Содержание

Роторно — поршневой двигатель (двигатель Ванкеля)

Роторно-поршневой двигатель или двигатель Ванкеля представляет собой мотор, где главным рабочим элементом осуществляются планетарные круговые движения. Это принципиально другой вид двигателя, отличный от поршневых собратьев в семействе ДВС.

В конструкции такого агрегата используется ротор (поршень) с тремя гранями, внешне образующим треугольник Рело, осуществляющий круговые движения в цилиндре особого профиля. Чаще всего поверхность цилиндра исполнена по эпитрохоиде (плоской кривой, полученной точкой, которая жестко связана с окружностью, осуществляющей движение по внешней стороне другой окружности). На практике можно встретить цилиндр и ротор иных форм.

Составные элементы и принцип работы

Устройство двигателя типа РПД предельно проста и компактна. На ось агрегата устанавливается ротор, который крепко соединяется с шестерней. Последняя сцепляется со статором. Ротор, имеющий три грани, двигается по эпитрохоидальной цилиндрической плоскости. В результате чего сменяющиеся объемы рабочих камер цилиндра отсекаются с помощью трех клапанов. Уплотнительные пластины (торцевого и радиального типа) прижимаются к цилиндру под действием газа и за счет действия центростремительных сил и ленточных пружин. Получаются 3 изолированные камеры разные по объемным размерам. Здесь осуществляются процессы сжимания поступившей смеси горючего и воздуха, расширения газов, оказывающих давление на рабочую поверхность ротора и очищающих камеру сгорания от газов. На эксцентриковую ось передается круговое движение ротора. Сама ось находится на подшипниках и передает момент вращения на механизмы трансмиссии. В этих моторах осуществляется одновременная работа двух механических пар. Одна, которая состоит из шестерен, регулирует движение самого ротора. Другая — преобразует вращающиеся движение поршня во вращающиеся движения эксцентриковой оси.

Детали Роторно-поршневого двигателя

   Принцип работы двигателя Ванкеля

На примере двигателей, установленных на автомобилях ВАЗ, можно назвать следующие технические характеристики:
— 1,308 см3 – рабочий объем камеры РПД;
— 103 кВт/6000 мин-1 – номинальная мощность;
— 130 кг масса двигателя;
— 125000 км – ресурс двигателя до первого полного его ремонта.

Смесеобразование

В теории в РПД применяют несколько разновидностей смесеобразования: внешнее и внутреннее, на основе жидких, твердых, газообразных видов топлива.
Касательно твердых видов топлива стоит отметить, что их первоначально газифицируют в газогенераторах, так как они приводят к повышенному золообразованию в цилиндрах. Поэтому большее распространение на практике получили газообразные и жидкие топлива.
Сам механизм образования смеси в двигателях Ванкеля будет зависеть от вида применяемого топлива.
При использовании газообразного топлива его смешение с воздухом происходит в специальном отсеке на входе в двигатель. Горючая смесь в цилиндры поступает в готовом виде.

Из жидкого топлива смесь приготавливается следующим образом:

  1. Воздух смешивается с жидким топливом перед поступлением в цилиндры, куда поступает горючая смесь.
  2. В цилиндры двигателя жидкое топливо и воздух поступают по отдельности, и уже внутри цилиндра происходит их смешивание. Рабочая смесь получается при соприкосновении их с остаточными газами.

Соответственно, топливно-воздушная смесь может готовиться вне цилиндров или внутри их. От этого идет разделение двигателей с внутренним или внешним образованием смеси.

Особенности РПД

Преимущества

Преимущества двигателей роторно-поршневого типа по сравнению со стандартными бензиновыми двигателями:

— Низкие показатели уровня вибрации.
В моторах типа РПД отсутствует преобразование возвратно-поступательного движения во вращательное, что позволяет агрегату выдержать высокие обороты с меньшими вибрациями.

— Хорошие динамические характеристики.
Благодаря своему устройству такой мотор, установленный в машине, позволяет ее разогнать выше 100 км/ч на высоких оборотах без избыточной нагрузки.

— Хорошие показатели удельной мощности при малой массе.
Из-за отсутствия в конструкции двигателя коленчатого вала и шатунов достигается небольшая масса движущихся частей в РПД.

— В двигателях такого типа практически отсутствует система смазки.
Непосредственно в топливо добавляется масло. Топливно-воздушная смесь сама осуществляет смазывание пар трения.

— Мотор роторно-поршневого типа имеет небольшие габаритные размеры.
Установленный роторно-поршневой мотор позволяет максимально использовать полезное пространство моторного отсека автомобиля, равномерно распределить нагрузку на оси автомашины и лучше рассчитать расположение элементов коробки передач и узлов. Например, четырехтактный двигатель такой же мощности будет в два раза больше роторного двигателя.

Недостатки двигателя Ванкеля

— Качество моторного масла.
При эксплуатации такого типа двигателей необходимо уделять должное внимание к качественному составу масла, применяемого в двигателях Ванкеля. Ротор и находящаяся внутри камера двигателя имеют большую площадь соприкосновения, соответственно, износ двигателя происходит быстрее, а также такой двигатель постоянно перегревается. Нерегулярная смена масла наносит огромный урон двигателю. Износ мотора возрастает в разы из-за наличия абразивных частиц в отработанном масле.

— Качество свечей зажигания.
Эксплуатантам таких двигателей приходится быть особо требовательным к качественному составу свечей. В камере сгорания из-за ее небольшого объема, протяженной формы и высокой температуры затруднен процесс зажигания смеси. Следствием является повышенная рабочая температура и периодическая детонация камеры сгорания.

— Материалы уплотнительных элементов.
Существенной недоработкой мотора типа РПД можно назвать ненадежную организацию уплотнений промежутков между камерой, где сгорает топливо, и ротором. Устройство ротора такого мотора достаточно сложное, поэтому уплотнения требуются и по граням ротора, и по боковой поверхности, имеющей соприкосновение с крышками двигателя. Поверхности, которые подвергаются трению, необходимо постоянно смазывать, что выливается в повышенный расход масла. Практика показывает, что мотор типа РПД может потребить от 400 гр до 1 кг масла на каждые 1000 км. Снижаются экологичные показатели работы двигателя, так как горючее сгорает вместе с маслом, в результате в окружающую среду выбрасывается большое количество вредных веществ.

Из-за своих недоработок такие моторы не получили широкого распространения в автомобилестроении и в изготовлении мотоциклов. Но на базе РПД изготавливаются компрессоры и насосы. Авиамоделисты часто используют такие двигатели для конструирования своих моделей. Из-за невысоких требований к экономичности и надежности конструкторы не применяют сложную систему уплотнений в таких моторах, что значительно снижает его себестоимость. Простота его конструкции позволяет без проблем встроить в авиамодель.

КПД роторно-поршневой конструкции

Не смотря на ряд недоработок, проведенные исследования показали, что общий КПД двигателя Ванкеля довольно-таки высокий по современным меркам. Его значение составляет 40 – 45%. Для сравнения, у поршневых двигателей внутреннего сгорания КПД составляет 25%, у современных турбодизелей – около 40%. Самый высокий КПД у поршневых дизельных двигателей составляет 50%. До настоящего времени ученые продолжают работу по изысканию резервов для повышения КПД двигателей.

Итоговый КПД работы мотора состоит из трех основных частей:

  1. Топливная эффективность (показатель, характеризующий рациональное использование горючего в моторе).

Исследования в этой области показывают, что только 75% горючего сгорает в полном объеме. Есть мнение, что данная проблема решается путем разделения процессов сгорания и расширения газов. Необходимо предусмотреть обустройство специальных камер при оптимальных условиях. Горение должно происходить в замкнутом объеме, при условии нарастания температурных показателей и давления, расширительный процесс должен происходить при невысоких показателях температур.

  1. КПД механический (характеризует работу, результатом которой стало образование переданного потребителю крутящего момента главной оси).

Порядка 10% работы мотора расходуется на приведение в движение вспомогательных узлов и механизмов. Исправить данную недоработку можно путем внесения изменений в устройство двигателя: когда главный движущийся рабочий элемент не прикасается к неподвижному корпусу. Постоянное плечо крутящего момента должно присутствовать на всем пути следования основного рабочего элемента.

  1. Термическая эффективность (показатель, отражающий количество тепловой энергии, образованной от сжигания горючего, преобразующейся в полезную работу).

На практике 65% полученной тепловой энергии улетучивается с отработанными газами во внешнюю среду. Ряд исследований показал, что можно добиться повышения показателей термической эффективности в том случае, когда конструкция мотора позволяла бы осуществлять сгорание горючего в теплоизолированной камере, чтобы с самого начала достигались максимальные показатели температуры, а в конце эта температура понижалась до минимальных значений путем включения паровой фазы.

Современное состояние роторно-поршневого двигателя

На пути массового применения двигателя встали значительные технические трудности:
— отработка качественного рабочего процесса в камере неблагоприятной формы;
— обеспечение герметичности уплотнения рабочих объемов;
— проектировка и создания конструкции корпусных деталей, которые надежно прослужат весь жизненный цикл работы двигателя без коробления при неравномерном нагрева этих деталей.
В результате огромной проделанной научно-исследовательской и опытно-конструкторской работы этим фирмам удалось решить почти все наиболее сложные технические задачи на пути создания РПД и выйти на этап их промышленного производства.

Первый массовый автомобиль NSU Spider с РПД начала выпускать фирма NSU Motorenwerke. Вследствие частых переборок двигателей из-за выше сказанных технических проблем на раннем этапе развития конструкции двигателя Ванкеля, взятые NSU гарантийные обязательства привели ее к финансовому краху и банкротству и последовавшему слиянию с Audi в 1969 году.
Между 1964 и 1967 годом произведено 2375 автомобилей. В 1967 году Spider был снят с производства и заменён на NSU Ro80 с роторным двигателем второго поколения; за десять лет производства Ro80 выпущено 37398 машин.

Наиболее успешно с данными проблемами справились инженеры фирмы Mazda. Она и остается единственным массовым производителем машин с роторно-поршневыми двигателями. Доработанный мотор серийно начался ставить на автомобиль Mazda RX-7 с 1978 года. С 2003 преемственность приняла модель Mazda RX-8, она и является на данный момент массовой и единственной версией автомобиля с двигателем Ванкеля.

Российские РПД

Первое упоминание о роторном двигателе в Советском Союзе относится к 60-м годам. Исследовательские работы по роторно-поршневым двигателям начались в 1961 году, соответствующим постановлением Минавтопрома и Минсельхозмаша СССР. Промышленное же изучение с дальнейшем выводом на производство данной конструкции началось в 1974 году на ВАЗе. специально для этого было создано Специальное конструкторское бюро роторно-поршневых двигателей (СКБ РПД). Поскольку лицензию купить не было возможности, был разобран и скопирован серийный «ванкель» от NSU Ro80. На этой основе разработали и собрали двигатель Ваз-311, а произошло это знаменательное событие в 1976 году. На ВАЗе разрабатывали целую линейку РПД от 40 до 200 сильных двигателей. Доработка конструкции тянулась почти шесть лет. Удалось решить целый ряд технических проблем связанные с работоспособностью газовых и маслосъемных уплотнений, подшипников, отладить эффективный рабочий процесс в камере неблагоприятной формы. Свой первый серийный автомобиль ВАЗ с роторным двигателем под капотом представил публике в 1982 году, это был Ваз-21018. Машина внешне и конструктивно была как и все модели данной линейки, за одним исключением, а именно, под капотом стоял односекционный роторный двигатель мощностью 70 л.с. Длительность разработки не помешала случиться конфузу: на всех 50 опытных машинах при эксплуатации возникли поломки мотора, заставившие завод установить на его место обычный поршневой.

Ваз 21018 с Роторно-поршневым двигателем

Установив, что причиной неполадок являлись вибрации механизмов и ненадёжность уплотнений, конструкторы предприняли спасти проект. Уже в 83-ем появились двухсекционные Ваз-411 и Ваз-413 (мощностью, соответственно, 120 и 140 л.с.). Несмотря на низкую экономичность и малый ресурс, сфера применения роторного двигателя всё-таки нашлась – ГАИ, КГБ и МВД требовались мощные и незаметные машины. Оснащённые роторными двигателями «Жигули» и «Волги» легко догоняли иномарки.

С 80-ых годов 20 века СКБ был увлечён новой темой – применение роторных двигателей в смежной отрасли — авиационной. Отход от основной отрасли применения РПД привело к тому, что для переднеприводных машин роторный двигатель Ваз-414 создаётся лишь к 1992 году, да ещё три года доводится. В 1995 году Ваз-415 был представлен к сертификации. В отличие от предшественников он универсален, и может устанавливаться под капотом как заднеприводных («классика» и ГАЗ), так и переднеприводных машин (ВАЗ, Москвич). Двухсекционный «Ванкель» имеет рабочий объём 1308 см3 и развивает мощность 135 л.с. при 6000об/мин. «Девяносто девятую» он ускоряет до сотни за 9 секунд.

Роторно-поршневой двигатель ВАЗ-414

На данный момент проект по разработке и внедрения отечественного РПД заморожен.

Ниже представлено видео устройства и работы двигателя Ванкеля.

Принцип работы роторно-поршневого двигателя ванкеля, история создания и развития.

Что такое роторный двигатель Чем отличается роторный двигатель от поршневого

Как известно, принцип работы роторного двигателя основан на высоких оборотах и отсутствии движений, которыми отличается ДВС. Это и отличает агрегат от обычного поршневого двигателя. РПД называют ещё двигателем Ванкеля, и сегодня мы рассмотрим его работу и явные достоинства.

