Содержание
✔ Виды электродвигателей и их особенности
Экономичность и надежность оборудования напрямую зависят от электродвигателя, поэтому его выбор требует серьезного подхода.
Посредством электродвигателя электрическая энергия преобразуется в механическую. Мощность, количество оборотов в минуту, напряжение и тип питания являются основными показателями электродвигателей. Также, большое значение имеют массогабаритные и энергетические показатели.
Электродвигатели обладают большими преимуществами. Так, по сравнению с тепловыми двигателями сопоставимой мощности, по размеру электрические двигатели намного компактнее. Они прекрасно подходят для установки на небольших площадках, например в оборудовании трамваев, электровозов и на станках различного назначения.
При их использовании не выделяется пар и продукты распада, что обеспечивает экологическую чистоту. Электродвигатели делятся на двигатели постоянного и переменного тока, шаговые электродвигатели, серводвигатели и линейные.
Электродвигатели переменного тока, в свою очередь, подразделяются на синхронные и асинхронные.
Электродвигатели постоянного тока
Используются для создания регулируемых электроприводов с высокими динамическими и эксплуатационными показателями. К таким показателям относятся высокая равномерность вращения и перезагрузочная способность. Их используют для комплектации бумагоделательных, красильно-отделочных и подъемно-транспортных машин, для полимерного оборудования, буровых станков и вспомогательных агрегатов экскаваторов. Часто они применяются для оснащения всех видов электротранспорта.
Электродвигатели переменного тока
Пользуются более высоким спросом, чем двигатели постоянного тока. Их часто используют в быту и в промышленности. Их производство намного дешевле, конструкция проще и надежнее, а эксплуатация достаточно проста. Практически вся домашняя бытовая техника оборудована электродвигателями переменного тока. Их используют в стиральных машинах, кухонных вытяжных устройствах и т. д. В крупной промышленности с их помощью приводится в движение станковое оборудование, лебедки для перемещения тяжелого груза, компрессоры, гидравлические и пневматические насосы и промышленные вентиляторы.
Шаговые электродвигатели
Действуют по принципу преобразования электрических импульсов в механическое перемещение дискретного характера. Большинство офисной и компьютерной техники оборудовано ими. Такие двигатели очень малы, но высокопродуктивны. Иногда и востребованы в отдельных отраслях промышленности.
Серводвигатели
Относятся к двигателям постоянного тока. Они высокотехнологичны. Их работа осуществляется посредством использования отрицательной обратной связи. Такой двигатель отличается особой мощностью и способен развивать высокую скорость вращения вала, регулировка которого осуществляется с помощью компьютерного обеспечения. Такая функция делает его востребованным при оборудовании поточных линий и в современных промышленных станках.
Линейные электродвигатели
Обладают уникальной способностью прямолинейного перемещения ротора и статора относительно друг друга. Такие двигатели незаменимы для работы механизмов, действие которых основано на поступательном и возвратно-поступательном движении рабочих органов. Использование линейного электродвигателя способно повысить надежность и экономичность механизма благодаря тому, что значительно упрощает его деятельность и почти полностью исключает механическую передачу.
Синхронные двигатели
Являются разновидностью электродвигателей переменного тока. Частота вращения их ротора равняется частоте вращения магнитного поля в воздушном зазоре. Их используют для компрессоров, крупных вентиляторов, насосов и генераторов постоянного тока, так как они работают с постоянной скоростью.
Асинхронные двигатели
Также, относятся к категории электродвигателей переменного тока. Частота вращения их ротора отличается от частоты вращения магнитного поля, которое создается током обмотки статора. Асинхронные двигатели разделяются на два типа, в зависимости от конструкции ротора: с короткозамкнутым ротором и фазным ротором. Конструкция статора в обоих видах одинакова, различие только в обмотке.
Электродвигатели незаменимы в современном мире. Благодаря им значительно облегчается работа людей. Их использование помогает снизить затрату человеческих сил и сделать повседневную жизнь намного комфортнее.
Перейти в каталог электродвигаетелей
Электрические машины
В качестве энергоносителя в электрической машине может быть использовано как магнитное, так и электрическое поле. Машины, в которых для преобразования энергии используется магнитное поле, называются индуктивными, а те, в которых используется электрическое поле, — емкостными. Возможно также совместное использование магнитного и электрического полей. Такие машины называются индуктивно-емкостными.
На практике наибольшее распространение получили индуктивные машины.
Принято различать электромеханические преобразователи в зависимости от цели преобразования энергии на:
- генераторы — источники электрической энергии;
- электродвигатели — источники механической энергии;
- специальные электрические машины — электромеханические преобразователи с более сложным целевым назначением
Современные электрические машины имеют самое разнообразное конструктивное исполнение и могут реализовывать различные роды напряжения и тока, а также различные виды движения — вращательное, колебательное, линейное и т. д.
Диапазон мощностей современных электрических машин составляет 10-17 — 109 Вт. На рисунке 1 показаны области распространения и зоны использования емкостных (график 1), индуктивно-емкостных (график 2) и индуктивных (график 3) электрических машин. Электрическая машина является весьма экономичным преобразователем энергии.
Рисунок 1 – Области распространения электрических машин
Для управления современными электрическими машинами используются сложные электронные системы, которые конструктивно объединяются с электромеханическим преобразователем и образуют так называемую электромеханотронную систему, выступающую как единый технический комплекс. Все это существенно расширяет функциональные возможности электрических машин и обеспечивает их широкое внедрение во все сферы производственной и бытовой деятельности человечества [1].
Основополагающие законы электромеханического преобразования энергии в индуктивных машинах
Закон Ампера
Согласно закону, установленному Ампером, на проводник с током в магнитном поле действует сила
,
- где F – сила, Н,
- I – сила тока, А,
- – длина проводника, м,
- B — магнитная индукция, Тл,
- — угол между направлением тока и вектором магнитной индукции, град.
Направление этой силы определяется по правилу «левой руки».
Закон электромагнитной индукции Фарадея
Открытие электромагнитной индукции в 1831 году Фарадеем — одно из фундаментальных открытий в электродинамики. Максвеллу принадлежит следующая углубленная формулировка закона электромагнитной индукции:
Всякое изменение магнитного поля во времени возбуждает в окружающем пространстве электрическое поле.
Циркуляция вектора напряженности E этого поля по любому неподвижному замкнутому контуру s определяется выражением [3] [4]
,
- где E – напряженность электрического поля, В/м,
- ds – элемент контура, м,
- Ф — магнитный поток, Вб,
- t — время, с
Электродвижущая сила индукции возникающая в замкнутом контуре, равна скорости изменения во времени потока магнитной индукции
,
- где – электродвижущая сила индукции, В
Знак «-» показывает, что индукционный ток, возникающий в замкнутом проводящем контуре имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.
Вращающаяся электрическая машина — электротехническое устройство, предназначенное для преобразования энергии на основе электромагнитной индукции и взаимодействия магнитного поля с электрическим током, содержащее, по крайней мере, две части, участвующие в основном процессе преобразования и имеющие возможность вращаться или поворачиваться относительно друг друга [2].
Вращающаяся машина постоянного тока, или машина постоянного тока — вращающаяся электрическая машина, основной процесс преобразования энергии в которой обусловлен потреблением или генерированием только постоянного электрического тока.
Вращающаяся машина переменного тока — вращающаяся электрическая машина, основной процесс преобразования энергии в которой обусловлен потреблением или генерированием переменного электрического тока.
Виды вращающихся электрических машин
По характеру магнитного поля в основном воздушном зазоре
Одноименнополюсная машина — вращающаяся электрическая машина, у которой нормальная составляющая магнитной индукции во всех точках основного воздушного зазора имеет один и тот же знак.
Разноименнополюсная машина — вращающаяся электрическая машина, у которой нормальная составляющая магнитной индукции в различных участках основного воздушного зазора имеет разные знаки.
Явнополюсная машина — разноименнополюсная машина, в которой полюса выступают в сторону основного воздушного зазора.
Неявнополюсная машина — разноименнополюсная машина с равномерным основным воздушным зазором.
- А.И.Вольдек, В.В.Попов. Электрические машины. Введение в электромеханику. Машины постоянного тока и трансформаторы. Учебник для вузов.-СПб.: Питер, 2007.
- ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.
- И.В.Савельев. Курс общей физики, том II. Электричество.-М.:Наука, 1970.
- Д.В.Сивухин. Общий курс физики. Т.III. Электричество.-М.:Наука, 1977.
Библиографический список
Что такое электродвигатель?
Электродвигатели представляют собой устройства, преобразующие электрическую энергию в механическую, обычно в форме вращательного движения. Проще говоря, это устройства, которые используют электроэнергию для выработки движущей силы.
Электродвигатели не только обеспечивают простое и эффективное средство создания высокой выходной мощности привода, но и их легко уменьшить, что позволяет встраивать их в другие машины и оборудование. В результате они находят широкое применение как в промышленности, так и в повседневной жизни.
Принцип работы
Помнишь, тебя в школе учили правилу левой руки Флеминга? Электродвигатели являются применением этого правила, при этом сила, создаваемая электрическим током, протекающим через катушку в присутствии магнитного поля, заставляет вал двигателя вращаться.
На приведенной ниже диаграмме правило левой руки Флеминга говорит нам, что направленная вверх сила генерируется, когда ток течет перпендикулярно магнитному полю от магнита * .
*
Магнитное поле: Область, в которой присутствует магнитная сила (направленная от северного (N) к южному (S) полюсу магнита).
Как достигается вращение в электродвигателе
В случае щеточного электродвигателя постоянного тока *1 , например, эту силу можно использовать для поддержания непрерывного вращения путем изменения направления тока на каждом полуобороте катушки (что достигается с помощью щеток и коммутатора *2 )
*1
Двигатель постоянного тока: Двигатель, работающий от постоянного тока (DC)
*2
Щетки и коллектор: При совместном использовании они меняют направление тока каждый раз, когда вал двигателя делает пол-оборота.
История электродвигателей
Британский ученый Майкл Фарадей пользуется особым влиянием среди многих ученых 19 века, сыгравших определенную роль в изобретении и разработке электродвигателей. В 1821 году Фарадей провел успешный эксперимент, в котором вращение проволоки осуществлялось с помощью магнита вместе с магнитным полем, создаваемым электрическим током. В 1831 году он изобрел закон магнитной индукции, заложив основу для значительного прогресса в области электродвигателей и генераторов.
Со временем было изобретено множество других типов электродвигателей, а также конструкции, которые можно считать архетипическими двигателями постоянного тока.
Впоследствии, в 1872 году, практический электродвигатель был не столько изобретен, сколько открыт, когда один из генераторов, выставленных на Всемирной выставке в Вене, начал вращаться сам по себе после того, как был случайно подключен к другому генератору. Это привело людей к пониманию того, что то, как работают генераторы, можно использовать и в двигателях. Последовавший за этим быстрый рост практического использования генераторов был таким, что они стали основой многих отраслей промышленности в 20 веке.
Двигатели и генераторы
В то время как электродвигатели преобразуют электрическую энергию во вращение и другие виды механической энергии, генераторы выполняют обратную функцию преобразования механической энергии в электрическую.
Несмотря на эти противоположные функции, двигатели и генераторы очень похожи по конструкции и принципу работы. Фактически, простой эксперимент, в котором два модельных двигателя соединяются вместе, — это все, что нужно, чтобы продемонстрировать, что электрический двигатель может также работать как генератор.
Естественно, учитывая различные способы их использования, два типа машин всегда разрабатывались отдельно.
Типы электродвигателей
Электродвигатели бывают самых разных форм в зависимости от типа используемого тока, конструкции их катушек (обмоток) и того, как они генерируют магнитное поле. Соответственно, их можно классифицировать по различным признакам.
Ниже описаны три типа электродвигателей, обычно используемых как в быту, так и в промышленности.
Двигатели постоянного тока
Это двигатели, приводимые в действие источником постоянного тока. Они подразделяются на щеточные и бесщеточные (BLDC) двигатели в зависимости от того, используют ли они щетки *1 .
В то время как коллекторным двигателям постоянного тока для работы требуется только подключение к источнику питания постоянного тока, бесщеточным двигателям постоянного тока требуется датчик для определения ориентации магнитных полюсов ротора *2 и схема привода для подачи соответствующего тока.
*1
Щетка: Деталь, используемая вместе с коллектором.
*2
Ротор: часть двигателя, которая вращается. Вал двигателя является частью ротора.
Двигатели переменного тока
Это двигатели, приводимые в действие источником переменного тока. Они сгруппированы в зависимости от того, является ли источник питания однофазным *1 или трехфазным *2 .
Однофазные двигатели далее сгруппированы в конденсаторные двигатели, в которых используется конденсатор *3 для создания крутящего момента, и двигатели с расщепленными полюсами, которые имеют дополнительную катушку (обмотку), называемую экранирующей катушкой *4 .
*1
Однофазный: Обычный источник питания переменного тока, обычно доступный в домах.
*2
Трехфазный: тип источника питания переменного тока, используемый в основном в промышленности.
*3
Конденсатор: электронный компонент, хранящий электрическую энергию.
*4
Затеняющая катушка: катушка с замкнутой цепью, намотанная вокруг части сердечника статора.
Шаговые двигатели
Это двигатели, которые вращаются на фиксированный шаг (угол) каждый раз, когда вводится импульс *1 .
Шаговые двигатели можно сгруппировать по структуре их ротора. Двигатели с постоянными магнитами (PM) *2 имеют магнит в роторе *3 , двигатели с переменным сопротивлением (VR) *4 имеют железный сердечник, а гибридные двигатели имеют и то, и другое.
*1
Импульс: Короткий всплеск электричества, производимый включением и выключением источника питания.
*2
Ротор: часть двигателя, которая вращается. Вал двигателя является частью ротора.
*3
Двигатель с постоянными магнитами: Двигатель с постоянным магнитом
.
*4
Двигатель
VR: двигатель с переменным магнитным сопротивлением, в котором сердечники расположены подобно зубьям шестерни, при этом такое расположение определяет угол шага.
Обзор типов электродвигателей
В таблице ниже перечислены основные характеристики трех различных типов двигателей.
В дополнение к перечисленным выше существует множество других типов электродвигателей.
Тип | Характеристики |
---|---|
Линейный двигатель | Двигатель, скользящий в линейном направлении |
Ультразвуковой двигатель | Двигатель, приводимый в движение ультразвуковыми колебаниями |
Двигатель без сердечника | Коллекторный двигатель постоянного тока с ротором без железного сердечника или бесщеточный двигатель со статором без железного сердечника |
Универсальный двигатель | Двигатель с фазным ротором и фазным статором, работающий как на переменном, так и на постоянном токе |
Гистерезис двигателя | Двигатель переменного тока, в роторе которого используется материал, обладающий гистерезисом и вращающийся за счет гистерезисного крутящего момента |
Двигатель SR | Шаговый двигатель VR, который также имеет функцию определения положения ротора, что позволяет избежать потери синхронизации |
Применение двигателей
Хотя электродвигатели используются по-разному, ниже перечислены общие области применения бесщеточных двигателей постоянного тока и шаговых двигателей, поставляемых ASPINA.
