Роль цилиндра и поршня в двигателе автомобиля


Цилиндр и поршень являются одними из основных деталей любого двигателя внутреннего сгорания. Нижняя плоскость ГБЦ, днище поршня и стенка цилиндра образуют замкнутую полость, где происходит сгорание топливно-воздушной смеси. Поршень, который находится в цилиндре, преобразует энергию образовавшихся газов в поступательно движение, тем самым приводя в движение коленчатый вал.


Цилиндр и поршень прирабатываются в ходе эксплуатации автомобиля, обеспечивая эффективность и наилучшие режимы работы двигателя.


В данной статье мы подробно рассмотрим пару «цилиндр-поршень»: конструкцию, функции, условия их работы, а также проблемы, которые могут возникнуть при эксплуатации ЦПГ.


Современные двигатели могут иметь от 2 до 16 цилиндров, которые объединены в блок цилиндров. От количества цилиндров зависит мощность ДВС.


Внутренняя часть цилиндра является его рабочей поверхностью и называется гильзой, а внешняя, которая составляет единое целое с корпусом блока – рубашкой. По каналам рубашки циркулирует охлаждающая жидкость.


Внутри цилиндра совершает возвратно-поступательное движение поршень. Он передает энергию давления газов на шатун коленвала, герметизирует камеру сгорания и отводит из нее тепло. Состоит поршень из днища (головки), уплотняющих колец и направляющей части (юбки).


Поршни для бензиновых двигателей имеют плоское днище. Они меньше нагреваются при работе и проще в изготовлении. Они могут обладать специальными канавками, которые способствуют полному открытию клапанов. В дизельных двигателях поршни имеют специальную выемку заданной формы на дне. Она служит для того, чтобы воздух, поступающий в цилиндр, лучше смешивался с топливом.


Плотность соединения поршня и цилиндра обеспечивают поршневые кольца. Их расположение и количество зависит от типа и назначения двигателя. Наиболее часто встречающееся исполнение – одно маслосъемное и два компрессионных кольца.


Компрессионные кольца предотвращают попадание газов в картер двигателя из камеры сгорания и отводят тепло к стенкам цилиндра от головки поршня. По форме они бывают коническими, бочкообразными и трапециевидными.


Верхнее компрессионное кольцо изнашивается быстрее других, поэтому его наружная поверхность подвергается напылению молибдена или пористому хромированию. Благодаря такой подготовке первое кольцо становится более износостойким и лучше удерживает моторное масло. Другие уплотняющие кольца покрываются слоем олова для улучшения приработки к цилиндрам.


Маслосъемное кольцо служит для удаления излишков масла со стенок цилиндра, тем самым предотвращая их попадание в камеру сгорания. Через специальные отверстия в стенках поршня масло попадает внутрь последнего, а затем направляется в картер.


Направляющая часть (юбка) поршня может быть конусообразной или бочкообразной. Такая конструкция позволяет компенсировать расширение при воздействии высоких температур. На юбке находится отверстие с двумя бобышками, где крепится поршневой палец трубчатой формы, соединяющий поршень с шатуном.


Палец поршня может устанавливаться следующим образом:


  • Свободный ход в бобышках поршня и головке шатуна (плавающие пальцы)


  • Вращение в бобышках поршня и фиксация в головке шатуна


  • Вращение в головке шатуна и фиксация в бобышках поршня


Шатун соединяет поршень с коленвалом. Его верхняя головка движется возвратно-поступательно, а нижняя вращается совместно с шатунной шейкой коленчатого вала, стержень совершает сложное колебательное движение. При работе шатун подвергается растяжению, изгибу и сжатию, поэтому его производят жестким и прочным, а, чтобы уменьшить инерционные силы – легким.


Материалы, используемые при производстве деталей ЦПГ, должны обладать высокой механической прочностью, хорошей теплопроводностью, малой плотностью, незначительным коэффициентом линейного расширения, антифрикционными и антикоррозионными свойствами.