Ротор такого двигателя находится в цилиндре. Сам корпус не круглого типа, а овального, чтобы ротор треугольной геометрии нормально в нём помещался. У РПД не бывает коленчатого вала и шатунов, а также отсутствуют в нём другие детали, что делает его конструкцию намного проще. Если говорить другими словами, то примерно около тысячи деталей обычного двигателя внутреннего сгорания в РПД нет.

Работа классического РПД основана на простом движении ротора внутри овального корпуса. В процессе движения ротора по окружности статора создаются свободные полости, в которых и происходят процессы запуска агрегата.

Удивительно, но роторный агрегат представляет собой некий парадокс. В чём он заключается? А в том, что он имеет гениально простую конструкцию, которая почему-то не прижилась. А вот более сложный поршневой вариант стал популярным и повсюду используется.

Строение и принцип работы роторного двигателя

Схема работы роторного двигателя представляет собой нечто совершенно иное, чем обычный ДВС. Во-первых, следует оставить в прошлом конструкцию двигателя внутреннего сгорания, известную нам. А во-вторых, попытаться впитать в себя новые знания и понятия.

Как и поршневой, роторный двигатель использует давление которое создается при сжигании смеси воздуха и топлива. В поршневых двигателях, это давление создается в цилиндрах, и двигает поршни вперед и назад. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.

РПД назван так из-за ротора, то есть такой части мотора, которая движется. Благодаря этому движению мощность передаётся на сцепление и КПП. По сути, ротор выталкивает энергию топлива, которая затем передаётся колёсам через трансмиссию. Сам ротор выполнен обязательно из легированной стали и имеет, как и говорилось выше, форму треугольника.

Капсула, где находится ротор, — это своеобразная матрица, центр вселенной, где все процессы и происходят. Другими словами, именно в этом овальном корпусе происходит:

  • сжатие смеси;
  • топливный впрыск;
  • поступление кислорода;
  • зажигание смеси;
  • отдача сгоревших элементов в выпуск.

Одним словом, шесть в одном, если хотите.

Сам ротор крепится на специальном механизме и не вращается вокруг одной оси, а как бы бегает. Таким образом, создаются изолированные друг от друга полости внутри овального корпуса, в каждой из которых и происходит какой-либо из процессов. Так как ротор треугольный, то полостей получается всего три.

Всё начинается следующим образом: в первой образующейся полости происходит всасывание, то есть камера наполняется воздушно-топливной смесью, которая здесь же перемешивается. После этого ротор вращается и толкает эту перемешанную смесь в другую камеру. Здесь смесь сжимается и воспламеняется при помощи двух свечей.

Смесь после этого идёт в третью полость, где и происходит вытеснение частей использованного топлива в систему выхлопа.

Это и есть полный цикл работы РПД. Но не всё так просто. Это мы рассмотрели схему РПД только с одной стороны. А действия эти проходят постоянно. Если говорить иначе, процессы возникают сразу с трёх сторон ротора. В итоге всего за единственный оборот агрегата повторяется три такта.

Кроме того, японским инженерам удалось усовершенствовать роторный двигатель. Сегодня роторные двигатели Мазда имеют не один, а два и даже три ротора, что в значительной мере повышает производительность, тем более если сравнить его с обычным двигателем внутреннего сгорания. Для сравнения: двухроторный РПД сравним с шестицилиндровым ДВС, а 3-роторный с двенадцатицилиндровым. Вот и получается, что японцы оказались такими дальновидными и преимущества роторного мотора сразу распознали.

Опять же, производительность — это не одно достоинство РПД. Их у него много. Как и было сказано выше, роторный двигатель очень компактный и в нём используется на целых тысячу деталей меньше, чем в том же ДВС. В РПД всего две основные детали — ротор и статор, а проще этого ничего не придумаешь.

Принцип работы роторного двигателя

Принцип работы роторно-поршневого двигателя заставил в своё время многих талантливых инженеров удивлённо вскинуть бровями. И сегодня талантливые инженеры компании Мазда заслуживают всяческих похвал и одобрения. Шутка ли, поверить в производительность, казалось бы, похороненного двигателя и дать ему вторую жизнь, да ещё какую!

Ротор
имеет три выпуклых стороны, каждая из которых действует как поршень. Каждая сторона ротора имеет углубление в ней, что повышает скорость вращения ротора в целом, предоставляя больше пространства для топливо-воздушной смеси. На вершине каждой грани находится по металлической пластине, которые и формируют камеры, в которых происходят такты двигателя. Два металлических кольца на каждой стороне ротора формируют стенки этих камер. В середине ротора находится круг, в котором имеется множество зубьев. Они соединены с приводом, который крепится к выходному валу. Это соединение определяет путь и направление, по которому ротор движется внутри камеры.

Камера двигателя
приблизительно овальной формы (но если быть точным — это Эпитрохоида, которая в свою очередь представляет собой удлиненную или укороченную эпициклоиду, которая является плоской кривой, образуемой фиксированной точкой окружности, катящейся по другой окружности). Форма камеры разработана так, чтобы три вершины ротора всегда находились в контакте со стенкой камеры, образуя три закрытых объемах газа. В каждой части камеры происходит один из четырех тактов:

  • Впуск
  • Сжатие
  • Сгорание
  • Выпуск

Отверстия для впуска и выпуска находятся в стенках камеры, и на них отсутствуют клапаны. Выхлопное отверстие соединено непосредственно с выхлопной трубой, а впускное напрямую подключено к газу.

Выходной вал
имеет полукруглые выступы-кулачки, размещенные несимметрично относительно центра, что означает, что они смещены от осевой линии вала. Каждый ротор надевается на один из этих выступов. Выходной вал является аналогом коленчатого вала в поршневых двигателях. Каждый ротор движется внутри камеры и толкает свой кулачок.

Так как кулачки установлены несимметрично, сила с которой ротор на него давит, создает крутящий момент на выходном валу, заставляя его вращаться.

Строение роторного двигателя

Роторный двигатель состоит из слоев. Двухроторный двигателя состоят из пяти основных слоев, которые удерживаются вместе благодаря длинным болтам, расположенным по кругу. Охлаждающая жидкость протекает через все части конструкции.

Два крайних слоя закрыты и содержат подшипники для выходного вала. Они также запечатаны в основных разделах камеры, где содержатся роторы. Внутренняя поверхность этих частей очень гладкая и помогает роторам в работе. Отдел подачи топлива расположен на конце каждой из этих частей.

Следующий слой содержит в себе непосредственно сам ротор и выхлопную часть.

Центр состоит из двух камер подачи топлива, по одной для каждого ротора. Он также разделяет эти два ротора, поэтому его внешняя поверхность очень гладкая.

В центре каждого ротора крепится две большие шестерни, которые вращаются вокруг более маленьких шестерней и крепятся к корпусу двигателя. Это и является орбитой для вращения ротора.

Конечно же, если бы у роторного мотора не было недостатков, то он обязательно бы применялся на современных автомобилях. Возможно даже, что, если бы роторный двигатель был безгрешен, мы и не узнали бы про двигатель поршневой, ведь роторный создали раньше. Затем человеческий гений, пытаясь усовершенствовать агрегат, и создал современный поршневой вариант мотора.

Но к сожалению, минусы у роторного двигателя имеются. К таким вот явным ляпам этого агрегата можно отнести герметизацию камеры сгорания. А в частности, это объясняется недостаточно хорошим контактом самого ротора со стенками цилиндра. При трении со стенками цилиндра металл ротора нагревается и в результате этого расширяется. И сам овальный цилиндр тоже нагревается, и того хуже — нагревание происходит неравномерно.

Если в камере сгорания температура бывает выше, чем в системе впуска/выпуска, цилиндр должен быть выполнен из высокотехнологичного материала, устанавливаемого в разных местах корпуса.

Для того чтобы такой двигатель запустился, используются всего две свечи зажигания. Больше не рекомендуется ввиду особенностей камеры сгорания. РПД наделён бывает совершенно иной камерой сгорания и выдаёт мощность три четверти рабочего времени ДВС, а коэффициент полезного действия составляет целых сорок процентов. По сравнению: у поршневого мотора этот же показатель составляет 20%.

Преимущества роторного двигателя

Меньше движущихся частей

Роторный двигатель имеет намного меньше частей, чем скажем 4-х цилиндровый поршневой движок. Двух роторный двигатель имеет три главные движущиеся части: два ротора и выходной вал. Даже самый простой 4-х цилиндровый поршневой двигатель имеет как минимум 40 движущихся частей, включая поршни, шатуны, стержень, клапаны, рокеры, клапанные пружины, зубчатые ремни и коленчатый вал. Минимизация движущихся частей позволяет получить роторным двигателям более высокую надежность. Именно поэтому некоторые производители самолетов (к примеру Skycar) используют роторные двигатели вместо поршневых.

Мягкость

Все части в роторном двигателе непрерывно вращаются в одном направлении, в отличие от постоянно изменяющих направление поршней в обычном двигателе. Роторный движок использует сбалансированные крутящиеся противовесы, служащие для подавления любых вибраций. Подача мощности в роторном двигателе также более мягкая. Каждый цикл сгорания происходит за одни оборот ротора в 90 градусов, выходной вал прокручивается три раза на каждое прокручивание ротора, каждый цикл сгорания проходит за 270 градусов за которые проворачивается выходной вал. Это значит, что одно роторный двигатель вырабатывает мощность в три четверти. Если сравнивать с одно-цилиндровым поршневым двигателем, в котором сгорание происходит каждые 180 градусов каждого оборота, или только четверти оборота коленчатого вала.

Неспешность

В связи с тем, что роторы вращаются на одну треть вращения выходного вала, основные части двигателя вращаются медленней, чем части в обычном поршневом двигателе. Это также помогает и в надежности.

Малые габариты + высокая мощность

Компактность системы вместе с высоким КПД (сравнительно с обычным ДВС) позволяет из миниатюрного 1,3-литрового мотора выдавать порядка 200-250 л.с. Правда, вместе с главным недостатком конструкции в виде высокого расхода топлива.

Недостатки роторных моторов

Самые главные проблемы при производстве роторных двигателей:

  • Достаточно сложно (но не невозможно) подстроиться под регламент выброса CO2 в окружающую среду, особенно в США.
  • Производство может стоить намного дороже, в большинстве случаев из-за небольшого серийного производства, по сравнению с поршневыми двигателями.
  • Они потребляют больше топлива, так как термодинамическое КПД поршневого двигателя снижается в длинной камере сгорания, а также благодаря низкой степени сжатия.
  • Роторные двигатели в силу конструкции ограничены в ресурсе — в среднем это порядка 60-80 тыс. км

Такая ситуация просто вынуждает причислять роторные двигатели к спортивным моделям автомобилей. Да и не только. Приверженцы роторного двигателя сегодня нашлись. Это известный автопроизводитель Мазда, вставший на путь самурая и продолживший исследования мастера Ванкеля. Если вспомнить ту же ситуацию с Субару, то становится понятен успех японских производителей, цепляющихся, казалось бы, за всё старое и отброшенное западниками как ненужное. А на деле японцам удаётся создавать новое из старого. То же тогда произошло с оппозитными двигателями, являющимися на сегодняшний день «фишкой» Субару. В те же времена использование подобных двигателей считалось чуть ли не преступлением.

Работа роторного двигателя также заинтересовала японских инженеров, которые на этот раз взялись за усовершенствование Мазды. Они создали роторный двигатель 13b-REW и наделили его системой твин-турбо. Теперь Мазда могла спокойно поспорить с немецкими моделями, так как открывала целых 350 лошадок, но грешила опять же большим расходом топлива.

Пришлось идти на крайние меры. Очередная модель Мазда RX-8 с роторным двигателем уже выходит с 200 лошадками, что позволяет сократить расход топлива. Но не это главное. Заслуживает уважения другое. Оказалось, что до этого никто, кроме японцев, не догадался использовать невероятную компактность роторного двигателя. Ведь мощность в 200 л.с. Мазда RX-8 открывала с двигателем объёмом 1,3 литра. Одним словом, новая Мазда выходит уже на другой уровень, где способна конкурировать с западными моделями, беря не только мощностью мотора, но и другими параметрами, в том числе и низким расходом топлива.

Удивительно, но РПД пытались ввести в работу и у нас в стране. Такой двигатель был разработан для установки его на ВАЗ 21079, предназначенный как транспортное средство для спецслужб, однако проект, к сожалению, не прижился. Как всегда, не хватило бюджетных денег государства, которые чудесным образом из казны выкачиваются.

Зато это удалось сделать японцам. И они на достигнутом результате останавливаться не желают. По последним данным, производитель Мазда усовершенствует двигатель и в скором времени выйдет новая Мазда, уже с совершенно другим агрегатом.

Разные конструкции и разработки роторных двигателей

Двигатель Ванкеля

Двигатель Желтышева

Двигатель Зуева

Роторный двигатель представляет собой двигатель внутреннего сгорания, устройство которого в корне отличается от обычного поршневого двигателя.
В поршневом двигателе в одном и том же объеме пространства (цилиндре) выполняются четыре такта: впуск, сжатие, рабочий ход и выпуск. Роторный двигатель осуществляет те же такты, но все они происходят в различных частях камеры. Это можно сравнить с наличием отдельного цилиндра для каждого такта, причем поршень постепенно перемещается от одного цилиндра к другому.

Роторный двигатель изобретен и разработан доктором Феликсом Ванкелем и иногда называется двигатель Ванкеля или роторный двигатель Ванкеля.

В этой статье мы расскажем о том, как работает роторный двигатель. Для начала рассмотрим принцип его работы.

Принцип работы роторного двигателя

Ротор и корпус роторного двигателя Mazda RX-7. Эти детали заменяют поршни, цилиндры, клапаны и распредвал поршневого двигателя.

Как и поршневой, роторный двигатель использует давление, которое создается при сгорании топливовоздушной смеси. В поршневых двигателях, это давление создается в цилиндрах, и приводит поршни в движение. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.

