 и одновременно подать - воспламенить топливо в камере сгорания двигателя. Обороты двигателя быстро достигнут расчетного значения. Система автоматического управления поддерживает режим постоянства приведенных оборотов двигателя nпр= const, регулируя, например, подачу топлива в камеру сгорания по сигналу центробежного регулятора и сигнала от датчика температуры воздуха, поступающего на вход компрессора. В зависимости от того, какая требуется тяга двигателя в данный момент времени, осуществляется регулировка температуры газов перед турбиной Tг* путем регулировки степени расширения газов в турбине Пт* при помощи регулируемого сопла. При этом предлагается регулировать степень сжатия компрессора Пк* путем закрытия или открытия окон перепуска 4 и 5 ступеней. Таким образом, чтобы увеличение или уменьшение степени сжатия в многоступенчатый осевой компрессор авиационного двигателя, патент № 2165547 раз соответствовало увеличению или уменьшению соответственно Тг* в k раз. В этом случае режим работы работающих ступеней и расход воздуха через компрессор будет поддерживаться расчетным или близким к нему. Например, увеличению Тг* с 1069 до 1400K должно соответствовать увеличение степени сжатия компрессора многоступенчатый осевой компрессор авиационного двигателя, патент № 2165547 раза. Для этого достаточно подключить одну ступень (фиг.5). Подключение еще одной ступени к работе соответственно позволит дополнительно увеличить Тг* без уменьшения расхода воздуха через компрессор. Закрытие окон перепуска 4 и 5 соотвествует подключению этих ступеней к работе, а открытие - к отключению. Сверхзвуковой двигатель с регулируемым соплом, у которого несколько последних ступеней в осевом компрессоре выполнены отключаемыми, имеет не один, а несколько расчетных режимов - в зависимости от того, сколько ступеней компрессора подключено к работе. Вследствие этого есть возможность отказаться от других средств механизации компрессора. Увеличение тяги двигателя происходит быстро на любой возможной высоте полета. Для запуска двигателя в полете с режима авторотации следует одновременно закрыть окна перепуска 4 и 5 и начать подачу топлива с воспламенением. Кроме указанного выше варианта регулировки двигателя возможно применение специальных команд, регулирующих подачу топлива при отключении и подключении ступеней компрессора. На фиг. 2 изображена схема варианта отключения последних ступеней в компрессоре, при котором кольцевая полость 6 непосредственно не соединена со входом в камеру сгорания двигателя. Окна перепуска 5 открыты при отключении последней ступени, окна перепуска 4 и 5 отрыты при отключении двух последних ступеней, окна 4, 5 и 9 - при отключении трех последних ступеней. Отключение и подключение ступеней компрессора может быть применено в качестве эффективного средства против помпажа компрессора в дозвуковых многовальных газотурбинных двигателях двухконтурных и турбовинтовых в последнем каскаде компрессора при быстром восстановлении тяги двигателя. Подключение ступеней дает возможность неограниченно быстро увеличить расход топлива, расход воздуха через внутренний контур и тягу двигателя. Увеличивается скорость восстановления оборотов роторов от пониженных до номинальных. Свободное течение воздуха в каналах рабочего колеса отключенной ступени будет соответствовать фиг. 3 или 4. Для того, чтобы снять рабочую нагрузку с рабочего колеса отключаемой ступени, необходимо выполнить условие C1u = C2u, то есть окружные составляющие абсолютной скорости на входе в рабочее колесо и на выходе из него должны стать равны. В случае осевого входа воздушного потока в рабочее колесо (фиг. 3) осевым должен быть и выход. Для этого, в результате открытия окон перепуска воздух в межлопаточных каналах рабочего колеса должен не сжиматься, как это имеет место при рабочем режиме работы ступени, а расширяться и ускоряться под действием градиента статического давления при сужении канала течения от F1 на входе до F2 на выходе из рабочего колеса. Если абсолютная скорость C2 достигнет величины C2= tgмногоступенчатый осевой компрессор авиационного двигателя, патент № 21655472многоступенчатый осевой компрессор авиационного двигателя, патент № 2165547u, выход воздуха из рабочего колеса станет осевым, значит крутящий момент на данном рабочем колесе станет равен практически нулю. U = скорость окружная рабочего колеса; индексы 1 и 2 обозначают значения параметров на входе и выходе из рабочего колеса соответственно; многоступенчатый осевой компрессор авиационного двигателя, патент № 21655472 - угол между относительной скоростью на выходе W2 и фронтом рабочего колеса. Эти обозначения относятся также к схеме на фиг. 4. Но в этом случае воздушный поток имеет предварительную закрутку перед рабочим колесом в сторону вращения рабочего колеса. В результате открытия окон перепуска воздуха при данном угле многоступенчатый осевой компрессор авиационного двигателя, патент № 21655472 должно выполниться условие C1u= C2u. Следует учитывать при расчете компрессора, что скорость потока при сужении канала течения не может стать выше критической. Обтекание лопаток рабочего колеса и лопаток направляющего аппарата отключенной ступени будет проходить без заметного гидравлического сопротивления. На рабочем колесе отключенных ступеней останется незначительная нагрузка, связанная с необходимостью поддерживать циркуляцию воздуха. В том случае, если для отключения ступеней вместо перепуска воздуха применяются сцепные муфты приводов, происходит уменьшение частоты вращения рабочего колеса отключенной ступени независимо от частоты вращения ротора 1 до величины, при которой C1u станет равной C2u. В качестве сцепных муфт приводов могут быть использованы различные управляемые муфты: фрикционные, кулачковые, гидравлические. Управление муфтами может быть гидравлическим, пневматическим, электромагнитным. Из приведенного описания совершенно очевидно, что возможны многие модификации и варианты настоящего изобретения. Число ступеней в компрессоре, число отключаемых ступеней, режимы регулирования, расчетные режимы двигателей могут быть различными. Конструкция компрессора позволяет отказаться от сложных автоматов приемистости, гидрозамедлителей и ограничителей нарастания давления топлива перед форсунками. Появляется возможность поднять температуру газов перед турбиной до максимального значения при сниженной температуре воздуха на входе в компрессор. Источники информации 1) Пивоваров В.А. Авиационный двигатель ПС-90А, Москва, 1989 год.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Многоступенчатый осевой компрессор авиационного двигателя, содержащий две или более установленные последовательно ступени, причем компрессор снабжен средством для отключения части ступеней, отличающийся тем, что средство для отключения части ступеней выполнено в виде средства для отключения одной или более последних ступеней.