Цилиндры изготавливают из чугуна или стали с различными присадками. Это нужно для того, чтобы детали могли выдержать высокие нагрузки. Сегодня блоки цилиндров чаще всего производят из алюминия, а внутренние части цилиндров – из стали, благодаря чему вес конструкции снижается.


Поршни внутри цилиндра двигаются с высокой скоростью и подвержены воздействию высоких давлений и температур. Изначально для производства этих деталей использовался чугун, но с развитием технологий основным материалом для поршней стал алюминий. Это позволило обеспечить меньшую нагрузку на поршни, лучшую теплоотдачу и рост мощности ДВС.


На современных автомобилях, особенно с дизельными двигателями, используются сборные стальные поршни. Они весят меньше алюминиевых, а за счет меньшей компрессионной высоты позволяют использовать шатуны большей длины, тем самым снижая боковые нагрузки в паре «цилиндр-поршень».


Для производства поршневых колец используется высокопрочный серый чугун с добавлением хрома, молибдена, никеля или вольфрама. Эти материалы улучшают приработку элементов и обеспечивают их высокую износо- и термостойкость.


Некоторые производители автокомпонентов для снижения потерь на трение покрывают боковую поверхность поршней специальными материалами на основе графита или дисульфида молибдена. Однако со временем заводское покрытие разрушается и ему требуется восстановление.


Одним из самых эффективных средств для восстановления антифрикционного слоя или нанесения материала на новые поршни является покрытие поршней MODENGY для деталей ДВС. Состав на основе высокоочищенного дисульфида молибдена и графита имеет практичную аэрозольную упаковку с оптимальными параметрами распыления.


Материал равномерно наносится на юбки поршней, не требует высоких температур для полимеризации и создает на поверхности сухую смазочную пленку, которая в течение длительного времени снижает износ и препятствует образованию задиров.


Для подготовки поверхностей перед нанесением покрытия рекомендуется провести их обработку Специальным очистителем-активатором MODENGY. Он убирает все загрязнения с деталей и обеспечивает прочное сцепление покрытия с основанием.


При работе двигателя выделяется огромное количество тепла. Например, температура сгоревших газов может достигать +2000 °C. Именно поэтому цилиндро-поршневая группа нуждается в эффективном охлаждении.


В современных двигателях система охлаждения может быть жидкостной или воздушной. В первом случае цилиндры ДВС покрыты снаружи большим количеством специальных ребер, которые охлаждаются искусственно созданным или встречным потоком воздуха.


Жидкостное охлаждение подразумевает охлаждение цилиндров при помощи охлаждающей жидкости, которая циркулирует в толще блока снаружи цилиндров. Нагретые элементы отдают часть тепла ОЖ, которая затем попадает в радиатор, охлаждается и заново поступает к цилиндрам.


Если внутри цилиндра отсутствует смазочный материал, поршень будет заклинивать, что со временем приведет к поломке двигателя. Для удержания моторного масла на внутренних поверхностях цилиндров на них наносят микросетку при помощи хонингования.


Благодаря этому на стенках всегда находится некоторое количество масла, что снижает трение между поршнем и цилиндром, а также способствует отведению излишков тепла внутри ЦПГ.


Даже, если эксплуатация автомобиля была правильной и все жидкости менялись вовремя, со временем все равно могут возникнуть проблемы с цилиндро-поршневой группой. Их основная причина заключается в сложных условиях работы ЦПГ.


Высокие нагрузки и температуры приводят к:


  • Деформации посадочных мест под гильзу


  • Разрушению, залеганию, закоксовыванию колец


  • Задирам на юбках поршней из-за сужения зазора между поршнем и цилиндром


  • Возникновению пробоин, трещин, сколов на рабочих поверхностях цилиндров


  • Оплавлению или прогару днища поршней


  • Различным деформациям на теле поршней


Эти и другие неисправности ЦПГ неизбежно возникают при перегреве ДВС, который может быть вызван неисправностью термостата, помпы или разгерметизацией системы охлаждения, сбоями в работе вентилятора охлаждения радиатора, самого радиатора или его датчика.