В роторном двигателе, давление сгорания образуется в камере, сформированной частью корпуса, закрытой стороной треугольного ротора, который используется вместо поршней.

Ротор вращается по траектории, напоминающую линию, нарисованную спирографом. Благодаря такой траектории, все три вершины ротора контактируют с корпусом, образуя три разделенных объема газа. Ротор вращается, и каждый из этих объемов попеременно расширяется и сжимается. Это обеспечивает поступление топливовоздушной смеси в двигатель, сжатие, полезную работу при расширении газов и выпуск выхлопа.

Mazda RX-8

Mazda стала пионером в массовом производстве автомобилей с роторным двигателем. RX-7, который поступил в продажу в 1978 году, был, пожалуй, наиболее успешным автомобилем с роторным двигателем. Но ему предшествовал целый ряд автомобилей, грузовиков и даже автобусов с роторным двигателем, начиная с Cosmo Sport 1967 года. Однако RX-7 не производится с 1995 года, но идея роторного двигателя не умерла.

Mazda RX-8 оснащена роторным двигателем под названием RENESIS. Этот двигатель был назван лучшим двигателем 2003 г. Он является атмосферным двухроторным и производит 250 л.с.

Строение роторного двигателя

Роторный двигатель имеет систему зажигания и систему впрыска топлива, схожие с используемыми в поршневых двигателях. Строение роторного двигателя в корне отличается от поршневого.

Ротор

Ротор имеет три выпуклых стороны, каждая из которых выполняет роль поршня. Каждая сторона ротора имеет углубление, что повышает скорость вращения ротора, предоставляя больше пространства для топливовоздушной смеси.

На вершине каждой грани расположена металлическая пластина, которая разделяет пространство на камеры. Два металлических кольца на каждой стороне ротора формируют стенки этих камер.

В центре ротора расположено зубчатое колесо с внутренним расположением зубьев. Оно сопрягается с шестерней, закрепленной на корпусе. Такое сопряжение задает траекторию и направление вращения ротора в корпусе.

Корпус (статор)

Корпус имеет овальную форму (форму эпитрохоиды, если быть точным). Форма камеры разработана так, чтобы три вершины ротора всегда находились в контакте со стенкой камеры, образуя три изолированных объемах газа.

В каждой части корпуса происходит один из процессов внутреннего сгорания. Пространство корпуса разделено для четырех тактов:

  • Впуск
  • Сжатие
  • Рабочий такт
  • Выпуск

Порты впуска и выпуска расположены в корпусе. В портах отсутствуют клапаны. Выпускной порт непосредственно соединен с выхлопной системой, а впускной порт — с дросселем.

Выходной вал

Выходной вал (обратите внимание на эксцентриковые кулачки)

Выходной вал имеет закругленные выступы-кулачки, расположенные эксцентрично, т.е. смещены относительно центральной оси. Каждый ротор сопряжен с одним из этих выступов. Выходной вал является аналогом коленчатого вала в поршневых двигателях. При вращении ротор толкает кулачки. Так как кулачки установлены несимметрично, сила с которой ротор на него давит, создает крутящий момент на выходном валу, заставляя его вращаться.

Сбор роторного двигателя

Роторный двигатель собирается слоями. Двухроторный двигатель состоит из пяти слоев, удерживаемых длинными болтами, установленными по кругу. Охлаждающая жидкость проходит через все части конструкции.

Два крайних слоя имеют уплотнения и подшипники для выходного вала. Они также изолируют две части корпуса, в которых расположены роторы. Внутренние поверхности этих частей являются гладкими, что обеспечивает надлежащее уплотнение роторов. Впускной порт подачи расположен в каждой из крайних частей.

Часть корпуса, в которой расположен ротор (обратите внимание на расположение выпускного порта)

Следующий слой включает корпус ротора овальной формы и выпускной порт. В этой части корпуса установлен ротор.

Центральная часть включает два впускных порта — по одному для каждого ротора. Она также разделяет роторы, поэтому ее внутренняя поверхность является гладкой.

В центре каждого ротора расположено зубчатое колесо с внутренним расположением зубьев, которое вращается вокруг меньшей шестерни, установленной на корпусе двигателя. Она определяет траекторию вращения ротора.

Мощность роторного двигателя

В центральной части расположен впускной порт для каждого ротора

Как и поршневые двигатели, в роторном двигателе внутреннего сгорания используется четырехтактный цикл. Но в роторном двигателе такой цикл осуществляется иначе.

За один полный оборот ротора эксцентриковый вал выполняет три оборота.

Основным элементом роторного двигателя является ротор. Он выступает в роли поршней в обычном поршневом двигателе. Ротор установлен на большом круглом кулачке выходного вала. Кулачок смещен относительно центральной оси вала и выступает в роли коленчатой рукояти, позволяя ротору вращать вал. Вращаясь внутри корпуса, ротор толкает кулачок по окружности, поворачивая его три раза за один полный оборот ротора.

Размер камер, образованных ротором, изменяется при его вращении. Такое изменение размера обеспечивает насосное действие. Далее мы рассмотрим каждый из четырех тактов роторного двигателя.

Впуск

Такт впуска начинается при прохождении вершины ротора через впускной порт. В момент прохождения вершины через впускной порт, объем камеры приближен к минимальному. Далее объем камеры увеличивается, и происходит всасывание топливовоздушной смеси.

При дальнейшем повороте ротора, камера изолируется, и начинается такт сжатия.

Сжатие

При дальнейшем вращении ротора, объем камеры уменьшается, и происходит сжатие топливовоздушной смеси. При прохождении ротора через свечи зажигания, объем камеры приближен к минимальному. В этот момент происходит воспламенение.

Рабочий такт

Во многих роторных двигателях установлено две свечи зажигания. Камера сгорания имеет достаточно большой объем, поэтому при наличии одной свечи, воспламенение происходило бы медленнее. При воспламенении топливовоздушной смеси образуется давление, приводящее ротор в движение.

Давление сгорания вращает ротор в сторону увеличения объема камеры. Газы сгорания продолжают расширяться, вращая ротор и создавая мощность до момента прохождения вершины ротора через выпускной порт.

Выпуск

При прохождении ротора через выпускной порт, газы сгорания под высоким давлением выходят в выхлопную систему. При дальнейшем вращении ротора, объем камеры уменьшается, выталкивая оставшиеся выхлопные газы в выпускной порт. К тому моменту, как объем камеры приближается к минимальному, вершина ротора проходит через впускной порт, и цикл повторяется.

Необходимо отметить, что каждая из трех сторон ротора всегда вовлечена в один из тактов цикла, т.е. за один полный оборот ротора осуществляется три рабочих такта. За один полный оборот ротора, выходной вал совершает три оборота, т.к. на один оборот вала приходится один такт.

Различия и проблемы

По сравнению с поршневым двигателем, роторный двигатель имеет определенные отличия.

Меньше движущихся деталей

В отличие от поршневого двигателя, в роторном двигателе используется меньше движущихся деталей. Двухроторный двигатель включает три движущиеся детали: два ротора и выходной вал. Даже в простейшем четырехцилиндровом двигателе используется не менее 40 движущихся деталей, включая поршни, шатуны, распредвал, клапаны, клапанные пружины, коромысла, ремень ГРМ и коленвал.

Благодаря уменьшению количества движущихся деталей, повышается надежность роторного двигателя. По этой причине некоторые производители вместо поршневых двигателей используют роторные на своих воздушных судах.

Плавная работа

Все части роторного двигателя вращаются непрерывно в одном направлении, а не постоянно меняют направление движения, как поршни в обычном двигателе. В роторных двигателях используются сбалансированные вращающиеся противовесы, предназначенные для гашения вибраций.

Подача мощности также обеспечивается более плавно. В связи с тем, что каждый такт цикла протекает за поворот ротора на 90 градусов, и выходной вал совершает три оборота на каждый оборот ротора, каждый такт цикла протекает за поворот выходного вала на 270 градусов. Это значит, что двигатель с одним ротором обеспечивает подачу мощности при 3/4 оборота выходного вала. В одноцилиндровом поршневом двигателе, процесс сгорания происходит на 180 градусах каждого второго оборота, т.е. 1/4 каждого оборота коленвала (выходной вал поршневого двигателя).

Медленная работа

В связи с тем, что ротор вращается со скоростью, равной 1/3 скорости вращения выходного вала, основные движущиеся детали роторного двигателя движутся медленнее, чем детали в поршневом двигателе. Благодаря этому, также обеспечивается надежность.

Проблемы

Роторные двигатели имеют ряд проблем:

  • Сложное производство в соответствии с нормами состава выбросов.
  • Затраты на производство роторных двигателей выше по сравнению с поршневыми, так как количество производимых роторных двигателей меньше.
  • Расход топлива у автомобилей с роторным двигателей выше по сравнению с поршневыми двигателями, в связи с тем, что термодинамический КПД снижен из-за большого объема камеры сгорания и низкого коэффициента сжатия.

Система газораспределения которого реализована за счёт вращения цилиндра. Цилиндр совершает вращательное движение попеременно проходя впускной и выпускной патрубок, поршень при этом совершает возвратно-поступательные движения.

Британская компания RCV Engines была создана в 1997 году специально для проработки, испытаний и, наконец, продвижения на рынок всего одного изобретения. Оно, собственно, и зашифровано в названии фирмы: «Вращающийся цилиндр-клапан» — Rotary Cylinder Valve — RCV.
К настоящему времени базирующаяся в Вимборне компания не только отладила технологию, но доказала работоспособность этой новой концепции. Она уже наладила серийный выпуск линейки маленьких четырёхтактных моторчиков с рабочим объёмом от 9,5 до 50 «кубиков», предназначенных для авиамоделей, газонокосилок, ручных мотопил и подобной техники.
Но вот 1 февраля 2006 года компания презентовала первый образец 125-кубового двигателя для скутеров , благодаря чему дала многим людям повод впервые познакомиться с этой мало известной пока технологией — RCV.

Авторы изобретения заявляют о снижении себестоимости двигателей (на несколько процентов) за счёт сокращения числа деталей, и повышении их удельной мощности как на единицу объёма, так и на единицу веса, по сравнению с аналогами того же класса (процентов на 20).

Принцип работы

Итак, перед нами четырёхтактный двигатель , в котором нет привычных клапанов и всей системы их привода. Вместо них британцы заставили работать распределителем газов сам рабочий цилиндр двигателя, который в моторах RCV вращается вокруг своей оси.

Поршень при этом совершает точно те же движения, что и раньше. А вот стенки цилиндра вращаются вокруг поршня (цилиндр закреплён внутри мотора на двух подшипниках).

С края цилиндра устроен патрубок, который попеременно открывается к впускному или выпускному окну. Предусмотрено тут и скользящее уплотнение, работающее аналогично поршневым кольцам — оно позволяет цилиндру расширяться при нагревании, не теряя герметичность.

Свеча расположена по центру и вращается вместе с цилиндром. Судя по всему, тут применён скользящий графитный контакт, хорошо знакомый автомобилистам по старым механическим распределителям зажигания.

Приводят цилиндр во вращение всего три шестерёнки: одна на цилиндре, одна на коленчатом валу и одна — промежуточная. Естественно, скорость вращения цилиндра — вдвое меньше оборотов коленвала.

См. также

Источники

Напишите отзыв о статье «Роторно-цилиндро-клапанный двигатель»

Отрывок, характеризующий Роторно-цилиндро-клапанный двигатель

С приближением неприятеля к Москве взгляд москвичей на свое положение не только не делался серьезнее, но, напротив, еще легкомысленнее, как это всегда бывает с людьми, которые видят приближающуюся большую опасность. При приближении опасности всегда два голоса одинаково сильно говорят в душе человека: один весьма разумно говорит о том, чтобы человек обдумал самое свойство опасности и средства для избавления от нее; другой еще разумнее говорит, что слишком тяжело и мучительно думать об опасности, тогда как предвидеть все и спастись от общего хода дела не во власти человека, и потому лучше отвернуться от тяжелого, до тех пор пока оно не наступило, и думать о приятном. В одиночестве человек большею частью отдается первому голосу, в обществе, напротив, – второму. Так было и теперь с жителями Москвы. Давно так не веселились в Москве, как этот год.
Растопчинские афишки с изображением вверху питейного дома, целовальника и московского мещанина Карпушки Чигирина, который, быв в ратниках и выпив лишний крючок на тычке, услыхал, будто Бонапарт хочет идти на Москву, рассердился, разругал скверными словами всех французов, вышел из питейного дома и заговорил под орлом собравшемуся народу, читались и обсуживались наравне с последним буриме Василия Львовича Пушкина.
В клубе, в угловой комнате, собирались читать эти афиши, и некоторым нравилось, как Карпушка подтрунивал над французами, говоря, что они от капусты раздуются, от каши перелопаются, от щей задохнутся, что они все карлики и что их троих одна баба вилами закинет. Некоторые не одобряли этого тона и говорила, что это пошло и глупо. Рассказывали о том, что французов и даже всех иностранцев Растопчин выслал из Москвы, что между ними шпионы и агенты Наполеона; но рассказывали это преимущественно для того, чтобы при этом случае передать остроумные слова, сказанные Растопчиным при их отправлении. Иностранцев отправляли на барке в Нижний, и Растопчин сказал им: «Rentrez en vous meme, entrez dans la barque et n»en faites pas une barque ne Charon». [войдите сами в себя и в эту лодку и постарайтесь, чтобы эта лодка не сделалась для вас лодкой Харона.] Рассказывали, что уже выслали из Москвы все присутственные места, и тут же прибавляли шутку Шиншина, что за это одно Москва должна быть благодарна Наполеону. Рассказывали, что Мамонову его полк будет стоить восемьсот тысяч, что Безухов еще больше затратил на своих ратников, но что лучше всего в поступке Безухова то, что он сам оденется в мундир и поедет верхом перед полком и ничего не будет брать за места с тех, которые будут смотреть на него.

