Характеристика скольжения асинхронного двигателя: описание и определение, как она измеряется

Для детального анализа параметров двигателя определяется зависимость, показанная на графике выше.

Содержание

Характеристики скольжения асинхронного двигателя: описание и определение, способы измерения

Одним из наиболее важных параметров асинхронного двигателя является скольжение. Это переменная величина. Он может меняться в зависимости от режимов работы двигателя, значений напряжения, общей нагрузки.

В этой статье мы рассмотрим, что это за явление, как оно рассчитывается, от каких условий зависит.

Критическое скольжение определяется как отношение сопротивления ротора к эквивалентному сопротивлению (на основе активного сопротивления статора и индуктивного сопротивления статора и диссипации ротора).

Скольжение асинхронного двигателя

Взаимодействие магнитного поля с токами в роторе асинхронного двигателя создает электрический момент, который стремится уравнять скорость вращения магнитных полей статора и ротора.

Разность скоростей магнитных полей статора и ротора асинхронного двигателя характеризуется величиной скольжения s = (n 1 – n 2 ) / n 2, где n 1 – частота вращения синхронного поля, об/мин, n2 – частота вращения ротора асинхронного двигателя, об/мин. При номинальной нагрузке скольжение обычно недостаточно, поэтому, например, для электродвигателя с n 1 = 1 500 об/мин, n2 = 1 460 об/мин, скольжение составляет: s = ((1 500 – 1 460) / 1 500 ) x 100 = 2,7%.

Асинхронный двигатель не может достичь синхронной скорости даже в трех отключенных механизмах, потому что в нем проводники ротора не будут пересекаться магнитным полем, в них не будет индуцированной электродвижущей силы и в них не будет тока. Асинхронный момент при s = 0 будет равен нулю.

В начальной точке запуска обмотки ротора проводят ток с частотой сети. По мере ускорения ротора частота тока в роторе будет определяться скольжением асинхронного двигателя: f2 = s x f1, где f1 – частота тока, подаваемого на статор.

Сопротивление ротора является функцией частоты тока в роторе, причем чем больше частота, тем больше индуктивное сопротивление. По мере увеличения индуктивного сопротивления ротора увеличивается сдвиг фаз между напряжением и током в обмотках статора.

Поэтому при запуске асинхронных двигателей коэффициент мощности значительно ниже, чем при нормальной работе. Величина тока определяется эквивалентным сопротивлением двигателя и приложенным напряжением.

Значение эквивалентного сопротивления асинхронного двигателя с конфигурацией скольжения изменяется по сложному закону. При уменьшении скольжения от 1 до 0,15 сопротивление обычно увеличивается менее чем в 1,5 раза, от 0,15 до s Ом – в 5-7 раз по сравнению с начальным значением при запуске.

Ток изменяется обратно пропорционально изменению эквивалентного сопротивления. Таким образом, при запуске, вплоть до скольжения 0,15, ток немного уменьшается, а затем быстро миниатюризируется.

Крутящий момент также можно определить по электрической мощности на валу, как отношение этой мощности к угловой скорости ротора. Значение крутящего момента пропорционально квадрату напряжения и обратно пропорционально квадрату частоты.

Соответствующие значения крутящего момента в зависимости от скольжения (или скорости) – это начальное значение крутящего момента (когда двигатель неподвижен), наибольшее значение крутящего момента (и соответствующее скольжение, называемое критическим скольжением) и наименьшее значение крутящего момента в диапазоне скоростей от остановки до номинальной скорости.

Значения крутящего момента для номинальных напряжений можно найти в каталогах электронных машин. Знание низкого крутящего момента необходимо при расчете допустимости запуска или самозапуска полностью загруженной машины. Поэтому его значение для некоторых расчетов должно быть определено или получено от поставщика.

Максимальное значение крутящего момента определяется индуктивным сопротивлением статора и ротора и не зависит от величины сопротивления ротора.

Критическое скольжение определяется отношением сопротивления ротора к эквивалентному сопротивлению (обоснованному активным сопротивлением статора, индуктивным сопротивлением статора и диссипацией ротора).

Увеличение только активного сопротивления ротора сопровождается увеличением критического скольжения и смещением максимального крутящего момента в область более высокого скольжения (наименьшей скорости). Этот метод может быть использован для изменения характеристик крутящего момента.