Определить проблемы в работе цилиндро-поршневой группы можно отметив увеличение расхода масла, ухудшение запуска двигателя, снижение мощности, возникновение стука и шума при работе ДВС. Подобные моменты не следует игнорировать, так как неисправности в ЦПГ неизбежно приведут к дорогостоящему ремонту.


Точно определить состояние поршней и цилиндров позволяет разборка ЦПГ, а также осмотр других систем автомобиля, например, воздушного фильтра. Помимо этого, в ходе диагностики производится замер компрессии в цилиндрах, берутся пробы масла из картера и т.п.


Ресурс ЦПГ зависит от типа двигателя, его режима эксплуатации, сервисного обслуживания и других параметров. В среднем для отечественных автомобилей он составляет около 200 тыс. км, для иномарок – до 500 тыс. км. Существуют так называемые «двигатели-миллионники», ресурс которых может превышать 1 млн. км пробега.


Ремонт цилиндро-поршневой группы двигателя включает в себя замену компрессионных и маслосъемных колец, восстановление и расточку цилиндров, установку новых шатунов и поршней.


Износ цилиндров определяется при помощи специального прибора – индикаторного нутрометра. Сколы и трещины на стенках заваривают или заделывают эпоксидными пастами.


Новые поршни подбираются по массе и диаметру к гильзам, а поршневые пальцы – к втулкам верхних головок шатунов и поршням. Шатуны предварительно проверяют на предмет повреждений и при необходимости восстанавливают или заменяют.

Возврат к списку

Основные параметры двигателей автомобиля и их типы

Want create site? Find Free WordPress Themes and plugins.

Сердце автомобиля – ДВС или двигатель внутреннего сгорания, сложный технологический узел, обладающий множеством параметров. Их необходимо знать автолюбителю, чтобы ориентироваться при выборе автомобиля и ориентироваться во время эксплуатации и при ремонте. Наиболее значимыми параметрами являются:

  • Объем камер сгорания – определяет показатель расхода топлива и в значительной степени мощности;
  • Мощность – измеряется в киловаттах, но чаще используются лошадиные силы;
  • Крутящий момент – тяговое усилие;
  • Расход топлива – показатель указывается в литрах на 100 км. При этом учитываются дорожные условия: город, шоссе, смешанный режим;
  • Расход масла — тут важно учитывать тип, а порой и марку потребляемого масла.

Типовые параметры работы двигателей

Существует разделение ДВС на такие типы:

  • Бензиновые – часто используются в гражданском автомобилестроении, наиболее распространенный тип;
  • Дизельные – эти агрегаты отличаются надежностью и экономичностью. При этом несколько уступают бензиновым аналогам в динамике (набор скорости), но выигрывают по показателям проходимости. Широко используются военными, распространены в гражданском автомобилестроении;
  • Газовые – используют в качестве топлива сжиженный, природный, сжатый газ, который закачивается в специальные баллоны;

В список можно включить гибридные газодизельные агрегаты и роторно-поршневые. Последний тип широко использовался авиацией до середины XX века, в современных условиях встречается редко.

Количество цилиндров двигателя

Количество цилиндров в ДВС определяют его мощность. В процессе технической и технологической эволюции их количество постепенно увеличилось с 1 до 16. С увеличением количества цилиндров сами агрегаты становились больше. Решением в части экономии пространства стала концепция расположения цилиндров.

Расположение цилиндров

Существует такое понятие, как конфигурация двигателя, она определяется компоновкой цилиндров, их расположением. Можно выделить 2 основных типа – рядный, когда цилиндры расположены в ряд и V-образный. Второй тип наиболее часто используется в современном автопроме. В этом случае цилиндры располагаются под углом и соединяются с коленчатым валом, образуя латинскую букву V. Такая компоновка имеет подвиды:

  • W-образное расположение цилиндров;
  • Y-образное расположение цилиндров.

Реже применяются компоновки, образующие форму латинских букв U и H.