Области применения бесщеточных двигателей постоянного тока
Благодаря небольшим размерам, высокой мощности, низкому уровню шума и вибрации, а также длительному сроку службы бесщеточные двигатели постоянного тока находят широкое применение в таких приложениях, как системы вентиляции (очистители воздуха и другие виды кондиционер), бытовая техника, холодильники, водонагреватели, торговые автоматы, копировальные аппараты, принтеры, проекторы, оргтехника, контрольно-измерительные приборы, транспортные средства и медицинские приборы.
- Кондиционеры
- Финансовые терминалы (банкоматы), разменные автоматы, автоматы по обмену валюты, автоматы по продаже билетов
- Бытовая техника
- Чистые помещения
- Водонагреватели и горелки
- Оптические изделия
- Торговые автоматы
- Принтеры
- Морозильные и холодильные витрины
- Копировальные аппараты
- Медицинское оборудование
- Офисное оборудование
- Системы лабораторного анализа
Области применения шаговых двигателей
Превосходная точность остановки, высокий крутящий момент на средних и низких скоростях и превосходная чувствительность шаговых двигателей означают, что они могут использоваться в самых разных приводных устройствах, требующих точного управления.
- Производственное оборудование
- Приводы оптических дисков (приводы Blu-ray, DVD и т. д.)
- Медицинское оборудование
- Лазерные принтеры
- Лабораторные аналитические приборы
- Цифровые камеры
- Банкоматы
- Жалюзи кондиционера
- Торговые автоматы
- Развлекательные автоматы
- Автоматы по продаже билетов
- Копировальные аппараты
- Роботы
Решение проблем с электродвигателями
ASPINA поставляет не только автономные шаговые двигатели, но и системные продукты, включающие системы привода и управления, а также механические конструкции. Они подкреплены всесторонней поддержкой, которая простирается от прототипирования до коммерческого производства и послепродажного обслуживания.
ASPINA может предложить решения, адаптированные к функциям и характеристикам, требуемым в различных отраслях промышленности, областях применения и потребительских продуктах, а также для ваших конкретных производственных схем.
ASPINA поддерживает не только клиентов, которые уже знают свои требования или спецификации, но и тех, кто сталкивается с проблемами на ранних стадиях разработки.
Вы боретесь со следующими проблемами?
Выбор двигателя
- У вас еще нет подробных спецификаций или проектных чертежей, но вам нужен совет по двигателям?
- У вас нет штатного специалиста по двигателям, и вы не можете определить, какой тип двигателя лучше всего подойдет для вашего нового продукта?
Разработка двигателей и связанных с ними компонентов
- Хотите сосредоточить свои ресурсы на основных технологиях и заказать приводные системы и разработку двигателей на стороне?
- Хотите сэкономить время и силы на перепроектирование существующих механических компонентов при замене двигателя?
Уникальное требование
- Нужен специальный двигатель для вашего продукта, но ваш обычный поставщик отказался?
- Не можете найти двигатель, который дает вам требуемый контроль, и почти теряете надежду?
Ищете ответы на эти вопросы? Свяжитесь с ASPINA, мы здесь, чтобы помочь.
Ссылки на глоссарий и страницы часто задаваемых вопросов
Электродвигатель | Определение, типы и факты
трехфазный асинхронный двигатель
Смотреть все СМИ
- Ключевые сотрудники:
- Никола Тесла
Томас Давенпорт
Ипполит Фонтейн
Майкл Фарадей
- Связанные темы:
- синхронный двигатель
линейный двигатель
двигатель переменного тока
двигатель постоянного тока
гистерезис двигателя
См. всю связанную информацию →
электродвигатель , любой из классов устройств, преобразующих электрическую энергию в механическую, обычно с использованием электромагнитных явлений.
Большинство электродвигателей развивают свой механический крутящий момент за счет взаимодействия проводников, несущих ток, в направлении, перпендикулярном магнитному полю. Различные типы электродвигателей различаются способами расположения проводников и поля, а также управлением, которое может осуществляться над механическим выходным крутящим моментом, скоростью и положением. Большинство основных видов описаны ниже.
Простейший тип асинхронного двигателя показан в поперечном сечении на рисунке. Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть соединены либо по схеме «звезда», обычно без внешнего соединения с нейтральной точкой, либо по схеме «треугольник». Ротор состоит из цилиндрического железного сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычной форме эти проводники ротора соединены друг с другом на каждом конце ротора проводящим концевым кольцом.
Основу работы асинхронного двигателя можно разработать, если сначала предположить, что обмотки статора подключены к трехфазному источнику электропитания и что в обмотках статора протекает набор из трех синусоидальных токов формы, показанной на рисунке. На этом рисунке показано влияние этих токов на создание магнитного поля в воздушном зазоре машины в течение шести мгновений цикла. Для простоты показана только центральная петля проводника для каждой фазной обмотки. В данный момент t 1 ток в фазе a максимальный положительный, а в фазах b и c половина отрицательного значения. Результатом является магнитное поле с примерно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу. В момент времени t 2 на рисунке (т. е. на одну шестую цикла позже) ток в фазе c максимален, а в обеих фазах b и фазы a имеют положительное значение половины значения. Результат, как показано для t 2 на рисунке, снова представляет собой синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки. Изучение распределения тока для t 3 , t 4 , t 5 и t 5 и t 6 показывает, что магнитное поле продолжает вращаться во времени. Поле совершает один оборот за один цикл токов статора. Таким образом, совместное действие трех равных синусоидальных токов, равномерно смещенных во времени и протекающих по трем равномерно смещенным по угловому положению статорным обмоткам, должно создавать вращающееся магнитное поле с постоянной величиной и механической угловой скоростью, зависящей от частоты электроснабжение.
Викторина «Британника»
Энергия и ископаемое топливо
Вращательное движение магнитного поля по отношению к проводникам ротора вызывает индуцирование в каждом из них напряжения, пропорционального величине и скорости поля относительно проводников. Поскольку проводники ротора замкнуты накоротко друг с другом на каждом конце, эффект будет заключаться в том, что в этих проводниках будут протекать токи. В простейшем режиме работы эти токи будут примерно равны наведенному напряжению, деленному на сопротивление проводника. Картина токов ротора на момент t 1 рисунка показан на этом рисунке. Видно, что токи примерно синусоидально распределены по периферии ротора и расположены так, чтобы создавать крутящий момент против часовой стрелки на роторе (т. е. крутящий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается. Таким образом, индуцированное напряжение уменьшается, что приводит к пропорциональному уменьшению тока проводника ротора и крутящего момента. Скорость ротора достигает устойчивого значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, требуемому при этой скорости нагрузкой, без избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.
Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, как раз достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле при наличии токов ротора на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае возникло бы. токами ротора на рисунке. Тогда общий ток статора в каждой фазной обмотке представляет собой сумму синусоидальной составляющей, создающей магнитное поле, и другой синусоиды, опережающей первую на четверть цикла, или 90°, чтобы обеспечить требуемую электрическую мощность. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть периода или 90°. При номинальной нагрузке эта составляющая намагничивания обычно находится в диапазоне от 0,4 до 0,6 величины составляющей мощности.
Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас
Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазной сети постоянного напряжения и постоянной частоты. Типичное линейное напряжение питания находится в диапазоне от 230 вольт между фазами для двигателей относительно малой мощности (например, от 0,5 до 50 киловатт) до около 15 киловольт между фазами для мощных двигателей мощностью до 10 мегаватт.
За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласовано со скоростью изменения во времени магнитного потока в статоре машины. Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля поддерживается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.
В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле совершает один оборот за каждый цикл частоты питания. При частоте питания 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать требуемое напряжение в проводниках ротора для создания тока ротора, необходимого для крутящего момента нагрузки. При полной нагрузке скорость обычно на 0,5–5 % ниже рабочей скорости (часто называемой синхронной скоростью), при этом более высокий процент применяется к двигателям меньшего размера.
Содержание
Электрические машины
В качестве энергоносителя в электрической машине может быть использовано как магнитное, так и электрическое поле. Машины, в которых для преобразования энергии используется магнитное поле, называются индуктивными, а те, в которых используется электрическое поле, — емкостными. Возможно также совместное использование магнитного и электрического полей. Такие машины называются индуктивно-емкостными.
На практике наибольшее распространение получили индуктивные машины.
Принято различать электромеханические преобразователи в зависимости от цели преобразования энергии на:
- генераторы — источники электрической энергии;
- электродвигатели — источники механической энергии;
- специальные электрические машины — электромеханические преобразователи с более сложным целевым назначением
Современные электрические машины имеют самое разнообразное конструктивное исполнение и могут реализовывать различные роды напряжения и тока, а также различные виды движения — вращательное, колебательное, линейное и т. д.
Диапазон мощностей современных электрических машин составляет 10-17 — 109 Вт. На рисунке 1 показаны области распространения и зоны использования емкостных (график 1), индуктивно-емкостных (график 2) и индуктивных (график 3) электрических машин. Электрическая машина является весьма экономичным преобразователем энергии.
Рисунок 1 – Области распространения электрических машин
Для управления современными электрическими машинами используются сложные электронные системы, которые конструктивно объединяются с электромеханическим преобразователем и образуют так называемую электромеханотронную систему, выступающую как единый технический комплекс. Все это существенно расширяет функциональные возможности электрических машин и обеспечивает их широкое внедрение во все сферы производственной и бытовой деятельности человечества [1].
Основополагающие законы электромеханического преобразования энергии в индуктивных машинах
Закон Ампера
Согласно закону, установленному Ампером, на проводник с током в магнитном поле действует сила
,
- где F – сила, Н,
- I – сила тока, А,
- – длина проводника, м,
- B — магнитная индукция, Тл,
- — угол между направлением тока и вектором магнитной индукции, град.
Направление этой силы определяется по правилу «левой руки».
Закон электромагнитной индукции Фарадея
Открытие электромагнитной индукции в 1831 году Фарадеем — одно из фундаментальных открытий в электродинамики. Максвеллу принадлежит следующая углубленная формулировка закона электромагнитной индукции:
Всякое изменение магнитного поля во времени возбуждает в окружающем пространстве электрическое поле.
Циркуляция вектора напряженности E этого поля по любому неподвижному замкнутому контуру s определяется выражением [3] [4]
,
- где E – напряженность электрического поля, В/м,
- ds – элемент контура, м,
- Ф — магнитный поток, Вб,
- t — время, с
Электродвижущая сила индукции возникающая в замкнутом контуре, равна скорости изменения во времени потока магнитной индукции
,
- где – электродвижущая сила индукции, В
Знак «-» показывает, что индукционный ток, возникающий в замкнутом проводящем контуре имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.
Вращающаяся электрическая машина — электротехническое устройство, предназначенное для преобразования энергии на основе электромагнитной индукции и взаимодействия магнитного поля с электрическим током, содержащее, по крайней мере, две части, участвующие в основном процессе преобразования и имеющие возможность вращаться или поворачиваться относительно друг друга [2].
Вращающаяся машина постоянного тока, или машина постоянного тока — вращающаяся электрическая машина, основной процесс преобразования энергии в которой обусловлен потреблением или генерированием только постоянного электрического тока.
Вращающаяся машина переменного тока — вращающаяся электрическая машина, основной процесс преобразования энергии в которой обусловлен потреблением или генерированием переменного электрического тока.
Виды вращающихся электрических машин
По характеру магнитного поля в основном воздушном зазоре
Одноименнополюсная машина — вращающаяся электрическая машина, у которой нормальная составляющая магнитной индукции во всех точках основного воздушного зазора имеет один и тот же знак.
Разноименнополюсная машина — вращающаяся электрическая машина, у которой нормальная составляющая магнитной индукции в различных участках основного воздушного зазора имеет разные знаки.
Явнополюсная машина — разноименнополюсная машина, в которой полюса выступают в сторону основного воздушного зазора.
Неявнополюсная машина — разноименнополюсная машина с равномерным основным воздушным зазором.
- А.И.Вольдек, В.В.Попов. Электрические машины. Введение в электромеханику. Машины постоянного тока и трансформаторы. Учебник для вузов.-СПб.: Питер, 2007.
- ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.
- И.В.Савельев. Курс общей физики, том II. Электричество.-М.:Наука, 1970.
- Д.В.Сивухин. Общий курс физики. Т.III. Электричество.-М.:Наука, 1977.
Библиографический список
Виды электродвигателей и их модификации
Модификации электродвигателей
Асинхронные электродвигатели АИР благодаря несложной конструкции, неимения нестационарных контактов и невысокой цене, при высокой ремонтопригодности, востребованы во всех без исключения отраслях промышленности. Поскольку данный тип моторов очень распространен, он имеет достаточно широкий ряд модификаций. Из-за этого часто встает вопрос, какие электродвигатели выбрать под те или иные задачи. Давайте разберемся, какие бывают электродвигатели и какую маркировку они имеют.
Какие бывают электродвигатели
Электродвигатель с повышенным скольжением (С).
Моторы с повышенным скольжением (АИРС) устанавливают на механизмы, которые работают с большими нагрузками, нежели могут выдержать обычные асинхронные эл двигатели. Также их ставят на агрегаты, которые работают в повторно-кратковременном режиме. Для того чтобы обеспечить данные режимы работы в обмотке ротора используют катанку из стали с более высокой сопротивляемостью к деформациям. По сути, они отличаются от стандартных моторов только лишь внутренним строением. Такие двигатели часто применяют на судовом оборудовании.
Двигатель с самовентиляцией и защищенного исполнения (Н).
Это машины, у которых вентилятор закреплен на собственном валу и при вращении он создает аэродинамическое давление. В данном случае мотор имеет закрытое исполнение с рубчатой поверхностью. Служит это для повышения плоскости охлаждения. Применяются, например, в силовых насосах, используемых при добыче нефти или газа.
Эл двигатель с фазным ротором (К).
Данный мотор можно регулировать с помощью добавления в цепь ротора дополнительных резисторов. Данное исполнение позволяет повысить пусковой момент и пусковые токи. Сопротивление, в большинстве случаев, дополняется с помощью реостатов.
Встраиваемый электродвигатель (В).
Как ясно из названия, они предназначены для встраивания в какой-либо механизм. По своим характеристикам не отличаются от двигателей основного исполнения. Применяются в токарных станках, например.
С электромагнитным тормозом (Е).
Как правило, такие двигатели устанавливаются на оборудование, в котором необходима возможность практически мгновенной остановки (станочно-конвейерное оборудование). На самом деле это обычный асинхронный двигатель, в котором предусмотрен электронный тормоз. Возможно исполнение с ручкой растормаживания (модификация Е2).
Двигатели для привода центробежных моноблочных насосов (Ж).
Отличаются от обычных электродвигателей наличием продленного вала. Делается это для постановки рабочих колес насосов.
Для мотор-редукторов (РЗ).
Конструктивно ничем не отличаются от остальных электродвигателей АИР, за исключением особой формы фланцевого подшипникового щита, которая обеспечивает установку усиленного подшипника и специального рабочего конца вала.
Эл двигатели АИР для станков-качалок (С).
Находят применение на нефтепромысле. Идентичны моторам, на базе которых созданы. Подразумевается их размещение на открытом воздухе.
Для приводов лифтов (Л).
Предназначены для привода лебедок лифтов. Данная модификация двигателей позволяет получить плавность хода всего механизма за счет постоянного момента на валу ротора.
Со встроенными датчиками (Б).
Как ясно из названия – установленные различные датчики для защиты электродвигателя. Например, температурный датчик: при нагреве двигателя устройства защиты воздействуют на цепь контактора или пускателя и отключают машину. Используются на атомных станциях или других предприятиях, где чрезвычайно важна безаварийность.