В асинхронных двигателях с фазным ротором изменение момента при различных скоростях скольжения достигается с помощью резистора, введенного в цепь обмотки ротора. В асинхронных двигателях с короткозамкнутым ротором изменение момента может быть достигнуто путем внедрения двигателей с регулируемой скоростью или использования преобразователей частоты.

Существует несколько подходов к измерению скольжения в асинхронном двигателе. При значительном отличии рабочей частоты от синхронной частоты S измеряется с помощью тахометра или тахогенератора. Это специальное устройство, соединенное с приводным валом.

Как можно измерить значение S?

Существует несколько методов измерения скольжения в электродвигателе асинхронного типа. Если рабочая частота значительно отличается от синхронной частоты, S измеряется с помощью тахометра или тахогенератора. Это специальное устройство, соединенное с приводным валом.

Стробоскопический метод. В этом методе используется неоновая лампа. Измерения можно проводить только в том случае, если скольжение не превышает пяти процентов. На валу двигателя необходимо провести линию мелком. Вместе с ним может быть установлен стробоскопический диск. Затем на него светят лампой, которая подсчитывает, сколько раз вал совершил оборот за определенный промежуток времени. Окончательные расчеты производятся по специальным формулам. В этом методе допустимо использовать самый популярный стробоскоп. Его пример приведен ниже.

Третий способ поиска скольжения – через индукционную катушку. Как это сделать. Возьмите катушку от электромагнитного реле постоянного тока (контактора). Этот вариант лучше всего, потому что он имеет довольно много витков, около 20 000 витков. А для этих измерений вам нужно не менее 3 000. Подключите к катушке точный милливольтметр (он подходит из-за своей чувствительности). Затем установите катушку там, где заканчивается вал якоря.

Затем подсчитайте количество сделанных колебаний и по специальной формуле определите скольжение.

Кстати, если ротор асинхронного двигателя имеет фазу, S можно рассчитать с помощью магнитоэлектрического амперметра. Устройство подключается к любой из трех фаз якоря, подсчитывает количество колебаний стрелки (за определенный период времени) и вычисляет нужное значение по той же формуле, что и в методе катушки.

ГОСТ Р 53986-2010: Генераторные установки переменного тока с приводом от двигателя внутреннего сгорания. Часть 3: Генераторные установки переменного тока – ГОСТ Р 53986-2010:Генераторные установки переменного тока с приводом от двигателя внутреннего сгорания. Часть 3: Генераторные установки переменного тока с приводом от двигателя внутреннего сгорания. Оригинальный документ: 3.2.9 время восстановления напряжения; tU… Глоссарий технической и проектной документации

Литература

  • Хомяков Н. М., Денисов В.В., Панов В.А. Электротехника и электрооборудование судов. – Ленинград: Издательство “Судостроение”, 1971 г. – 368 с.
  • Электрические явления (на русском языке).
  • Системы управления электродвигателями

Фонд Викимедиа . 2010 .

Полезная страница

Смотреть что такое “Скольжение асинхронного двигателя” в других словарях

Скольжение – Этой статье не хватает введения. Пожалуйста, заполните вводный раздел кратким описанием темы статьи. Скольжение: скольжение (авиация) Тепловое скольжение Скольжение асинхронного двигателя … Википедия

Проскальзывание ротора асинхронного двигателя – Скольжение ротора асинхронного двигателя – [Я.Н.Лугинский, М.С.Феси Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999] Темы электротехника, основные понятия Синонимы скольжение ротора … …Руководство технического переводчика

ГОСТ Р 53986-2010: Генераторные установки переменного тока с приводом от двигателя внутреннего сгорания. Часть 3: Генераторные установки переменного тока – Терминология ГОСТ Р 53986-2010: Генераторные установки переменного тока с приводом от двигателя внутреннего сгорания. Часть 3. 3.2.9 время восстановления напряжения; tU… Глоссарий терминов для проектной и технической документации

ГЕНЕРАТОРЫ И ДВИГАТЕЛИ – Вращающиеся машины, преобразующие механическую энергию в электрическую (генераторы) или электрическую энергию в механическую (двигатели). Работа генераторов основана на принципе электромагнитной индукции: в проводе, движущемся в магнитном поле … Энциклопедия Кольера

Асинхронная машина – Статор и ротор асинхронной машины 0,75 кВт, 1420 об/мин, 50 Гц, 230 400 В, 3,4 2,0 А Асинхронная машина – это электрическое устройство переменного тока … Википедия

