ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Гиперзвуковой зуд, или Что могут летательные аппараты на гиперзвуке. Гиперзвуковой двигатель


Гиперзвуковой зуд, или Что могут летательные аппараты на гиперзвуке

Гиперзвуковой зуд, или Что могут летательные аппараты на гиперзвукеПоследнее время, что ни день, натыкаешься на сообщения по гиперзвуку: «Головные части ракет маневрируют, летят на гиперзвуке и на межконтинентальную дальность…» «В России идут испытания гиперзвукового прямоточного воздушно-реактивного двигателя!» И так далее, и тому подобное.

Перед глазами простого обывателя сразу встает фантастическая картина — гиперзвуковые самолеты взлетают и поражают своими ракетами, опять же на гиперзвуке, межконтинентальные цели… И сами самолеты и их ГПВРД ракеты — невидимы и не перехватываемы.

Так ли это? Посмотрим.

Снова на глаза попалась статья «Гиперзвуковой, прямоточный, летает» в «Технике — молодежи» от 1991 года.

В статье пишется: «ГПВРД или, как говорят, «гиперзвуковая прямоточка», позволит долететь из Москвы в Нью-Йорк за 2-3 часа, уходить крылатой машине из атмосферы в космос. Воздушно-космическому самолету не понадобится ни самолет-разгонщик, как для «Зенгера», ни ракета-носитель, как для «шаттлов» и «Бурана», — доставка грузов на орбиту обойдется чуть ли не вдесятеро дешевле». Статью писали Юрий ШИХМАН и Вячеслав СЕМЕНОВ, научные сотрудники ЦИАМ.

Конечно с обеими я был хорошо знаком, так как участвовал с ними во многих работах по тематике института. В том числе и по тематике ГПВРД. Хотя к основным и главным моя часть работы не относилась, тем не менее, была необходимой и важной. К этой работе меня подключили в ещё в году 84-м, ещё молодым специалистом и м.н.с. Тогда ещё ведущим над всеми работами по теме «Холод» в ЦИАМ был Рувим Исаевич Курзинер.

Опытный ГПВРД по теме «Холод», или изделие 057, в составе гиперзвуковой летающей лаборатории (ГЛЛ) представлял собой исследовательский объект, главная задача которого — демонстрация возможности горения топливовоздушной смеси при сверхзвуковой скорости истечения рабочего тела в контуре камеры сгорания. На земле смоделировать все режимы горения не представлялось возможным, поэтому такую задачу было решено исследовать в реальных условиях полета.

В качестве носителя, разгонщика и моделирующего режимы полета для исследования была использована зенитная ракета 5В28 комплекса С-200В (SA-5). Вместо головной части которой стыковался ГЛЛ с ГПВРД с топливным баком и системами управления и обслуживания.Первый полет ГЛЛ с ГПВРД был осуществлен 28 ноября 1991 года. В первом летном испытании ГПВРД максимальное число М составило 5,8, двигатель суммарно проработал 28 с, в процессе полета он дважды включался автоматически. Таким образом, впервые в мире в условиях летного испытания была доказана работоспособность гиперзвукового ПВРД ( журнал «Двигатель» №6 от 2006 года).За 1991-98 годы было произведено около 8 пусков (с учетом бросковых). В исследованиях экспериментального ГПВРД кроме российских специалистов приняли участие французы — в 1992 и 1995 годах по контрактам с Национальным научным центром Франции (ONERA), а в 1997 и 1998 годах — американцы, по контракту с Национальным космическим агентством США (NASA).

Итак, прошло больше 20 лет. Что мы имеем?

Есть ли летательные аппараты на гиперзвуке, то есть ли летающие на гиперскоростях (М>5)? Есть!

Во-первых, были орбитальные корабли «Буран» и шаттл. Возвращающийся с орбиты «Буран», например, примерно полчаса планирует на гиперзвуке на дальность порядка 8000 км с высоты 100 км и до 20.Тактико-технические характеристики ОК «Буран» в режиме спуска на гиперзвуковых скоростях:• Стартовая масса — 105 тонн• Дальность до посадочной полосы — 8270км• Скорость на траектории спуска — 7,592…0,520 км/сек (27.330-1.872 км/час) ок. 27-1,8Мах• Диапазон высоты спуска — 100…20 км

Проведем «мысленный эксперимент». А можно ли весь этот посадочный профиль «гиперзвукового орбитального корабля» «Буран» провернуть назад? Можно!Только для этого нужна ракета-носитель «Энергия».

«А если на ГПРД?» — спросит читатель. Можно. Но для этого придется для обеспечения выхода ГПРД на режим сначала «толкнуть» всю систему чем-то подобным ПРД, т.е. разгонным «пороховичком». А потом довывести до круговой орбиты, «подпитывая» двигатели запасенным кислородом или на чистом ЖРД. В итоге «экономия» на окислителе, при использовании кислорода атмосферы на ГПВРД, составит ну что-то примерно 20%. Но зато столько сложностей, что не приведи господи!

А задумывали ли инженеры такого рода «экономные системы», использующие забортный воздух? Да сколько угодно! Те же «Зенгер» и «Хотол».

И… скромно скажем — ранние версии, всемирно известного теперь МБР «Тополь». Да, действительно так! Вся эта система называлась «Гном»

«Гном» — трехступенчатая межконтинентальная баллистическая ракета, оснащенная прямоточным твердотопливным маршевым двигателем первой ступени, твердотопливными двигателями второй и третьей ступеней и ускорителем. Проектирование велась с начала 60-х годов в КБ машиностроения (г. Коломна) под руководством Бориса Шавырина.

Максимальная дальность стрельбы, км 11000 Стартовая масса, т 29 Масса полезной нагрузки, кг 470 Длина ракеты, м 16,14 Количество ступеней 3

В дальнейшем конструктор МИТ А.Д. Надирадзе, опираясь на имеющийся уже у него опыт создания мобильной ОТР «Темп», предложил проект МБР на обычных твердотопливных двигателях. Его поддержало руководство Миноборонпрома, и в результате мы получили 45-тонный мобильный грунтовой межконтинентальный «Темп-2С». Далее, его модернизации и усовершенствования — «Пионеры» (РСД) и «Тополя» (МБР)... Многие в этом видят его коварство (45 тонн вместо обещанных 29). Тем не менее, и с «Гномом» могло получиться то же самое. Одно дело расчеты — совсем другое практическая реализация!

Сверхзвуковая межконтинентальная крылатая ракета «Буря» ("изделие 351"), ближе всех стоящая к требуемым параметрам ЛА с ГПВРД.

Длина, м — 20,396Размах крыла, м — 7,746Высота, м — 6,642Площадь крыла, м2 — 44,6Стартовая масса, кг — 98.280Масса начальная маршевой ступени, кг — 33.522Масса головной части, кг — 3403Скорость маршевая, км/ч — 3300Высота полета, км — 18 — 25,5Дальность, км — 7830

Чисто теоретически, эту систему, используя современные материалы, топлива, твердотопливные «разгонники», можно ускорить, вероятно, и до 5 махов. Только вот в чем вопрос: а будут ли у него суперпревосходства относительно существующих МБР?

Время подлета к цели на максимальную дальность составит примерно 1,5 часа (МБР — 30 минут).

Некоторые преимущества будут — например, запаздывание с обнаружением. МБР обнаруживается довольно быстро, во-первых — начальный факел, во-вторых — большая восходящая высота баллистической траектории (до 1600км).