www.freepatent.ru

Компрессор авиационного двигателя - Курсовой проект

Курсовой проект - Транспорт, логистика

Другие курсовые по предмету Транспорт, логистика

Министерство образования и науки Украины

Национальный аэрокосмический университет

им. Н.Е. Жуковского ХАИ

кафедра 203

 

 

 

 

 

Расчетно-пояснительная записка к курсовому проекту

по дисциплине: Конструкция АД

 

КОМПРЕССОР АВИАЦИОННОГО ДВИГАТЕЛЯ

 

ХАИ.203.244.07О.260.07002171

 

 

 

 

Выполнил: студент гр.244

Тимченко Д. В.

Руководитель: преподаватель каф. 203

Марценюк Е. В.

 

 

 

 

 

Харьков 2011

Содержание

 

Введение

. Основные сведения о двигателе и краткое описание

. Расчет на прочность лопатки первой ступени КВД

. Расчет на прочность диска компрессора

. Расчет на прочность замка крепления лопатки типа Ласточкин хвост

. Расчет на прочность наружного корпуска камеры сгорания

. Расчет динамической частоты первой формы изгибных колебаний лопатки компрессора и построение частотной диаграммы

Список используемой литературы

 

ВВЕДЕНИЕ

 

В настоящее время интенсивность развития авиационной техники довольно высока. Это обусловлено потребностями мирового авиарынка и высоким уровнем конкуренции между фирмами-производителями. Существовавшие ранее промышленно-производственные и материальные связи Украины со странами бывшего СССР делают актуальной проблему поддержания отечественного авиастроения на современном уровне. Мировая обстановка складывается таким образом, что авиапромышленность в Украине ориентирована на мирную авиацию. А значит, нам необходимы разработки по созданию дешевых и эффективных двигателей для самолетов пассажирского и транспортного назначения, соответствующих европейским и мировым стандартам. Таким требованиям очень хорошо отвечают турбовентиляторные и двухконтурные двигатели с большой степенью двухконтурности m 5. Их основные преимущества: низкий удельный расход топлива и соответствие современным экологическим требованиям.