Линейный двигатель – Лабораторный синхронный линейный двигатель. На заднем плане – статор в виде ряда индукционных катушек, на переднем плане – подвижная вторичная обмотка, содержащая постоянный магнит … Википедия

Трехфазный двигатель – Трехфазный синхронный двигатель Трехфазный синхронный двигатель – это электродвигатель, предназначенный для питания от трехфазной сети переменного тока. Это машина переменного тока, состоящая из статора с тремя обмотками,… … Википедия

Характеристики – K.4.Характеристики Используются следующие дополнительные характеристики: K.4.3.1.2 Номинальное напряжение изоляции Минимальное номинальное напряжение изоляции должно составлять 250 В. K.4.3.2.1 Номинальный внешний тепловой ток….. Глоссарий нормативной терминологии

Характеристики регулирования напряжения – 3.2.12 Характеристики регулирования напряжения: Кривые выходного напряжения генератора как функция токов нагрузки при заданном коэффициенте мощности при установившемся режиме работы на номинальной скорости без ручного управления.

Более высокое скольжение может быть достигнуто двумя способами: уменьшением индукции за счет увеличения числа витков обмотки в статоре или, что более распространено, использованием обмотки ротора, усиленной специальным сплавом с высоким сопротивлением. Проще говоря, чем выше сопротивление обмотки ротора, тем меньше ток протекает в роторе, и магнитное поле, создаваемое током в этой обмотке, также становится меньше. Это приводит к увеличению скольжения, магнитное поле статора с меньшей вероятностью “поймает” ротор с ослабленным магнитным полем.

Использование двигателей с повышенным скольжением

Основным преимуществом двигателей с удлиненным скольжением является их способность работать при большой нагрузке, неравномерной пульсирующей (ударной) нагрузке и прерывистой работе с частыми пусками и остановками (режимы S2, S3, S4, S6). Стандартный двигатель может перегореть в таких условиях, поскольку он рассчитан на нечастые остановки и пуски. В других случаях эти двигатели практически идентичны стандартным моделям общепромышленных двигателей.

Электродвигатели с повышенным скольжением используются для привода механизмов с пульсирующими нагрузками (например, поршневые компрессоры малой мощности) и ударными нагрузками (молоты, прессы), а также для привода транспортных машин.

Ток изменяется обратно пропорционально изменению последовательного сопротивления, поэтому при запуске, до скольжения около 0,15, ток падает незначительно, а затем быстро уменьшается.

Трехфазный асинхронный двигатель с фазным ротором

До широкого распространения преобразователей частоты асинхронные двигатели средней и большой мощности выпускались с фазно обмотанным ротором. Трехфазные асинхронные двигатели с фазнозамкнутым ротором (ADFR) обычно использовались в приложениях со сложными условиями запуска, например, в качестве крановых двигателей переменного тока или для привода оборудования, требующего плавного регулирования скорости.

Проектирование АДФР

Фазированный ротор

По своей конструкции фазный ротор представляет собой трехфазную обмотку (аналогичную обмотке статора), расположенную в пазах сердечника фазного ротора. Фазные концы этой обмотки ротора обычно соединены звездой, а начала подключены к контактным кольцам, которые изолированы друг от друга и от вала. Реостат трехфазного пуска или управления обычно подключается к щеткам контактных колец. Асинхронные двигатели с фазированным ротором сложнее, чем двигатели с короткозамкнутым ротором, хотя они имеют лучшие характеристики запуска и управления.

Ротор с фазной обмоткой

Статор ADFR

Статор асинхронного двигателя с короткозамкнутым ротором конструктивно не отличается от статора двигателя с короткозамкнутым ротором.

Обозначение выводов вспомогательной обмотки для трехфазного АДСР

Схема подключения обмоток, обозначение фаз и выходов Обозначение выхода
Начало Конец
Разомкнутая цепь (количество проводников 6)
первый этап K1 K2
вторая фаза L1 L2
третий этап M1 M2
Соединение звездой (количество проводников 3 или 4)
первый этап K
вторая фаза L
третий этап M
звездная точка (нулевая точка) Q
Дельта-подключение (количество выводов 3)
первый вывод K
второй ведущий L
третий лид M
Схема подключения обмоток, маркировка фаз и выводов Обозначение выхода
Соединение звездой (количество выводов 3 или 4)
первый этап Р1
вторая фаза Р2
третий этап Р3
нулевая точка
Дельта-подключение (количество выводов 3)
первый вывод Р1
второй ведущий Р2
третий лид Р3

Начало АДПФ

Двигатель с фазным ротором запускается с помощью реостата в цепи ротора.