Хотя наши последние «Тополя-М» и «Ярсы» и иже с ними того же семейства, говорят, могут летать и по другим, например, квазинастильным круговым трассам (100-200 км), потому-то у них энерговооруженность и масса существенно отличаются от худосочных «Минитменов», оптимизированных под баллистические траектории.

Мне в связи с этим вспоминаются язвительные восторги инженера-ракетчика НАСА (или Пентагона) — «де, русские не умеют делать ракеты, у них даже современные тяжелее и габаритнее наших, разработки 70-х годов». Возгласы, правда, быстро утихли. Видимо, более квалифицированные товарищи ему объяснили, в чем тут дело…

Так вот, главный вопрос с гиперзвуковыми самолетами-ракетами, — нужны ли они, или воздержимся пока?

Как мы видели — ракеты и орбитальные корабли уже давно были реализованы, правда не на ГПВРД.

А насчет самолетов…

Военные уже свыше 20 лет держатся на цифре М<3,5 (SR-71, "Сотка", Миг-31). Дальнейшее увеличение скорости не предполагает получения дополнительных преимуществ, все равно зенитные ракеты на твердотопливных двигателях достанут, если уж перехватывают головки МБР и спутники на 1-й космической.

Насчет гражданских лайнеров…

Думается мне, такие быстроходные самолеты-лайнеры были нужны до эпохи Интернета. Почему, спросите вы? А потому, что теперь уже бизнесменам-коммерсантам да и чиновникам разных мастей не нужно столь стремительно мчаться по континентам-материкам: быстрее электронной подписи и видеоконференций всё равно не получится.

А если всё же кому-то приспичило — увидеть новорожденного сына или запустить план его рождения, — придется умерить прыть. И медленно «тошнить», как говорят мои друзья, самовлюбленные эгоисты марки BMW, вечерней лошадью в виде магистрального или межконтинентального «арбуза» или «Боинга» со средней скоростью 900 км/час, чай, не на тот свет опаздываем…

А вот гиперзвуковых двигателей — ГПВРД, главный отличительный признак которых — сверхзвуковое истечение рабочего тела через камеру сгорания, пока не создали.Может быть, у кого-то и получится. Причем у разработчиков, которых не предупредили, что это невозможно, а они, того не зная, взяли и реализовали фантастический проект. Такие примеры история науки и техники тоже знает…

—-----------------------------------------------------------------------* В двигателестроении различают два вида неустойчивой работы реактивных двигателей — «помпаж» и «зуд» на входе. «Зуд» — высокочастотная пульсация воздуха в области сверхкритических режимов работы входного диффузора двигателя, воспринимается как характерный зудящий звук. В отличие от него, «помпаж» — более низкочастотные колебания. Причиной «зуда» служат срывы потока в канале за горлом диффузора.

topwar.ru

Двигатель для гиперзвука | Наука и жизнь

Добиться как можно большей скорости летательного аппарата — такова одна из главных задач, стоящих перед авиацией с момента её зарождения. Скорость звука уже превышена в 1,5—2 раза. В недалёком будущем можно ждать появления экономичного гиперзвукового самолёта.

Схема турбореактивного двигателя.

Во время разгона и торможения двигатель работает в прерывистом режиме, и топливо-воздушная смесь разделена порциями чистого воздуха (показаны цветом).

Но есть проблема: распространённые и хорошо освоенные в производстве турбореактивные двигатели разогнать самолёт до таких скоростей не могут. Сейчас считается, что для такой машины наилучшим образом подходит прямоточный реактивный двигатель.

Тем не менее, конструкторская мысль не стоит на месте. Недавно в редакцию пришло письмо с описанием интересной, хотя, на взгляд скептиков, довольно спорной схемы турбореактивного двигателя.

Обеспечим библиотеки России научными изданиями!

В своё время, когда разрабатывались первые турбореактивные двигатели (ТРД) для самолётов, и у нас, и за рубежом была принята практически одинаковая схема их конструкции из последовательно соединённых входного устройства, компрессора, камеры сгорания, турбины и реактивного сопла. Эта схема стала классической и до сих пор остаётся основой авиационного двигателестроения.

Тяга такого двигателя пропорциональна количеству воздуха, пропускаемого через проточную часть двигателя, и скорости его истечения из сопла. Чтобы повысить скорость истечения газа, нужно повысить его температуру. В настоящее время наиболее совершенные турбинные лопатки выдерживают температуру примерно 1200оС (1500 К), и то непродолжительное время (см. «Наука и жизнь» № 6, 2007 г.). Тратятся колоссальные средства на создание новых жаростойких и жаропрочных материалов, результаты есть, но хочется большего. Пока существенно увеличить скорость не получается. С законами физики не поспоришь, но можно придумать, как их обойти.

Итак, если мы хотим выйти из тупика, необходимо каким-то образом значительно улучшить функциональные и тепловые показатели ТРД. Для этого придётся отказаться от некоторых традиционных постулатов и устранить фундаментальные конструкторские и технологические несоответствия.

Что я имею в виду? В классической схеме после компрессора воздушный поток разделяется на первичный для горения (30%) и вторичный для охлаждения (70%). Обидно, что в реактивную струю превращается столь незначительное количество воздуха, но это полбеды. Совсем худо, что вторичный поток дробится на десятки струй жаровой трубой камеры сгорания с огромными гидравлическими потерями. Другими словами, в существующих ныне камерах сгорания теряется львиная доля потенциальной и кинетической энергии, приобретаемой воздушным потоком при сжатии в компрессоре.

Кроме того, разделённые камерой сгорания зоны сжатия воздуха и расширения газовой струи находятся на значительном удалении друг от друга. Из-за этого существенно увеличивается масса двигателя и усложняется его конструкция (длинный и тяжёлый вал, соединяющий турбину с ротором компрессора, промежуточная подшипниковая опора, охлаждающие каналы, система подвода смазки и т.д.).

В существующих ТРД при увеличении тяги растёт частота вращения вала. А нужно ли это? В автомобиле, где движителем являются колёса, чем быстрее они вращаются, тем быстрее едет автомобиль. В ТРД, где движителем является сопло, нет необходимости увеличивать частоту вращения ротора, а целесообразно регулировать теплонапряжённость газового потока, то есть повышать или понижать температуру рабочего цикла, определяющую скорость истечения из сопла газовой струи и тем самым увеличивать или уменьшать силу тяги. В ТРД это делают, изменяя подачу топлива.

Переход с режима на режим достигается избыточной или недостаточной его подачей. В результате на всех режимах, кроме расчётного, происходят потери энергии. Следовательно, падает экономичность. Но даже на расчётном режиме топливо теряется из-за малоэффективного пассивного способа образования топливовоздушной смеси: топливо подают в камеру сгорания и распыляют его форсунками по воздушному потоку или против него, что приводит к столкновению мельчайших капель и образованию более крупных, которые в условиях факельного горения не успевают испариться и сгореть и выносятся газовым потоком в окружающую среду.

Приведённые фундаментальные несоответствия устранимы, если принять концепцию, включающую в себя три составляющие: новую конструктивную схему, новый способ работы и новый принцип регулирования ТРД, защищённые авторскими свидетельствами ещё во времена СССР. Возникает возможность упростить конструкцию, в несколько раз увеличить мощность, существенно повысить экономичность двигателя, уменьшить его габариты и массу, удешевить производство.