» у большинства людей вызывает ассоциации с цилиндрами и поршнями, системой газораспределения и кривошипно-шатунным механизмом. Все потому, что подавляющее большинство автомобилей снабжено классическим и ставшим наиболее популярным типом двигателей – поршневым.

Сегодня речь пойдет о роторно-поршневом двигателе Ванкеля, который обладает целым набором выдающихся технических характеристик, и в свое время должен был открыть новые перспективы в автомобилестроении, но не смог занять достойного места и массовым не стал.

История создания

Самым первым тепловым двигателем роторного типа принято считать эолипил. В первом веке нашей эры его создал и описал греческий механик-инженер Герон Александрийский.

Конструкция эолипила довольна проста: на оси, проходящей через центр симметрии, расположена вращающаяся бронзовая сфера. Водяной пар, используемый как рабочее тело, истекает из двух сопел, установленных в центре шара друг напротив друга и перпендикулярно оси крепления.

Механизмы водяных и ветряных мельниц, использующих в качестве энергии силу стихии, тоже можно отнести к роторным двигателям древности.

Классификация роторных двигателей

Рабочая камера роторного ДВС может быть герметично замкнутой или иметь постоянную связь с атмосферой, когда от окружающей среды ее отделяют лопасти роторной крыльчатки. По такому принципу построены газовые турбины.

Среди роторно-поршневых двигателей с замкнутыми камерами сгорания специалисты выделяют несколько групп. Разделение может происходить по: наличию или отсутствию уплотнительных элементов, по режиму работы камеры сгорания (прерывисто-пульсирующий или непрерывный), по типу вращения рабочего органа.

Стоит отметить, что у большинства описываемых конструкций нет действующих образцов и они существуют на бумаге.
Классифицировал их русский инженер И.Ю. Исаев, который сам занят созданием совершенного роторного двигателя. Он произвел анализ патентов России, Америки и других стран, всего более 600.

Роторный ДВС с возвратно-вращательным движением

Ротор в таких двигателях не вращается, а совершает возвратно-дуговые качания. Лопатки на роторе и статоре неподвижны, и между ними происходят такты расширения и сжатия.

С пульсирующе-вращательным, однонаправленным движением

В корпусе двигателя расположены два вращающихся ротора, сжатие происходит между их лопастей в моменты сближения, а расширение в момент удаления. Из-за того что вращение лопастей происходит неравномерно, требуется разработка сложного механизма выравнивания.

С уплотнительными заслонками и возвратно-поступательными движениями

Схема с успехом применяемая в пневмомоторах, где вращение осуществляется за счет сжатого воздуха, не прижилась в двигателях внутреннего сгорания по причине высокого давления и температур.

С уплотнителями и возвратно-поступательными движениями корпуса

Схема аналогична предыдущей, только уплотнительные заслонки расположены не на роторе, а на корпусе двигателя. Недостатки те же: невозможность обеспечить достаточную герметичность лопаток корпуса с ротором сохраняя их подвижность.

Двигатели с равномерным движением рабочего и иных элементов

Наиболее перспективные и совершенные виды роторных двигателей. Теоретически могут развивать самые высокие обороты и набирать мощность, но пока не удалось создать ни одной работающей схемы для ДВС.

С планетарным, вращательным движением рабочего элемента

К последним относится наиболее известная широкой общественности схема роторно-поршневого двигателя инженера Феликса Ванкеля.

Хотя существует огромное количество других конструкций планетарного типа:

  • Умплеби (Umpleby)
  • Грея и Друммонда (Gray & Dremmond)
  • Маршалла (Marshall)
  • Спанда (Spand)
  • Рено (Renault)
  • Томаса (Tomas)
  • Веллиндера и Скуга (Wallinder & Skoog)
  • Сенсо (Sensand)
  • Майлара (Maillard)
  • Ферро (Ferro)

История Ванкеля

Жизнь Феликса Генриха Ванкеля не была простой, рано оставшись сиротой (отец будущего изобретателя погиб в первой мировой войне), Феликс не мог собрать средства для обучения в университете, а рабочую специальность не позволяла получить сильная близорукость.

Это побудило Ванкеля на самостоятельное изучение технических дисциплин, благодаря чему в 1924 году ему пришла в голову идея создать роторный двигатель с вращающейся камерой внутреннего сгорания.

В 1929 году он получает патент на изобретение, которое и стало первым шагом к созданию знаменитого РПД Ванкеля. В 1933 году изобретатель, оказавшись в рядах противников Гитлера, проводит полгода в тюрьме. После освобождения разработками роторного двигателя заинтересовались в компании BMW и стали финансировать дальнейшие исследования, выделив для работы мастерскую в Ландау.

После войны она достается в качестве репарации французам, а сам изобретатель попадает в тюрьму, как пособник гитлеровского режима. Лишь в 1951 году, Феликс Генрих Ванкель устраивается на работу в компанию по производству мотоциклов «NSU» и продолжает исследования.

В том же году он начинает совместную работу с главным конструктором «NSU» Вальтером Фройде, который и сам давно занимается изысканиями в области создания роторно-поршневого двигателя для гоночных мотоциклов. В 1958 году первый образец двигателя занимает место на испытательном стенде.

Как работает роторный двигатель

Сконструированный Фройде и Ванкелем силовой агрегат, представляет собой ротор, выполненный в форме треугольника Рело. Ротор планетарно вращается вокруг шестерни, закрепленной в центре статора — неподвижной камеры сгорания. Сама камера выполнена в форме эпитрохоиды, которая отдаленно напоминает восьмерку с вытянутым наружу центром, она выполняет роль цилиндра.

Совершая движение внутри камеры сгорания, ротор образует полости переменного объема, в которых происходят такты двигателя: впуск, сжатие, воспламенение и выпуск. Камеры герметично отделены друг от друга уплотнителями – апексами, износ которых является слабым место роторно-поршневых двигателей.

Воспламенение топливо-воздушной смеси осуществляется сразу двумя свечами зажигания, поскольку камера сгорания имеет вытянутую форму и большой объем, что замедляет скорость горения рабочей смеси.

На роторном двигателе используется угол запоздания а не опережения, как на поршневом. Это необходимо чтобы воспламенение происходило чуть позже, и сила взрыва толкала ротор в нужном направлении.

Конструкция Ванкеля позволила значительно упростить двигатель, отказаться от множества деталей. Отпала необходимость в отдельном газораспределительном механизме , существенно уменьшились вес и размеры мотора.

Преимущества

Как говорилось ранее, роторный двигатель Ванкеля не требует такого большого количества деталей как поршневой, поэтому имеет меньшие размеры, вес и удельную мощность (количество «лошадей» на килограмм веса).

Нет кривошипно-шатунного механизма (в классическом варианте), что позволило снизить вес и вибронагруженность. Из-за отсутствия возвратно-поступательных движений поршней и малой массы подвижных частей, двигатель может развивать и выдерживать очень высокие обороты, практически мгновенно реагируя на нажатие педали газа.

Роторный ДВС выдает мощность в трех четвертях каждого оборота выходного вала, тогда как поршневой лишь на одной четверти.

Недостатки

Именно по причине того, что двигатель Ванкеля, при всех своих плюсах, имеет большое количество минусов, сегодня только Mazda продолжает развивать и совершенствовать его. Хотя патент на него купили сотни компаний, среди которых Toyota, Alfa Romeo, General Motors, Daimler-Benz, Nissan и другие.

Малый ресурс

Главный, и самый существенный недостаток – малый моторесурс двигателя. В среднем он равен 100 тысячам километров для России. В Европе, США и Японии этот показатель вдвое больше, благодаря качеству горючего и грамотному техническому обслуживанию.

Самую высокую нагрузку испытывают металлические пластины, апексы – радиальные торцевые уплотнители между камерами. Им приходится выдерживать высокую температуру, давление и радиальные нагрузки. На RX-7 высота апекса составляет 8.1 миллиметра, замена рекомендована при износе до 6.5, на RX-8 ее сократили до 5.3 заводских, а допустимый износ не более 4.5 миллиметров.

Важно контролировать компрессию, состояние масла и масляных форсунок, которые подают смазку в камеру двигателя. Основные признаки износа двигателя и приближающегося капитального ремонта – низкая компрессия, расход масла и затрудненный запуск «на горячую».

Низкая экологичность

Поскольку система смазки роторно-поршневого двигателя подразумевает прямой впрыск масла в камеру сгорания, а еще из-за неполного сгорания топлива, выхлопные газы имеют повышенную токсичность. Это затрудняло прохождение экологической проверки, нормам которой необходимо было соответствовать, чтобы продавать автомобили на американском рынке.

Для решения проблемы инженеры Mazda создали термальный реактор, который дожигал углеводороды перед выбросом в атмосферу. Впервые его установили на автомобиль Mazda R100.

Вместо того чтобы свернуть производство как другие, Mazda в 1972 году начала продажу автомобилей с системой снижения вредных выбросов для роторных двигателей REAPS (Rotary Engine Anti-Pollution System).

Высокий расход

Все авто с роторными двигателями отличает высокий расход горючего .

Кроме Mazda были еще Mercedes C-111, Corvette XP-882 Four Rotor (четырехсекционный, объем 4 литра), Citroen M35, но это в основном экспериментальные модели, да и из-за разгоревшегося в 80-х годах нефтяного кризиса их производство было приостановлено.

Малая длина рабочего хода ротора и серповидная форма камеры сгорания, не позволяют рабочей смеси прогореть полностью. Выпускное отверстие открывается еще до момента полного сгорания, газы не успевают передать всю силу давления на ротор. Поэтому и температура выхлопных газов этих двигателей такая высокая.

История отечественного РПД

В начале 80-х технологией заинтересовались и в СССР. Правда патент не был куплен, и до всего решили доходить своим умом, проще говоря – скопировать принцип работы и устройство роторного двигателя Mazda.

Для этих целей было создано конструкторское бюро, а в Тольятти цех для серийного производства. В 1976 году первый опытный образец односекционного двигателя ВАЗ-311, мощностью 70 л. с. установлен на 50 автомобилей. За очень короткий срок они выработали ресурс. Дала о себе знать плохая сбалансированность РЭМ (роторно-эксцентрикового механизма) и быстрый износ апексов.

Однако разработкой заинтересовались спецслужбы, для которых динамические характеристики мотора были куда важней ресурса. В 1982 году свет увидел двухсекционный роторный двигатель ВАЗ-411, с шириной ротора 70 см и мощностью 120 л. с., и ВАЗ-413 с ротором 80 см и 140 л. с. Позже моторами ВАЗ-414 оснащают машины КГБ, ГАИ и МВД.

Начиная с 1997 года на авто общего пользования ставят силовой агрегат ВАЗ-415, появляется Волга с трехсекционным РПД ВАЗ-425. Сегодня в России машины подобными моторами не комплектуются.

Список автомобилей с роторно-поршневым двигателем

МаркаМодель
NSUSpider
Ro80
MazdaCosmo Sport (110S)
Familia Rotary Coupe
Parkway Rotary 26
Capella (RX-2)
Savanna (RX-3)
RX-4
RX-7
RX-8
Eunos Cosmo
Rotary Pickup
Luce R-130
MercedesC-111
XP-882 Four Rotor
CitroenM35
GS Birotor (GZ)
ВАЗ21019 (Аркан)
2105-09
ГАЗ21
24
3102

Список роторных двигателей Mazda

ТипОписание
40AПервый стендовый экземпляр, радиус ротора 90 мм
L8AСистема смазки с сухим картером, радиус ротора 98 мм, объем 792 куб. см
10A (0810)Двухсекционный, 982 куб. см, мощность 110 л. с., смешение масла с топливом для смазки, вес 102 кг
10A (0813)100 л. с., увеличение веса до 122 кг
10A (0866)105 л. с., технология снижения выбросов REAPS
13AДля переднеприводной R-130, объем 1310 куб. см, 126 л. с., радиус ротора 120 мм
12AОбъем 1146 куб. см, упрочнен материал ротора, увеличен ресурс статора, уплотнения из чугуна
12A TurboПолупрямой впрыск, 160 л. с.
12BЕдиный распределитель зажигания
13BСамый массовый двигатель, объем 1308 куб. см, низкий уровень выбросов
13B-RESI135 л. с., RESI (Rotary Engine Super Injection) и впрыск Bosch L-Jetronic
13B-DEI146 л. с., переменный впуск, системы 6PI и DEI, впрыск с 4 инжекторами
13B-RE235 л. с., большая HT-15 и малая HT-10 турбины
13B-REW280 л. с., 2 последовательные турбины Hitachi HT-12
13B-MSP RenesisЭкологичный и экономичный, может работать на водороде
13G/20BТрехроторные двигатели для автогонок, объем 1962 куб. см, мощность 300 л. с.
13J/R26BЧетырехроторные, для автогонок, объем 2622 куб. см, мощность 700 л. с.
16X (Renesis 2)300 л. с., концепт-кар Taiki

Правила эксплуатации роторного двигателя

  1. замену масла производить каждые 3-5 тысяч километров пробега. Нормальным считается расход 1.5 литра на 1000 км.
  2. следить за состоянием масляных форсунок, средний срок их жизни составляет 50 тысяч.
  3. менять воздушный фильтр каждые 20 тысяч.
  4. использовать только специальные свечи, ресурс 30-40 тысяч километров.
  5. заливать в бак бензин не ниже АИ-95, а лучше АИ-98.
  6. замерять компрессию при замене масла. Для этого используется специальный прибор, компрессия должна быть в пределах 6.5-8 атмосфер.

При эксплуатации с компрессией ниже этих показателей, стандартного ремкомплекта может оказаться недостаточно – придется менять целую секцию, а возможно и весь движок.