Используются проволочные реостаты и жидкостные реостаты.

Металлические реостаты ступенчатые, а переключение с одной ступени на другую осуществляется либо вручную с помощью рукоятки управления, основным элементом которой является вал с установленными на нем контактами, либо автоматически с помощью контакторов или контроллера с электрическим приводом.

Жидкостный реостат это емкость с электролитом, в которую опускаются электроды. Сопротивление реостата регулируется путем изменения глубины погружения электродов [3].

Для повышения эффективности и снижения износа щеток некоторые АДСР включают специальное устройство (механизм короткого замыкания), которое при активации поднимает щетки и замыкает кольца.

При запуске с помощью реостата достигаются благоприятные пусковые характеристики, так как при низких пусковых токах достигаются высокие значения крутящего момента. В настоящее время АДПФ заменяются комбинацией асинхронного двигателя с короткозамкнутым ротором и преобразователя частоты.

Читайте далее:

  • Шаговые двигатели: свойства и практические схемы управления. Часть 2.
  • Векторное и скалярное управление преобразователями частоты – принцип работы, система управления.
  • Асинхронный электродвигатель – конструкция, принцип работы, типы асинхронных двигателей.
  • Рабочие характеристики асинхронного двигателя; Школа для электриков: электротехника и электроника.
  • Принцип работы синхронного двигателя.
  • Векторное управление вентильным двигателем в безредукторном сервоприводе – темы научных работ по электротехнике, электронике, информатике читайте бесплатно тексты научных работ в электронной библиотеке КиберЛенинка.
  • Типы электродвигателей и их характеристики.

Понятие скольжения асинхронного двигателя

Содержание

  • 1 Что представляет собой скольжение асинхронной машины 
  • 2 Скольжение в разных условиях работы привода
  • 3 Как можно измерить показатель S?

Скольжение может изменяться. Это зависит о того, в каком режиме работает электродвигатель, величины напряжения сети и нагрузки на машину. Но что же это за характеристика и от чего она зависит? Разберемся ниже!

В целом, принцип, по которому происходит работа трехфазного мотора очень прост. К обмотке статора подают напряжение, питающее движок. Благодаря ему появляется магнитный поток, смещенный на 120 градусов в каждой из трех фаз. А тот поток, который носит имя суммирующего будет еще и вращающимся.

Обмотка якоря – замкнутый контур. В ней появляется электродвижущая сила (ЭДС), а магнитный поток, возникающей не без ее помощи, приводит ротор в работу: он начинает вращаться. Электромагнитный момент всегда будет пытаться сравнять темпы двух полей главных элементов привода: статора и ротора.

Величина, которая определяет разницу между скоростями вращения вышеописанных магнитных полей и есть то самое скольжение. Мы все знаем, что ротор никогда не будет поспевать за статором, значение это никогда не будет больше единицы. Измерение можно проводить как в процентах, так и в относительных величинах.

Чтобы рассчитать величину скольжения (S), нужно знать показатель частоты, с которой вращается магнитное поле (n1) и частоту, с которой вращается магнитное поле в роторе. Формула, по которой производится расчет, выглядит так:

Скольжение – чрезвычайно важная характеристика мотора. Она описывает то, насколько исправна работа машины.

Если режим работы агрегата – холостой, искомый показатель всегда будет близок к нулевому значению или, по крайней мере, не превысит 3%. Это связано с тем, что n1 будет практически равен n2. Несмотря на то, что значение всегда близко к нулю, нулевым оно быть не может, потому что поля ротора и статора не пересекаются. Другими словами, вращение мотора отсутствует, как и подача на него напряжения.

Скольжение (если считать его в процентах) не будет нулевым даже в том случае, когда электродвигатель находится в режиме идеального холостого хода. Зато, если агрегат запущен в режиме генератора, S может быть отрицательным.  

Такой режим (в нем ротор вращается противоположно относительно статора) будет показывать S, значениям бывают разными, но изменяются только в следующих пределах:

-∞<S<0

Надо отметить, что есть также электромагнитное торможение или противовключение якоря. В таком случае скольжение может быть больше, чем единица и положительным.