Главное конструктивное решение — отказ от камеры сгорания и замена вала полым ротором барабанного типа. Между его наружной поверхностью и внутренней поверхностью корпуса двигателя создаётся зона сжатия с компрессорными и зона расширения с турбинными лопатками. Ряды лопаток установлены на расстоянии межлопаточного осевого зазора друг от друга. Благодаря этому существенно уменьшаются габариты и масса двигателя: нет камеры сгорания, длинного и тяжёлого вала, массивных дисков турбины, исчезает промежуточная опора и множество вспомогательных узлов и деталей. Проточная часть двигателя теперь будет представлять собой зону сжатия, непосредственно переходящую в зону расширения. Это происходит в критическом сечении, где ротор имеет максимальный диаметр.

Как же теперь быть с многочисленными сложными процессами, протекающими в камере сгорания? В нашем случае все процессы, связанные с образованием топливовоздушной смеси, переносятся в зону сжатия, а процесс горения — в зону расширения непосредственно на турбинные лопатки. Однако необходимо, чтобы выполнялось условие, при котором скорость потока топливовоздушной смеси в критическом сечении превышала бы скорость распространения пламени по потоку, чтобы исключить помпаж, то есть забрасывание пламени обратно в зону сжатия. Современные средства электроники позволяют удерживать и надёжно контролировать процесс объёмного горения с заданными параметрами в автоматическом режиме.

Воздух из атмосферы через входное устройство поступает в компрессор, или в так называемую зону сжатия, где, например, на уровне третьей или четвёртой ступени в поток подают топливо. Зная расход воздуха в проточной части зоны сжатия, можно с большой точностью рассчитать и подать то количество топлива, при котором коэффициент избытка воздуха α* будет оптимальным.

Образовавшаяся в проточной части зоны сжатия (компрессора) топливовоздушная смесь, пройдя критическое сечение, воспламеняется в сопловом аппарате одновременно по всему объёму и горит с максимальной (стехиометрической) температурой 3000оС при значительно более высоком давлении, чем в камере сгорания обычного ТРД. Другими словами, вместо факельного горения происходит более эффективное — объёмное.

Газовая струя за счёт теплового перепада совершает работу на турбинных лопатках, но уже на значительно более высоком энергетическом уровне, чем в известных двигателях. При этом львиная доля энергии высокотемпературного потока после турбинных лопаток приходится на работу расширения в реактивном сопле, и благодаря этому тяга двигателя многократно возрастает.

Рассмотрим процессы, протекающие в зонах сжатия и расширения. К атмосферному воздуху в зоне сжатия прикладывается механическая работа, совершаемая лопатками компрессора, которая выражается в повышении степени сжатия воздуха и его температуры. При подаче топлива (авиационного керосина) в воздушный поток, который не дробится на мелкие струи, как в камере сгорания, происходит механическое перемешивание частиц топлива с воздухом вращающимися компрессорными лопатками. Лопатки также разбивают крупные капли, и, следовательно, те быстрее испаряются, способствуя образованию топливовоздушной смеси с высокой степенью однородности, качественному, а главное, быстрому сгоранию и ускоренному истечению газового потока из реактивного сопла. Это не только позволяет достигнуть гиперзвуковых скоростей, но и заметно снизить количество несгоревшего топлива.

Испарение подаваемого в зону сжатия топлива приводит к поглощению теплоты, температура воздуха понижается, а плотность соответственно возрастает без дополнительных энергозатрат. Это значительно повышает не только экономичность, но и кпд тепловой машины.

В предлагаемой схеме процессы сжатия и расширения протекают в непосредственной близости друг от друга. Потенциальная и кинетическая энергия, приобретаемая потоком в зоне сжатия, не теряется и не рассеивается, как это происходит в камерах сгорания.

Здесь обнаруживается ещё один важный эффект. Часть тепловой энергии потока, работающей на вращение турбины, в виде механической работы идёт в основном на сжатие воздуха, и лишь незначительная её доля тратится на поддержание энергетики самолёта и преодоление трения в опорах. Если взять механическую работу, которая идёт на повышение температуры сжимаемого воздуха, то она также не пропадает и не рассеивается в окружающую среду, а переносится испарившимся топливом на турбинные лопатки, где входит составной частью в энергию, превращающуюся в механическую работу сжатия воздуха. Получается как бы замкнутый круг.

Возникает такая термодинамическая система, у которой часть тепловой энергии постоянно циркулирует внутри неё самой и не уносится в окружающую среду. А освободившееся эквивалентное количество энергии газового потока дополнительно идёт на работу расширения в реактивном сопле, значительно увеличивая тягу двигателя по сравнению с известными силовыми установками.

По-иному происходит в новом двигателе и переход с одного режима на другой. В воздушный поток зоны сжатия предлагается подавать топливо, не меняя положение впускного клапана.

При запуске двигателя топливо подаётся циклически небольшими порциями (прерывисто), а в режиме разгона продолжительность циклов подачи постепенно увеличивается, и система питания плавно переходит на непрерывный режим подачи топлива. Аналогично, но в обратной последовательности двигатель выводится из стационарного режима.

В таких условиях на всех режимах работы двигателя коэффициент избытка воздуха α в топливовоздушной смеси всегда будет оптимальным.

В режиме разгона двигателя влияние частоты вращения ротора на величину тяги сохраняется, так как компрессор ещё не создаёт расчётной степени сжатия воздуха. Поэтому вначале целесообразно применять минимальную продолжительность подачи топлива, но с большей частотой. По мере возрастания частоты вращения продолжительность подачи топлива увеличивают, а частоту впрысков снижают. Этот режим работы предназначен не для полёта, а только для разгона двигателя на земле.

Постепенно температура в критическом сечении и в зоне расширения растёт. Мощность, передаваемая ротору турбинными лопатками, становится настолько большой, что дальнейшее повышение давления и температуры воздуха может привести к самовоспламенению топливовоздушной смеси в зоне сжатия и вызвать помпаж.

Чтобы стабилизировать мощность турбины, предлагается техническое решение, способное удержать частоту вращения ротора на расчётном уровне, а теплонапряжённость газового потока продолжать наращивать, повышая температуру газовой струи до стехиометрической. Оно состоит в том, чтобы раскрыть сопловой аппарат после достижения максимально допустимого числа оборотов ротора на земле.

Это можно сделать, поворачивая лопатки соплового аппарата так, чтобы уменьшить угол входа газового потока на лопатки турбины, то есть направить его по касательной к ним.

Казалось бы, частота вращения ротора должна упасть, однако уменьшение угла входа потока на рабочие лопатки компенсируется ростом температуры потока и возрастанием его теплонапряжённости. В результате частота вращения ротора двигателя остаётся неизменной (на расчётном уровне), а мощность газовой струи, выбрасываемой из сопла, увеличивается.

Во время полёта с увеличением высоты плотность и давление атмосферного воздуха падают, что неизбежно сказывается на величине давления в зоне сжатия. В существующих ТРД это приводит к падению коэффициента избытка воздуха α, ухудшению экономичности и снижению мощности двигателя.

В новом двигателе с подъёмом достаточно частично закрыть сопловой аппарат, увеличивая угол входа газового потока на рабочие лопатки турбины, таким образом увеличивая частоту вращения ротора пропорционально падению давления воздуха в атмосфере. На больших высотах температура воздуха существенно ниже, чем около земли, поэтому увеличение частоты вращения ротора не приведёт к самовоспламенению топливовоздушной смеси в зоне сжатия и возникновению помпажа.