Темой данного проекта является разработка конструкции компрессора высокого давления ТРДД для транспортного самолета на базе существующего ТРДД - Д 18Т. Выбор этого двигателя в качестве прототипа связан с тем, что он сможет обеспечить необходимые параметры при относительно низком удельном расходе топлива и уровне шумности за счет большой степени двухконтурности.

1. Основные сведения о двигателе и краткое описание

 

В качестве прототипа двигателя принят ТРДД Д-18Т - трёхвальный турбореактивный двухконтурный двигатель. Особенность трёхвальной схемы -разделение ротора компрессора на три самостоятельных ротора, каждый из которых приводится во вращение своей турбиной.

Конструкция двигателя выполнена с учетом обеспечения принципа модульной (блочной) сборки. Двигатель состоит из 12-ти модулей, каждый из которых - законченный конструктивно-технологический узел и может быть (кроме главного 12-го модуля) демонтирован и заменен на двигателе без разборки соседних модулей в условиях авиационно-технических баз, имеющихся на всех крупных аэродромах. Модульность конструкции двигателя обеспечивает возможность восстановления его эксплуатационной пригодности заменой деталей и узлов в условиях эксплуатации, а высокая контролепригодность способствует переходу от планово-предупредительного обслуживания к обслуживанию по состоянию.

Компрессор двигателя.

Компрессор двигателя - осевой, трехкаскадный, состоит из сверхзвукового вентилятора, околозвукового КНД и дозвукового КВД.

Одноступенчатый вентилятор не имеет ВНА и состоит из рабочего колеса, статора со спрямляющим аппаратом, вала с подшипниковым узлом и вращающегося обогреваемого воздухом кока.

Соединение диска рабочего колеса с валом - болтовое, лопатки крепятся к дискам хвостовиками типа ласточкин хвост.

Рабочие лопатки вентилятора имеют бандажные антивибрационные полки, расположенные в тракте наружного контура.

Спрямляющий аппарат - разборной конструкции. Внутренняя поверхность наружного кольца спрямляющего аппарата имеет акустическую облицовку. К переднему фланцу корпуса вентилятора крепится самолетный воздухозаборник.

Вал вентилятора соединен с валом турбины вентилятора шлицами. Вентилятор и турбина вентилятора образуют ротор вентилятора, установленный на 2-х подшипниках. Оба подшипниковых узла ротора вентилятора имеют масляные демпферы.

Компрессор низкого давления - семиступенчатый, состоит из статора и ротора. Статор своим обтекателем разделяет поток воздуха за рабочим колесом вентилятора по контурам. В статоре смонтированы неподвижный и поворотный ВНА, узлы передних подшипников роторов вентилятора и КНД, спрямляющие аппараты ступеней, рабочие кольца и клапаны перепуска воздуха из КНД. Наличие поворотных лопаток ВНА КНД позволяет производить отладку двигателя в стендовых условиях. После отладки лопатки ВНА фиксируются в выбранном положении. Ротор компрессора - барабанно-дисковой конструкции, соединен с передним и задним валами с помощью болтов, рабочие лопатки соединены с венцами дисков хвостовиками типа ласточкин хвост. Ротор КНД соединен с турбиной НД с помощью шлицев и образует ротор низкого давления. Ротор НД установлен на 2-х подшипниковых узлах, имеющих масляные демпферы.

Компрессор высокого давления - семиступенчатый, состоит из ВНА, ротора, статора и клапанов перепуска воздуха. Ротор КВД - барабанно-дис

geum.ru

Компрессор авиационного двигателя - Курсовой проект стр. 2

ковой конструкции. Сварной барабан, диски последних ступеней, поставки и валы соединены между собой болтами, лопатки с дисками соединены хвостовиками ласточкин хвост. КВД соединяется с турбиной ВД с помощью болтов и образует ротор высокого давления, установленный на 2-х подшипниках.

Передний шариковый подшипник установлен в упругой опоре с жестким ограничителем хода. Задний роликовый подшипник ротора ВД установлен на масляном демпфере.

Поворотные лопатки ВНА КВД позволяют производить отладку двигателя в стендовых условиях. После отладки лопатки ВНА фиксируются в выбранном положении. Промежуточный корпус служит для формирования переходного тракта от КНД к КВД и тракта наружного контура, размещения агрегатов и приводов к ним, а также размещения передней опоры ротора КВД и переднего пояса подвески двигателя. Кольцевые оболочки, формирующие тракт внутреннего и наружного контуров, соединены между собой 8-ю полыми рёбрами, внутри которых проходят коммуникации. Промежуточный корпус состоит из корпуса, центрального привода, коробки приводов и колонки приводов. Все приводные агрегаты двигателя получают вращение от ротора ВД. К заднему фланцу наружной оболочки промежуточного корпуса крепится болтами выходное сопло наружного контура, являющееся элементом конструкции самолетной мотогондолы, или реверсивное устройство. К внутреннему силовому корпусу спереди крепится корпус КНД, а сзади - корпус КВД.