Рисунок 1

Частота тока в катушках якоря (f1) равна частоте сетевого тока, но только при пуске агрегата. Если нагрузка номинальная, то частоту электротока (f2) можно высчитать по формуле ниже:

f2=S*f1

Якорный ток имеет прямую зависимость от его индуктивного сопротивления. Это значит, что электроток в якоре зависит от скольжения асинхронного электромотора. Момент вращения агрегата также зависит от S. Его определяют показатели магнитного потока, угла сдвига между электродвижущей силой и якорным электротоком. 

Как видно из всего вышесказанного, чтобы провести детальное исследование всех параметров электропривода, нужно установить зависимость. Она схематически изображена на рисунке 1. 

Это, в свою очередь, означает, что если ввести в якорную цепь асинхронного двигателя, ротор которого фазный, дополнительное сопротивление, можно регулировать изменение момента в нем, если значения скольжения S различны. 

Если ротор в приводе короткозамкнут, момент можно регулировать с использованием преобразователя частоты или двигателя с переменными параметрами.

Если нагрузка на электродвигатель номинальная, S будет равно значениям от 8% до 2%. Это скольжение будет носить название номинального.

Увеличивая нагрузку на вал ротора (то есть момент), будет происходить пропорциональное увеличение величины скольжения. 

Выражаясь проще, можно сказать, что роторное магнитное поле никогда не будет быстрее статорного. То есть первое будет тормозить. 

Увеличивая скольжение, вы, конечно, добьетесь пропорционального роста тока в якоре. И момент, естественно, тоже вырастет. Но нужно всегда учитывать, что вместе с этим будут расти и активные потери ротора (то есть произойдет увеличение сопротивления). Это повлияет на снижение силы тока и уменьшение коэффициента мощности. Результат: рост момента будет медленнее, чем скольжения.

Критическое скольжение – максимальная величина момента, которой можно достигнуть при определенном S. После того, как момент станет максимальным, он начнет идти на убывание. Обозначаю показатель, как правило, через Sкр.

Механическая характеристика, в своем графическом проявлении, выглядит следующим образом:

В данном выражении (его еще называют формулой Клосса) используется величина критического момента (Мк). Его и определяет величина критического скольжения.

График строят, основываясь на характеристиках из документов асинхронной машины. Все вопросы, возникающие по поводу асинхронного агрегата, работающего в режиме движка, решают с помощью данного графика.

Величина допустимого значения мгновенного перегруза электромотора определяется критическим моментом. В случае развития еще более критического М (и, конечно же, увеличения Sкр), можно наблюдать опрокидывание агрегата. Когда это происходит, машина просто перестает работать и выключается. Это аварийный режим.

Для измерения скольжения в электрическом двигателе асинхронного типа есть несколько подходов. При значительной разнице частоты работы от синхронной, S измеряют тахометром или тахогенератором. Это специальный прибор, подключенный к валу электропривода.

Стробоскопический метод. В этом варианте используют неоновую лампу. Замеры можно произвести только в случае, когда скольжение не превышает пяти процентов. На вал движка нужно нанести черту с помощью мелка. Вместе этого можно установить стробоскопический диск. Затем на них светят лампой и считают, сколько раз вал сделал оборот за какой-либо отрезок времени. Окончательные расчеты проводят с помощью специальных формул. В этом методе допустимо использование самого обычного стробоскопа. Его пример приведен ниже.

Третий способ найти скольжение – индуктивная катушка. Как это сделать? Возьмите катушку от электромагнитного реле (контактор) постоянного тока. Она подойдет лучшего всего, так как на ней достаточно много витков, около 20 000. А для таких замеров их требуется не менее 3000. Подключите к катушке точный милливольтметр (он подойдет из-за своей чувствительности). Затем расположите катушку там, где заканчивается вал якоря. 

После этого нужно посчитать число совершенных колебаний и по специальной формуле определить скольжение. 

Кстати, если ротор у асинхронного мотора фазный, то S можно вычислить, используя магнитоэлектрический амперметр. Устройство подключают к любой их трех фаз в якоре, считают количество колебаний стрелки (за какое-то время) и считают нужный показатель по той формуле, которую используют в методе с катушкой индуктивности.

Какое значение имеет скольжение в асинхронном двигателе?