Объем двигателя

Рабочий объем ДВС определяет его мощность. Этот параметр измеряется в см3, но чаще в литрах. Он определяется путем суммирования внутреннего объема всех цилиндров силового агрегата. За основу в вычислениях берется поперечное сечение цилиндра и умножается на длину хода по нему поршня. В результате получается рабочий объем.
Параметр также определяет во многих странах мира сумму сборов. Соответственно чем больше объем, тем мощнее двигатель, а значит, его владелец заплатит больший взнос. Перспективным направлением разработок современности являются ДВС с изменяемым объемом. Это технология, когда при определенных условиях цилиндры отключаются.

Материал, из которого изготавливается двигатель

Основным материалом в производстве двигателей являются металлы и их сплавы:

  • Чугун – обеспечивает надежность и прочность, но минусом является внушительный вес;
  • Алюминиевые сплавы – дают неплохую прочность, при этом легкие. Недостаток – большая стоимость;
  • Магниевые сплавы – наиболее дорогостоящий материал, отличается высокой прочностью.

Многие производители автомобилей комбинируют материалы. Это во многом диктуется принадлежностью модели к тому или иному классу, что ставит ее в определенные ценовые рамки.

Мощность двигателя

Основополагающий параметр ДВС. Он измеряется в лошадиных силах, реже в кВт (киловатты). Мощность определяет скоростной предел и динамику разгона. Это еще один важный момент в условиях высокой конкуренции между производителями. Серьезная борьба идет в сегменте премиумных, спортивных автомобилей, а также в классе роадстеров и мускулкаров. Здесь разгон от 0 до 100 км/ч играет важную роль и может быть меньше 4 секунд.

Крутящий момент

Крутящий момент – параметр, определяющий тяговую силу мотора, обозначается Н/м (Ньютоны на метр). Значение непосредственно связано с мощностью и динамикой, хотя и не является для них определяющим. В значительной степени крутящий момент влияет на «эластичность» силового агрегата. Под этим словом подразумевается возможность ускоряться при низких оборотах. Соответственно, чем больше ускорение, тем эластичней мотор.

Расход топлива

Показатель потребления топлива двигателем зависит от его рабочего объема, а соответственно мощности. Основополагающую роль играет тип топливной системы:

  • Карбюраторная;
  • Инжекторная.

Измеряется показатель в литрах на 100 км. Техническая документация современных автомобилей предоставляет данные о расходе топлива при нескольких режимах движения: езда по городу, трассе, смешанный тип. В некоторых моделях, преимущественно внедорожниках, указывается расход при движении в условиях бездорожья, так как задействуются все 4 колеса и потребление бензина, дизеля значительно возрастает.

Тип топлива

ДВС могут потреблять разные виды топлива, но в основном используются:

  • Бензин – продукт переработки нефти-сырца или вторичной перегонки нефтепродуктов. Основополагающим показателем является октановое число, которое указывается в цифрах. Буквенное сочетание, стоящее перед цифрами «АИ» означает:
    А – бензин автомобильный;
    И – октановое число определено исследовательским способом. Если этой буквы в маркировки нет, значит, октановое число выведено моторным методом.
    Российские стандарты предусматривают такие марки бензина: А-76, А-80, АИ-91, АИ-92, АИ-93, АИ-95, АИ-98. Наиболее востребованными в настоящее время являются марки с октановым числом 92,95,98;
  • Дизель или дизельное топливо – получается путем промышленного перегона нефти. В его состав входят 2 вещества:
    1. Цетан – легковоспламеняющийся компонент, чем его содержание больше, тем выше качество топлива;
    2. Метилнафталин – не горючий компонент.
    Основополагающими характеристиками дизеля являются: прокачиваемость и воспламеняемость. В зависимости от спецификации подразделяется на: летнее, зимнее, арктическое (ориентировано на использование при экстремально низких температурах).

Также ДВС в качестве топлива может использовать газы: метан, пропан, бутан. Для этого на автомобиль устанавливаются специальные системы.