День сегодняшний

На сегодняшний день производится серийный выпуск модели Mazda RX-8, оснащенной двигателем Renesis (сокращение Rotary Engine + Genesis).

Конструкторам удалось вдвое сократить потребление масла и на 40% расход топлива, а экологический класс довести до уровня Euro-4. Двигатель с рабочим объемом 1.3 литра выдает мощность в 250 л. с.

Несмотря на все достижения японцы не останавливаются на достигнутом. Вопреки утверждениям большинства специалистов о том, что РПД не имеет будущего, они не прекращают совершенствовать технологию, и не так давно представили концепт спортивного купе RX-Vision, с роторным двигателем SkyActive-R.

Двигатель Ванкеля: особенности и характеристики

Паровые машины, как и традиционные ДВС отличаются общим недостатком — возвратно-поступательные движения поршня должны преобразовываться во вращательные движения колес. Это и является причиной низкого КПД, высокого износа основных элементов.

Многие инженеры пытались решить эту проблему, придумав двигатель внутреннего сгорания, все детали которого бы только вращались. Однако изобрести такой агрегат смог механик-самоучка, не окончивший ни высшего, ни даже средне-специального учебного заведения.

Немного истории

В 1957 году малоизвестный механик-изобретатель Феликс Ванкель и ведущий инженер NSU Вальтер Фреде стали первыми, кто решил установить роторно-поршневой мотор на автомобиль. «Подопытным» стал на NSU Prinz. Первоначальная конструкция была далекой от совершенства. К примеру, свечи приходилось менять практически после полной разборки агрегата. К тому же, надежность мотора оставалась под сомнением, а про экономичность можно было не упоминать.

После множества испытаний концерн занялся выпуском машин с традиционным ДВС. Однако первый роторно-поршневой DKM-54 мог продемонстрировать великий потенциал.

Именно так оригинальная разновидность ДВС получил свой шанс на внедрение в производство авто. В дальнейшем он постоянно дорабатывался, однако перспективы роторно-поршневого мотора уже тогда были очевидны. РПД входит в классификацию роторных моторов как один из 5 представителей линейки.

К 80-м годам 20 века роторные двигатели Ванкеля исследовались лишь японской компанией Mazda. Еще к этому мотору проявлял внимание ВАЗ. В СССР бензин стоил достаточно дешево, а такой агрегат имел достаточно большую мощность. Однако к 2004 году производство машин с таким двигателем прекратилось. Япония стала единственной страной, в которой продолжается разработка роторного двигателя.

Есть множество разновидностей роторных агрегатов. Единственное их отличие — поверхность корпуса и число выполненных на роторе граней. Различные компоновки таких моторов применяются в авто- и судостроении.

Достоинства

Двигатель Ванкеля с момента создания имел множество выгодных преимуществ перед поршневыми моторами. Агрегат постоянно дорабатывался,что позволило повысить его экономичность и производительность.

Среди преимуществ»Ванкеля» выступают:

  1. Небольшие габариты и вес. «Ванкель» практически в 2 раза меньшепоршневого ДВС, что положительно сказывается на управляемости машины, способствует оптимальному монтажукоробки передач, позволяет сделать салон намного просторнее.
  2. В сравнении с двухтактным мотором, двигатель Ванкеля имеет гораздо меньше деталей. Это более выгодно с точки зрения ремонта.
  3. Вдвое большая мощность, чем у стандартных ДВС.
  4. Большая плавность работы — отсутствие поступательно-возвратных движений благоприятно сказывается на комфорте езды.
  5. Возможность заправки низкооктановым бензином.

Все элементы мотора вращаются в одну сторону. Это улучшает внутренний баланс агрегата и снижает вибрации. «Ванкель» выдает мощность равномерно и плавно. За время пока ротор оборачивается 1 раз, выходной вал совершает 3 оборота. Каждое сгорание осуществляется за 90 фазу вращение ротора.

Это говорит о том, что роторный двигатель с 1 ротором способен выдавать мощностьза ¾ каждого поворота выходного вала. Двигатель с 1 цилиндром может выдавать мощность лишь за ¼ каждого витка выходного вала.

Недостатки

К недостаткам двигателя относятся непривычность для владельцев и механиков. Такой агрегат требует изменить многие привычки. К примеру, тормозить РПД не получится, а штурм подъемов «внатяг» обречен на неудачу. Компактный мотор обладает малой инерцией, чего не скажешь о массивных поршневых ДВС. При частыхзапусках-выключениях «забрасываются» свечи.Звук мотора некоторые автолюбители также относят к недостаткам.

Более серьезными являются органические изъяны роторно-поршневого агрегата. Во-первых, он обладает увеличенным расходом горючего. Это легко объяснить неоптимальной формой камеры, теряющей тепло через стенки. К тому же, мотор «съедает» достаточно много масла. Срок эксплуатации Ванкеля ниже, чем у стандартного ДВС —роторные уплотнениярегулярно изнашиваются.

Значительная роль отведена жесткости внешней характеристики роторно-поршневого мотора. Для управления машиной с таким двигателем требуется достаточно часто манипулировать рычагом коробки передач. Это объясняется тем, что необходим короткий передаточный ряд и увеличенное количество передач.

Идеальным вариантом является монтаж вариатора. Однако на спорткарах автоматы не приживаются, а для авто семейного типа требуется больше экономичности.

Недостатки РПД схожи с недостатками двухтактных поршневых агрегатов. Интересно, что вылечить это можно одними и теми же способами. Увеличенное потребление топлива сбивается непосредственным впрыском, нехватка эластичности — установкой изменяемых фаз. Это повышает экономичность и управляемость. Также для повышения эластичности меняется конфигурация трубопроводов. Такие изменения и были выполнены на моторе Mazda RX-8.

Как работает

Работает двигатель Ванкеляпо принципу, который достаточно просто объяснить даже несведущему в механике человеку. Агрегат обладает минимумом деталей, что позволяет быстро понять, какие системы задействуются в определенные промежутки времени.

Поршень двигателя в РПД заменяется ротором с 3 гранями, который передает силу давления сгораемых газов на вал эксцентрика.

Статор обладает эпитрохоидальной конфигурацией внутренних поверхностей. Он отличается высокой износостойкостью, поскольку имеет специальное покрытие. В вершинах ротора находятсяуплотнения, а на поверхности статораимеются выемки — они являются своеобразными камерами, в которых происходит сгорание. Вал вращается на специальных подшипниках. Они помещены на корпус. Также валоснащенэксцентриком — на нем и вращается ротор.

Шестерня вмонтирована в корпус. Она сцеплена с шестерней ротора. Взаимное действие этих шестерен создает движение ротора. Это позволяет образовать 3 камеры, которые постоянно изменяют свой объем.

Отношение передач шестерен равно 2:3, что обеспечивает один оборот вала за поворот ротора на 120 градусов. Когда ротор совершает полный оборот,все камерывыполняют четырехтактный цикл. Сгораемые газы действуют на эксцентрик вала через ротор — так возникает крутящий момент.

Между ротором и статором имеется 3 камеры. Впуск происходит, когда одна из вершин ротора начинает пересекать впускное отверстие для впрыска топлива. Объем камеры увеличивается, что заставляет смесь ее заполнить. Следующая вершина закрывает окно. Как и поршень двигателя традиционного исполнения, ротор сдавливает рабочую смесь перед воспламенением.

Она сжимается, при наибольшем сжатии в камере возникает искра. В результате осуществляется рабочий ход. После выпускное окно под давлением отработавших газов открывается, и они покидают камеру.

При одном обороте ротора двигатель совершает 3 цикла — это делает ненужным применение уравновешивающих устройств.

В рабочем процессе есть слабые звенья. Первое — повышенная нагрузка на уплотнения, а второе — избыток динамического перекрытия фаз.Не является оптимальной и конфигурация камеры сгорания. Однако есть и положительный момент — если повышать обороты, скорость распространения факела пламени увеличивается быстрее, чем перетекает топливная смесь.

Это позволяет применять для РПД бензин с пониженным октановым числом. Принцип работы Ванкеля достаточно прост, что в свое время привлекло к изобретению внимание многих производителей авто.

Интересные факты

Не каждый автолюбитель знает, что Ванкель является одним из 5 подтипов в классификации роторных моторов.

Компактность, оборотистость, высокая производительность — не этого ли добиваются практически все производители мотоциклов? Однозначно, это так. Однако роторный мотор в мотомире таки не прижился. Все ставки делаются на классические поршневые двигатели.

Однако в истории производства мотоциклов существовало несколько исключений. К примеру, в 1974 году Hercules выпускает массовую серию Wankel, которые оборудованы двигателем KC-27. Это были роторные агрегаты, которые оснащались воздушным охлаждением. Двигатель имел объем294 куб. см. Мощность агрегатов составляла 25л.с. Для смазки агрегата, масло нужно было самостоятельно заливать в топливный бак.

В начале1980 роторный мотор использовали для оснащения мотоциклов Norton. Несмотря на то, что опытные прототипы таких двигателей появились еще в 1970-х.Инженеры Norton успешно внедрили РПД в спорт. К концу 80-х им не было равных.

Сегодня компания производит 588-кубовую модельдвумя роторами NRV588. Также инженерами Norton ведется разработка 700сс версии, которая называется NRV700. Она представляет собой мощный спортбайк, оснащенный инжекторным 170-сильным двигателем Ванкеля.

Как видно, эпоха роторных моторов еще не наступила. Поршневые системы так и остались лидирующими в сфере авто- и мотостроения. Обладатели байков с роторными двигателями могут образовать лишь небольшой круг фанатов Ванкеля. Возобновившийся интерес к «Ванкелю» компании Norton говорит о скором подъеме разработок и достижений в этой сфере.

Одной из причин, по которым двигатель не производится для оснащения автомобилей и мотоциклов — необходимость точного оборудования при его производстве. Малейший брак становится причиной выхода мотора из строя. Это пока не позволяет роторному агрегату заменить поршневой двигатель даже в узкихотраслях производства.

Устройство роторного двигателя. Принцип работы роторного двигателя — видео

Автор Master OffRoad На чтение 13 мин. Просмотров 1.6k. Опубликовано

Содержание

  1. История создания роторного двигателя
  2. Строение и принцип работы роторного двигателя
  3. Строение роторного двигателя
  4. Фазы работы
  5. Плюсы и минусы
  6. КПД роторно-поршневой конструкции
  7. Перегревы и высокие нагрузки
  8. Ресурс
  9. Машины с роторным двигателем
  10. Видео: как устроен и работает роторный двигатель
  11. Подведем итоги

История создания роторного двигателя

Второе имя роторного двигателя (РПД) — ванкель (этакий аналог дизеля). Именно Феликсу Ванкелю сегодня приписываются лавры изобретателя роторно-поршневого двигателя и даже рассказывается трогательная история о том, как Ванкель шел к поставленной цели тогда же, когда Гитлер шел к своей.

На самом деле все было чуточку иначе: талантливый инженер, Феликс Ванкель действительно трудился над разработкой нового, простого двигателя внутреннего сгорания, но это был другой двигатель, основанный на совместном вращении роторов.

После войны Ванкель был привлечен немецкой фирмой NSU, занимавшейся в основном выпуском мотоциклов, в одну из рабочих групп, трудившихся над созданием роторного двигателя под руководством Вальтера Фройде.

Вклад Ванкеля — это обширные исследования уплотнений вращающихся клапанов. Базовая схема и инженерная концепция принадлежат Фройде. Хотя у Ванкеля был патент на двойственное вращение.

Первый двигатель имел вращающуюся камеру и неподвижный ротор. Неудобство конструкции навело на мысль поменять схему местами.

Первый двигатель с вращающимся ротором начал работу в середине 1958 года. Он мало отличался от своего потомка наших дней — разве что свечи пришлось перенести на корпус.

Феликс Ванкель и его первый роторный двигатель

Вскоре фирма объявила о том, что ей удалось создать новый и очень перспективный двигатель. Почти сотня компаний, занимающихся производством автомобилей, закупила лицензии на выпуск этого мотора. Треть лицензий оказалась в Японии.

Строение и принцип работы роторного двигателя

Схема работы роторного двигателя представляет собой нечто совершенно иное, чем обычный ДВС. Во-первых, следует оставить в прошлом конструкцию двигателя внутреннего сгорания, известную нам. А во-вторых, попытаться впитать в себя новые знания и понятия.

Как и поршневой, роторный двигатель использует давление которое создается при сжигании смеси воздуха и топлива. В поршневых двигателях, это давление создается в цилиндрах, и двигает поршни вперед и назад. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.

РПД назван так из-за ротора, то есть такой части мотора, которая движется. Благодаря этому движению мощность передаётся на сцепление и КПП. По сути, ротор выталкивает энергию топлива, которая затем передаётся колёсам через трансмиссию. Сам ротор выполнен обязательно из легированной стали и имеет, как и говорилось выше, форму треугольника.

Капсула, где находится ротор, — это своеобразная матрица, центр вселенной, где все процессы и происходят. Другими словами, именно в этом овальном корпусе происходит:

  • сжатие смеси;
  • топливный впрыск;
  • поступление кислорода;
  • зажигание смеси;
  • отдача сгоревших элементов в выпуск.

Одним словом, шесть в одном, если хотите.

Сам ротор крепится на специальном механизме и не вращается вокруг одной оси, а как бы бегает. Таким образом, создаются изолированные друг от друга полости внутри овального корпуса, в каждой из которых и происходит какой-либо из процессов. Так как ротор треугольный, то полостей получается всего три.

Всё начинается следующим образом: в первой образующейся полости происходит всасывание, то есть камера наполняется воздушно-топливной смесью, которая здесь же перемешивается. После этого ротор вращается и толкает эту перемешанную смесь в другую камеру. Здесь смесь сжимается и воспламеняется при помощи двух свечей.