В трехвальном турбореактивном двухконтурном двигателе Д-18Т весь воздух, поступающий на вход двигателя через самолетный воздухозаборник, проходит через вентилятор, в котором происходит некоторое повышение давления и температуры воздуха. Это повышение температуры и давления различно по длине лопатки вентилятора: у хвостовика оно меньше, на периферии рабочего колеса - больше.

За вентилятором поток воздуха делится на два: наружный и внутренний. По наружному контуру проходит около 85% всего воздуха, который, расширяясь и увеличивая свою скорость в канале и сопле наружного контура, создает приблизительно 77% общей тяги.

Во внутреннем контуре воздух дополнительно сжимается в компрессорах низкого и высокого давления и попадает в камеру сгорания, где, перемешиваясь с тонкораспыленным топливом, создает топливно-воздушную смесь. Газ поступает на турбину, где происходит преобразование энергии газового потока в механическую энергию, используемую для привода компрессора высокого и низкого давления и вентилятора. При прохождении газа через проточную часть турбины его энергия уменьшается, при этом температура и давление газа понижаются. В реактивном сопле внутреннего контура происходит расширение газа с падением давления до атмосферного, сопровождающееся увеличением скорости газового потока, создающего тягу внутреннего контура.

Промежуточный корпус.

Промежуточный корпус служит для формирования переходного канала от КНД к КВД и проточной части наружного контура, размещения агрегатов и приводов к ним, а также размещения передней опоры ротора КВД и узлов переднего пояса подвески двигателя. Кольцевые оболочки промежуточного корпуса, формирующие проточную часть внутреннего и наружного контуров, соединены между собой восемью полыми стойками, внутри которых проходят коммуникации систем двигателя. Промежуточный корпус состоит из собственно промежуточного корпуса, центрального привода, коробки приводов и промежуточного привода.

Все приводные агрегаты двигателя установлены на коробке приводов и получают вращение от ротора ВД через систему зубчатых передач и шлицевых рессор. К переднему фланцу наружной оболочки промежуточного корпуса крепится корпус СА вентилятора. К внутренней кольцевой оболочке, спереди, крепится корпус КНД, а сзади - корпус КВД. На промежуточном корпусе установлены также элементы капота газогенератора, формирующие внутреннюю поверхность наружного контура между стойками промежуточного корпуса.

Камера сгорания.

Камера сгорания состоит из корпуса, входного диффузора со спрямляющим аппаратом седьмой ступени КВД, жаровой трубы, топливного коллектора, топливных форсунок и пусковых воспламенителей. Жаровая труба кольцевого типа, с восемнадцатью топливными форсунками, имеет сварную конструкцию, состоит из отдельных, сваренных встык, колец, имеющих ряд отверстий для прохода вторичного воздуха.

Топливные форсунки - центробежного типа, одноканальные, четыре из них - аэрофорсунки (с пневмораспылом топлива), которые обеспечивают устойчивое горение при обеднении топливовоздушной смеси.

Топливный коллектор и трубки подвода топлива к форсункам имеют защитный кожух, предотвращающий попадание топлива на горячие корпусные детали в случае нарушения герметичности коллектора и трубок подвода топлива. На корпусе камеры сгорания установлены два воспламенителя факельного типа со свечами зажигания.

В передней части корпуса камеры сгорания установлены два клапана перепуска воздуха из-за КВД при запуске двигателя; на одном из клапанов установлен патрубок для отбора воздуха из-за КВД на нужды самолета.

Турбина

Турбина - трехкаскадная, шестиступенчатая, реактивная, состоит из одноступенчатой турбины высокого давления (ТВД), одноступенчатой турбины низкого давления (ТНД) и четырехступенчатой турбины вентилятора (ТВ).

Каждая из турбин приводит во вращение соответствующий ротор компрессора: ТВД - ротор КВД, ТНД - ротор КНД, ТВ - ротор вентилятора.

ТВД состоит из соплового аппарата (СА) и р

www.studsell.com