Двигатели с повышенной точностью по установочным размерам (П).
Имеют повышенную точность таких параметров как биение рабочего конца вала и так далее. Уменьшен сохранившийся дисбаланс роторов двигателей.
Специалисты компании УЭСК помогут сделать правильный выбор
Электродвигатель АИР характеристики
Тип двигателя | Р, кВт | Номинальная частота вращения, об/мин | кпд,* | COS ф | 1п/1н | Мп/Мн | Мmах/Мн | 1н, А | Масса, кг |
АИР56А2 | 0,18 | 2840 | 68,0 | 0,78 | 5,0 | 2,2 | 2,2 | 0,52 | 3,4 |
АИР56В2 | 0,25 | 2840 | 68,0 | 0,698 | 5,0 | 2,2 | 2,2 | 0,52 | 3,9 |
АИР56А4 | 0,12 | 1390 | 63,0 | 0,66 | 5,0 | 2,1 | 2,2 | 0,44 | 3,4 |
АИР56В4 | 0,18 | 1390 | 64,0 | 0,68 | 5,0 | 2,1 | 2,2 | 0,65 | 3,9 |
АИР63А2 | 0,37 | 2840 | 72,0 | 0,86 | 5,0 | 2,2 | 2,2 | 0,91 | 4,7 |
АИР63В2 | 0,55 | 2840 | 75,0 | 0,85 | 5,0 | 2,2 | 2,3 | 1,31 | 5,5 |
АИР63А4 | 0,25 | 1390 | 68,0 | 0,67 | 5,0 | 2,1 | 2,2 | 0,83 | 4,7 |
АИР63В4 | 0,37 | 1390 | 68,0 | 0,7 | 5,0 | 2,1 | 2,2 | 1,18 | 5,6 |
АИР63А6 | 0,18 | 880 | 56,0 | 0,62 | 4,0 | 1,9 | 2 | 0,79 | 4,6 |
АИР63В6 | 0,25 | 880 | 59,0 | 0,62 | 4,0 | 1,9 | 2 | 1,04 | 5,4 |
АИР71А2 | 0,75 | 2840 | 75,0 | 0,83 | 6,1 | 2,2 | 2,3 | 1,77 | 8,7 |
АИР71В2 | 1,1 | 2840 | 76,2 | 0,84 | 6,9 | 2,2 | 2,3 | 2,6 | 10,5 |
АИР71А4 | 0,55 | 1390 | 71,0 | 0,75 | 5,2 | 2,4 | 2,3 | 1,57 | 8,4 |
АИР71В4 | 0,75 | 1390 | 73,0 | 0,76 | 6,0 | 2,3 | 2,3 | 2,05 | 10 |
АИР71А6 | 0,37 | 880 | 62,0 | 0,70 | 4,7 | 1,9 | 2,0 | 1,3 | 8,4 |
АИР71В6 | 0,55 | 880 | 65,0 | 0,72 | 4,7 | 1,9 | 2,1 | 1,8 | 10 |
АИР71А8 | 0,25 | 645 | 54,0 | 0,61 | 4,7 | 1,8 | 1,9 | 1,1 | 9 |
АИР71В8 | 0,25 | 645 | 54,0 | 0,61 | 4,7 | 1,8 | 1,9 | 1,1 | 9 |
АИР80А2 | 1,5 | 2850 | 78,5 | 0,84 | 7,0 | 2,2 | 2,3 | 3,46 | 13 |
АИР80А2ЖУ2 | 1,5 | 2850 | 78,5 | 0,84 | 7,0 | 2,2 | 2,3 | 3,46 | 13 |
АИР80В2 | 2,2 | 2855 | 81,0 | 0,85 | 7,0 | 2,2 | 2,3 | 4,85 | 15 |
АИР80В2ЖУ2 | 2,2 | 2855 | 81,0 | 0,85 | 7,0 | 2,2 | 2,3 | 4,85 | 15 |
АИР80А4 | 1,1 | 1390 | 76,2 | 0,77 | 6,0 | 2,3 | 2,3 | 2,85 | 14 |
АИР80В4 | 1,5 | 1400 | 78,5 | 0,78 | 6,0 | 2,3 | 2,3 | 3,72 | 16 |
АИР80А6 | 0,75 | 905 | 69,0 | 0,72 | 5,3 | 2,0 | 2,1 | 2,3 | 14 |
АИР80В6 | 1,1 | 905 | 72,0 | 0,73 | 5,5 | 2,0 | 2,1 | 3,2 | 16 |
АИР80А8 | 0,37 | 675 | 62,0 | 0,61 | 4,0 | 1,8 | 1,9 | 1,49 | 15 |
АИР80В8 | 0,55 | 680 | 63,0 | 0,61 | 4,0 | 1,8 | 2,0 | 2,17 | 18 |
АИР90L2 | 3,0 | 2860 | 82,6 | 0,87 | 7,5 | 2,2 | 2,3 | 6,34 | 17 |
АИР90L2ЖУ2 | 3,0 | 2860 | 82,6 | 0,87 | 7,5 | 2,2 | 2,3 | 6,34 | 17 |
АИР90L4 | 2,2 | 1410 | 80,0 | 0,81 | 7,0 | 2,3 | 2,3 | 5,1 | 17 |
АИР90L6 | 1,5 | 920 | 76,0 | 0,75 | 5,5 | 2,0 | 2,1 | 4,0 | 18 |
АИР90LA8 | 0,75 | 680 | 70,0 | 0,67 | 4,0 | 1,8 | 2,0 | 2,43 | 23 |
АИР90LB8 | 1,1 | 680 | 72,0 | 0,69 | 5,0 | 1,8 | 2,0 | 3,36 | 28 |
АИР100S2 | 4,0 | 2880 | 84,2 | 0,88 | 7,5 | 2,2 | 2,3 | 8,2 | 20,5 |
АИР100S2ЖУ2 | 4,0 | 2880 | 84,2 | 0,88 | 7,5 | 2,2 | 2,3 | 8,2 | 20,5 |
АИР100L2 | 5,5 | 2900 | 85,7 | 0,88 | 7,5 | 2,2 | 2,3 | 11,1 | 28 |
АИР100L2ЖУ2 | 5,5 | 2900 | 85,7 | 0,88 | 7,5 | 2,2 | 2,3 | 11,1 | 28 |
АИР100S4 | 3,0 | 1410 | 82,6 | 0,82 | 7,0 | 2,3 | 2,3 | 6,8 | 21 |
АИР100L4 | 4,0 | 1435 | 84,2 | 0,82 | 7,0 | 2,3 | 2,3 | 8,8 | 37 |
АИР100L6 | 2,2 | 935 | 79,0 | 0,76 | 6,5 | 2,0 | 2,1 | 5,6 | 33,5 |
АИР100L8 | 1,5 | 690 | 74,0 | 0,70 | 5,0 | 1,8 | 2,0 | 4,4 | 33,5 |
АИР112M2 | 7,5 | 2895 | 87,0 | 0,88 | 7,5 | 2,2 | 2,3 | 14,9 | 49 |
АИР112М2ЖУ2 | 7,5 | 2895 | 87,0 | 0,88 | 7,5 | 2,2 | 2,3 | 14,9 | 49 |
АИР112М4 | 5,5 | 1440 | 85,7 | 0,83 | 7,0 | 2,3 | 2,3 | 11,7 | 45 |
АИР112MA6 | 3,0 | 960 | 81,0 | 0,73 | 6,5 | 2,1 | 2,1 | 7,4 | 41 |
АИР112MB6 | 4,0 | 860 | 82,0 | 0,76 | 6,5 | 2,1 | 2,1 | 9,75 | 50 |
АИР112MA8 | 2,2 | 710 | 79,0 | 0,71 | 6,0 | 1,8 | 2,0 | 6,0 | 46 |
АИР112MB8 | 3,0 | 710 | 80,0 | 0,73 | 6,0 | 1,8 | 2,0 | 7,8 | 53 |
АИР132M2 | 11 | 2900 | 88,4 | 0,89 | 7,5 | 2,2 | 2,3 | 21,2 | 54 |
АИР132М2ЖУ2 | 11 | 2900 | 88,4 | 0,89 | 7,5 | 2,2 | 2,3 | 21,2 | 54 |
АИР132S4 | 7,5 | 1460 | 87,0 | 0,84 | 7,0 | 2,3 | 2,3 | 15,6 | 52 |
АИР132M4 | 11 | 1450 | 88,4 | 0,84 | 7,0 | 2,2 | 2,3 | 22,5 | 60 |
АИР132S6 | 5,5 | 960 | 84,0 | 0,77 | 6,5 | 2,1 | 2,1 | 12,9 | 56 |
АИР132M6 | 7,5 | 970 | 86,0 | 0,77 | 6,5 | 2,0 | 2,1 | 17,2 | 61 |
АИР132S8 | 4,0 | 720 | 81,0 | 0,73 | 6,0 | 1,9 | 2,0 | 10,3 | 70 |
АИР132M8 | 5,5 | 720 | 83,0 | 0,74 | 6,0 | 1,9 | 2,0 | 13,6 | 86 |
АИР160S2 | 15 | 2930 | 89,4 | 0,89 | 7,5 | 2,2 | 2,3 | 28,6 | 116 |
АИР160S2ЖУ2 | 15 | 2930 | 89,4 | 0,89 | 7,5 | 2,2 | 2,3 | 28,6 | 116 |
АИР160M2 | 18,5 | 2930 | 90,0 | 0,90 | 7,5 | 2,0 | 2,3 | 34,7 | 130 |
АИР160М2ЖУ2 | 18,5 | 2930 | 90,0 | 0,90 | 7,5 | 2,0 | 2,3 | 34,7 | 130 |
АИР160S4 | 15 | 1460 | 89,4 | 0,85 | 7,5 | 2,2 | 2,3 | 30,0 | 125 |
АИР160S4ЖУ2 | 15 | 1460 | 89,4 | 0,85 | 7,5 | 2,2 | 2,3 | 30,0 | 125 |
АИР160M4 | 18,5 | 1470 | 90,0 | 0,86 | 7,5 | 2,2 | 2,3 | 36,3 | 142 |
АИР160S6 | 11 | 970 | 87,5 | 0,78 | 6,5 | 2,0 | 2,1 | 24,5 | 125 |
АИР160M6 | 15 | 970 | 89,0 | 0,81 | 7,0 | 2,0 | 2,1 | 31,6 | 155 |
АИР160S8 | 7,5 | 720 | 85,5 | 0,75 | 6,0 | 1,9 | 2,0 | 17,8 | 125 |
АИР160M8 | 11 | 730 | 87,5 | 0,75 | 6,5 | 2,0 | 2,0 | 25,5 | 150 |
АИР180S2 | 22 | 2940 | 90,5 | 0,90 | 7,5 | 2,0 | 2,3 | 41,0 | 150 |
АИР180S2ЖУ2 | 22 | 2940 | 90,5 | 0,90 | 7,5 | 2,0 | 2,3 | 41,0 | 150 |
АИР180M2 | 30 | 2950 | 91,4 | 0,90 | 7,5 | 2,0 | 2,3 | 55,4 | 170 |
АИР180М2ЖУ2 | 30 | 2950 | 91,4 | 0,90 | 7,5 | 2,0 | 2,3 | 55,4 | 170 |
АИР180S4 | 22 | 1470 | 90,5 | 0,86 | 7,5 | 2,2 | 2,3 | 43,2 | 160 |
АИР180S4ЖУ2 | 22 | 1470 | 90,5 | 0,86 | 7,5 | 2,2 | 2,3 | 43,2 | 160 |
АИР180M4 | 30 | 1470 | 91,4 | 0,86 | 7,2 | 2,2 | 2,3 | 57,6 | 190 |
АИР180М4ЖУ2 | 30 | 1470 | 91,4 | 0,86 | 7,2 | 2,2 | 2,3 | 57,6 | 190 |
АИР180M6 | 18,5 | 980 | 90,0 | 0,81 | 7,0 | 2,1 | 2,1 | 38,6 | 160 |
АИР180M8 | 15 | 730 | 88,0 | 0,76 | 6,6 | 2,0 | 2,0 | 34,1 | 172 |
АИР200M2 | 37 | 2950 | 92,0 | 0,88 | 7,5 | 2,0 | 2,3 | 67,9 | 230 |
АИР200М2ЖУ2 | 37 | 2950 | 92,0 | 0,88 | 7,5 | 2,0 | 2,3 | 67,9 | 230 |
АИР200L2 | 45 | 2960 | 92,5 | 0,90 | 7,5 | 2,0 | 2,3 | 82,1 | 255 |
АИР200L2ЖУ2 | 45 | 2960 | 92,5 | 0,90 | 7,5 | 2,0 | 2,3 | 82,1 | 255 |
АИР200M4 | 37 | 1475 | 92,0 | 0,87 | 7,2 | 2,2 | 2,3 | 70,2 | 230 |
АИР200L4 | 45 | 1475 | 92,5 | 0,87 | 7,2 | 2,2 | 2,3 | 84,9 | 260 |
АИР200M6 | 22 | 980 | 90,0 | 0,83 | 7,0 | 2,0 | 2,1 | 44,7 | 195 |
АИР200L6 | 30 | 980 | 91,5 | 0,84 | 7,0 | 2,0 | 2,1 | 59,3 | 225 |
АИР200M8 | 18,5 | 730 | 90,0 | 0,76 | 6,6 | 1,9 | 2,0 | 41,1 | 210 |
АИР200L8 | 22 | 730 | 90,5 | 0,78 | 6,6 | 1,9 | 2,0 | 48,9 | 225 |
АИР225M2 | 55 | 2970 | 93,0 | 0,90 | 7,5 | 2,0 | 2,3 | 100 | 320 |
АИР225M4 | 55 | 1480 | 93,0 | 0,87 | 7,2 | 2,2 | 2,3 | 103 | 325 |
АИР225M6 | 37 | 980 | 92,0 | 0,86 | 7,0 | 2,1 | 2,1 | 71,0 | 360 |
АИР225M8 | 30 | 735 | 91,0 | 0,79 | 6,5 | 1,9 | 2,0 | 63 | 360 |
АИР250S2 | 75 | 2975 | 93,6 | 0,90 | 7,0 | 2,0 | 2,3 | 135 | 450 |
АИР250M2 | 90 | 2975 | 93,9 | 0,91 | 7,1 | 2,0 | 2,3 | 160 | 530 |
АИР250S4 | 75 | 1480 | 93,6 | 0,88 | 6,8 | 2,2 | 2,3 | 138,3 | 450 |
АИР250M4 | 90 | 1480 | 93,9 | 0,88 | 6,8 | 2,2 | 2,3 | 165,5 | 495 |
АИР250S6 | 45 | 980 | 92,5 | 0,86 | 7,0 | 2,1 | 2,0 | 86,0 | 465 |
АИР250M6 | 55 | 980 | 92,8 | 0,86 | 7,0 | 2,1 | 2,0 | 104 | 520 |
АИР250S8 | 37 | 740 | 91,5 | 0,79 | 6,6 | 1,9 | 2,0 | 78 | 465 |
АИР250M8 | 45 | 740 | 92,0 | 0,79 | 6,6 | 1,9 | 2,0 | 94 | 520 |
АИР280S2 | 110 | 2975 | 94,0 | 0,91 | 7,1 | 1,8 | 2,2 | 195 | 650 |
АИР280M2 | 132 | 2975 | 94,5 | 0,91 | 7,1 | 1,8 | 2,2 | 233 | 700 |
АИР280S4 | 110 | 1480 | 94,5 | 0,88 | 6,9 | 2,1 | 2,2 | 201 | 650 |
АИР280M4 | 132 | 1480 | 94,8 | 0,88 | 6,9 | 2,1 | 2,2 | 240 | 700 |
АИР280S6 | 75 | 985 | 93,5 | 0,86 | 6,7 | 2,0 | 2,0 | 142 | 690 |
АИР280M6 | 90 | 985 | 93,8 | 0,86 | 6,7 | 2,0 | 2,0 | 169 | 800 |
АИР280S8 | 55 | 740 | 92,8 | 0,81 | 6,6 | 1,8 | 2,0 | 111 | 690 |
АИР280M8 | 75 | 740 | 93,5 | 0,81 | 6,2 | 1,8 | 2,0 | 150 | 800 |
АИР315S2 | 160 | 2975 | 94,6 | 0,92 | 7,1 | 1,8 | 2,2 | 279 | 1170 |
АИР315M2 | 200 | 2975 | 94,8 | 0,92 | 7,1 | 1,8 | 2,2 | 248 | 1460 |
АИР315МВ2 | 250 | 2975 | 94,8 | 0,92 | 7,1 | 1,8 | 2,2 | 248 | 1460 |
АИР315S4 | 160 | 1480 | 94,9 | 0,89 | 6,9 | 2,1 | 2,2 | 288 | 1000 |
АИР315M4 | 200 | 1480 | 94,9 | 0,89 | 6,9 | 2,1 | 2,2 | 360 | 1200 |
АИР315S6 | 110 | 985 | 94,0 | 0,86 | 6,7 | 2,0 | 2,0 | 207 | 880 |
АИР315М(А)6 | 132 | 985 | 94,2 | 0,87 | 6,7 | 2,0 | 2,0 | 245 | 1050 |
АИР315MВ6 | 160 | 985 | 94,2 | 0,87 | 6,7 | 2,0 | 2,0 | 300 | 1200 |
АИР315S8 | 90 | 740 | 93,8 | 0,82 | 6,4 | 1,8 | 2,0 | 178 | 880 |
АИР315М(А)8 | 110 | 740 | 94,0 | 0,82 | 6,4 | 1,8 | 2,0 | 217 | 1050 |
АИР315MВ8 | 132 | 740 | 94,0 | 0,82 | 6,4 | 1,8 | 2,0 | 260 | 1200 |
АИР355S2 | 250 | 2980 | 95,5 | 0,92 | 6,5 | 1. 6 | 2,3 | 432,3 | 1700 |
АИР355M2 | 315 | 2980 | 95,6 | 0,92 | 7,1 | 1,6 | 2,2 | 544 | 1790 |
АИР355S4 | 250 | 1490 | 95,6 | 0,90 | 6,2 | 1,9 | 2,9 | 441 | 1700 |
АИР355M4 | 315 | 1480 | 95,6 | 0,90 | 6,9 | 2,1 | 2,2 | 556 | 1860 |
АИР355MА6 | 200 | 990 | 94,5 | 0,88 | 6,7 | 1,9 | 2,0 | 292 | 1550 |
АИР355S6 | 160 | 990 | 95,1 | 0,88 | 6,3 | 1,6 | 2,8 | 291 | 1550 |
АИР355МВ6 | 250 | 990 | 94,9 | 0,88 | 6,7 | 1,9 | 2,0 | 454,8 | 1934 |
АИР355L6 | 315 | 990 | 94,5 | 0,88 | 6,7 | 1,9 | 2,0 | 457 | 1700 |
АИР355S8 | 132 | 740 | 94,3 | 0,82 | 6,4 | 1,9 | 2,7 | 259,4 | 1800 |
АИР355MА8 | 160 | 740 | 93,7 | 0,82 | 6,4 | 1,8 | 2,0 | 261 | 2000 |
АИР355MВ8 | 200 | 740 | 94,2 | 0,82 | 6,4 | 1,8 | 2,0 | 315 | 2150 |
АИР355L8 | 132 | 740 | 94,5 | 0,82 | 6,4 | 1,8 | 2,0 | 387 | 2250 |
Электрические двигатели: классификация, устройство, принцип работы
Пример HTML-страницы
Электрический двигатель – специальная машина (ее еще называют электромеханическим преобразователем), с помощью которой электроэнергия преобразовывается в механическое движение.