Расход масла

Показатель расхода масла указывается производителем автомобиля в технической документации к нему. Нормальным считается потребление смазки в соотношении 0,8–3% от потребляемого количества топлива. Также на этот показатель влияет размер двигателя, он увеличивается на больших, мощных агрегатах, особенно дизельных.
Различают расход масла:

  • Штатный – испарение смазочного материала с цилиндров, выдавливание через картер газами, смазка компрессора турбины;
  • Нештатный – течи уплотнений, потеря масла через сальники коленвала, маслосъемные поршневые кольца, перемычки поршня, когда происходит их разрушение.

К чрезмерному расходу приводит использование масла низкого качества и несоответствующей требованиям технической эксплуатации марки.

Ресурсная прочность

Ресурсная прочность – показатель, определяющий частоту проведения ТО. Измеряется пробегом. Оптимальное количество пройденных километров от 5000 до 30 000. Этот показатель дает возможность рассчитать максимальный срок эксплуатации силового агрегата.

Тип топливной системы

На бензиновые и дизельные моторы устанавливаются разные типы топливных систем. Бензиновые агрегаты могут оснащаться карбюраторной или инжекторной системой. Первая основана на механическом принципе, подача топлива регулируется дроссельной заслонкой. Второй тип – инжекторный позволяет осуществлять настройки с помощью электронных средств. Это значительно увеличивает КПД двигателя, сокращает расход топлива.
Дизельные агрегаты оснащаются ТНВД (топливными насосами высокого давления). Это устройство считается устаревшим и ненадежным. Чаще всего оно используется совместно с форсунками, обладающими функциями насоса. Но сами по себе они не могут обеспечить стабильную работу двигателя.

Тип бензиновой системы впуска

Существует 2 разновидности топливных бензиновых систем: карбюраторная, инжекторная. Они отличаются конструктивным устройством, а также принципами подачи топлива в цилиндры:

  • Карбюратор вливает бензин сплошным потоком, что затрудняет его смешивание с воздухом и детонацию. Это приводит к увеличенному расходу топлива, снижению технических характеристик мотора;
  • Инжекторная система превращает топливо в мелкодисперсную субстанцию – распыляет его. Это дает ему возможность быстро смешиваться с воздухом внутри цилиндра и приводит к увеличению характеристик двигателя и уменьшению расхода топлива.

Тип бензиновой системы впрыска

Существует одноточечная и многоточечная система впрыска. Первая не используется на современных моторах, вторая, в свою очередь, многоточечная система бывает:

  • Распределенной. Она обеспечивает стабильную работу силового агрегата, но не обеспечивает высокую динамику и не увеличивает мощность;
  • Прямой. В этом случае обеспечивается оптимальный расход топлива, увеличивается мощность двигателя и его ресурсная прочность. Недостатком системы является нестабильность работы на малых оборотах. Также минусом можно считать высокую требовательность к качеству бензина.

Дизельная система впрыска

Классическая схема впрыска топлива дизельного ДВС выглядит так:

  • ТНВД – топливный насос высокого давления подает горючее в рампу;
  • В рампе дизельное топливо нагнетается и с помощью форсунок-насосов подается в камеру сгорания.

На сегодняшний день это наиболее надежная схема впрыска дизельного топлива.

Форсунки впрыска

По принципу работы форсунки впрыска бывают:

  • Механические;
  • Пьезотронные.

Последние обеспечивают плавную работу двигателя. Больше ни на какие характеристики мотора форсунки впрыска не влияют.

Количество клапанов

Клапана, их количество влияет на показатель мощности мотора. Считается, что при большем количестве клапанов, работа двигателя становится плавнее. Устанавливаются они на впуск и выпуск цилиндра от 2 до 5 штук. Недостатком большого количества клапанов является увеличенный расход топлива.

Компрессор

Главная функция компрессора – повышение мощности ДВС без увеличения его размеров. Это делается с помощью нагнетания в камеру сгорания большего объема воздуха, что позволяет делать взрыв топливной смеси более мощным. Устанавливается компрессор на впускную систему автомобиля.
Компрессор приводится в движение механическим способом через соединение с коленвалом. Это делается посредством ремня или цепи. Турбокомпрессор нагнетает воздух под действием потока газов, которые крутят турбину, отвечающую за подачу дополнительной порции атмосферной массы.
Компрессоры по принципу подачи воздуха делятся на:

  • Центробежные – простая конструкция, где нагнетателем является крыльчатка;
  • Роторные – воздух нагнетается кулачковыми валами;
  • Двухвинтовые – функции нагнетателей выполняют винты, расположенные параллельно друг другу.