Асинхронный двигатель не может работать, если нет скольжения. Что такое скольжение асинхронного двигателя? давайте сначала поймем скольжение асинхронного двигателя.

Что такое скольжение?

Когда асинхронный двигатель питается от трехфазной сети, создается вращающееся магнитное поле. Скорость вращающегося магнитного поля известна как синхронная скорость (Ns) двигателя. Магнитное поле, создаваемое в двигателе, связывается с проводниками ротора, которые замыкаются концевыми кольцами.

Поток, связанный с проводниками ротора, индуцирует напряжение в роторе, и поскольку проводники ротора замыкаются накоротко, ток начинает течь через проводники ротора. Благодаря взаимодействию между магнитным полем и током ротора создается крутящий момент, и ротор начинает вращаться. Пусть скорость вращения ротора равна N.

В асинхронном двигателе скорость вращения ротора всегда отстает от синхронной скорости вращающегося магнитного поля. Асинхронный двигатель называется асинхронным двигателем, потому что фактическая скорость двигателя всегда меньше синхронной скорости двигателя.

Разница между скоростью вращающегося магнитного поля или синхронной скоростью и фактической скоростью ротора или двигателя называется скольжением двигателя. Скольжение можно математически выразить как;

с = Ns – N
Скольжение в об/мин.

Проскальзывание в процентах, 

Например:

4 полюса, асинхронный двигатель 50 Гц, 1480 об/мин при полной нагрузке.

Синхронная скорость двигателя

Ns = 120f/P
= 120 x 50/4
Ns = 1500 об/мин
с = Ns -N
   = 1500–1480
с = 20 об/мин -1480) /1500] x 100
= [20/1500] x 100
% Slip = 1,33 %

Подробнее: Индукционный мотор. работа асинхронного двигателя?

Крутящий момент возникает при протекании тока в проводнике ротора. Если скольжение равно нулю, в проводнике ротора не будет индуцироваться ЭДС, и, следовательно, в цепи ротора не будет протекать ток.

Крутящий момент создается за счет взаимодействия основного потока и тока ротора. Если ток ротора равен нулю, двигатель не будет создавать крутящий момент. При отсутствии скольжения работа двигателя невозможна. Крутящий момент, создаваемый асинхронным двигателем, пропорционален скольжению. Уравнение крутящего момента асинхронного двигателя приведено ниже.

Из приведенного выше уравнения крутящего момента асинхронного двигателя видно, что если скольжение равно нулю, крутящий момент будет равен нулю. Когда нагрузка на двигатель увеличивается, скольжение увеличивается, а скорость двигателя немного снижается, поэтому двигатель обеспечивает более высокий крутящий момент для привода нагрузки.

Скольжение играет очень важную роль в работе асинхронного двигателя. На холостом ходу скольжение асинхронного двигателя меньше и увеличивается с увеличением нагрузки на двигатель. Скольжение двигателя саморегулируется в соответствии с требованиями крутящего момента со стороны нагрузки.

Скольжение определяет другие параметры асинхронного двигателя.

ЭДС, индуцированная ротором

ЭДС, индуцированная в роторе, прямо пропорциональна скольжению. В состоянии покоя скольжение равно единице, а индуцированное ротором напряжение максимально.

E 2 (R) ∝ (NS-N)
∝ S (S = NS-N)
E 2 (R) = S E 2

Где,
E 2

sE 2  — ЭДС ротора/ Фаза в состоянии покоя

В состоянии покоя

s= (Ns – N)/ Ns = (Ns -0)/Ns = 1
, значит, E 2(r)  = s E 2
E 2 (r) = 1 X E 2 = E 2
E 2 (R) = E 2

Эмф индуцируется в ротоне на стойке. равно максимальному напряжению ротора (OCV) или равно напряжению холостого хода ротора.

Частота ЭДС ротора

В условиях покоя частота ЭДС ротора равна частоте статора. Частота ЭДС ротора уменьшается, когда двигатель начинает разгоняться, и частота минимальна, когда двигатель достигает номинальной скорости. Математическая связь между частотой ЭДС, индуцированной ротором, и частотой статора приведена ниже.

F R = SF S
Слип. 1
Следовательно, в состоянии покоя
f r  =f s

Сопротивление ротора

Сопротивление ротора не зависит от скольжения и, следовательно, сопротивление ротора остается постоянным независимо от скорости двигателя.