Побочный эффект такой конвертации – выделение тепла.
При-этом современные двигатели обладают очень высоким КПД, который достигает 98%, в результате чего их использование экономически более выгодно по сравнению с двигателями внутренного сгорания. Электрические двигатели используются во всех сферах народного хозяйства, начиная от бытового применения, заканчивая военной техникой.
Содержание
- Электрические двигатели и их разновидности
- По принципу работы электродвигатели переменного тока бывают
- Преимущества и недостатки асинхронных двигателей
- Особенности работы синхронных двигателей
Электрические двигатели и их разновидности
Как известно с базового школьного курса физики, ток бывает переменным и постоянным. В бытовой электросети – переменный ток. Батарейки, аккумуляторы и другие мобильные источники питания предоставляют постоянный ток.
Электродвигатели постоянного тока характеризуются хорошими эксплуатационными и динамическими характеристиками.
Такие изделия широко используются в подъемных машинах, буровых станках, полимерном оборудовании, в некоторых агрегатах экскаваторов.
По принципу работы электродвигатели переменного тока бывают
- асинхронными;
- синхронными.
Подробное сравнение этих видов машин можно почитать тут.
Синхронные двигатели – электрические машины, где скорость вращения ротора полностью идентична частоте магнитного поля. Учитывая эту особенность, такие устройства актуальны там, где необходима стабильная высокая скорость вращения: насосы, крупные вентиляторы, генераторы, компрессоры, стиральные машины, пылесосы, практически все электроинструменты.
Особое внимание среди синхронных устройств, заслуживают шаговые двигатели. Они обладают несколькими обмотками. Такой подход позволяет с высокой точностью изменять скорость вращения таких электродвигателей.
Асинхронными двигателями называют такие машины, в которых скорость ротора отличается от частоты движения магнитного поля.
Нашли свое применение в подавляющем большинстве отраслей народного хозяйства: в приводах дымососов, транспортерах, шаровых мельницах, наждачных, сверлильных станках, в холодильном оборудовании, вентиляторах, кондиционерах, микроприводах.
Максимальная скорость вращения асинхронных установок – 3000 об/мин.
Интересное видео о двигателях смотрите ниже:
Асинхронные электродвигатели могут обладать фазным и короткозамкнутым ротором.
Короткозамкнутый ротор более распространен.
Такие двигатели обладают следующими преимуществами:
- относительно одинаковая скорость вращения при разных уровнях нагрузки;
- не боятся непродолжительных механических перегрузок;
- простая конструкция;
- несложная автоматизация и пуск;
- высокий КПД (коэффициент полезного действия).
Электродвигатели с короткозамкнутым контуром требуют большой пусковой ток.
Если невозможно реализовать выполнение этого условия, то используют устройства с фазным ротором. Они обладают такими достоинствами:
- хороший начальный вращающий момент;
- нечувствительны к кратковременным перегрузкам механической природы;
- постоянная скорость работы при наличии нагрузок;
- малый пусковой ток;
- с такими двигателями применяют автоматические пусковые устройства;
- могут в небольших пределах изменять скорость вращения.
К основным недостаткам асинхронных двигателей относят то, что изменять их скорость работы можно только посредством изменения частоты электрического тока.
Кроме того, частота вращения – относительна. Она колеблется в небольших пределах. Иногда это недопустимо.
Интересное видео об асинхронных электродвигателях смотрите ниже:
Особенности работы синхронных двигателей
Все синхронные двигатели обладают такими преимуществами:
- Они не отдают и не потребляют реактивную энергию в сеть. Это позволяет уменьшить их габариты при сохранении мощности. Типичный синхронный электродвигатель меньше асинхронного.
- В сравнении с асинхронными устройствами, менее чувствительны к скачкам напряжения.
- Хорошая сопротивляемость перегрузкам.
- Такие электрические машины способны поддерживать постоянную скорость вращения, если уровень нагрузок не превышает допустимые пределы.
В любой бочке, есть ложка с дегтем. Синхронным электродвигателям присущи такие недостатки:
- сложная конструкция;
- затрудненный пуск в ход;
- довольно сложно изменять скорость вращения (посредством изменения значения частоты тока).
Сочетание всех этих особенностей делает синхронные двигатели невыгодными при мощностях до 100 Вт. А вот на более высоких уровнях производительности, синхронные машины показывают себя во всей красе.
Виды и типы электродвигателей | Публикации
Электрический двигатель
Электродвигатель представляет собой электрическую машину, которая преобразовывает электроэнергию в энергию вращения вала с незначительными тепловыми потерями. Главный принцип работы любого электродвигателя заключается в использовании электромагнитной индукции в качестве основной движущей силы. Для этого конструкция электродвигателя включает:
- Неподвижную часть (статор или индуктор).
- Подвижную часть (ротор или якорь).
В зависимости от предназначения, применяемого рода тока и конструктивных особенностей электрические двигатели имеют большое количество разновидностей.
Двигатели постоянного тока
Электродвигатели постоянного тока объединяют широкий ассортимент устройств, обеспечивающих высокий КПД при трансформации электрической энергии в механическую. Для надежного соединения электрической цепи подвижной и неподвижной части электропривода постоянного тока используют щеточно-коллекторный узел. В зависимости от конструктивных особенностей щеточно-коллекторного узла, все электрические машины постоянного тока подразделяют на следующие группы:
- Коллекторные.
- Бесколлекторные.
В свою очередь коллекторные электродвигатели условно разделяют на следующие виды:
- Самовозбуждающиеся.
- С возбуждением от электромагнитов постоянного действия.
Устройства с независимым возбуждением характеризуются низкой мощностью, поэтому данные электроприводы используют для не ответственных операций с низкой нагрузкой. Машины с самовозбуждением подразделяют на:
- Устройства с последовательным возбуждением, где якорь подключается последовательно обмотке возбуждения.
- Электродвигатели с параллельным возбуждением, где якорь включается параллельно обмотке возбуждения.
- Электропривод смешанного возбуждения, который характеризуется наличием параллельных и последовательных соединений.
Двигатели переменного тока
Электродвигатели переменного тока представлены широкой номенклатурой устройств, которые различают по многочисленным конструктивным и эксплуатационным характеристикам. В зависимости от скорости вращения ротора выделяют электрические машины синхронного и асинхронного типа.
Синхронные двигатели характеризуются одинаковой скоростью вращения ротора и магнитного поля питающего напряжения. Подобный тип электрических двигателей используют для изготовления устройств с высокой мощностью. Кроме этого существует еще одна разновидность синхронного привода — шаговые двигатели. Они имеют строго заданное в пространстве положение ротора, которое фиксируется подачей питания на обмотку статора. При этом переход из одного положения в другое осуществляется посредством подачи напряжения на требуемую обмотку.
Асинхронный электрический двигатель имеет частоту вращения ротора отличную от частоты вращения магнитного поля питающего напряжения. В настоящее время этот тип электродвигателей получил самое широкое распространение как на производстве, так и в быту.
В зависимости от количества фаз питающего напряжения электропривод принадлежит к одной из групп:
- 1-нофазные;
- 2-хфазные;
- 3-хфазные;
- многофазные.
Категория размещения и климатическое исполнение
Все электродвигатели производят с учетом воздействия во время эксплуатации определенных факторов окружающей среды. По этой причине все электрические машины подразделяют на следующие категории размещения:
- Для помещений с высоким уровнем влажности.
- Для помещений закрытого типа с вентиляцией естественного типа без искусственного регулирования климатических параметров. При этом ограничено воздействие пыли, влаги и УФ- излучения.
- В условиях открытого пространства.
- Для помещений закрытого типа с искусственным регулированием климатических параметров. При этом ограничено воздействие пыли, влаги и УФ-излучения.
- Для помещений с изменением влажности и температуры, которые не отличаются от изменений на улице.
В зависимости от климатического исполнения в соответствии с требованиями ГОСТ 15150 — 69 все электрические двигатели подразделяют на следующие типы исполнения:
- Все возможные макроклиматические районы (В).
- Холодный (ХЛ).
- Все морские районы (ОМ).
- Сухой тропический (ТС).
- Общий (О).
- Умеренный (У).
- Умеренный морской (М).
- Влажный тропический (ТВ).
Категория размещения и климатическое исполнение указывают в условном обозначении электродвигателя на его бирке и в паспорте.
Степень защиты корпуса
Для условного обозначения степени защиты корпуса электрической машины от воздействия вредных факторов окружающей среды используют аббревиатуру IP. При этом на корпусе электропривода указывают следующую информацию:
- Высокий уровень защиты от пыли — IP65, IP66.
- Защищенные — не ниже IP21, IP22.
- С защитой от влаги — IP55, IP5.
- С защитой от брызг и капель — IP23, IP24.
- Закрытое исполнение — IP44 — IP54.
- Герметичные — IP67, IP68.
При подборе электрического двигателя для эксплуатации в условиях воздействия определенных вредных факторов, необходимо тщательно подходить к выбору степени защиты его корпуса.
Общие требования безопасности при монтаже и эксплуатации
При монтаже электрического двигателя необходимо придерживаться следующих требований:
- Перед подключением проверить соответствие частоты и напряжения питающей сети с информацией на паспорте электрического двигателя.
- Перед установкой электрической машины обязательно проводят измерение сопротивления электрической изоляции обмотки статора относительно корпуса. При неудовлетворительных значениях проводят просушивание изоляции до достижения требуемого значения.
- При сопряжении валов необходимо точно соблюдать соосность с допустимым отклонением не более 0,2 мм.
- Для заземления корпуса электродвигателя используют только специальные заземляющие устройства, предусмотренные инструкцией завода производителя.
- Строго запрещен монтаж электропривода под напряжением.
В процессе эксплуатации электрических машин следует придерживаться следующих основных правил:
- Регулярный осмотр состояния электродвигателя является залогом своевременного определения неисправностей.
- Регулярно на протяжении всего срока эксплуатации проводят проверку исправности токовой и тепловой защиты, чистку и смазку, проверку контактных соединений и надежности заземления.
- При наличии повышенного шума или стука, проводят вибродиагностику с целью определения состояния подшипников и других вращающихся деталей.
- Следует исключить длительную работу однофазного электродвигателя в режиме холостого хода, что негативно влияет на срок его службы.
- Запрещается эксплуатация электрического двигателя с неисправной защитой от перегрева, перегрузки или завышенным значением сопротивления контура заземления.
Крановые электродвигатели
Крановые электродвигатели представляют собой асинхронные устройства переменного тока или двигатели постоянного тока с параллельным или последовательным возбуждением.
В отличие от других категорий электродвигателей, крановые электроприводы имеют следующие особенности:
- Большинство крановых электрических двигателей имеет закрытое исполнение корпуса.
- Момент инерции на роторе составляет минимально возможное значение, что обеспечивает минимальные потери энергии во время переходных процессов.
- Кратковременная перегрузка по моменту для крановых двигателей постоянного тока составляет 2,0 — 5,0, а для электромоторов переменного тока 2,3 — 3,5.
- Класс нагревостойкости изоляционных материалов не менее F.