Во время снижения самолёта, когда давление атмосферного воздуха вновь возрастает, сопловой аппарат раскрывают, и в результате частота вращения ротора уменьшается до максимально допустимой у поверхности земли. Одним словом, с изменением высоты полёта частоту вращения автоматически меняют обратно пропорционально давлению в зоне сжатия при постоянной подаче топлива.

Очень важно: частоту вращения ротора меняют не для увеличения или уменьшения тяги, а только для сохранения расчётного соотношения топлива и воздуха в смеси!

Пришло время поговорить о системе охлаждения. В её основу положен самый распространённый и наиболее простой способ конвективного охлаждения. В классическом двигателе охлаждающий воздух по пути следования принимает участие в охлаждении многих узлов и деталей, аккумулируя теплоту, и лишь в последнюю очередь поступает во внутренние полости турбинных лопаток с уже высокой температурой и низкой охлаждающей способностью.

Конструктивное оформление системы охлаждения нового двигателя предусматривает отбор необходимого количества воздуха из зоны сжатия перед местом впрыска топлива. Охлаждающий воздух идёт двумя потоками — через каналы в корпусе и через внутреннюю полость ротора. Воздух непосредственно подают внутрь лопаток турбины и соплового аппарата, не заставляя его охлаждать другие узлы и детали. Это позволяет продуть сквозь внутренние полости лопаток необходимое количество воздуха с низкой температурой.

Расчёты показывают, что площадь внутренней охлаждаемой поверхности лопатки должна быть в 2,6 раза больше её рабочей наружной площади. При этом на охлаждение потребуется 25% от поступающего в двигатель атмосферного воздуха, а 75% пойдёт на создание топливовоздушной смеси (сравните с нынешними ТРД, где соотношение диаметрально противоположное, см. с. 49).

Воздушные потоки, выходя из внутренних полостей сопловых и рабочих турбинных лопаток в проточную часть двигателя, образуют внутреннюю и внешнюю теплоизолирующие воздушные прослойки (предохраняя корпус и ротор от разрушающего теплового воздействия) и через реактивное сопло вместе с газовым потоком выбрасываются в атмосферу.

Самолёт, оснащённый новым ТРД, будет способен на крейсерском режиме развивать гиперзвуковые скорости с числом Маха М = 3–4. Процесс его изготовления проще и дешевле, чем ныне существующих, поскольку в нём отсутствуют многие узлы, без которых не построишь обычный ТРД.

Комментарии к статье

* Коэффициент избытка воздуха — это отношение действительного количества воздуха в горючей смеси к теоретически необходимому для её полного сгорания.

www.nkj.ru

На пути к гиперзвуку: Гиперзвуковые самолеты

На гиперзвуковых скоростях самолет объединяет в себе авиационные и космические технологии

XXI век уже начал развертывать перед нами новые перспективы и ставить новые задачи. Самолеты теперь должны летать на гиперзвуковых скоростях, а для этого в их двигателях необходимо гармонично объединить черты авиационной и космической техники. В сверхзвуковом ПВРД — прямоточном воздушно-реактивном двигателе — не используется никаких вращающихся частей, при этом самолет, оснащенный таким двигателем, будет способен покрывать сотни километров за считаные минуты, сделает реальностью регулярные сверхскоростные трансконтинентальные перелеты и недорогие космические полеты.

В 2004 году, когда в самостоятельный полет отправился первый самолет с таким двигателем, поставленная цель стала уже почти реальностью. Во второй половине дня 27 марта неподалеку от побережья Калифорнии с летящего на высоте 12 км бомбардировщика В-52 стартовал принадлежащий NASA беспилотный аппарат Х-43А, установленный на крылатой ракете-носителе Pegasus («Пегас»). С помощью стартового ускорителя экспериментальный аппарат воспарил на высоту 29 км, где и отделился от ракеты-носителя. Далее заработал его собственный ПВРД, и хотя он проработал всего 10 секунд, на его тяге была достигнута немыслимая скорость в 7 Махов, то есть 8350 км/час.

Полученные в ходе этого эксперимента результаты помогли трезво оценить концепцию сверхзвукового летательного аппарата с воздушно-реактивным двигателем. Серия полетов, запланированных на ближайшие несколько лет, должна расширить объем уже имеющихся экспериментальных данных, так что не пройдет и десятилетия, как первые гиперзвуковые аппараты с ПВРД будут запущены в коммерческую эксплуатацию.

Сверхзвуковые ПВРД сделают возможным три категории гиперзвуковых летательных аппаратов — оружие (такое как крылатые ракеты), самолеты (к примеру, стратегические бомбардировщики и разведчики) и, наконец, космопланы — космические аппараты, способные взлетать и приземляться, как обычные авиалайнеры.

В Соединенных Штатах развитие прямоточных воздушно-реактивных двигателей имеет долгую историю. На основе теоретических разработок, начатых еще в сороковые годы, в конце пятидесятых американские ВВС, ВМФ и NASA вплотную подступили к экспериментальному этапу. Нынешний уровень проработки этой идеи базируется на множестве исследовательских программ с конструированием подобных двигателей на водородном и углеводородном топливе.

В ряду этих разработок особо следует отметить программу NASA «Национальный аэрокосмический самолет» (National Aerospace Plane — NASP). В 1986 году перед разработчиками была поставлена задача создать летательный аппарат, способный развивать скорость больше 15 Махов и при этом взлетающий и садящийся наподобие обычного самолета — на горизонтальную площадку. Программа была завершена в 1993 году, а вот созданная в ходе выполнения этой программы оригинальная конструкция двигателя, будучи значительно доработана в NASA, легла в основу силовой установки, использованной в мартовском полете Х-43А.

В 2001 году ВВС США совместно с моторостроительной компанией Pratt & Whitney провели наземные испытания первого неохлаждаемого ПВРД на углеводородном топливе, имитируя скорости 4,5 — 6,5 Махов. В 2003 году результатом этого сотрудничества явился двигатель из никелевых сплавов, охлаждаемый потоком собственного горючего марки JP7. Именно этот двигатель может в перспективе стать основой для будущих крылатых ракет, самолетов и космических аппаратов. В прошлом году были произведены наземные испытания ПВРД, разработанного целой группой организаций — DARPA (Агентство перспективных оборонных исследовательских проектов), ВМФ США, Boeing, Aerojet и университетом Джонса Хопкинса. Этот двигатель изготовлен в основном из никелевых сплавов, использует топливо JP10 и предназначен исключительно для гиперзвуковых крылатых ракет.

Что такое ГПВРД?

В традиционном ПВРД поступающий в воздухозаборник сверхзвуковой воздушный поток тормозится до дозвуковой скорости скачками уплотнения — ударными волнами, образуемыми за счет определенной геометрии воздухозаборника. Горючее впрыскивается в этот сжатый торможением дозвуковой поток, смесь сгорает, и горячие газы, проходя через регулируемое или нерегулируемое сопло, снова разгоняются до сверхзвуковых скоростей.