Смесь после этого идёт в третью полость, где и происходит вытеснение частей использованного топлива в систему выхлопа.

Это и есть полный цикл работы РПД. Но не всё так просто. Это мы рассмотрели схему РПД только с одной стороны. А действия эти проходят постоянно. Если говорить иначе, процессы возникают сразу с трёх сторон ротора. В итоге всего за единственный оборот агрегата повторяется три такта.

Как самому полировать фары автомобиля? Кроме того, японским инженерам удалось усовершенствовать роторный двигатель. Сегодня роторные двигатели Мазда имеют не один, а два и даже три ротора, что в значительной мере повышает производительность, тем более если сравнить его с обычным двигателем внутреннего сгорания. Для сравнения: двухроторный РПД сравним с шестицилиндровым ДВС, а 3-роторный с двенадцатицилиндровым. Вот и получается, что японцы оказались такими дальновидными и преимущества роторного мотора сразу распознали.

Опять же, производительность — это не одно достоинство РПД. Их у него много. Как и было сказано выше, роторный двигатель очень компактный и в нём используется на целых тысячу деталей меньше, чем в том же ДВС. В РПД всего две основные детали — ротор и статор, а проще этого ничего не придумаешь.

Строение роторного двигателя

Роторный двигатель состоит из слоев. Двухроторный двигателя состоят из пяти основных слоев, которые удерживаются вместе благодаря длинным болтам, расположенным по кругу. Охлаждающая жидкость протекает через все части конструкции.

Как самостоятельно полировать автомобиль? Два крайних слоя закрыты и содержат подшипники для выходного вала. Они также запечатаны в основных разделах камеры, где содержатся роторы. Внутренняя поверхность этих частей очень гладкая и помогает роторам в работе. Отдел подачи топлива расположен на конце каждой из этих частей.Следующий слой содержит в себе непосредственно сам ротор и выхлопную часть.

Центр состоит из двух камер подачи топлива, по одной для каждого ротора. Он также разделяет эти два ротора, поэтому его внешняя поверхность очень гладкая.

В центре каждого ротора крепится две большие шестерни, которые вращаются вокруг более маленьких шестерней и крепятся к корпусу двигателя. Это и является орбитой для вращения ротора.

Конечно же, если бы у роторного мотора не было недостатков, то он обязательно бы применялся на современных автомобилях. Возможно даже, что, если бы роторный двигатель был безгрешен, мы и не узнали бы про двигатель поршневой, ведь роторный создали раньше. Затем человеческий гений, пытаясь усовершенствовать агрегат, и создал современный поршневой вариант мотора.

Но к сожалению, минусы у роторного двигателя имеются. К таким вот явным ляпам этого агрегата можно отнести герметизацию камеры сгорания. А в частности, это объясняется недостаточно хорошим контактом самого ротора со стенками цилиндра. При трении со стенками цилиндра металл ротора нагревается и в результате этого расширяется. И сам овальный цилиндр тоже нагревается, и того хуже — нагревание происходит неравномерно.

Если в камере сгорания температура бывает выше, чем в системе впуска/выпуска, цилиндр должен быть выполнен из высокотехнологичного материала, устанавливаемого в разных местах корпуса.

Для того чтобы такой двигатель запустился, используются всего две свечи зажигания. Больше не рекомендуется ввиду особенностей камеры сгорания. РПД наделён бывает совершенно иной камерой сгорания и выдаёт мощность три четверти рабочего времени ДВС, а коэффициент полезного действия составляет целых сорок процентов. По сравнению: у поршневого мотора этот же показатель составляет 20%.

Фазы работы

Как действует роторный двигатель? Принцип работы (gif-изображения и схему РПД вы можете увидеть ниже) данного мотора заключается в следующем. Функционирование двигателя состоит из четырех повторяющихся циклов, а именно:

  1. Подачи топлива. Это первая фаза работы двигателя. Она происходит в тот момент, когда вершина ротора находится на уровне отверстия подачи. Когда камера открыта для основного отсека, ее объем приближается к минимуму. Как только ротор вращается мимо нее, в отсек попадает топливно-воздушная смесь. После этого камера снова становится закрытой.
  2. Сжатия. Когда ротор продолжает свое движение, пространство в отсеке уменьшается. Таким образом, происходит сжатие смеси из воздуха и топлива. Как только механизм проходит отсек со свечей зажигания, объем камеры снова уменьшается. В этот момент происходит воспламенение смеси.
  3. Воспламенения. Зачастую роторный двигатель (ВАЗ-21018 в том числе) имеет несколько свечей зажигания. Это обусловлено большой длиной камеры сгорания. Как только свеча воспламеняет горючую смесь, уровень давления внутри увеличивается в десятки раз. Таким образом, ротор снова приводится в действие. Далее давление в камере и количество газов продолжают расти. В этот момент происходит перемещение ротора и создание крутящего момента. Так продолжается до тех пор, пока механизм не пройдет выхлопной отсек.
  4. Выпуска газов. Когда ротор проходит данный отсек, газ под высоким давлением начинает свободно перемещаться в выхлопную трубу. При этом движение механизма не прекращается. Ротор стабильно вращается до тех пор, пока объем камеры сгорания снова не упадет до минимума. К этому времени из мотора выдавится оставшееся количество отработавших газов.

Именно такой имеет роторный двигатель принцип работы. ВАЗ-2108, на который также монтировался РПД, как и японская «Мазда», отличался тихой работой мотора и высокими динамическими характеристиками. Но в серийное производство данная модификация так и не была запущена. Итак, мы выяснили, какой имеет роторный двигатель принцип работы.

Плюсы и минусы

Есть ряд преимуществ:

  • меньшее количество деталей, как минимум на 35% меньше относительно поршневого. Меньше деталей — меньше поломок;
  • если сопоставить с конкурентом такой же мощности, то РПД будет в 2 раза меньше по размеру;
  • отсутствие высокой нагрузки даже на больших оборотах и если на низких передачах разогнаться сильнее сотни километров в час;
  • меньше весит, поэтому машину проще уравновесить, она становится более устойчивой;
  • нет проблемы вибрации даже у самых легких авто. Поршневой вибрирует гораздо сильнее, ввиду чего роторный лучше сбалансирован.

Но есть и недостатки:

  • главный минус — небольшой ресурс, это издержка простой конструкции. Рабочий угол уплотнителей постоянно меняется, из-за чего они быстро изнашиваются. Износ усиливается и от того, что через каждый такт меняется температура. Вдобавок давление, оказываемое на трущиеся поверхности, от этого есть только одно средство — впрыскивание масла в коллектор;
  • при износе уплотнителей образуются утечки между камерами. Разница в давлении очень большая, от этого страдает КПД. Вред для экологии усиливается;
  • из-за серповидной конфигурации камер топливо сгорает не полностью. Из-за небольшой длины рабочего хода и скорости вращения ротора выталкиваются несгоревшие газы высокой температуры. Выделяются не только продукты сгорания бензина, но и масло, ввиду чего окружающая среда подвергается крайне негативному влиянию. Поршневые двигатели не настолько вредные для экологии;
  • про высокий расход топлива уже было сказано, но это касается не только бензина, но и масла. Такой двигатель съедает до литра на тысячу километров. Если забыть про масло, то можно столкнуться с необходимостью дорогого ремонта или вовсе замены мотора;
  • высокая себестоимость. Требуются качественные дорогие материалы и высокотехнологичное оборудование.

У роторного двигателя достаточно недостатков, но и его конкурент не совершенный. Поэтому соревнование между ними длилось достаточно долго. Сейчас гонка окончена, но никто не может сказать, навсегда или нет.

КПД роторно-поршневой конструкции

Не смотря на ряд недоработок, проведенные исследования показали, что общий КПД двигателя Ванкеля довольно-таки высокий по современным меркам. Его значение составляет 40 – 45%. Для сравнения, у поршневых двигателей внутреннего сгорания КПД составляет 25%, у современных турбодизелей – около 40%. Самый высокий КПД у поршневых дизельных двигателей составляет 50%. До настоящего времени ученые продолжают работу по изысканию резервов для повышения КПД двигателей.

Итоговый КПД работы мотора состоит из трех основных частей:

  1. Топливная эффективность (показатель, характеризующий рациональное использование горючего в моторе).

Исследования в этой области показывают, что только 75% горючего сгорает в полном объеме. Есть мнение, что данная проблема решается путем разделения процессов сгорания и расширения газов. Необходимо предусмотреть обустройство специальных камер при оптимальных условиях. Горение должно происходить в замкнутом объеме, при условии нарастания температурных показателей и давления, расширительный процесс должен происходить при невысоких показателях температур.

  1. КПД механический (характеризует работу, результатом которой стало образование переданного потребителю крутящего момента главной оси).

Порядка 10% работы мотора расходуется на приведение в движение вспомогательных узлов и механизмов. Исправить данную недоработку можно путем внесения изменений в устройство двигателя: когда главный движущийся рабочий элемент не прикасается к неподвижному корпусу. Постоянное плечо крутящего момента должно присутствовать на всем пути следования основного рабочего элемента.

  1. Термическая эффективность (показатель, отражающий количество тепловой энергии, образованной от сжигания горючего, преобразующейся в полезную работу).

На практике 65% полученной тепловой энергии улетучивается с отработанными газами во внешнюю среду. Ряд исследований показал, что можно добиться повышения показателей термической эффективности в том случае, когда конструкция мотора позволяла бы осуществлять сгорание горючего в теплоизолированной камере, чтобы с самого начала достигались максимальные показатели температуры, а в конце эта температура понижалась до минимальных значений путем включения паровой фазы.

Перегревы и высокие нагрузки

Также из-за особой конструкции данный агрегат был часто подвержен перегреву. Вся проблема заключалась в линзовидной форме камеры сгорания.

В отличие от нее, классические ДВС имеют сферическую конструкцию камеры. Топливо, которое сгорает в линзовидном механизме, превращается в тепловую энергию, расходуемую не только на рабочий ход, но и на нагрев самого цилиндра. В конечном итоге частое «закипание» агрегата приводит к быстрому износу и выходу его из строя.

Ресурс

Не только цилиндр терпит большие нагрузки. Исследования показали, что при работе ротора значительная часть нагрузок ложится на уплотнители, расположенные между форсунками механизмов. Они подвергаются постоянному перепаду давления, потому максимальный ресурс двигателя составляет не более 100-150 тысяч километров.

После этого мотору требуется капитальный ремонт, стоимость которого порой равносильна покупке нового агрегата.

Машины с роторным двигателем

В разработке усовершенствованных концепций силового агрегата с базовым элементом конструкции в виде подвижного ротора участвовали и российские конструкторы, включая Зуева, Желтышева, ингушских изобретателей братьев Ахриевых.

Игнорируя инновации, на автомобили по-прежнему устанавливают двигатели Ванкеля.

В число моделей с РПД входят:

  1. Мазда RX-8. Конструкторское бюро японского концерна достигло прогресса в усовершенствовании. Их последняя разработка вместимостью 1,3 л развивает мощность 215 л.с. Более поздняя версия с аналогичным объемом выдает 231 л.с. Производство прекращено с августа 2011 г. в результате снижения спроса.
  2. ВАЗ 2109-90. Такими машинами пользовались в служебных целях сотрудники российских правоохранительных органов. Милицейские автомобили за 8 секунд могли разогнаться до 100 км/ч и развивали скорость 200 км/ч, легко догоняя преступников. Производились и агрегаты с большей мощностью. Но большая цена и малый ресурс не позволили прижиться РПД, и полицейским пришлось пересесть на транспортные средства с поршневыми моторами.
  3. Мерседес С-111. Впервые был представлен автолюбителям на женевском автосалоне в 1970 г. Спортивный автомобиль оснащался трехкамерным двигателем Ванкеля. Максимальная скорость составляла 275 км/ч. На разгон до первой сотни уходило 5 секунд.
  4. ВАЗ 21019 Аркан. Модель также закупалась для нужд МВД. Советских милиционеров на таких машинах догнать было невозможно и, тем более, уйти от погони. Большинство преследований завершалось поимкой преступников. Объяснение тому – способность служебного транспорта развивать предельную скорость 160 км/ч. Трехсекционный мотор в 1,3 л выдавал 120 л.с.

Видео: как устроен и работает роторный двигатель

Подведем итоги

Моторы роторно-поршневого типа превосходно показывают себя в гонках. У них есть для этого высокая мощность, большое количество оборотов. Немаловажно, что машины на нем очень легкие относительно других, так как двигатель меньше и легче. Ресурс двигателя для гонок — не самый важный показатель, как и прожорливость. Но в обычной жизни нельзя этого не учитывать.

Вне недостатки обусловлены строением и принципом работы роторно-поршневого двигателя. Их нельзя отнести к недоработкам, скорее, это особенности. Но в теории есть способ вновь начать пользоваться РПД. Для этого нужно сделать его более экологичным, повысить ресурс и сделать его более экономичным.

Источники

  • https://dolauto.ru/informations/articles/chto-takoe-rotornyy-dvigatel/
  • https://krossovery.info/princip-raboty-rotornogo-dvigatelya-plyusy-i-minusy-sistemy/
  • https://www.syl.ru/article/158520/new_rotornyiy-dvigatel-printsip-rabotyi-plyusyi-i-minusyi-rotornogo-dvigatelya
  • https://geekometr.ru/statji/kak-rabotaet-rotorno-porshnevoy-dvigatel-v-mashine.html
  • https://zewerok. ru/dvigatel-vankelya/
  • https://remontautomobilya.ru/princip-raboty-rotornogo-dvigatelya-plyusy-i-minusy.html

Роторный двигатель: принцип работы, недостатки и преимущества | AraFanat.Ru — все об автомобилях

30.09.2012

bestadmin

Здравствуйте уважаемые автолюбители и читатели блога

Arafanat.ru.