Система газораспределения

ГРМ или газораспределительный механизм отвечает за потоками газов в цилиндре. Он также выполняет функцию переключателя фаз процесса распределения. Принцип действия основан на блокировании и открывании впускных и выпускных отверстий камер сгораний. Это делается при помощи регулировочных элементов:

  • Клапанов;
  • Валов с приводами;
  • Толкателей;
  • Коромысел;
  • Шлангов.

По принципу управления процессом распределения газов ГРМ разделяются на:

  • Клапанные;
  • Золотниковые;
  • Поршневые.

Did you find apk for android? You can find new Free Android Games and apps.

Все, что вам нужно знать о цилиндрах двигателя

Что такое цилиндр двигателя и почему они различаются от двигателя к двигателю?

Цилиндры двигателя высокопроизводительного автомобиля

Цилиндр является силовым агрегатом двигателя. Здесь топливо сжигается и преобразуется в механическую энергию, приводящую в движение автомобиль. Количество цилиндров в типичном автомобиле может быть четыре, шесть или восемь.

Цилиндр изготовлен из металла и опломбирован. Он содержит поршень, который движется вверх и вниз, сжимая топливо, которое воспламеняется и вызывает сгорание. В верхней части цилиндра есть два клапана; впускной клапан и выпускной клапан. Впускной клапан — это место, где топливо и воздух поступают в цилиндр от карбюратора или электрической топливной форсунки, а выпускной клапан — это место выхода выхлопных газов.

Выхлопные газы, образующиеся при сгорании в цилиндре, вращают ось, известную как коленчатый вал. Они соединены с нижней частью цилиндра, который, в свою очередь, приводит в действие коробку передач, приводящую в движение колеса.

Чем больше цилиндров, тем больше поршней сжигает топливо и, следовательно, вырабатывается больше энергии.

Баллоны могут располагаться под капотом по прямой линии, в два ряда или в плоском порядке. Двигатели с цилиндрами, расположенными по прямой линии, известны как рядные двигатели (т. е. I4 или L4). Обычно они имеют менее шести цилиндров. Те, что расположены в два ряда, называются V-образными двигателями, поскольку они обычно имеют V-образную форму и более шести цилиндров. Британские двигатели с плоской компоновкой обычно имеют от четырех до шести цилиндров.

Как я узнаю, что цилиндр двигателя не работает?

Если цилиндр двигателя работает неэффективно, это может быть перегрев, утечка или пропуски зажигания. Это могут быть очевидные проблемы, которые можно обнаружить по запаху, дыму или видимым утечкам.

Если у вас проблемы с цилиндрами, вы сможете обнаружить сладкий и резиновый запах в салоне автомобиля. Этот запах может быть вызван утечкой охлаждающей жидкости в цилиндры.

Серый дым — хороший показатель того, что ваши цилиндры работают неэффективно и двигатель перегревается.

Утечки могут быть очевидны, особенно в сухие дни. Если под вашим автомобилем есть лужа жидкости, вы можете проверить уровень охлаждающей жидкости.

Давление в цилиндрах должно быть сбалансировано для поддержания эффективного сгорания и хорошего состояния двигателя. Низкое давление будет легко определить, так как основным показателем является пропуск зажигания двигателя при его запуске или низкая производительность при движении.

Давление можно измерить компрессометром. Вы можете сделать это самостоятельно, если он у вас есть, или вы можете попросить механика сделать это за вас.

Если в вашем автомобиле обнаружена какая-либо из этих проблем, попросите кого-нибудь проверить ее. Цилиндры двигателя и прокладки являются важными рабочими частями двигателя.

Заказать услугу

Об авторе

Николь Фергюсон

Штатный сотрудник Arnold Clark

  • Предыдущая статья
  • Следующая статья

№ 2671: Сколько цилиндров?