В гиперзвуковом ПВРД воздушный поток тормозится на входе в меньшей степени и остается сверхзвуковым в ходе всего процесса горения топлива. В этом случае отпадает нужда в регулируемых соплах, и работа двигателя оптимизирована для широкого диапазона чисел Маха. Современные двухрежимные гиперзвуковые ПВРД способны работать в режимах как дозвукового, так и сверхзвукового горения, обеспечивая плавный переход из одного режима в другой.

Концепция ГПВРД являет собой образец гармоничного сопряжения планера летательного аппарата и его движителя. В этой схеме двигатель занимает всю нижнюю поверхность летательного аппарата. Силовая установка состоит из семи основных элементов, пять из них относятся собственно к двигателю, а два — к фюзеляжу аппарата. Зона двигателя — это передняя и задняя части воздухозаборника, камера сгорания, сопло и система подачи горючего. К фюзеляжу можно отнести влияющие на работу двигателя нижние поверхности его носовой и хвостовой частей.

В скоростной системе нагнетания воздуха эффективно взаимодействуют носовая нижняя часть фюзеляжа и воздухозаборник. Они совместно захватывают и сжимают воздушный поток, подавая его в камеру сгорания. В отличие от обычных реактивных двигателей, в ГПВРД на сверхзвуковых и гиперзвуковых скоростях полета необходимое сжатие поступающего воздуха достигается без использования механического компрессора. Первоначальное сжатие создается нижней носовой частью фюзеляжа самолета, а воздухозаборник доводит его до необходимой степени сжатия.

Набегающий воздушный поток испытывает серию скачков уплотнения у носовой части самолета и на входе в воздухозаборник, его скорость снижается, при этом растут давление и температура. Принципиально важным компонентом ГПВРД выступает задняя часть воздухозаборника. В этой зоне сверхзвуковой входящий поток встречается с противодавлением, которое превосходит статическое давление воздуха на входе. Когда в результате процесса горения от стенки начинает отделяться пограничный слой, в зоне задней части воздухозаборника формируется серия скачков уплотнения, создавая своего рода «предкамеру» перед настоящей камерой сгорания. Наличие задней части воздухозаборника позволяет достичь в камере сгорания необходимых уровней теплоподвода и управлять растущим давлением так, чтобы не возникла ситуация, называемая «запиранием», при которой ударные волны препятствуют попаданию воздушного потока в заднюю часть воздухозаборника.

Камера сгорания обеспечивает наиболее эффективное смешивание воздуха с горючим за счет впрыска, распределенного по длине камеры. Таким образом достигается наиболее эффективный перевод тепловой энергии в тягу двигателя. Система выброса газов, состоящая из сопла и нижней поверхности хвостовой части фюзеляжа, обеспечивает управляемое расширение сжатых горячих газов, что, собственно, и дает необходимую тягу. Процесс расширения преобразует возникающую в камере сгорания потенциальную энергию в энергию кинетическую. В зоне сопла происходит множество физических явлений — это и горение, и эффекты пограничного слоя, и нестационарные потоки газов, и неустойчивость слоев с поперечным сдвигом, а также множество специфических объемных эффектов. Форма сопла имеет огромное значение для эффективности работы двигателя и для полета в целом, поскольку она влияет на подъемную силу и управляемость самолета.

Как все это действует

До того как летательный аппарат с ГПВРД достигнет желаемых скоростей, его двигатель должен последовательно пройти через несколько режимов работы. Для разгона до скоростей порядка 3 Махов можно использовать одну из нескольких возможностей — к примеру, дополнительные газотурбинные двигатели либо же ракетные ускорители (как внутренние, так и внешние).

На скорости 3−4 Маха ГПРВД перестраивается с режима низкоскоростной тяги на такой режим, когда в двигателе формируются устойчивые скачки уплотнения, создающие на входе в камеру сгорания один или несколько участков воздушного потока на дозвуковой скорости. В традиционном ПВРД это обеспечивают воздухозаборник и диффузор — они снижают скорость потока до уровня ниже скорости звука за счет увеличения площади диффузора, таким образом на дозвуковых скоростях можно достичь полного сгорания смеси.

За камерой сгорания расположено суживающееся-расширяющееся сопло, которое и выдает необходимую тягу. В ГПРВД на выходе из камеры происходит «газовое тепловое дросселирование», которое не требует реального геометрического сужения сопла. Это сужение потока формируется благодаря смешиванию газов с воздухом и точно выверенному распределению потоков.

Пока самолет с ГПВРД на собственной тяге разгоняется от 3 до 8 Махов, в диапазоне от 5 до 7 Махов двигатель переходит на другой режим. Это переходный момент, когда двигатель работает и как традиционный ПВРД, и как гиперзвуковой. Рост температуры и давления в камере сгорания замедляется. В результате для нормальной работы становится достаточной более короткая зона предварительного сжатия. Скачки уплотнения сдвигаются от горловины воздухозаборника ближе к входу камеры сгорания.

Когда скорость переваливает за 5 Махов, режим сверхзвукового горения обеспечивает уже более высокую тягу, поэтому специфика двигателя требует, чтобы режим ПВРД использовался до тех пор, пока аппарат не достигнет скорости в 5−6 Махов. На пороге примерно в 6 Махов торможение воздушного потока к дозвуковым скоростям приводит местами к почти полной его остановке, что вызывает резкие скачки давления и теплопередачи. Где-то в интервале между 5 и 6 Махами появление этих симптомов может служить сигналом для перехода на режим чистого ГПВРД. Когда скорость переваливает за 7 Махов, процесс сгорания уже не способен разделять воздушный поток, и двигатель начинает работать в режиме ГПВРД без скачков уплотнения перед камерой сгорания. Ударные волны от воздухозаборника распределяются вдоль всего двигателя. На скоростях выше 8 Махов законы физики требуют сверхзвукового режима сгорания, поскольку двигатель уже не сможет выдерживать давлений и температур, которые возникли бы при торможении воздушного потока до дозвуковых скоростей.

При работе ГПВРД на скоростях от 5 до 15 Махов встает несколько технических проблем. Это сложности смешивания горючего с воздухом, борьба с тепловыми перегрузками двигателя, в частности с перегревом всех передних кромок воздухозаборника. Для полетов на гиперзвуковых скоростях требуются особые конструкции и материалы.

Когда скорость впрыскиваемого горючего уравнивается со скоростью влетающего в камеру сгорания воздушного потока, а это происходит на скоростях около 12 Махов, смешивание горючего с воздухом становится весьма затруднительным. При еще более высоких числах Маха огромные температуры в камере сгорания вызывают распад молекул и их ионизацию. Эти процессы, накладываясь на и без того сложную картину воздушного потока, где происходит сверхзвуковое перемешивание, взаимодействие камеры сгорания с каналом воздухозаборника и действуют законы горения, делают почти невозможным расчет газовых потоков, режима подачи топлива и теплового баланса камеры сгорания.

В ходе гиперзвукового полета нагрев двигателя летательного аппарата зависит не только от работы камеры сгорания — свой вклад вносят и другие системы: насосы, гидравлика, электроника. Системы управления теплообменом в гиперзвуковых летательных аппаратах в основном сконцентрированы на двигателе, поскольку именно он испытывает максимальные тепловые нагрузки. Двигатель вообще создает много проблем — зона реактивного потока отличается огромными термическими, механическими и акустическими нагрузками, а плюс ко всему она заполнена исключительно коррозионно активной смесью из раскаленных продуктов сгорания и кислорода.