- У кранового электропривода переменного тока в номинальном режиме ПВ составляет не менее 80 минут.
- С целью получения большой перегрузочной способности по моменту добиваются высоких значений магнитного потока.
- Отношение максимально допустимой частоты вращения к номинальному значению для электродвигателей постоянного тока составляет 3,5 — 4,9, а для машин переменного тока 2,5.
Эксплуатация кранового привода характеризуется следующими условиями эксплуатации:
- Частые пуски, реверсы и торможения.
- Регулирование частоты вращения в широком диапазоне значений.
- Повышенная вибрация и тряски.
- Повторно-кратковременный режим работы.
- Воздействие высокой температуры, газа, пыли и пара.
- Значительная перегрузка во время работы.
Общепромышленные электрические двигатели
Электродвигатели общепромышленного исполнения применяют для привода механизмов, которые не предъявляют особых требований к показателям КПД, энергосбережения, скольжению и пусковым характеристикам. Они характеризуются повторно-кратковременным режимом работы и изоляцией с классом нагревостойкости класса F. Наиболее популярными в этой категории являются асинхронные электрические двигатели марки АИР с короткозамкнутым ротором. Благодаря многочисленным достоинствам, этот тип электропривода с успехом применяется на всех производственных предприятиях. От продукции других торговых марок его отличает:
- Простая конструкция с отсутствием подвижных контактов.
- Низкая стоимость в сравнении с электрическими машинами других типов.
- Высокая ремонтопригодность всех главных узлов и рабочих элементов.
- Использование напряжения сети 380 В без дополнительных регуляторов или фильтров.
- Монтаж двигателя осуществляется на лапах или фланцах, поэтому происходит в минимально короткий срок.
Электрические машины общепромышленного исполнения находят применение в сферах деятельности, где нет необходимости в высоких эксплуатационных параметрах: вентиляционные системы, насосные станции, станочное оборудование, компрессорные установки и др. Эксплуатация общепромышленных электродвигателей осуществляется в двух основных режимах: генераторный и двигательный. При этом в генераторном режиме электрические двигатели являются источником электроэнергии за счет преобразования механической энергии вращения вала. В двигательном режиме привод общепромышленного исполнения потребляет электроэнергию и превращает её в механическую энергию вращения вала.
Электрические двигатели с электромагнитным тормозом
Электрический привод с электромагнитным тормозом предназначен для эксплуатации в повторно-кратковременном или кратковременном режиме. Он разработан специально для механизмов, которые требуют форсированной остановки в строго регламентированное время. К таким механизмам относят: электрические тали, автоматизированные складские системы, обрабатывающие станки и др. Тормозной механизм, как правило, располагают со стороны противоположной валу двигателя. Он обеспечивает быстрое торможение электрического привода при отключении питания, а при повторной подаче напряжения растормаживает его.
Электрические машины со встроенным электромагнитным тормозом работают по следующему принципу:
- Электромагнитную катушку тормоза подключают последовательно к одной из фазных обмоток электродвигателя.
- Катушка получает постоянное напряжение посредством выпрямляющего устройства, которое располагают возле коробки с выводами или переменное напряжение непосредственно с обмотки электродвигателя.
- При отсутствии фазного напряжения катушка обесточивается, и якорь прочно зажимает блокировочный механизм.
- После восстановления электрического питания катушка подтягивает якорь, что позволяет валу двигателя свободно перемещаться.
В зависимости от способа монтажа электромоторы со встроенным электромагнитным тормозом изготавливают в следующих исполнениях:
- С горизонтальным валом.
- С вертикальным валом.
Благодаря своим преимуществам по времени остановки вала электродвигателя, этот тип электропривода обеспечивает надежную и безопасную эксплуатацию устройств с высокими требованиями к позиционированию или аварийной остановке.
Типы электродвигателей
Типы электродвигателей
Электрический двигатель – так называют электрическую машину (электромеханический преобразователь энергии), в которой энергия электричества преобразуется в механическую. При этом выделяется тепло.
Принцип действия
Рабочая схема электродвигателя очень проста. В основе функционирования электрической машины существует принцип электромагнитной индукции. Электрический механизм состоит из статора (неподвижного), который устанавливается в синхронных или асинхронных машинах переменного тока или индуктора (электродвигатели постоянного тока) и ротора (подвижной части, устанавливаемого в синхронных или асинхронных машинах переменного тока) или якоря (в машине тока постоянного). В качестве индуктора на маломощном двигателе постоянного тока используются магниты.
Роторы бывают:
— Короткозамкнутые
— Фазные (имеющие обмотку). Применяются в случае уменьшения пускового тока и для регуляции частоты вращения асинхронного электродвигателя.
В основном, представлены крановым электродвигателем серии МТКН (который по большей части применяется в крановых установках).
Якорем называют подвижную часть машины постоянного тока (генератора или двигателя) или же функционирующего по данному принципу универсального двигателя (который часто встречается в электрических инструментах). Универсальным двигателем называют ДПТ (двигатель постоянного тока), который имеет последовательное возбуждение (когда обмотки индуктора и якоря
включены последовательно). Различие только в расчете обмоток. На постоянном токе нет реактивного (емкостного или индуктивного) сопротивления. Именно поэтому любая болгарка, если вынуть электронный блок, будет в рабочем состоянии, особенно на постоянном токе и при меньшем сетевом напряжении.
Принцип функционирования асинхронного трехфазного электродвигателя
При включении питания в статоре возникает вращающееся круговое магнитное поле. Оно пронизывает короткозамкнутую обмотку ротора и появляется ток индукции. Согласно закону Ампера (на проводник, находящийся под током, помещенный при этом в магнитное поле, действует ЭДС сила), ротор начинает вращаться.
Частота его вращения зависит от частоты напряжения, а также от числа пар полюсов магнитов. Разность между частотой вращения ротора и частотой вращения поля магнитного статора характеризуется скольжением. Электродвигатель асинхронный называется асинхронным, потому что частота вращения поля магнитного статора не совпадает с частотой ротора.
Синхронный двигатель отличается от него конструкцией ротора. Ротор в подобном двигателе выполнен либо электромагнитом, либо постоянным магнитом. Также может иметь в себе частичку беличьей клетки (для запуска). В роторе непременно содержатся электромагниты или постоянные магниты. Частота вращения поля магнитного статора в синхронном двигателе совпадает с частотой ротора. Для запуска в данной конструкции применяют ротор с обмоткой короткозамкнутой или асинхронные вспомогательные электродвигатели.
Асинхронные двигатели широко применяются во многих отраслях техники. Это особенно характерно для обычных по конструкции и трехфазных прочных асинхронных двигателей, которые имеют коротко-замкнутые роторы. Такие двигатели дешевле и надежнее обычных электрических двигателей и не нуждаются в особом уходе. Название «асинхронный» указывает на то, что в подобном двигателе ротор вращается с вращающимся полем статора не синхронно. В отсутствие трехфазной сети асинхронный двигатель включают в сеть однофазного тока.
Устройство статора асинхронного электродвигателя очень простое. Он состоит из пакета лакированных листов стали электротехнической толщиной 0,5 мм. В пазах пакета, такого же, как в синхронной машине, уложена обмотка. Статор трехфазного асинхронного двигателя имеет три фазы обмотки. Обмотка смещена на 120°. Между собой фазы соединены треугольником или звездой.
Схема двухполюсной машины
Схема двухполюсной машины выглядит очень просто. В машине содержатся четыре паза из расчета на каждую фазу. При поступлении питания на обмотки статора от трехфазной сети получается особое вращающееся поле. Это получается потому, что токи в фазах обмотки смещены в пространстве на 120° относительно друг друга и сдвинуты по фазе на 120°. При синхронной частоте вращения nc поля электродвигателя с р парами полюсов верно при частоте токов в f: nc=f/p. Так, при частоте 50 Гц получается для р = 1, 2, 3 (двух-, четырех или шести машин полюсных) получаются синхронные частоты вращения в nc = 3000, 1500 и 1000 об/мин.
Ротор асинхронного электродвигателя состоит из листов электротехнической стали. Он может выполняться в виде ротора с контактными кольцами (фазный ротор) или короткозамкнутого ротора (с беличьей клеткой). В короткозамкнутом роторе обмотка выглядит в виде стержней из металла (бронзы, меди или алюминия). Стержни располагаются в пазах и соединяются между собой на концах особыми закорачивающими кольцами. Соединение стержней осуществляет при помощи пайки сваркой или твердым припоем. При использовании сплавов из алюминия или алюминия стержни ротора, а также закорачивающие кольца и лопасти вентилятора, располагающиеся на них, производят при помощи литья под давлением.
Прямо у ротора электрического двигателя с контактными кольцами в пазах располагается трехфазная обмотка. По внешнему виду она походит на обмотку статора, включенную звездой. Начала фаз данной обмотки соединены с тремя контактными кольцами, которые закреплены на валу. В процессе запуска двигателя можно выполнить регулировку частоты вращения. Для этого подсоединяют к фазам обмотки ротора реостаты (делается это через щетки и контактные кольца). После успешного разбега кольца контактов замыкаются накоротко. Это значит, что обмотка двигателя ротора выполняет те же самые функции, что и обмотка короткозамкнутого ротора.
Классификация электрических двигателей
По природе возникновения вращающего момента электрические двигатели делятся на магнитоэлектрические и гистерезисные. У гистерезисных двигателей вращающийся момент создается за счет гистерезиса при перемагничивании ротора. Подобные устройства считаются нетрадиционными и мало распространены в промышленности.
Самым распространенным товаром считаются магнитоэлектрические двигатели. По типу потребляемой энергии они подразделяются на две группы – двигатели тока постоянного и двигатели тока переменного. Также существуют так называемые двигатели универсальные, которые питаются обоими видами токов.
Двигатель постоянного тока
Двигателем постоянного тока называют электродвигатель, чье питание происходит за счет постоянного тока. Данный тип двигателей также принято подразделять по наличию щёточно-коллекторного узла на две группы:
— бесколлекторные
— коллекторные
Щёточно-коллекторный узел отвечает за качественное электрическое соединение цепей неподвижной и вращающейся части машины. Он является самым сложнейшим в обслуживании и ненадежным конструктивным элементом.
Коллекторные двигатели по типу возбуждения подразделяются на:
— двигатель с самовозбуждением
— двигатель с независимым возбуждением (от постоянных магнитов и электрических магнитов).
Двигатель с самовозбуждением подразделяется на:
— двигатель, имеющий параллельное возбуждение (обмотка якоря в этом случае включается строго параллельно обмотке возбуждения)
— двигатель, имеющий последовательное возбуждение (обмотка якоря в данном случае якоря включается строго последовательно обмотке возбуждения)
— двигатель, имеющий смешанное возбуждение (обмотка возбуждения в данном случае включается последовательно частично и параллельно частично обмотке якоря).
Вентильные двигатели (бесколлекторные) – это электрические двигатели, которые выполняются в виде замкнутой системы с применением датчика, определяющего положение ротора, преобразователя координат (системы управления), а также инвертора (силового полупроводникового преобразователя). Принцип функционирования подобных двигателей схож с принципом работы системы синхронных двигателей.
Двигатель переменного тока
Трехфазный асинхронный двигатель
Электродвигатели переменного тока — это электрические двигатели, питание которых осуществляется при помощи переменного тока. По принципу функционирования подобные двигатели подразделяются на асинхронные и синхронные двигатели. Принципиальное отличие заключается в том, что в синхронном двигателе первая гармоника силы магнитодвижущей статора перемещается со скоростью вращения ротора. Сам ротор перемещается со скоростью перемещения магнитного поля в статоре. У асихронного двигателя всегда присутствует разница между скоростью перемещения ротора и скоростью магнитных полей в статоре (ротор вращается медленнее поля).
Синхронный электродвигатель — это электрический двигатель тока переменного. Ротор синхронно вращается с полем магнитным питающего напряжения. Подобные устройства применяются для обеспечения больших мощностей (более сотни киловатт). Синхронные двигатели бывают с угловым дискретным перемещением ротора (так называемые шаговые двигатели). У подобных устройств положение ротора прочно фиксируется подачей питания на обмотки. Переход в иное положение осуществляется при помощи снятия напряжения питания с первых обмоток и передачи на вторые (и так далее). Помимо этого существует и еще один вид синхронного двигателя — реактивный вентильный двигатель электрический. Питание обмоток данного двигателя формируется за счет элементов полупроводниковых.
Асинхронный электродвигатель — это электрический двигатель переменного тока. Частота вращения ротора в данном двигателе существенно отличается от вращения полей магнита, которые создаются от питающего напряжения. Подобные устройства наиболее распространены.
По количеству фаз двигатель тока переменного принято подразделять на:
— Однофазные электродвигатели. Запуск подобных устройств производится вручную. Они могут иметь пусковую обмотку или фазосдвигающую цепь.
— Двухфазный (сюда входят и конденсаторные)
— Электродвигатель трехфазный
— Многофазный
Коллекторный универсальный электродвигатель
Коллекторный универсальный электродвигатель – это электрический коллекторный двигатель, который может функционировать как на переменном, так и на постоянном токе. Производится с последовательной обмоткой возбуждения строго на мощности электродвигателя около 200 Вт. Статор двигателя выполнен шихтованным из особой электрической технической стали. Обмотка возбуждения полностью включается при постоянном токе и частично включается при переменном токе. Номинальные напряжения для переменного тока — 127,220, для тока постоянного номинальные напряжения- 110.220. Двигатели такого плана используются в электроинструментах и бытовых аппаратах.
Двигатель переменного тока, питающийся от промышленной сети 50 ГЦ, не может обеспечить частоту вращения более 3000 об/мин. Именно поэтому для получения высочайших частот следует использовать коллекторный электродвигатель. Такой двигатель получается меньше и легче, в сравнении с двигателем тока переменного такой же мощности. Также применяются особые передаточные механизмы, которые позволяют изменять кинематические параметры механизмов до нужных вам (так называемые мультипликаторы). При использовании преобразователей частоты или сети частоты повышенной (в 100, 200 или 400 Гц) двигатель переменного тока оказывается меньше и легче, в сравнении с коллекторным двигателем (поскольку иногда коллекторный узел занимает ½ объема). Ресурс асинхронного двигателя переменного тока выше в сравнении с коллекторным. Он определяется состоянием изоляции обмоток и подшипников.
Синхронный двигатель, имеющий датчик положения ротора и инвертор, считается электронным аналогом обычного коллекторного постоянного тока. Коллекторный универсальный двигатель считается электродвигателем коллекторным постоянного тока, имеющим последовательно включенные обмотки статора (возбуждения). Подключение электродвигателя такого типа не вызывает сложностей. Он также оптимизирован для функционирования на переменном токе электрической бытовой сети. Подобный тип двигателя вне зависимости от полярности поданного напряжения вращается строго в одну сторону. Это происходит потому, что обмотки ротора и статора соединены последовательно и смена полюсов полей магнитных данных устройств происходит одновременно, а значит, результирующий момент направлен в одну сторону. Если необходима работа на переменном токе, применяют статор из мягкого магнитного материала, имеющий малый гистерезис (малое сопротивление перемагничиванию).
Если необходимо уменьшение потерь на вихревые токи, берут наборный статор, изготовленный из изолированных пластин. Достоинством функционирования подобного двигателя считается то, что в режиме пуска и перегрузки индуктивное сопротивление обмоток ограничивает ток и максимальный момент двигателя до 5 – 3 от номинального.