№ 2671
СКОЛЬКО ЦИЛИНДРОВ?

Джона Х. Линхарда

Щелкните здесь для прослушивания аудио эпизода 2671

Сегодня сколько цилиндров? Инженерный колледж Хьюстонского университета
представляет этот сериал о машинах, которые делают нашу цивилизацию
run, и люди, чья изобретательность создала их.

Так сколько цилиндров должно быть в двигателе автомобиля?
Большинство наших автомобилей имеют либо четыре цилиндра в ряд, либо цилиндры в ряд.
V-образное расположение — два или три с каждой стороны. Итак, зачем все эти фантазии?
Почему не один большой цилиндр?

Подумайте о поршне, который движется вперед и назад в цилиндре, создавая
коленчатый вал вращается. Он кратковременно приводит в движение вал каждые два оборота.
Двигатели наших автомобилей работают в
четырехтактные циклы.
Происходит воспламенение и поршень
толкает вниз. Затем он очищает выхлоп, когда он возвращается. Далее это
втягивает новую смесь воздуха и бензина на пути вниз. Наконец, это
идет вверх, сжимая эту смесь. Потом еще одно зажигание, и цикл повторяется.

Одноцилиндровый двигатель разгоняется на первом такте; затем замедляется во время
остальные два оборота четырехтактного цикла. Это вызвало бы такое
двигатель трястись и вибрирует.

Итак, нам нужен большой маховик, чтобы он двигался между зажиганиями. С более
цилиндров и поршней, мы можем прикрепить шатун каждого поршня к другому
угловое расположение на коленчатом валу — затем мы рассчитываем взрывы так, чтобы каждый
один запускает вращение во время двух оборотов. И маховик может
быть намного меньше.

Карл Бенц использовал одноцилиндровый двигатель в своем первом автомобиле 1885 года. первый
Двигатель модели Т имел четыре цилиндра в ряд. Некоторые роскошные автомобили 1920-х годов
имели рядные двигатели с восемью цилиндрами. Двигатели с таким количеством
Использовались 12 или более цилиндров подряд, но в основном в больших морских и
стационарные двигатели.

Конечно, бесперебойная работа — это только одна цель. Больше цилиндров дает меньше маховика
веса, но они также означают более высокие затраты на производство и обслуживание. Тогда есть
компактность. Дюзенберг прямо-8 был фаворитом
богатых кинозвезд 20-х годов. Но у него была 12-футовая колесная база. Представить
параллельная парковка этого зверя.

Ответом был двигатель V-8 — два ряда по четыре штуки в форме буквы V. Даже Карл Бенц
экспериментировал с двигателем V-2 после того, как построил свой одноцилиндровый мотор.
V-образное расположение может даже позволить двум цилиндрам управлять общей шатунной шейкой, толкая
его в разных угловых положениях. И здесь сложность возрастает: Инженеры
создали все виды умных конструкций коленчатых валов для использования с цилиндрами в
все виды положений — V-4, V-6, плоские-4, плоские-6.

На самолеты налагались различные конструктивные ограничения. Рядный двигатель предлагает мало
лобовое сопротивление. Братья Райт использовали рядный 4-цилиндровый двигатель, но с довольно
тяжелый маховик. Затем первые строители перешли к двигателям с девятью цилиндрами, излучающими
от центрального узла. Поршни вращались вокруг вала и не нуждались в маховике.
ни системы охлаждения.

Многие новые технологии останавливаются на одной лучшей форме. Но некоторые находят более одного
хороший вариант, тогда продолжайте жонглировать среди конкурентов. Просто подумайте о ПК против ПК.
Mac’ы, классическая музыка против кантри — просто подумайте о цилиндрах в их внешнем виде.
бесконечные аранжировки.

Я Джон Линхард из Хьюстонского университета,
где нас интересует, как изобретательные умы
Работа.


(Музыкальная тема)


См. записи в Википедии по всем соответствующим темам. Поиск по таким словам, как
автомобильные двигатели, рядные 4, оппозитные 6, V-8, 4-тактные двигатели и т.