Ч 2  = Постоянная

Реактивное сопротивление ротора

Реактивное сопротивление ротора уменьшается с увеличением скорости двигателя. Реактивное сопротивление ротора наименьшее, когда двигатель работает на номинальной скорости. В состоянии покоя скольжение равно единице, а частота ЭДС ротора равна частоте питающей сети.

Пусть реактивное сопротивление ротора равно X 2  .
 X 2  =  ω  L 2

Где,

ω = 2π F R
L 2 = Индуктивность ротора
Следовательно,
x 2 = FR L 2
x 2

= 2
x 2 = 2
x 2 = 2
x 2 = 2
x 2 . L [ As fr =fs, в состоянии покоя]

Индуцированная ротором частота в рабочем состоянии зависит от скольжения двигателя.

В рабочем состоянии,
f r  =sf s

Реактивное сопротивление ротора в рабочем состоянии будет равно;

X 2r  =  2πs  f r   L 2
 =  ( f r   L 2 )
X 2r  =s X 2

Полное сопротивление ротора

Полное сопротивление/фаза ротора в состоянии покоя приведены ниже.

Импеданс/фаза ротора в рабочем состоянии приведены ниже.

Где,

Коэффициент мощности ротора

Импеданс, сопротивление и треугольник реактивного сопротивления цепи ротора приведены ниже.

Коэффициент мощности ротора в состоянии покоя указан ниже.

В рабочем режиме коэффициент мощности цепи ротора составляет ;

Наглядные примеры скольжения асинхронного двигателя:

Если ЭДС индукции в 4-полюсном статоре имеет частоту 50 Гц, а в роторе 1,5 Гц, то на какой скорости работает двигатель и каково скольжение асинхронного двигателя ?

fr = 50 Гц
P = 4  
N с = 120F/P
= 120 x 50/4
N S = 1500 об/мин

F R = Слист x Статор частота
1,5 = S x 50
S = 1,5/50
S = 0,03

двигателя

N = Ns(1 – s )
= 1500(1 – 0,03 )
= 1500 x 0,97
N = 1455 об/мин ротор , соединенный звездой. Скорость двигателя при полной нагрузке составляет 1460 об/мин. Сопротивление ротора и реактивное сопротивление покоя на фазу составляют 0,1 Ом и 1,5 Ом соответственно. Напряжение холостого хода на холостом ходу между контактными кольцами составляет 9 В.0 вольт. Определите (i) процентное скольжение (ii) ЭДС индукции в роторе на фазу (iii) реактивное сопротивление ротора на фазу при полной нагрузке (iv) ток ротора и коэффициент мощности при полной нагрузке.

(i) Ns = 120f/p
= 120 x 50/4
= 1500 об/мин;
скольжение = (Ns – N) / Ns
= (1500 – 1460)/ 1500
= 0,0266 %
ЭДС ротора при полной нагрузке E r = sE 2
= 0,0266 x 51,96
= 1,382 вольт

(III) Реактивное сопротивление ротора на стойке = 1,5 Ом / Фаза
Реактивность ротора на фазу при полной нагрузке = SX 2
= 0,0399 ω / Фаза

(IVE ) импеданс ротора на фазу при полной нагрузке
z 2 = √ (r 2 2 + SX 2 2 )
= 0,1077 Ом
. Ток ротор на фазу = 1,382/0,1077
Ом
. Коэффициент мощности при полной нагрузке = R2/Z2
= 0,1/0,1077
= 0,929

Трехфазный асинхронный двигатель с контактными кольцами имеет ротор, соединенный звездой. ЭДС 60 вольт при разомкнутой цепи возникает между контактными кольцами в состоянии покоя при номинальном напряжении статора. Сопротивление и реактивное сопротивление покоя ротора на фазу составляют 0,5 Ом и 5 Ом соответственно. Определите ток ротора по фазе (i), когда ротор находится в состоянии покоя и подключен к соединенному звездой реостату с сопротивлением 5 Ом и реактивным сопротивлением 0,5 Ом на фазу. (ii) при работе со скольжением 4 % при короткозамкнутом реостате.

Ток через ротор в состоянии покоя = ток при пуске Поскольку внешние сопротивления включаются последовательно с ротором, имеющим сопротивление и реактивное сопротивление на фазу R 2 = 5,5 Ом; X 2 = 5,5 Ом соответственно.