Сегодня расскажу Вам, об альтернативном типе двигателя внутреннего сгорания, а именно роторном или же двигателе Ванкеля.  Почему его называют роторным? Какие преимущества роторного двигателя внутреннего сгорания, перед обычным поршневым?  Из чего он сделан и принцип его работы, почему не получил популярность и многое другое расскажу в этой статье.


И так начнем,

Принцип работы роторного двигателя

В отличии, от обычного

поршневого двигателя

роторный не совершает возвратно поступательных движений, а просто крутится, следовательно  и затраты на остановку в верхних и нижних мертвых точках нет. Благодаря этому свойству двигатель Ванкеля высокооборотистый.

В плоском цилиндре находится ротор. Цилиндр сделан не круглый, а овальный, ротор имеет треугольную форму. В отличии, от поршневого у роторного двигателя нет коленвала,  шатунов, противовесов, головки блока (с клапанами), что делает его конструкцию проще.

На анимации изображен принцип работы роторного двигателя

Как видим принцип работы роторного ДВС прост. Но раз так просто  он работает, меньше деталей, то почему не прижился?


Почему не прижился роторный двигатель?

Недостатки роторного двигателя:

Так как пятно контакта ротора со стенками цилиндра небольшое, стала проблема герметизация камеры сгорания, впуска-выпуска. Так как при трении металл нагревается и расширяется, то без высокоточных расчетов не было бы никакого эффекта, компрессия бы падала, уменьшался бы КПД при прогревании двигателя. Роторный двигатель склонен к перегревам в отличии от поршневого ДВС.

Из рисунка видно что сам овал нагревается неравномерно: в камере сгорания температура выше, чем  во впуске – выпуске, следовательно, цилиндр расширяется в разных местах по разному и приходится использовать высокотехнологический  материал в разных местах цилиндра.

Чтобы поджечь топливо используют две свечи зажигания из за особенностей камеры сгорания, и в отличии от четырехтактного поршневого двигателя мощность выдается  3 /4 рабочего времени ДВС (как 6 цилиндровый), а КПД составляет около 40% против 20% у поршневого двигателя.

Это можно отнести к

преимуществам роторного двигателя

.

Из-за таких особенностей ресурс двигателя маленький

60 -80 тыс. км.,

что делает его непригодным для повседневной езды в городе, к этому же добавляется большой расход топлива на малых оборотов, опять же в сравнении с обычным ДВС. При объеме

1.3 литра

двигатель Ванкеля может потреблять до 20 литров  топлива в городе и выдавать мощность

250 л.с

. и этом быть малогабаритным.

Поэтому такой тип двигателя подходит для

гонок

, где нужна динамика.

В нашей стране был разработан такой двигатель и устанавливался на

классику


(ВАЗ 21079)

для спецслужб, но не прижился. Одним из самых распространенных автомобилей с двигателем Ванкеля является

Mazda


RX 8

, который совершенствует его.


На этом все, до новых встреч.

Похожие статьи:

  • Принцип работы дизельного двигателя

  • Какие дворники выбрать? Виды щеток стеклоочистителей, преимущества и недостатки

  • Принцип работы бензинового двигателя внутреннего сгорания

  • Что такое карбюратор и принцип его работы. Часть 1

  • Принцип работы автономной печки. Предварительный прогрев двигателя

Вы можете пролистать до конца и оставить комментарий. Уведомления сейчас отключены.

Революционный роторно-поршневой двигатель ванкеля: 9 преимуществ конструкции

Двигатель Ванкеля всегда привлекал внимание тем, что он не такой как все остальные – он уникум. Можно только представить, насколько был обрадован и изумлен простотой идеи Феликс Ванкель, когда ему пришла в голову мысль превратить возвратно-поступательные движения во вращательные!? Простая и гениальная идея оказалась сложной в освоении – главным образом тем, что технология требовала огромной точности в производстве деталей, и, как оказалось позже – достижения еще большей, чем в стандартных двигателях, износоустойчивости. Кроме этого, конструкция обладала рядом других технических особенностей, обеспечивших Феликса головной болью на долгое время вперед.

В первые годы после появления первого автомобиля NSU Ro-80 с двигателем, работающим по схеме Ванкеля, десятки компаний на волне возросшего ажиотажа ринулись выкупать лицензии на право производства роторного двигателя, но только считанные единицы смогли разумно преобразовать дорогостоящие чертежи гениального Феликса Ванкеля в металл. Самым известным примером из мира авто остается компания Mazda, которая устанавливает “роторы” на некоторые автомобили серии RX. В мотоциклах этот двигатель тоже нашел применение, примеры которых далее в статье. Впрочем, давайте обо всем по порядку…

Зри в корень. Устройство двигателя ВанкеляТак называемый двигатель Ванкеля был изобретен немецким инженером Феликсом Ванкелем в 1957 году. Этот тип двигателя внутреннего сгорания использует вращательные движения для создания напряжения вместо привычной поршневой системы.   Особенность двигателя – применение трехгранного ротора (поршня), имеющего вид треугольника Рело, вращающегося внутри цилиндра специального профиля, поверхность которого выполнена по эпитрохоиде*.

* Эпитрохоида — плоская кривая, образуемая точкой, жёстко связанной с окружностью, катящейся по другой окружности.

Давление в РПД образуется за счёт вращения ротора. При этом происходит последовательное осуществление процессов – впуска, сжатия, сгорания, выпуска – в разных частях корпуса одного цилиндра. Такая конструкция даёт следующие преимущества: низкий уровень вибрации; отличные динамические характеристики; высокая мощность.

Принципы процессов смесеобразования, зажигания, смазки, охлаждения, запуска принципиально ничем не отличаются от обычных поршневых двигателей внутреннего сгорания.

Отсутствие громоздкого механизма газораспределения делает такой двигатель значительно проще четырехтактного поршневого за счёт меньшего количества деталей, обеспечивая необычайную компактность и высокую удельную мощность.

Из минусов РПД отмечают крайне высокую критичность к регулярному сервисному обслуживанию (замена масла, уплотнителей) и высокий нагрев двигателя, а также большой расход топлива и токсичный выхлоп, что является следствием характерной для РПД узкой серпообразной камера сгорания (по краям камеры сгорание топлива затрудняется).

Соединение ротора с выходным валом через эксцентриковый механизм, являясь  особенностью РПД Ванкеля, вызывает давление между трущимися поверхностями, что в сочетании с высокой температурой, приводит к дополнительному износу и нагреву двигателя.В связи с этим возникает требование к частой замене масла.

При правильной эксплуатации периодически производится капитальный ремонт, включающий в себя замену уплотнителей. Ресурс при правильной эксплуатации достаточно велик, но не заменённое вовремя масло неизбежно приводит к необратимым последствиям, и двигатель выходит из строя.В таком моторе очень важно следить за состоянием уплотнителей.

Площадь пятна контакта очень невелика, а перепад давления очень высокий. Следствием этого, неразрешимого для двигателей Ванкеля, противоречия являются высокие утечки между отдельными камерами и, как следствие, падение коэффициента полезного действия и токсичность выхлопа.

Есть еще две сложности у этой схемы мотора – малая длина рабочего хода и очень специфический режим работы кривошипного механизма – эксцентрикового вала в отношении движения поршневой поверхности ротора. От этого у однороторного мотора  плохой график крутящего момента.

Подробнее об устройстве двигателя Ванкеля:http://autorelease.ru/articles/automobile/946-rotornyj-dvigatel-princzip-raboty.htmlКстати, не везде об этом говорится, но двигатель Ванкеля является всего лишь одним из пяти подтипов роторных двигателей. Подробнее:http://www.rotor-motor.ru

Интересно, что за счёт отсутствия преобразования возвратно-поступательного движения во вращательное, двигатель Ванкеля способен выдерживать гораздо большие обороты, и с меньшими вибрациями, по сравнению с традиционными двигателями.

Роторно-поршневые двигатели обладают более высокой мощностью при небольшом объёме камеры сгорания, сама же конструкция двигателя сравнительно мала и содержит меньше деталей.

Небольшие размеры улучшают управляемость, облегчают оптимальное расположение трансмиссии (развесовка) и позволяют сделать аппарат более компактным, либо освободить место под другие цели.

Итак, компактность, производительность, оборотистость – не это ли есть магическая формула идеального двигателя, к которой пытаются приблизиться все без исключения производители мотоциклов? Да, именно так.

Но в мотомире роторный двигатель пока прижиться не смог – все ставки сделаны на классический поршневой мотор различных конфигураций, таких как рядные “четверки” и v-образные “двойки” и “четверки”.

Правда, попадаются и редкие исключения:

Мотоциклы с РПД

Hercules

В 1974 году компания Hercules первой выпустила в массы мотоциклы серии Wankel (W-2000), с двигателями KC-27 от компании “Sachs”. Это были однороторные движки с воздушным охлаждением, объемом двигателя 294 см.куб. и мощностью 25 лошадиных сил, позже мощность была увеличена до 27 л.с.

(20 кВт) при 6000 об/мин. Для смазки двигателя было необходимо вручную добавлять масло в топливный бак мотоцикла, а с 1976 года, после апгрейда конструкции двигателя, масло начало подаваться из специального бака с помощью насоса.

В некоторых странах W-2000 продавался как DKW (Dampf-Kraft-Wagen).

Norton

В начале 1980-х годов этот же двигатель использовался для установки в немногочисленные мотоциклы Norton, не смотря на то, что опытные прототипы РПД появились на байках Norton еще в начале 70-х. Надо отдать должное инженерам Norton, которые достаточно успешно использовали РПД в спорте – в конце 80-х и начале 90-х им практически не было равных.

Особенно нужно отметить модели RCW588 и сменивший его в 91-м году NRS588, которые принесли Norton множество побед на поприще мотоспорта. Так, один из болидов NRS588 обладал превосходным отношением мощности к весу 135 л.с. / 135 кг, был компактен и легок. Существовала и дорожная версия  спортбайка – легендарный F1, мощность которого достигала 95л.с.

@9500об/мин, а стоимость – 45 тысяч долларов США…

В настоящее время Norton производит 588-кубовую двух-роторную модель NRV588 и разрабатывает 700сс версию с названием NRV700.

NRV588 – современный спортбайк со доработанным, теперь уже инжекторным 170-сильным двигателем Ванкеля с впускным трактом переменной величины и электронным управлением дросселя. Характеристики байка – 130кг / 170л.с.

, поэтому производительность мотоцикла просто феноменальная. Ожидается, что NRV700 сможет развивать уже 210 л.с. при схожем весе мотоцикла, однако в самой компании пока об этом не распространяются.

MZ

К 1963 году в рамках программы модернизации, отдел перспективных разработок завода MZ представил роторно-поршневой двигатель для мотоцикла. До 1965 года проводилось тестирование этого двигателя в нескольких прототипах MZ, но на этом все и закончилось.

  • Suzuki

На общей волне интереса к РПД, за разработку модели мотоцикла с роторно-поршневым двигателем взялась и японская компания Suzuki. Мотоцикл серии RE5 выпускался совсем недолго – с 1974 по 1976 г.г и вскоре стал предметом коллекционирования. Двигатель с рабочим объемом 497,5 см.куб. на 6500 об. мин. развивал мощность в 62 л.с. и максимальный крутящий момент в 54.9 Нм при 3500 об.мин.

Надо заметить, из Японцев, кроме Suzuki, планы по запуску в производство мотоциклов роторно-поршневыми двигателями были и у остальных компаний. Так, Honda тогда разрабатывала и тестировала свой прототип, а в 1972 году Yamaha даже показала на выставке Tokyo Motor Show  готовую модель мотоцикла RZ-201 с двухроторным двигателем.

Henk van Veen

И настоящей экзотикой является этот мотоцикл OCR 1000 компании Van Veen – датского дилера марки Kreidler. После того, как Kreidler обанкротилась, в Van Veen приступили к разработке своего собственного дорожного мотоцикла с роторно-поршневым двигателем.

С 1966  по 1968 год было выпущено всего 30 таких аппаратов. Двигатель рабочим объемом: 2 х 498 см.куб.и мощностью – 100 л.с. был позаимствован у автомобиля NSU-Citroen Comotor (Citroen GZ), трансмиссия в центре разработок Porsche, а рама – у Moto Guzzi.

Энтузиасты не обходят стороной двигатель Ванкеля. Установка РПД в раму кастом-мотоцикла сразу же выделяет байк на фоне остальных и привлекает внимание, при должном умении обеспечивая оригинальнейший образ мотоциклу.

Ярким примером служит кастом Revelation Родни Агуэра (Rodney Aguiar) с роторно-поршневым двигателем Mazda RX-7, карданным приводом на заднее колесо от BMW R1100GS и передней вилкой от Suzuki GSX-R 750.  Как утверждает владелец, на заднем колесе его кастома Revelation целых 250 л.с.

, и не верить ему причин у нас не имеется. Подробнее »

Мотоциклы с РПД – отечественные разработки от ВНИИмотопром

Интересно, что в Советском Союзе тоже существовали разработки в области РПД. И если о роторном автомобиле ВАЗ известно многим, то существование в прошлом отечественных мотоциклов с двигателями, построенными по схеме Ванкеля, до сих пор для многих остается секретом.

Еще в 1970 году начались дорожные испытания двигателя РД-350В, установленного в шасси от Днепр К-650. Динамика машины оказалась удовлетворительной, мощность двигателя была доведена до 30,5 л.с.

, но очень малый ресурс мотора (всего в 100 часов) не позволил увидеть разработке светлое будущее.

В 1972 году создается новый вариант РПД — РД-500В. Его корпус выполнен из алюминиевого сплава, с хромовым покрытием рабочей поверхности. Двигатель развивал мощность 40 л.с. при 6000 об/мин. Дорожные испытания мотора проводились в шасси мотоцикла Днепр МТ-9.