Если двигатель не охлаждать, температура камеры сгорания перевалит за 2760 градусов Цельсия, а это выше, чем точка плавления для большинства металлов. К счастью, с проблемой высоких температур удается справиться путем активного охлаждения, правильного подбора материалов и разработкой специальных высокотемпературных конструкций.

Сам гиперзвуковой летательный аппарат тоже предъявляет жесткие требования к конструкциям и материалам. Вот они:

 — очень высокие температуры;

— нагрев аппарата в целом;

— стационарные и перемещающиеся локализованные зоны нагрева от ударных волн;

— высокие аэродинамические нагрузки;

— высокие нагрузки от пульсаций давления;

— возможность серьезного флаттера, вибраций, флуктуирующие нагрузки термического происхождения;

— эрозия под воздействием набегающего воздушного потока и реактивного потока внутри двигателя.

Теперь, после успешного полета аппарата Х-43А и наземных испытаний нескольких полномасштабных моделей, все реальнее выглядят планы создать полноценный самолет с ГПВРД на водородном или углеводородном горючем. Когда наши материалы были отправлены в печать, NASA готовилась запустить еще один Х-43А и разогнать его до скорости 10 Махов, то есть до 12 000 км/ч.

В 2007 и 2008 годах ВВС США, Pratt & Whitney и подразделение компании Boeing — Phantom Works — будут продолжать летные испытания ГПВРД на углеводородном горючем. Эти испытания — с использованием относительно простого в изготовлении двигателя — должны продемонстрировать диапазон возможных ускорений и возможность устойчивой работы в течение нескольких минут на скоростях 4,5−6,5 Махов. Предполагается также проверить управляемость двигателя и всего аппарата при использовании сенсоров и компьютеров.

Демонстрация этих технических достижений, а также серия других запланированных наземных и воздушных испытаний должны открыть дорогу к созданию экономически выгодных, пригодных для многократного использования гиперзвуковых двигателей для крылатых ракет, самолетов дальнего действия и космических аппаратов. Эти аппараты могут войти в эксплуатацию соответственно в 2010, 2015 и в 2025 годах.

Перепечатано с позволения журнала The Industrial Physicist American Institute of Physics

Статья опубликована в журнале «Популярная механика» (№3, Март 2005).

www.popmech.ru

Гиперзвуковой двигатель - это... Что такое Гиперзвуковой двигатель?

  • Гиперзвуковой прямоточный воздушно-реактивный двигатель — летающей лаборатории ГЛЛ АП на МАКС 2009 …   Википедия

  • Гиперзвуковой летательный аппарат — полёт ракетоплана X 15 первого в истории ГЛА самолёта, совершавшего cуборбитальные пилотируемые космические полёты …   Википедия

  • гиперзвуковой самолёт — гиперзвуковой самолёт — самолёт, способный летать с гиперзвуковой скоростью. Диапазон скоростей и высот полёта Г. с. занимает промежуточное положение между диапазонами, освоенными сверхзвуковыми самолётами и космическими летательными… …   Энциклопедия «Авиация»

  • гиперзвуковой самолёт — гиперзвуковой самолёт — самолёт, способный летать с гиперзвуковой скоростью. Диапазон скоростей и высот полёта Г. с. занимает промежуточное положение между диапазонами, освоенными сверхзвуковыми самолётами и космическими летательными… …   Энциклопедия «Авиация»

  • гиперзвуковой прямоточный воздушно-реактивный двигатель — Рис. 1. Схема ГПВРД внутреннего сгорания несимметричной формы. гиперзвуковой прямоточный воздушно реактивный двигатель (ГПВРД) — прямоточный воздушно реактивный двигатель со сверхзвуковой скоростью потока в камере сгорания. В отличие от… …   Энциклопедия «Авиация»

  • гиперзвуковой прямоточный воздушно-реактивный двигатель — Рис. 1. Схема ГПВРД внутреннего сгорания несимметричной формы. гиперзвуковой прямоточный воздушно реактивный двигатель (ГПВРД) — прямоточный воздушно реактивный двигатель со сверхзвуковой скоростью потока в камере сгорания. В отличие от… …   Энциклопедия «Авиация»

  • Гиперзвуковой воздушно-реактивный двигатель — …   Википедия

  • Гиперзвуковой прямоточный двигатель — …   Википедия

  • Воздушно-реактивный двигатель — (ВРД)  тепловой реактивный двигатель, в качестве рабочего тела которого используется смесь забираемого из атмосферы воздуха и продуктов окисления топлива кислородом, содержащимся в воздухе. За счёт реакции окисления рабочее тело нагревается… …   Википедия

  • Прямоточный воздушно-реактивный двигатель — Основная статья: Воздушно реактивный двигатель Огневые испытания ПВРД в лаборатории NASA …   Википедия

  • ushakov.academic.ru

    Гиперзвуковой прямоточный воздушно-реактивный двигатель (гпврд) и способ организации горения

    Способ организации горения в гиперзвуковом прямоточном воздушно-реактивном двигателе заключается в подаче топлива в камеру сгорания. Подачу топлива осуществляют перед воздухозаборником в зоне, образованной между топливной форсункой, пилонами и воздухозаборником. Для этого топливную форсунку располагают в носовой части двигателя перед воздухозаборником по его оси и соединяют ее с воздухозаборником пилонами. Изобретение позволяет улучшить смешение компонент топлива, что обеспечивает, в свою очередь, повышение полноты сгорания топлива, а также улучшить стабилизацию процесса горения в камере сгорания гиперзвукового прямоточного воздушно-реактивного двигателя. 2 н. и 2 з.п. ф-лы, 1 ил.

     

    Изобретение относится к авиационному двигателестроению, а именно к гиперзвуковым прямоточным воздушно-реактивным двигателям (ГПВРД), и может быть использовано в двигательных установках гиперзвуковых летательных аппаратов.

    Гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД) представляет собой силовую установку для приведения в движение летательного аппарата в широком диапазоне скоростей, в том числе при гиперзвуковых скоростях. Проблема создания эффективного ГПВРД неразрывно связана с необходимостью обеспечения эффективного смешения топлива с воздухом. Для этого топливо обычно впрыскивается на входе в камеру сгорания со стенок или со стоек (пилонов). Однако при больших скоростях смешение топлива с воздухом происходит на очень больших длинах смешения. Для сокращения длин смешения топлива с воздухом предлагались различные методы интенсификации смешения, например продольные вихри, образование турбулентности в слое смешения за счет осциллировавшей ударной волны, а также сверхзвуковые закрученные струи (V.I. Vasilev, S. N. Zakotenko, S. Ju. Krasheninnikov, V.A. Stepanov, "Numerical Investigation of Mixing Augmentation Behind Oblique Shock Waves", AIAA Journal, Vol.32, No. 2, February 1994, стр.311-316).

    Известен гиперзвуковой прямоточный воздушно-реактивный двигатель, патент США 4903480, F 02 K 7/10, 1988 г., содержащий воздухозаборник смешанного сжатия, прямую сверхзвуковую камеру сгорания постоянного сечения с инжектором для впрыска горючего, и сопло, причем для эффективного смешения топлива со сверхзвуковым потоком воздуха подачу горючего в камеру сгорания осуществляют через сверхзвуковые инжекторы, равномерно расположенные по высоте в хвостовой части пилонов.