Электрический синхронный двигатель возвратно-поступательного движения
Принцип его функционирования прост. Подвижная часть выполняется в виде магнитов, которые крепятся на штоке. Переменный ток электродвигателя проходит через неподвижные обмотки. Под действием этого процесса постоянные магниты перемещают шток.
Лось Анастасия
Специально для Двигатель.инфо
47446 просмотров
Электродвигатели «БелАвтоКомплект»
Компания «БелАвтоКомплект» — производитель качественных автозапчастей и аксессуаров для автомобилей — представляет вашему вниманию линейку современных энергоэффективных и малошумных электродвигателей для вспомогательных систем автомобилей российского производства. Таких как: система обогрева салона, система стеклоочистителя, система охлаждения двигателя, система омывателя стёкол.
Все электрические двигатели нашего производства изготавливаются на крупном современном заводе по производству автоэлектрики. Завод оснащён высокоточными автоматизированными производственными линиями, имеет в своём составе тестовые лаборатории, конструкторское бюро, отдел контроля качества, состоящий из высококвалифицированных специалистов, в распоряжении которых имеется самое передовое диагностическое и измерительное оборудование. На предприятии внедрена система менеджмента качества ISO9001:2008.
Каждое сходящее с конвейера изделие подвергается строжайшему контролю на предмет соответствия высоким стандартам качества «БелАвтоКомплект». Благодаря этому нам удаётся практически исключить случаи отказа производимых нами изделий в пределах установленных технологическим регламентом сроков эксплуатации. Процент заводского брака не превышает 0,1% на партию. Подобными показателями не может похвастаться ни один из отечественных производителей.
Чтобы ответить на вопрос, как компании «БелАвтоКомплект» удаётся производить и реализовывать столь качественные электромоторы, следует сначала сказать пару слов сказать о том, какие бывают электрические двигатели, как они устроены, и какие материалы и технологии, применяемые в производстве, позволяют повысить их качество и долговечность.
Простейший электродвигатель.
Простейший электродвигатель работает только от источника постоянного тока. Электрический ток проходит по рамке (ротор), размещённой между полюсами постоянного магнита (статор). Взаимодействие магнитных полей рамки с током и магнитом заставляет рамку поворачиваться. После каждого полуоборота коллектор переключает контакты рамки, подходящие к батарее, и поэтому рамка вращается.
Этот простой, но эффективный механизм основывается на фундаментальных законах физики и электродинамики. Основной задачей, которую решает электродвигатель, является преобразование энергии электрического тока в механическую энергию вращения рамки (ротора).
Промышленный электродвигатель.
Современные промышленные электродвигатели могут работать как от постоянного, так и от переменного тока, совершая очень большую работу за счёт использования множественных обмоток (рамок) в конструкции ротора и мощных магнитов в устройстве статора. Представленный на рисунке электромотор может питаться как от переменного, так и от постоянного тока, в зависимости от имеющихся источников питания, и потому называется универсальным.
Кроме того, электродвигатели подразделяются на синхронные и асинхронные. В синхронном двигателе частота вращения ротора равна частоте вращения магнитного поля в обмотке возбуждения. Характерной особенностью синхронного двигателя является постоянная частота вращения его ротора независимо от нагрузки. Кроме того, можно точно настраивать частоту вращения двигателя управляя параметрами тока питания. Синхронные устройства потребляют только постоянный ток. Данный тип двигателей широко применяются в автомобилестроении.
Асинхронные двигатели способны работать от сети переменного тока. При этом частота вращения ротора не синхронна частоте магнитного поля обмотки возбуждения. Разница частоты в таких двигателях зависит от нагрузки. Асинхронная машина, в отличие от машины постоянного тока, не имеет явно выраженных полюсов в плане возможностей применения.
Компания «БелАвтоКомплект» производит электродвигатели синхронного типа. Такие двигатели наиболее распространены в автомобилестроении и применяются во многих системах автомобилей. Мы предлагаем для легковых и грузовых автомобилей отечественного производства: электродвигатели отопителя, электродвигатели стеклоочистителя, насосы отопителя дополнительные (циркуляционные помпы), электродвигатели омывателя стёкол. Подробнее обо всех электрических двигателях нашего производства вы можете узнать, перейдя по этой ссылке.
Электродвигатель стеклоочистителя.
Электродвигатель омывателя стёкол.
Электродвигатель отопителя.
Насос отопителя дополнительный.
При производстве электродвигателей «БелАвтоКомплект» применяются только самые передовые материалы и технологии. Магниты статора изготавливаются из неодимового сплава, корпусы из устойчивых к коррозии металлов, крыльчатки из термостойких и ударопрочных пластиков.
Каждый электродвигатель синхронизируется и балансируется на специальном высокоточном стенде. Благодаря этому, вращение ротора происходит без продольных и поперечных колебаний и абсолютно синхронно с частотой поля обмотки возбуждения. При такой работе потери энергии на нагревание обмотки минимальны, а использование шариковых и игольчатых подшипников в конструкции ротора и точной балансировки всего механизма снижают уровень шума от работающего двигателя на 10-15 % по сравнению с более дешёвыми аналогами.
Кроме того, каждое изделие «БелАвтоКомплект» упаковывается в индивидуальную упаковку из прочного гофрокартона, оформленную в фирменном стиле. Упаковка надёжно защищает изделие от повреждений при транспортировке и делает товары нашей торговой марки более привлекательными для покупателей.
Отдавая предпочтение электродвигателям «БелАвтоКомплект», вы получаете не только современный высокотехнологичный продукт, востребованный на рынке, но и надёжного, проверенного временем партнёра в лице холдинга «БелАвтоКомплект».
«БелАвтоКомплект» — Мы не придумываем ТУ. Мы соответствуем ГОСТу.
Что такое электродвигатель?
Электродвигатели представляют собой устройства, преобразующие электрическую энергию в механическую, обычно в форме вращательного движения. Проще говоря, это устройства, которые используют электроэнергию для выработки движущей силы.
Электродвигатели не только обеспечивают простое и эффективное средство создания высокой выходной мощности привода, но и их легко уменьшить, что позволяет встраивать их в другие машины и оборудование. В результате они находят широкое применение как в промышленности, так и в повседневной жизни.
Принцип работы
Помнишь, тебя в школе учили правилу левой руки Флеминга? Электродвигатели являются применением этого правила, при этом сила, создаваемая электрическим током, протекающим через катушку в присутствии магнитного поля, заставляет вал двигателя вращаться.
На приведенной ниже диаграмме правило левой руки Флеминга говорит нам, что направленная вверх сила генерируется, когда ток течет перпендикулярно магнитному полю от магнита * .
*
Магнитное поле: Область, в которой присутствует магнитная сила (направленная от северного (N) к южному (S) полюсу магнита).
Как достигается вращение в электродвигателе
В случае щеточного электродвигателя постоянного тока *1 , например, эту силу можно использовать для поддержания непрерывного вращения путем изменения направления тока на каждом полуобороте катушки (что достигается с помощью щеток и коммутатора *2 )
*1
Двигатель постоянного тока: Двигатель, работающий от постоянного тока (DC)
*2
Щетки и коллектор: При совместном использовании они меняют направление тока каждый раз, когда вал двигателя делает пол-оборота.
История электродвигателей
Британский ученый Майкл Фарадей пользуется особым влиянием среди многих ученых 19 века, сыгравших определенную роль в изобретении и разработке электродвигателей. В 1821 году Фарадей провел успешный эксперимент, в котором вращение проволоки осуществлялось с помощью магнита вместе с магнитным полем, создаваемым электрическим током. В 1831 году он изобрел закон магнитной индукции, заложив основу для значительного прогресса в области электродвигателей и генераторов.
Со временем было изобретено множество других типов электродвигателей, а также конструкции, которые можно считать архетипическими двигателями постоянного тока.
Впоследствии, в 1872 году, практический электродвигатель был не столько изобретен, сколько открыт, когда один из генераторов, выставленных на Всемирной выставке в Вене, начал вращаться сам по себе после того, как был случайно подключен к другому генератору. Это привело людей к пониманию того, что то, как работают генераторы, можно использовать и в двигателях. Последовавший за этим быстрый рост практического использования генераторов был таким, что они стали основой многих отраслей промышленности в 20 веке.
Двигатели и генераторы
В то время как электродвигатели преобразуют электрическую энергию во вращение и другие виды механической энергии, генераторы выполняют обратную функцию преобразования механической энергии в электрическую.
Несмотря на эти противоположные функции, двигатели и генераторы очень похожи по конструкции и принципу работы. Фактически, простой эксперимент, в котором два модельных двигателя соединяются вместе, — это все, что нужно, чтобы продемонстрировать, что электрический двигатель может также работать как генератор.
Естественно, учитывая различные способы их использования, два типа машин всегда разрабатывались отдельно.
Типы электродвигателей
Электродвигатели бывают самых разных форм в зависимости от типа используемого тока, конструкции их катушек (обмоток) и того, как они генерируют магнитное поле. Соответственно, их можно классифицировать по различным признакам.
Ниже описаны три типа электродвигателей, обычно используемых как в быту, так и в промышленности.
Двигатели постоянного тока
Это двигатели, приводимые в действие источником постоянного тока. Они подразделяются на щеточные и бесщеточные (BLDC) двигатели в зависимости от того, используют ли они щетки *1 .
В то время как коллекторным двигателям постоянного тока для работы требуется только подключение к источнику питания постоянного тока, бесщеточным двигателям постоянного тока требуется датчик для определения ориентации магнитных полюсов ротора *2 и схема привода для подачи соответствующего тока.
*1
Щетка: Деталь, используемая вместе с коллектором.
*2
Ротор: часть двигателя, которая вращается. Вал двигателя является частью ротора.
Двигатели переменного тока
Это двигатели, приводимые в действие источником переменного тока. Они сгруппированы в зависимости от того, является ли источник питания однофазным *1 или трехфазным *2 .
Однофазные двигатели далее сгруппированы в конденсаторные двигатели, в которых используется конденсатор *3 для создания крутящего момента, и двигатели с расщепленными полюсами, которые имеют дополнительную катушку (обмотку), называемую экранирующей катушкой *4 .
*1
Однофазный: Обычный источник питания переменного тока, обычно доступный в домах.
*2
Трехфазный: тип источника питания переменного тока, используемый в основном в промышленности.
*3
Конденсатор: электронный компонент, хранящий электрическую энергию.
*4
Затеняющая катушка: катушка с замкнутой цепью, намотанная вокруг части сердечника статора.
Шаговые двигатели
Это двигатели, которые вращаются на фиксированный шаг (угол) каждый раз, когда вводится импульс *1 .
Шаговые двигатели можно сгруппировать по структуре их ротора. Двигатели с постоянными магнитами (PM) *2 имеют магнит в роторе *3 , двигатели с переменным сопротивлением (VR) *4 имеют железный сердечник, а гибридные двигатели имеют и то, и другое.
*1
Импульс: Короткий всплеск электричества, производимый включением и выключением источника питания.
*2
Ротор: часть двигателя, которая вращается. Вал двигателя является частью ротора.
*3
Двигатель с постоянными магнитами: Двигатель с постоянным магнитом
.
*4
Двигатель
VR: двигатель с переменным магнитным сопротивлением, в котором сердечники расположены подобно зубьям шестерни, при этом такое расположение определяет угол шага.
Обзор типов электродвигателей
В таблице ниже перечислены основные характеристики трех различных типов двигателей.
В дополнение к перечисленным выше существует множество других типов электродвигателей.
Тип | Характеристики |
---|---|
Линейный двигатель | Двигатель, скользящий в линейном направлении |
Ультразвуковой двигатель | Двигатель, приводимый в движение ультразвуковыми колебаниями |
Двигатель без сердечника | Коллекторный двигатель постоянного тока с ротором без железного сердечника или бесщеточный двигатель со статором без железного сердечника |
Универсальный двигатель | Двигатель с фазным ротором и фазным статором, работающий как на переменном, так и на постоянном токе |
Гистерезис двигателя | Двигатель переменного тока, в роторе которого используется материал, обладающий гистерезисом и вращающийся за счет гистерезисного крутящего момента |
Двигатель SR | Шаговый двигатель VR, который также имеет функцию определения положения ротора, что позволяет избежать потери синхронизации |
Применение двигателей
Хотя электродвигатели используются по-разному, ниже перечислены общие области применения бесщеточных двигателей постоянного тока и шаговых двигателей, поставляемых ASPINA.
Области применения бесщеточных двигателей постоянного тока
Благодаря небольшим размерам, высокой мощности, низкому уровню шума и вибрации, а также длительному сроку службы бесщеточные двигатели постоянного тока находят широкое применение в таких приложениях, как системы вентиляции (очистители воздуха и другие виды кондиционер), бытовая техника, холодильники, водонагреватели, торговые автоматы, копировальные аппараты, принтеры, проекторы, оргтехника, контрольно-измерительные приборы, транспортные средства и медицинские приборы.
- Кондиционеры
- Финансовые терминалы (банкоматы), разменные автоматы, автоматы по обмену валюты, автоматы по продаже билетов
- Бытовая техника
- Чистые помещения
- Водонагреватели и горелки
- Оптические изделия
- Торговые автоматы
- Принтеры
- Морозильные и холодильные витрины
- Копировальные аппараты
- Медицинское оборудование
- Офисное оборудование
- Системы лабораторного анализа
Области применения шаговых двигателей
Превосходная точность остановки, высокий крутящий момент на средних и низких скоростях и превосходная чувствительность шаговых двигателей означают, что они могут использоваться в самых разных приводных устройствах, требующих точного управления.
- Производственное оборудование
- Приводы оптических дисков (приводы Blu-ray, DVD и т. д.)
- Медицинское оборудование
- Лазерные принтеры
- Лабораторные аналитические приборы
- Цифровые камеры
- Банкоматы
- Жалюзи кондиционера
- Торговые автоматы
- Развлекательные автоматы
- Автоматы по продаже билетов
- Копировальные аппараты
- Роботы
Решение проблем с электродвигателями
ASPINA поставляет не только автономные шаговые двигатели, но и системные продукты, включающие системы привода и управления, а также механические конструкции. Они подкреплены всесторонней поддержкой, которая простирается от прототипирования до коммерческого производства и послепродажного обслуживания.
ASPINA может предложить решения, адаптированные к функциям и характеристикам, требуемым в различных отраслях промышленности, областях применения и потребительских продуктах, а также для ваших конкретных производственных схем.
ASPINA поддерживает не только клиентов, которые уже знают свои требования или спецификации, но и тех, кто сталкивается с проблемами на ранних стадиях разработки.
Вы боретесь со следующими проблемами?
Выбор двигателя
- У вас еще нет подробных спецификаций или проектных чертежей, но вам нужен совет по двигателям?
- У вас нет штатного специалиста по двигателям, и вы не можете определить, какой тип двигателя лучше всего подойдет для вашего нового продукта?
Разработка двигателей и связанных с ними компонентов
- Хотите сосредоточить свои ресурсы на основных технологиях и заказать приводные системы и разработку двигателей на стороне?
- Хотите сэкономить время и силы на перепроектирование существующих механических компонентов при замене двигателя?
Уникальное требование
- Нужен специальный двигатель для вашего продукта, но ваш обычный поставщик отказался?
- Не можете найти двигатель, который дает вам требуемый контроль, и почти теряете надежду?