(I) I 2 = E 2 / √ (R 2 2 +x 2 2 )
= (60 / √ 3) / √ (5,5) 2 6 = (60 / √ 3) / √ (5,5) 2 2 2 2 2 2 2 9017 = (60 / √ 3) / √ (5,5) )
= (60 / √ 3) / √ (5,5) ). + (5,5) 2 )
I 2 = 4,454 ампер

(ii) При работе со скольжением 4%
I 2 = SE 2 / √ (R 2 2 + (SX 2 2 ))
= (0,04 x 60 / √ 3) / √ (0,5) 2 2 2 2 2 2 2 2 2 2 . + (0,04 x 5) 2 ))
= 2,573 А

Трехфазный 12-полюсный явнополюсный генератор переменного тока соединен с дизельным двигателем, работающим со скоростью 500 об/мин. Он питает асинхронный двигатель, который имеет скорость полной нагрузки 1440 об/мин. Найдите процент скольжения и число полюсов асинхронного двигателя.

Частота питания асинхронного двигателя
f = pn/120
= 12 x 500 / 120
= 50 Гц
Скорость асинхронного двигателя = 1440 об/мин,
Число полюсов асинхронного двигателя = p = 120 f / n
= 120 x 50/1440
= 4,16

Число полюсов должно быть четным, выбирая ближайшее четное число как число полюсов p = 4

Синхронная скорость асинхронного двигателя

Ns = 120f/p
= 120 x 50/4 = 1500 об/мин
скольжение = (Ns – N) / Ns
= (1500 – 1440)/ 1500
= 0,04 Процентное скольжение = 4 %

Связанный пост

  • Интервью с асинхронным двигателем Вопросы и ответы Часть 2
  • Почему асинхронный двигатель потребляет большой пусковой ток?
  • Почему трехфазным асинхронным двигателям не нужна нейтраль?
  • Трехфазный асинхронный двигатель с самозапуском
  • Почему асинхронный двигатель является двигателем почти с постоянной скоростью?

Похожие посты:

Подпишитесь на нас и поставьте лайк:

Скорость скольжения в асинхронном двигателе — электрическое напряжение

Синхронная скорость — это скорость, с которой вращается магнитное поле. Синхронное магнитное поле соединяется с проводником ротора и индуцирует напряжение в роторе. Ток начинает течь в роторе, потому что проводники ротора двигателя замыкаются накоротко. Крутящий момент создается в роторе за счет взаимодействия магнитного поля и тока, протекающего в роторе, и ротор начинает вращаться.

Асинхронный двигатель вращается с синхронной скоростью? Нет, если ротор вращается с синхронной скоростью, индуцированное в роторе напряжение будет равно нулю, и ток ротора также будет равен нулю. Следовательно, крутящий момент двигателя равен нулю. Работа двигателя невозможна, если ротор пытается вращаться с синхронной скоростью. Ротор асинхронного двигателя всегда отстает от синхронной скорости двигателя.

 

Определение скольжения

 

Отставание фактической скорости (N) двигателя от синхронной скорости (Ns) называется скольжением.

 

 

Скольжение асинхронного двигателя обозначается символом S. Скольжение асинхронного двигателя представляет собой разницу между синхронной скоростью и фактической скоростью и может быть математически записано как ;

 

S = Ns – N

Фактическая скорость двигателя всегда меньше синхронной скорости двигателя.

Скольжение может быть представлено в процентах (%) как;

 

 

 

 

 

 

Скольжение также может быть представлено в единицах (о.е.). Дробная часть синхронной скорости называется дробным скольжением или единичным скольжением.

 

Скорость вращения ротора двигателя можно определить с помощью следующего математического выражения.

 

 

Скольжение асинхронного двигателя также может быть выражено угловой скоростью, синхронной скоростью и фактической скоростью.

 

Скольжение асинхронного двигателя варьируется от 2 до 4 %.

 

Наглядные примеры:

 

4-полюсный асинхронный двигатель с частотой 50 Гц имеет скольжение 4 %. Какова реальная скорость двигателя?

 

Синхронная скорость 4-полюсного асинхронного двигателя 50 Гц составляет

Ns= 120 x 50/4 = 1500 об/мин.

 

Скольжение = 0,04

 

Фактическая скорость N = Ns(1-S)

n = 1500 (1-0,04)

n = 1500 x 0,96

n = 1440 об / мин

А 4 столбы, скорость индукционного моторного ротора 50 Гц составляет 1480 об / мин.