    Недостатком данного технического решения является то, что подача топлива происходит на выходе из воздухозаборника в сверхзвуковую камеру сгорания. Для получения гомогенной смеси при сверхзвуковой скорости потока в потоке требуется значительное увеличение его длины (20-25 калибров высоты), даже при наличии чередования углов смещений осей инжекторов, равномерно расположенных в хвостовой части пилонов. В итоге это отрицательно сказывается на характеристиках двигателя в целом.

    Наиболее близким техническим решением к заявляемому является «Гиперзвуковой прямоточный воздушно-реактивный двигатель», патент США 5085048, F 02 K 7/10, 1990 г., содержащий воздухозаборник, прямую камеру сгорания с уступами на начальном ее участке и расположенными в ней инжекторами, а также сопло. Причем инжекторы расположены на верхней и нижней поверхности стенок камеры таким образом, чтобы при впрыске горючего организовать зоны рециркуляции за уступами для эффективного смешения горючего с воздухом.

    Основным недостатком данного технического решения является то, что зоны рециркуляции горючего и воздуха находятся в камере сгорания, и при сверхзвуковых скоростях потока воздуха время пребывания горючего в камере сгорания резко сокращается, что делает проблематичным эффективное смешения горючего с окислителем, например кислородом. Кроме того, наличие зон рециркуляции за уступами камеры сгорания, в которые определенным образом впрыскивают горючее для эффективного формирования струй топлива, в случае воспламенения последнего приводит к интенсивному тепловыделению и перестройке течения от сверхзвукового течения к дозвуковому по всей длине камеры сгорания.

    Технической задачей заявляемого технического решения является улучшение смешения компонент топлива, обеспечивающего, в свою очередь, повышение полноты сгорания топлива, а также улучшение стабилизации процесса горения в камере сгорания гиперзвукового прямоточного воздушно-реактивного двигателя (ГПВРД).

    Технический результат достигается тем, что топливную форсунку располагают в носовой части двигателя перед воздухозаборником по его оси и соединяют ее с воздухозаборником и обтекаемыми пилонами. Образованная зона, между носовой частью, топливной форсункой, обтекаемыми пилонами и воздухозаборником, интенсифицирует смешение компонент топлива с воздухом за счет инжекции топлива перед воздухозаборником из топливной форсунки, где происходит взаимодействие подаваемой струи с системой волн сжатия и скачков уплотнения, генерируемых самим воздухозаборником. Расстояние между топливной форсункой и воздухозаборником выражают соотношением:

    L=K×D,

    где L - расстояние между топливной форсункой и воздухозаборником;

    К - коэффициент подобия;

    D - диаметр воздухозаборника.

    Изменяя расход, температуру и давление топлива из топливной форсунки регулируют режим работы воздухозаборника. При малых давлениях топлива из топливной форсунки обеспечивают запуск воздухозаборника и выход на расчетный режим при малых числах Маха полета (М<4). При увеличении скорости полета летательного аппарата увеличивают степень сжатия топливно-воздушной струи в воздухозаборнике управлением параметрами подачи топлива из топливной форсунки, например, изменяют температуру и давление подаваемого топлива. При этом управление воздухозаборником соединено с управлением подаваемой струи топлива, тем самым ликвидируют необходимость системы регулирования воздухозаборника с движущимися частями, и вся система управления связана с бортовой ЭВМ летательного аппарата.

    На различных режимах работы двигателя определены следующие его достоинства:

    - устойчивые запуск и втекание сверхзвуковой струи топлива в канал воздухозаборника;

    - высокая интенсивность смешения компонент топлива;

    - малые потери полного давления по тракту воздухозаборника;

    - уменьшение длины камеры сгорания за счет уменьшения длины зоны смешения;

    - уменьшение вероятности срыва пограничного слоя и повышение устойчивости сверхзвукового воздухозаборника при дросселировании канала;

    - организация тепловой завесы для защиты поверхности гиперзвукового воздухозаборника от интенсивных тепловых потоков при больших числах Маха (М>5).

    На чертеже изображена схема заявляемого гиперзвукового прямоточного воздушно-реактивного двигателя (ГПВРД).

    Гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД), схематично изображенный на чертеже, содержит носовую часть 1, в которой последовательно расположены топливная форсунка 2, обтекаемые пилоны 3, соединяющие топливную форсунку 2 с воздухозаборником 4, камеру сгорания 5, сопло 6, струю 7 топлива, волны 8 сжатия, скачки 9 уплотнения, воспламенители 10, фронт 11 горения. Носовая часть 1, обтекаемые пилоны 3 и воздухозаборник 4 генерируют волны 8 сжатия и скачки 9 уплотнения, радикально влияющие на интенсификацию процесса смешения топлива с воздухом. Расстояние между топливной форсункой 2 и воздухозаборником 4 равно L, а диаметр воздухозаборника 4 равен D. Управление воздухозаборником 4 соединено с управлением подаваемой струи 7 топлива, и вся система (на чертеже не показана) связана с бортовой ЭВМ летательного аппарата.

    Заявляемый способ организации горения в гиперзвуковом прямоточном воздушно-реактивном двигателе (ГПВРД), который схематично изображен на чертеже, осуществляют следующим образом.

    При выходе летательного аппарата с гиперзвуковым прямоточным воздушно-реактивным двигателем (ГПВРД) на сверхзвуковые скорости полета (М>3) и достижении расчетного режима работы воздухозаборника 4 из топливных баков (на чертеже не показаны) топливо, например водород, подается в топливную форсунку 2 и затем в виде струи 7 подается в воздухозаборник 4.

    Носовая часть 1, обтекаемые пилоны 3 и воздухозаборник 4 создают систему волн 8 сжатия и скачков 9 уплотнения. Взаимодействуя с системой волн 8 сжатия и скачков 9 уплотнения, генерируемых носовой частью 1, обтекаемыми пилонами 3 и воздухозаборником 4, струя 7 топлива деформируется и интенсивно перемешивается с воздухом в канале воздухозаборника 4. Эффективное перемешивание обеспечивает поступление практически гомогенной смеси струи 7 топлива с воздухом в камеру сгорания 5, где смесь сгорает во фронте 11 горения.

    Воспламенение смеси и стабилизация горения в камере сгорания 5 может осуществляться различными способами. При наименьших скоростях полета (М<6) и, соответственно, наименьших полных температурах топливовоздушной смеси воспламенение и стабилизацию горения осуществляют с помощью воспламенителей 10. При больших скоростях полета (М>6) и больших полных температурах может реализовываться самовоспламенение смеси при достижении соответствующих значений температур, например Т>1000К, и давлений, например Р>0,1 ата, в топливовоздушной струе. Продукты сгорания истекают из сопла 6, создавая тягу летательному аппарату.

    Управляя подачей топлива из топливной форсунки 2, например изменяя температуру и давление топлива, можно осуществлять запуск воздухозаборника 4 и выход на рабочий режим. За счет волн 8 сжатия и скачков 9 уплотнения, генерируемых струей 7 топлива, также можно регулировать воздухозаборник 4 без перемещения конструктивных его элементов, оптимально подстраивая рабочий процесс двигателя. Причем система управления параметрами топлива организована на базе бортовой ЭВМ летательного аппарата.

    Исследования показали, что использование данного способа организации горения при интенсификации смешения компонентов топлива в камере сгорания экспериментальной модели гиперзвукового прямоточного воздушно-реактивного двигателя (ГПВРД) позволило интенсивно сжигать топливо при числах Маха, равных М=4-15, набегающего на модель высокоэнтальпийного воздуха.