Ищете ответы на эти вопросы? Свяжитесь с ASPINA, мы здесь, чтобы помочь.
Ссылки на глоссарий и страницы часто задаваемых вопросов
электродвигатель | Определение, типы и факты
трехфазный асинхронный двигатель
Смотреть все СМИ
- Ключевые сотрудники:
- Никола Тесла
Томас Давенпорт
Ипполит Фонтейн
Майкл Фарадей
- Связанные темы:
- синхронный двигатель
линейный двигатель
двигатель переменного тока
статор
арматура
См. всю связанную информацию →
электродвигатель , любой из классов устройств, преобразующих электрическую энергию в механическую, обычно с использованием электромагнитных явлений.
Большинство электродвигателей развивают свой механический крутящий момент за счет взаимодействия проводников, несущих ток, в направлении, перпендикулярном магнитному полю. Различные типы электродвигателей различаются способами расположения проводников и поля, а также управлением, которое может осуществляться над механическим выходным крутящим моментом, скоростью и положением. Большинство основных видов описаны ниже.
Простейший тип асинхронного двигателя показан в поперечном сечении на рисунке. Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть соединены либо по схеме «звезда», обычно без внешнего соединения с нейтральной точкой, либо по схеме «треугольник». Ротор состоит из цилиндрического железного сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычной форме эти проводники ротора соединены друг с другом на каждом конце ротора проводящим концевым кольцом.
Основу работы асинхронного двигателя можно разработать, если сначала предположить, что обмотки статора подключены к трехфазному источнику электропитания и что в обмотках статора протекает набор из трех синусоидальных токов формы, показанной на рисунке. На этом рисунке показано влияние этих токов на создание магнитного поля в воздушном зазоре машины в течение шести мгновений цикла. Для простоты показана только центральная петля проводника для каждой фазной обмотки. В данный момент t 1 ток в фазе a максимальный положительный, а в фазах b и c половина отрицательного значения. Результатом является магнитное поле с примерно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу. В момент времени t 2 на рисунке (т. е. на одну шестую цикла позже) ток в фазе c максимален, а в обеих фазах b и фазы a имеют положительное значение половины значения. Результат, как показано для t 2 на рисунке, снова представляет собой синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки. Изучение распределения тока для t 3 , t 4 , t 5 и t 5 и t 6 показывает, что магнитное поле продолжает вращаться во времени. Поле совершает один оборот за один цикл токов статора. Таким образом, совместное действие трех равных синусоидальных токов, равномерно смещенных во времени и протекающих по трем равномерно смещенным по угловому положению статорным обмоткам, должно создавать вращающееся магнитное поле с постоянной величиной и механической угловой скоростью, зависящей от частоты электроснабжение.
Викторина «Британника»
Энергия и ископаемое топливо
От ископаемого топлива и солнечной энергии до электрических чудес Томаса Эдисона и Николы Теслы — мир живет за счет энергии. Используйте свои природные ресурсы и проверьте свои знания об энергии в этой викторине.
Вращательное движение магнитного поля по отношению к проводникам ротора вызывает индуцирование в каждом из них напряжения, пропорционального величине и скорости поля относительно проводников. Поскольку проводники ротора замкнуты накоротко друг с другом на каждом конце, эффект будет заключаться в том, что в этих проводниках будут протекать токи. В простейшем режиме работы эти токи будут примерно равны наведенному напряжению, деленному на сопротивление проводника. Картина токов ротора на момент t 1 рисунка показан на этом рисунке. Видно, что токи примерно синусоидально распределены по периферии ротора и расположены так, чтобы создавать крутящий момент против часовой стрелки на роторе (т. е. крутящий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается. Таким образом, индуцированное напряжение уменьшается, что приводит к пропорциональному уменьшению тока проводника ротора и крутящего момента. Скорость ротора достигает устойчивого значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, требуемому при этой скорости нагрузкой, без избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.
Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, как раз достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле при наличии токов ротора на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае возникло бы. токами ротора на рисунке. Тогда общий ток статора в каждой фазной обмотке представляет собой сумму синусоидальной составляющей, создающей магнитное поле, и другой синусоиды, опережающей первую на четверть цикла, или 90°, чтобы обеспечить требуемую электрическую мощность. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть периода или 90°. При номинальной нагрузке эта составляющая намагничивания обычно находится в диапазоне от 0,4 до 0,6 величины составляющей мощности.
Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас
Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазной сети постоянного напряжения и постоянной частоты. Типичное линейное напряжение питания находится в диапазоне от 230 вольт между фазами для двигателей относительно малой мощности (например, от 0,5 до 50 киловатт) до около 15 киловольт между фазами для мощных двигателей мощностью до 10 мегаватт.
За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласовано со скоростью изменения во времени магнитного потока в статоре машины. Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля поддерживается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.
В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле совершает один оборот за каждый цикл частоты питания. При частоте питания 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную, чтобы индуцировать требуемое напряжение в проводниках ротора для создания тока ротора, необходимого для крутящего момента нагрузки. При полной нагрузке скорость обычно на 0,5–5 % ниже рабочей скорости (часто называемой синхронной скоростью), при этом более высокий процент применяется к двигателям меньшего размера. Эту разницу в скорости часто называют скольжением.
Другие синхронные скорости можно получить с источником постоянной частоты, создав машину с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f — частота в герцах (циклов в секунду), а p — число полюсов (которое должно быть четное число). Данную железную раму можно намотать для любого из нескольких возможных чисел пар полюсов, используя катушки, которые охватывают угол приблизительно (360/ стр )°. Крутящий момент, доступный от корпуса машины, останется неизменным, так как он пропорционален произведению магнитного поля и допустимого тока катушки. Таким образом, номинальная мощность рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна количеству пар полюсов. Наиболее распространенные синхронные скорости для 60-герцовых двигателей составляют 1800 и 1200 оборотов в минуту.
Что такое электродвигатель?
Электродвигатель представляет собой устройство, которое превращает поток электрического тока в механическое вращение шпинделя или ротора. Во многих приложениях вращение превращается в линейное движение.
Как работает электродвигатель?
Существует множество вариантов и вариантов электродвигателей; например, двигатели постоянного тока – щеточные или бесщеточные и двигатели переменного тока – асинхронные (или асинхронные) и синхронные. Двигатели могут работать при различных напряжениях в зависимости от области применения и доступного источника питания.
Работа двигателя зависит от двух свойств электрического тока. Во-первых, электрический ток, протекающий по проводу или катушке, создает магнитное поле.
Во-вторых, изменение тока в проводнике, например, от сети переменного тока, вызывает появление напряжения в проводнике (самоиндукция) или во вторичном проводнике (взаимная индуктивность). Ток, протекающий в цепи вторичного проводника, также будет создавать магнитное поле, как указано выше.
У магнита одинаковые полюса отталкиваются, а противоположные притягиваются. Во всех двигателях конструкция использует это свойство для обеспечения непрерывного вращения ротора.
На приведенной ниже диаграмме показана кривая трехфазного переменного тока; каждая фаза разделена фазовым углом 120 0 , как показано на векторной диаграмме в середине.
При определенном фазовом угле будет результирующее направление поля, которое можно вычислить путем сложения векторов; постоянный магнит(ы) в роторе будет выглядеть так, чтобы выровняться с направлением поля, и по мере того, как форма сигнала переменного тока «прогрессирует» во времени, ротор будет вращаться, как показано на рисунке.
для 30 °:
для 90 °:
для 180 °:
и SO One Complete Cycle (360 0 ). эффективно вернется в исходное положение и повторит процесс снова.
Как выбрать электродвигатель?
Не во всех случаях можно использовать трехфазный синхронный двигатель; хотя размер эффективен для его мощности, приведенный выше двигатель был бы слишком большим, например, для привода DVD-плеера. Кроме того, трехфазное питание не было бы идеальным для бытовых (или большинства коммерческих) ситуаций; Таким образом, применение является важным фактором при определении размера и напряжения питания.
Мощность (через крутящий момент), требуемая от двигателя, является важным фактором; каковы динамические аспекты применения – нагрузка, ускорение/торможение и расстояния, которые необходимо переместить в радиальном или поперечном направлении?
Также важна стабильность скорости вращения; двигатель должен работать с постоянной скоростью, даже при низких оборотах?
Наконец, следует учитывать условия окружающей среды – какова рабочая температура и могут ли возникнуть проблемы с водой или пылью? Будет ли двигатель работать во взрывоопасной среде и будет ли требоваться класс ATEX?
Типы электродвигателей
Как указано выше, существует множество вариантов двигателей; с питанием от постоянного или переменного тока и различных напряжений, в зависимости от применения.
Важным фактором при выборе двигателей является разница между серводвигателями и шаговыми двигателями. Серводвигатель имеет механизм обратной связи — сигнал обратной связи сравнивается с заданным значением до тех пор, пока не будет нулевой разницы, когда двигатель достигнет желаемого положения.
Шаговый двигатель также обеспечивает управление, но его можно рассматривать как цифровую версию двигателя со специальной конструкцией. Несколько независимых катушек статора (статор является неподвижной частью двигателя) и специально разработанный ротор позволяют двигателю перемещаться в заданное положение или под углом в соответствии с командой.
Шаговые двигатели идеально подходят для маломощных и недорогих приложений, таких как дисковод компакт-дисков. И наоборот, серводвигатели лучше подходят для приложений с более высокой мощностью, высоким ускорением и высокой точностью.
Типичные области применения электродвигателей
Электродвигатели находят широкое применение в быту, например, в стиральных машинах для компакт-дисков, DVD-дисков и т. д., и в коммерческих целях, например, в медицинских учреждениях, офисах и промышленности. В сочетании с линейным исполнительным механизмом типичными приложениями являются, среди прочего, автомобилестроение, погрузочно-разгрузочные работы, робототехника, производство продуктов питания и напитков, а также упаковка.
Нужно ли мне что-то еще, чтобы электродвигатели работали?
Важное значение имеет подходящее электропитание и соответствующие кабели для оборудования. В любом случае двигатель должен быть соединен с его приводными компонентами напрямую, через шестерни или ремни, и для этого может потребоваться демпфирование вибрации. Датчики температуры являются разумным дополнением, и в случае возможного перегрева потребуется вентилятор с подходящей вентиляцией.
Кабели необходимы для подачи питания и сигналов управления между двигателем и приводом (см. статью «Что такое электропривод»).
Хотите узнать больше?
Прочтите наши статьи об электрических приводах, двигателях и крутящем моменте, чтобы лучше понять их, или воспользуйтесь нашим конфигуратором электрических приводов, чтобы спроектировать и заказать цилиндр по индивидуальному заказу.
Что такое электродвигатель? Определение и типы
Определение : Электродвигатель – это электромеханическая машина, преобразующая электрическую энергию в механическую. Другими словами, устройства, создающие вращательную силу, называются двигателями. Принцип работы электродвигателя в основном зависит от взаимодействия магнитного и электрического поля. Электродвигатель в основном подразделяется на два типа. Это двигатель переменного тока и двигатель постоянного тока. Двигатель переменного тока потребляет переменный ток в качестве входа, тогда как двигатель постоянного тока потребляет постоянный ток.
Типы электродвигателей
Классификация электродвигателей показана на рисунке ниже.
Двигатель переменного тока
Двигатель переменного тока преобразует переменный ток в механическую энергию. Он подразделяется на три типа; это асинхронный двигатель, синхронный двигатель, линейный двигатель. Подробное описание двигателя приведено ниже.
1. Асинхронный двигатель
Машина, которая никогда не работает с синхронной скоростью, называется асинхронным или асинхронным двигателем. Этот двигатель использует явление электромагнитной индукции для преобразования электроэнергии в механическую энергию. По конструкции ротора различают два типа асинхронных двигателей. А именно асинхронный двигатель с короткозамкнутым ротором и асинхронный двигатель с фазной обмоткой.
- Ротор с короткозамкнутым ротором – Двигатель, который состоит из ротора с короткозамкнутым ротором, известен как асинхронный двигатель с короткозамкнутым ротором. Ротор с короткозамкнутым ротором уменьшает жужжание и магнитную блокировку ротора.
- Ротор с фазной обмоткой — этот ротор также известен как ротор с контактными кольцами, а двигатель, использующий этот тип ротора, известен как ротор с фазной обмоткой.
По фазам асинхронные двигатели делятся на два типа. Это однофазный асинхронный двигатель и трехфазный асинхронный двигатель.
- Однофазный асинхронный двигатель . Машина, преобразующая однофазную электрическую энергию переменного тока в механическую энергию с помощью явления электромагнитной индукции, известна как однофазный асинхронный двигатель.
- T Трехфазный асинхронный двигатель – Двигатель, который преобразует трехфазную электрическую энергию переменного тока в механическую энергию, такой тип двигателя известен как трехфазный асинхронный двигатель.
2. Линейный двигатель
Двигатель, который создает линейную силу вместо силы вращения, известен как линейный двигатель. Этот двигатель имеет развернутые ротор и статор. Такой тип двигателя используется на раздвижных дверях и в приводах.
3. Синхронный двигатель
Машина, преобразующая переменный ток в механическую энергию с заданной частотой, называется синхронным двигателем. В синхронном двигателе скорость двигателя синхронизирована с частотой питающего тока.
Синхронная скорость измеряется относительно вращения магнитного поля и зависит от частоты и полюсов двигателя. Синхронный двигатель подразделяется на два типа: реактивный и гистерезисный.
- Реактивный двигатель . Двигатель, процесс запуска которого подобен асинхронному двигателю и который работает как синхронный двигатель, известен как реактивный двигатель.
- Гистерезисный двигатель – Гистерезисный двигатель представляет собой тип синхронного двигателя, который имеет равномерный воздушный зазор и не имеет системы возбуждения постоянного тока. Крутящий момент в двигателе создается за счет гистерезиса и вихревых токов двигателя.
Двигатель постоянного тока
Машина, преобразующая электрическую энергию постоянного тока в механическую, называется двигателем постоянного тока. Его работа основана на основном принципе: когда проводник с током помещается в магнитное поле, на него действует сила и возникает крутящий момент. Двигатель постоянного тока подразделяется на два типа: двигатель с самовозбуждением и двигатель с независимым возбуждением.
1. Двигатель с независимым возбуждением
Двигатель, в котором обмотка постоянного тока возбуждается от отдельного источника постоянного тока, называется двигателем постоянного тока с независимым возбуждением. С помощью отдельного источника обмотка якоря двигателя находится под напряжением и создает поток.
2. Двигатель с самовозбуждением
По подключению обмотки возбуждения двигатели постоянного тока с самовозбуждением подразделяются на три типа. Это серийные, шунтовые и комбинированные двигатели постоянного тока.
- Шунтирующий двигатель – Двигатель, в котором обмотка возбуждения расположена параллельно якорю, такой тип двигателя называется шунтирующим двигателем.
- Двигатель серии — В этом двигателе обмотка возбуждения соединена последовательно с якорем двигателя.
- Двигатель со смешанной обмоткой . Двигатель постоянного тока с параллельным и последовательным соединением обмотки возбуждения называется ротором со сложной обмоткой. Двигатель с составной обмоткой далее подразделяется на двигатель с коротким шунтом и двигатель с длинным шунтом.
- Двигатель с коротким шунтом — Если обмотка шунтирующего возбуждения параллельна только якорю двигателя, а не последовательному полю, то это известно как короткое шунтирующее соединение двигателя.