    Таким образом, предлагаемое техническое решение позволяет существенно улучшить распыливание топлива и смешение его с воздухом, обеспечивая тем самым высокую полноту сгорания. Кроме того, использование заявляемого технического решения обеспечивает:

    - уменьшение длины камеры сгорания за счет уменьшения длины зоны смешения топлива с воздухом;

    - запуск и регулирование воздухозаборника за счет управления параметрами подаваемой струи, что позволяет, соответственно, отказаться от системы его механического регулирования;

    - уменьшение вероятности срыва пограничного слоя и повышение устойчивости сверхзвукового воздухозаборника при дросселировании канала;

    - организацию тепловой завесы для защиты поверхности гиперзвукового воздухозаборника от интенсивных тепловых потоков при больших числах Маха (М>5).

    Также преимуществом заявляемого гиперзвукового прямоточного воздушно-реактивного двигателя (ГПВРД) является сброс пограничного слоя, наросшего на носовой части 1 двигателя в его тракт, что, как известно, уменьшает сопротивление движению летательного аппарата, особенно при больших числах Маха полета летательного аппарата.

    1. Гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД), содержащий носовую часть, воздухозаборник, топливную форсунку, камеру сгорания и сопло, отличающийся тем, что топливная форсунка расположена в носовой части двигателя перед воздухозаборником по его оси и соединена с воздухозаборником пилонами.

    2. Двигатель по п.1, отличающийся тем, что расстояние между топливной форсункой и воздухозаборником выражено соотношением

    L=K·D,

    где L - расстояние между топливной форсункой и воздухозаборником;

    К - коэффициент подобия;

    D - диаметр воздухозаборника.

    3. Двигатель по п.1, отличающийся тем, что запуск и регулирование воздухозаборника осуществляют управлением подачи топлива из топливной форсунки с помощью бортовой ЭВМ.

    4. Способ организации горения в гиперзвуковом прямоточном воздушно-реактивном двигателе (ГПВРД), заключающийся в подаче топлива в камеру сгорания, отличающийся тем, что подачу топлива осуществляют перед воздухозаборником в зоне, образованной между топливной форсункой, пилонами и воздухозаборником.

    www.findpatent.ru

    Гиперзвуковой двигатель - это... Что такое Гиперзвуковой двигатель?

  • Гиперзвуковой прямоточный воздушно-реактивный двигатель — летающей лаборатории ГЛЛ АП на МАКС 2009 …   Википедия

  • Гиперзвуковой летательный аппарат — полёт ракетоплана X 15 первого в истории ГЛА самолёта, совершавшего cуборбитальные пилотируемые космические полёты …   Википедия

  • гиперзвуковой самолёт — гиперзвуковой самолёт — самолёт, способный летать с гиперзвуковой скоростью. Диапазон скоростей и высот полёта Г. с. занимает промежуточное положение между диапазонами, освоенными сверхзвуковыми самолётами и космическими летательными… …   Энциклопедия «Авиация»

  • гиперзвуковой самолёт — гиперзвуковой самолёт — самолёт, способный летать с гиперзвуковой скоростью. Диапазон скоростей и высот полёта Г. с. занимает промежуточное положение между диапазонами, освоенными сверхзвуковыми самолётами и космическими летательными… …   Энциклопедия «Авиация»

  • гиперзвуковой прямоточный воздушно-реактивный двигатель — Рис. 1. Схема ГПВРД внутреннего сгорания несимметричной формы. гиперзвуковой прямоточный воздушно реактивный двигатель (ГПВРД) — прямоточный воздушно реактивный двигатель со сверхзвуковой скоростью потока в камере сгорания. В отличие от… …   Энциклопедия «Авиация»

  • гиперзвуковой прямоточный воздушно-реактивный двигатель — Рис. 1. Схема ГПВРД внутреннего сгорания несимметричной формы. гиперзвуковой прямоточный воздушно реактивный двигатель (ГПВРД) — прямоточный воздушно реактивный двигатель со сверхзвуковой скоростью потока в камере сгорания. В отличие от… …   Энциклопедия «Авиация»

  • Гиперзвуковой воздушно-реактивный двигатель — …   Википедия

  • Гиперзвуковой прямоточный двигатель — …   Википедия

  • Воздушно-реактивный двигатель — (ВРД)  тепловой реактивный двигатель, в качестве рабочего тела которого используется смесь забираемого из атмосферы воздуха и продуктов окисления топлива кислородом, содержащимся в воздухе. За счёт реакции окисления рабочее тело нагревается… …   Википедия

  • Прямоточный воздушно-реактивный двигатель — Основная статья: Воздушно реактивный двигатель Огневые испытания ПВРД в лаборатории NASA …   Википедия

  • dikc.academic.ru

    Гиперзвуковой двигатель - это... Что такое Гиперзвуковой двигатель?

  • Гиперзвуковой прямоточный воздушно-реактивный двигатель — летающей лаборатории ГЛЛ АП на МАКС 2009 …   Википедия

  • Гиперзвуковой летательный аппарат — полёт ракетоплана X 15 первого в истории ГЛА самолёта, совершавшего cуборбитальные пилотируемые космические полёты …   Википедия

  • гиперзвуковой самолёт — гиперзвуковой самолёт — самолёт, способный летать с гиперзвуковой скоростью. Диапазон скоростей и высот полёта Г. с. занимает промежуточное положение между диапазонами, освоенными сверхзвуковыми самолётами и космическими летательными… …   Энциклопедия «Авиация»

  • гиперзвуковой самолёт — гиперзвуковой самолёт — самолёт, способный летать с гиперзвуковой скоростью. Диапазон скоростей и высот полёта Г. с. занимает промежуточное положение между диапазонами, освоенными сверхзвуковыми самолётами и космическими летательными… …   Энциклопедия «Авиация»

  • гиперзвуковой прямоточный воздушно-реактивный двигатель — Рис. 1. Схема ГПВРД внутреннего сгорания несимметричной формы. гиперзвуковой прямоточный воздушно реактивный двигатель (ГПВРД) — прямоточный воздушно реактивный двигатель со сверхзвуковой скоростью потока в камере сгорания. В отличие от… …   Энциклопедия «Авиация»

  • гиперзвуковой прямоточный воздушно-реактивный двигатель — Рис. 1. Схема ГПВРД внутреннего сгорания несимметричной формы. гиперзвуковой прямоточный воздушно реактивный двигатель (ГПВРД) — прямоточный воздушно реактивный двигатель со сверхзвуковой скоростью потока в камере сгорания. В отличие от… …   Энциклопедия «Авиация»

  • Гиперзвуковой воздушно-реактивный двигатель — …   Википедия

  • Гиперзвуковой прямоточный двигатель — …   Википедия

  • Воздушно-реактивный двигатель — (ВРД)  тепловой реактивный двигатель, в качестве рабочего тела которого используется смесь забираемого из атмосферы воздуха и продуктов окисления топлива кислородом, содержащимся в воздухе. За счёт реакции окисления рабочее тело нагревается… …   Википедия

  • Прямоточный воздушно-реактивный двигатель — Основная статья: Воздушно реактивный двигатель Огневые испытания ПВРД в лаборатории NASA …   Википедия

  • biograf.academic.ru


    Смотрите также