- Длинный шунтирующий двигатель — Если шунтирующая обмотка возбуждения параллельна как якорю, так и последовательной обмотке возбуждения, то такой двигатель называется длинным шунтирующим двигателем.
Помимо упомянутых выше двигателей, существуют различные другие типы специальных машин, которые имеют дополнительные функции, такие как шаговый двигатель, серводвигатель переменного и постоянного тока и т. д.
Электродвигатели: Руководство | Типы двигателей и соображения по выбору
При выборе двигателя необходимо учитывать множество факторов. Как крупнейший независимый дистрибьютор двигателей в штате Джорджия, компания Gainesville Industrial Electric (GIE) обладает знаниями и опытом, чтобы помочь вашей компании выбрать оптимальный промышленный электродвигатель для вашего уникального применения. Чтобы облегчить процесс принятия решений, мы составили следующее руководство, в котором описывается, как работают двигатели, доступные типы, типичные промышленные применения и соображения по выбору.
Электродвигатели — все, что вам нужно знать
Электродвигатели — это электромеханические устройства, которые преобразуют электрическую энергию в механическую для питания оборудования. Эти устройства, работающие от накопленной электрической энергии или прямого электрического соединения, создают вращающиеся магнитные поля для создания вращающей силы. Затем сила используется для привода вала, который, в свою очередь, приводит в движение оборудование.
Различные типы электродвигателей
Хотя электродвигатели доступны в широком диапазоне конструкций с различными эксплуатационными характеристиками и функциями безопасности, их можно разделить на две большие категории: переменного тока (AC) и постоянного тока (DC).
В то время как источник питания является наиболее существенным различием между двумя типами двигателей, каждый из них также предлагает различные функциональные возможности и идеальное применение. Двигатели переменного тока могут приводить в действие сложное и более хрупкое оборудование, тогда как двигатели постоянного тока обычно приводят в действие более тяжелое оборудование, которое требует более простого обслуживания и управления эксплуатацией. Двигатели переменного тока также могут обеспечивать более высокий крутящий момент, поэтому многие профессионалы отрасли считают их более мощными, чем двигатели постоянного тока.
Промышленное применение электродвигателей
Электродвигатели находят применение в различном промышленном оборудовании. Общие промышленные применения включают:
- Компрессоры
- Вентиляторы и воздуходувки
- Тяжелое оборудование
- Системы вентиляции и кондиционирования
- Дробилки
- Насосы
- Токарные станки
Правильный выбор электродвигателя для ваших нужд
Правильный тип электродвигателя зависит от используемого оборудования. Например, двигатель должен быть выбран в соответствии с уровнями пусковой мощности подключенной машины и требованиями к рабочей выходной мощности. Неправильно подобранный двигатель может привести к значительному повреждению машины или к остановке и выходу из строя. Доступны многофазные двигатели и двигатели с различными уровнями напряжения, поэтому специалисты по двигателям могут легко подобрать промышленное оборудование с соответствующим двигателем.
Типы электродвигателей
В Gainesville Industrial Electric мы предлагаем широкий выбор электродвигателей от Marathon, Teco-Westinghouse, Leeson, Lincoln, Century, GE, Baldor и Worldwide Electric. Каждый двигатель имеет уникальные функции, атрибуты и рекомендуемые области применения. Наш ассортимент продукции варьируется от дробных однофазных и трехфазных двигателей до больших двигателей среднего и высокого напряжения.
Однофазные двигатели общего назначения
Наш выбор однофазных двигателей общего назначения включает:
- Водонепроницаемые двигатели
- Полностью закрытые двигатели
- Опасные условия, раздел 1, взрывозащищенные двигатели
Трехфазные двигатели общего назначения
Трехфазные двигатели имеют напряжение 208, 230, 460 или 575 В. Мы предлагаем следующие трехфазные электродвигатели общего назначения :
2
- Водонепроницаемые двигатели
- Полностью закрытые двигатели
- Двигатели для тяжелых условий эксплуатации
Трехфазные двигатели для опасных условий эксплуатации
Трехфазные двигатели для опасных условий эксплуатации спроектированы и изготовлены для работы в более тяжелых условиях, чем двигатели общего назначения. В то время как все эти двигатели подходят для зон категории 1, отдельные модели подходят для зон класса I и/или класса II с опасными материалами групп C, D, E, F и/или G.
Двигатели, предназначенные для мытья, окрашенные и из нержавеющей стали
Двигатели, предназначенные для мытья, окрашенные и из нержавеющей стали, предназначены для тяжелых и сложных условий, таких как пищевая промышленность, химическая промышленность и автомойки. Они доступны в однофазных и трехфазных моделях мощностью до 20 л. с. Доступны модели с защитой от непогоды, с воздушным охлаждением и полностью закрытые модели. Дополнительные функции включают комплекты для переоборудования роликовых подшипников, комплекты WPII и энергосберегающие конструкции.
Электродвигатели насосов
Электродвигатели насосов имеют достаточную мощность для привода насоса без перегрузки. Они имеют специальные валы для использования с механическими уплотнениями (рамка JM) или набивкой (рамка JP). Области применения этих двигателей включают использование в центробежных или моноблочных насосах, струйных насосах и насосах для бассейнов.
Двигатели с инверторным и векторным режимом работы
Когда преобразователи частоты (VFD) управляют двигателями, они производят большие скачки напряжения. Двигатели с инверторным и векторным режимами работы могут выдерживать эти всплески и работать без перегрева.
Двигатели постоянного тока с постоянными магнитами
Двигатели постоянного тока используются для немедленного запуска и приложений, где быстрые изменения более важны, чем постепенные или плавные изменения. Двигатели постоянного тока с постоянными магнитами облегчают эти более простые операции запуска.
Двигатели воздушных компрессоров
Двигатели воздушных компрессоров генерируют мощность и высокий крутящий момент, необходимые для привода переносных и стационарных воздушных компрессоров, используемых в автомастерских и на производственных предприятиях.
Двигатели с тормозом
Двигатели с тормозом обычно представляют собой однодисковые двигатели переменного или постоянного тока, которые могут быстро останавливать приводное движение. Они спроектированы так, чтобы делать это безопасно, не вызывая сотрясений и не сокращая срок службы оборудования.
Двигатели градирен
Эти двигатели обеспечивают питание градирен. Они предназначены для работы в жарких и влажных суровых условиях, типичных для градирен. Доступны корпуса TEAO и TEFC, а также одно- и двухскоростные двигатели.
Сельскохозяйственные двигатели
Эти двигатели соответствуют требованиям по высокому крутящему моменту для сельскохозяйственного оборудования, такого как приводы шнеков и машины для перемешивания зерна.
Двигатели HVAC
Эти двигатели приводят в действие ряд оборудования HVAC, например:
- Воздуходувки
- Вентиляторы
- Масляные горелки
- Насосы
- Вентиляторы
. Двигатели мгновенного реверсирования
Эти двигатели подходят для приложений, требующих мгновенного реверсирования движения, например, для открывания, закрывания и подъема шлагбаумов.
. Двигатели для дробилок
Эти двигатели для тяжелых условий эксплуатации имеют высокий пусковой и опрокидывающий крутящий момент. Измельчители и дробилки обычно выигрывают от этих специальных двигателей благодаря их прочной конструкции и высокопрочным компонентам.
Решения для промышленных электродвигателей от GIE
Правильный выбор двигателя для промышленного применения обеспечивает лучшую производительность в течение всего срока службы используемого оборудования. Многие специальные двигатели оснащены функциями безопасности или уникальными вариантами мощности для повышения производительности.
В Gainesville Industrial Electric мы гордимся тем, что поставляем высококачественные промышленные электродвигатели от ведущих производителей, таких как Marathon, Teco-Westinghouse, Leeson, Lincoln, Century, GE, Baldor и Worldwide Electric. Кроме того, у нас есть мастерская по ремонту двигателей и насосов с полным спектром услуг, позволяющая легко обслуживать двигатели любой марки.
Чтобы узнать больше о наших продуктах и услугах или получить помощь в выборе, закупке или обслуживании электродвигателя, свяжитесь с нами или запросите предложение сегодня.
Как работают двигатели и как правильно выбрать двигатель для любого проекта
Двигатели можно найти практически везде. Это руководство поможет вам узнать об электродвигателях, доступных типах и о том, как правильно выбрать двигатель. Основные вопросы, на которые необходимо ответить при принятии решения о том, какой двигатель наиболее подходит для применения, — это какой тип выбрать и какие технические характеристики имеют значение.
Как работают двигатели?
Электродвигатели работают путем преобразования электрической энергии в механическую для создания движения. Сила создается внутри двигателя за счет взаимодействия между магнитным полем и обмоткой переменного (AC) или постоянного (DC) тока. С увеличением силы тока увеличивается и сила магнитного поля. Помните о законе Ома (V = I*R); напряжение должно увеличиваться, чтобы поддерживать тот же ток, когда сопротивление увеличивается.
Электродвигатели имеют множество применений. Традиционное промышленное использование включает воздуходувки, станки и электроинструменты, вентиляторы и насосы. Любители обычно используют двигатели в небольших приложениях, требующих движения, таких как робототехника или модули с колесами.
Типы двигателей:
Существует много типов двигателей постоянного тока , но наиболее распространены щеточные или бесщеточные двигатели. Существуют также вибрационные двигатели, шаговые двигатели и серводвигатели.
Щеточные двигатели постоянного тока являются одними из самых простых и используются во многих бытовых приборах, игрушках и автомобилях. Они используют контактные щетки, которые соединяются с коммутатором для изменения направления тока. Они недороги в производстве, просты в управлении и обладают отличным крутящим моментом на низких скоростях (измеряется в оборотах в минуту или об/мин). Несколько недостатков заключаются в том, что они требуют постоянного обслуживания для замены изношенных щеток, имеют ограниченную скорость из-за нагрева щеток и могут генерировать электромагнитный шум из-за дугового разряда щеток.
Щеточный двигатель постоянного тока
Бесщеточные двигатели постоянного тока используют постоянные магниты в своем роторном узле. Они популярны на рынке хобби для самолетов и наземных транспортных средств. Они более эффективны, требуют меньше обслуживания, производят меньше шума и имеют более высокую удельную мощность, чем коллекторные двигатели постоянного тока. Они также могут производиться серийно и напоминают двигатель переменного тока с постоянным числом оборотов в минуту, за исключением того, что они питаются от постоянного тока. Однако есть несколько недостатков, в том числе то, что ими трудно управлять без специального регулятора, и они требуют низких пусковых нагрузок и специальных редукторов в приводных приложениях, что приводит к более высоким капитальным затратам, сложности и экологическим ограничениям.
Бесщеточный двигатель постоянного тока
Вибрационные двигатели используются для приложений, требующих вибрации, таких как мобильные телефоны или игровые контроллеры. Они генерируются электродвигателем и имеют неуравновешенную массу на приводном валу, которая вызывает вибрацию. Их также можно использовать в неэлектронных зуммерах, которые вибрируют для подачи звука или для сигналов тревоги или дверных звонков.
Вибрационный двигатель
Когда требуется точное позиционирование, 9Шаговые двигатели 0362 — ваш друг. Они используются в принтерах, станках и системах управления технологическими процессами и рассчитаны на высокий удерживающий момент, что дает пользователю возможность переходить от одного шага к другому. У них есть система контроллера, которая определяет положение с помощью сигнальных импульсов, отправляемых драйверу, который интерпретирует их и отправляет пропорциональное напряжение на двигатель. Они относительно просты в изготовлении и управлении, но они постоянно потребляют максимальный ток. Небольшое расстояние между шагами ограничивает максимальную скорость, и при высоких нагрузках шаги можно пропускать.
Шаговый двигатель
Серводвигатели — еще один популярный двигатель на рынке хобби, который используется для управления положением без точности. Их популярные приложения включают приложения дистанционного управления, такие как игрушечные радиоуправляемые автомобили и робототехника. Они состоят из двигателя, потенциометра и схемы управления и в основном управляются с помощью широтно-импульсной модуляции (ШИМ) посредством отправки электрических импульсов на провод управления. Сервоприводы могут быть как переменного, так и постоянного тока. Сервоприводы переменного тока могут выдерживать более высокие скачки тока и используются для промышленного оборудования, тогда как сервоприводы постоянного тока предназначены для небольших любительских приложений. Чтобы узнать больше о сервоприводах, ознакомьтесь с нашими Как работают серводвигатели статья.
Существует три основных типа двигателей переменного тока: асинхронные, синхронные и промышленные.
Асинхронные двигатели называются асинхронными двигателями, поскольку они не вращаются с одинаковой постоянной скоростью или медленнее, чем частота, подаваемая на питание. Скольжение , разница между фактической и синхронной скоростью, необходимо для создания крутящего момента , крутящей силы, вызывающей вращение, в асинхронных двигателях. Магнитное поле, окружающее ротор этих двигателей, вызвано наведенным током.
Ротор синхронных двигателей вращается с постоянной скоростью при подаче переменного тока. Их магнитное поле создается постоянными магнитами. Промышленные двигатели предназначены для трехфазных систем большой мощности, таких как конвейеры или воздуходувки. Двигатели переменного тока также можно найти в бытовой технике и других устройствах, таких как часы, вентиляторы и дисководы.
На что обратить внимание при покупке двигателя:
Есть несколько характеристик, на которые необходимо обратить внимание при выборе двигателя, но наиболее важными являются напряжение, ток, крутящий момент и скорость (об/мин).
Ток питает двигатель, и слишком большой ток может повредить двигатель. Для двигателей постоянного тока важны рабочий ток и ток останова. Рабочий ток — это среднее значение тока, которое двигатель должен потреблять при обычном крутящем моменте. Ток останова прикладывает достаточный крутящий момент, чтобы двигатель работал на скорости останова или 0 об/мин. Это максимальный ток, который должен потреблять двигатель, а также максимальная мощность, умноженная на номинальное напряжение. Радиаторы важны, если двигатель постоянно работает или работает при напряжении выше номинального, чтобы предотвратить плавление катушек.
Напряжение используется для поддержания протекания чистого тока в одном направлении и для преодоления обратного тока. Чем выше напряжение, тем выше крутящий момент. Номинальное напряжение двигателя постоянного тока указывает наиболее эффективное напряжение во время работы. Обязательно примените рекомендуемое напряжение. Если вы приложите слишком мало вольт, двигатель не будет работать, тогда как слишком много вольт может привести к короткому замыканию обмоток, что приведет к потере мощности или полному разрушению.
Рабочие значения и значения опрокидывания также необходимо учитывать при крутящем моменте. Операционная крутящий момент — это величина крутящего момента, на которую рассчитан двигатель, а крутящий момент при остановке — это величина крутящего момента, создаваемого при подаче питания от скорости останова. Вы всегда должны смотреть на требуемый рабочий крутящий момент, но в некоторых приложениях вам нужно знать, насколько далеко вы можете толкать двигатель. Например, для колесного робота хороший крутящий момент равен хорошему ускорению, но вы должны убедиться, что крутящий момент достаточно велик, чтобы поднять вес робота. В данном случае крутящий момент важнее скорости.
Скорость или скорость (об/мин) могут быть сложными для двигателей. Общее правило заключается в том, что двигатели работают наиболее эффективно на самых высоких скоростях, но это не всегда возможно, если требуется редуктор. Добавление шестерен снизит КПД двигателя, поэтому учитывайте также снижение скорости и крутящего момента.