На нем впервые опробовали систему впрыска топлива, но впоследствии отказались от нее из-за затрудненного запуска холодного двигателя (системы впрыска топлива тех времен были далеки от совершенства).

Развитием РД-500В стал созданный в 1973 году РД-501, в котором применили износо-жаростойкое никасилевое покрытие алюминиевого корпуса, ротор двигателя был изготовлен из спеченного алюминиевого сплава, а воспламенение бензовоздушной смеси обеспечивалось электронной бесконтактной системой зажигания.

Решительным шагом стал переход на систему жидкостного охлаждения в 1976 году. Такой двигатель, получивший обозначение РД-510, развивал уже 48 л.с. при 6000 об/мин. Дальнейшие работы были направлены на повышение “живучести” двигателя, снижение расхода топлива и токсичности отработавших газов.

Односекционный РД-515, в середине 70-х предполагалось ставить на тяжелые мотоциклы. При весе 38 кг и объеме 491 см куб. он выдавал 38 л.с. (6000 об./мин.) и 51 Нм (3500 об./мин.). Торцевые уплотнители изготовляли из стали или чугуна.

Специально для этого мотора разработали технологию нанесения износостойкого жаропрочного никель-кремниевого покрытия “никосил” на алюминиевую основу. Агрегат выхаживал до капитального ремонта 50 тыс. км.

Последними из известных нам проектов в области отечественных мотоциклов с РПД являются разработанные в середине 80-х аппараты РД – 660 и эскортный мотоцикл РД-601 (613 куб.см, мощность 52 л.с. при 6000 об./мин.)

Становится понятным, что к началу “перестройки” 90-х годов институт располагал несколькими отработанными конструкциями РПД. Но дальнейший разворот событий в нашей стране убил все надежды на какое-либо успешное продолжение разработок. На сегодняшний день разработки советских времен в области роторно-поршневых двигателей можно наблюдать в таком состоянии:

Как мы видим, эпоха роторного двигателя так и не смогла захватить мир более привычной поршневой системы и занять свою устойчивую позицию на рынке. Обладатели мотоциклов с РПД автоматически превратились в небольшой клуб с единым интересом, а их байки – раритетом и диковинкой, которую с удовольствием примет практически любой музей!

Но вполне возможно, что будущее, которое сулили разработчики и производители двигателю Ванкеля просто еще не настало. По крайней мере, возобновившийся к нему интерес марки Norton может развить новую спираль разработок и достижений, и тогда Феликс Ванкель еще себя покажет!

Что такое роторно-поршневой двигатель. Принцип работы, особенности, преимущества и недостатки

  • Сегодня мы узнаем, что называется роторно-поршневым двигателем автомобиля, каков его принцип работы и в чем заключается отличие мотора от классической силовой установки
  • ЧТО ТАКОЕ РОТОРНО-ПОРШНЕВОЙ ДВИГАТЕЛЬ ВАНКЕЛЯ. ПРИНЦИП РАБОТЫ, ОСОБЕННОСТИ, ПРЕИМУЩЕСТВА И НЕДОСТАТКИ

Добрый день, сегодня мы узнаем, что называется роторно-поршневым двигателем автомобиля, известным в народе, как силовая установка Ванкеля, каков его принцип работы и в чем заключается отличие мотора от классических типов. Кроме того, расскажем про то, какими преимуществами с недостатками обладает роторно-поршневой двигатель, насколько ремонтопригоден мотор, а также выгодна ли в эксплуатации и обслуживания данная силовая установка. В заключении поговорим о том, на какие современные автомобили устанавливают мотор с роторно-поршневым типом действия, а также, из каких основных и вспомогательных компонентов состоит двигатель.

Итак, что называетсяавтомобильным роторно-поршневым двигателем Ванкеля? Роторно-поршневой силовой установкой или сокращенно РПД Ванкеля называется двигатель внутреннего сгорания, в котором энергия сгорающих газов преобразуется в механическую при помощи специального ротора, совершающего вращательное или вращательно-возвратное движение относительно главного корпуса. Конструкция двигателя была разработана в 1957 году инженерами Вальтером Фройде и Феликсом Ванкелем. Силовая установка официально была запущена в массовое производство в 1959 году.

 

ЧТО ТАКОЕ ХОНИНГОВАНИЕ ЦИЛИНДРОВ ДВИГАТЕЛЯ

 

ЧТО ТАКОЕ КАПИТАЛЬНЫЙ РЕМОНТ ДВИГАТЕЛЯ

Роторно-поршневой двигатель обладает рядом конструктивных и функциональных особенностей.

В такой силовой установке вместо стандартного поршня применяется трехгранный ротор, который с виду напоминает треугольник с закругленными концами.

Данный своеобразный поршень имеет официальное название треугольник Рело, который вращается внутри цилиндра специального размера и формы выполненной по типу кривой плоскости, которая жестко связана с окружностью, катящейся по внешней стороне другой окружности. Справочно заметим, что двигатель Ванкеля, когда то считался мотором будущего, благодаря введению множества новаций при его разработке и производстве

{banner_adsensetext}

1. Особенности, конструкция, преимущества и недостатки роторно-поршневого двигателя

Благодаря уникальной особенности главного поршня, который похож на трехгранный ротор у двигателя отсутствуют преобразования возвратно-поступательного движения во вращательное.

Эти моменты способствуют тому, что силовая установка способна выдерживать намного более высокие обороты в сравнении с классическим типом двигателя. Самой главной особенностью мотора Ванкеля является то, что обладая небольшим объемом камеры сгорания, двигатель выдает высокие показатели мощности.

Что касается габаритов конструкции, то она опять же в сравнении с традиционным мотором, она в несколько раз меньше и содержит малое количество компонентов.

Благодаря небольшому размеру двигателя оптимизируется расположение трансмиссии и следовательно улучшается развесовка узлов, что позволяет получить чуткую управляемость, а также помогает сделать автомобиль более просторным, как для водителя, так для пассажиров.

Как и любой другой двигатель, роторно-поршневой обладает своими плюсами и минусами, которые ему характерны. 

К преимуществам такой силовой установки относят:

Небольшие габариты и малый вес;

  1. Небольшое количество компонентов и деталей, даже в сравнении с 2-ух тактным поршневым мотором;
  2. Мощность в 2 раза больше при тех же размерах, чем у классического двигателя;
  3. Плавное функционирование, благодаря отсутствию возвратно-поступательных движений;

Использование топлива с низким октановым числом.

К недостаткам такой силовой установки относят:

– Процедура по сгоранию топлива в камере цилиндра происходит не эффективно, что ведет к повышенному расходу топлива и высокой токсичности при выработке выхлопных газов;

Высокий расход моторного масла, в связи со специфической конструкцией компонентов рассчитанной на прогар смазки;

– Нет возможности производить силовые установки на площадях, которые предназначены для выпуска классических двигателей;

– Для налаживания массового выпуска моторов такого типа требуется переоснащение огромного числа оборудования и оснастки, что просто невыгодно, а следовательно нецелесообразно.

Кроме того, не стоит забывать, что роторно-поршневые моторы очень склонны к перегреву, в связи с тем, что камера сгорания обладает линзовидной формой, то есть при небольшом объеме у нее довольно большая площадь. В процессе горения топливно-воздушной смеси, главные потери энергии происходят через излучение, интенсивность,которого пропорционально 1/4 степени от общего показателя температуры. Если данный нюанс рассматривать с точки зрения снижения удельной поверхности за счет потерь теплоты, то идеальной формой камеры сгорания должна быть сфера, то есть шар. Таким образом, образованная в процессе сгорания мощная энергия не только бесполезно выходит из камеры, то и ведет к тому, что происходит перегрев рабочей области цилиндра.

Однако, если взглянуть на конструкцию и строение роторно-поршневого двигателя, то он просто удивляет своей простотой. В принципе из основных компонентов, в мотор входят корпус, как правило, изготавливается он из стали, далее идет вал, один единственный ротор и на этом все. Справочно заметим, что все же кроме перегрева этого двигателя существует еще одна проблема – это слабые уплотнения ротора. Но, как утверждают производители, уплотнители за несколько десятков лет доработок удалось довести до ума и их срок службы приблизился к ресурсу поршневых колец в моторе, который равен в среднем от 150 до 200 тысяч километров пробега.Кроме вышеописанных недостатков стоит еще учитывать тот факт, что если мы обладаем роторно-поршневым двигателем Ванкеля, то не каждая станция технического обслуживания готова будет нас принять для ремонта. Данная силовая установка требует особых навыков в ее обслуживании и уж тем более ремонте. Из конструктивных особенностей отметим, что тормозить мотором, как многие привыкли делать в автомобилях с традиционными двигателя, с ним не получится, ехать в гору, как говорится “в натяг”  – то тут вообще никак. Дело в том, что “малышВанкеля (имеется в виду мотор) слишком компактен и выдает слабую инерцию, в отличие от больших классических установок. Кроме того, роторно-поршневой мотор крайне не любит частые запуски и выключения, в итоге это приводит к быстрому уничтожению свечей зажигания. Однако звук работающего малыша-крепыша” является его преимуществом, он очень непривычен и чем то похож на спортивный рык болида.Вроде, как серьезные недостатки мотора закончились, теперь можно перейти к менее существенным, например всем роторным двигателям присуща слабая эластичность технических характеристик, ну и конечно же просто бессовестный расход топлива с моторным маслом. Высокий расход топлива происходит из-за больших потерь тепла через стенки камеры сгорания цилиндра, показатели процесса которого далеки от оптимального. Что касается расхода масла, то это конструкторская особенность, без нее увы никак. Ну а срок службыкрепыша” будет ниже, чем у классического мотора, в связи с быстрым износом уплотнений ротора, о которых мы говорили ранее. В среднем ресурс роторно-поршневого двигателя равен 180-200 тысяч километров пробега.Что касается удобства пользования таким двигателем, то из-за того, что внешние параметры мотора довольно жесткие, в связи с этим придется делать частые манипуляции селектором коробки передач. По русски говоря, в процессе передвижения придется чаще дергать рычаг коробки, в связи с тем, что передаточные числа очень короткие, поэтому число передач увеличено. Оптимальным вариантом для этой установки была бы работа в паре с вариатором, но исходя из огромного расхода топлива мотором, почти все производители решили отказаться от автоматических трансмиссий по причине не целесообразности.По большому счету роторно-поршневые двигатели обладают теми же недостатками, что и двухтактные поршневые моторы. Ремонт и обслуживание таких силовых установок происходит идентично. Кроме того, вышеописанные минусы в виде масложора, повышенного расхода топлива происходят в связи с непосредственным впрыском горючего в камеру сгорания. Кроме того, недостаточная эластичность, которая присуща эти моторам в принципе вполне неплохо регулируется изменяемыми фазами и конфигурацией трубопроводов

{banner_yandexblokrtb1}

2. Принцип работы роторно-поршневого двигателя 

Главная деталь роторно-поршневого двигателя – это трехгранных ротор, напоминающий с виду треугольник со стесанными поверхностями на краях, который преобразует силу давления газов в камере сгорания во вращательное движение вала эксцентрикового типа. Само по себе движение ротора относительно статора происходит благодаря паре шестерен, расположенных на роторе (1-ая шестерня) и на боковой крышке статора (2-я шестерня).

Справочно заметим, что рабочая поверхность ротора и статора – это плоская кривая, которая образует окружности по краям.

Благодаря такой поверхности, которая изготавливается из износостойкого покрытия, детали очень плотно прилегают друг другу и имеют почти неограниченный срок службы.

На вершинах ротора устанавливаются определенные уплотнения, а на рабочих поверхностях вытачиваются специальные выемки, которые играют роль камер сгорания.

Работа деталей обеспечивается вращением вала, который оборудован подшипниками, расположенными на корпусе двигателя. Кроме взаимосвязи с подшипником, вал снабжен эксцентриком цилиндрической формы, на котором происходит вращение ротора.

Первая шестерня, которая закреплена на корпусе двигателя входит в зацепление с шестерней ротора. Взаимодействие 2-ух шестерен обеспечивает движение ротора относительно корпуса, которое называется орбитальным. В результате вращения ротора появляется 3 отдельных камеры сгорания различного объема. Что касается показателя передаточного отношения, то оно всегда равно 2 к 3. Таким образом, за 1 оборот эксцентрикового вала, ротор делает поворот на 120 градусов. Справочно заметим, что за целый оборот ротора в каждой из камер сгорания топлива происходит полный цикл, состоящий из 4-х тактов. В результате действия газовых сил в камерах через ротор на вал эксцентрикового типа передается крутящий момент силовой установки.

Как правило, между статором и ротором появляются 3 камеры сгорания, которые однотипны пространству над поршнем в двигателе.

Процесс впуска происходит тогда, когда верхняя точка ротора пересекает кромку впускного вала, после этого процесса объем камеры начинает увеличиваться и в этот момент туда поступает топливно-воздушная смесь.

Затем, когда следующая верхняя точка или вершина ротора перекрывает впускное отверстие, топливно-воздушная смесь начинает плавно сживаться. Затем, когда происходит наибольшее сжатие горючей смеси, свечи подают искру и после этого начинается рабочий ход двигателя.

Когда начинается рабочий ход или движение, открывается еще одно отверстие, которое необходимо для выпуска отработанных газов из системы. Делается это для того, чтобы отработанные газы, как можно быстрее покинули пространство камеры сгорания. Ниже на изображении наглядно показаны все этапы работы роторно-поршневого двигателя (Для увеличения, нажмите на изображение).

Если краткое описать все этапы, работы ротоно-поршневого двигателя, то можно увидеть, что за 1 оборот ротора в моторе всегда будут происходит 3 разных цикла.

Эта особенность делает ненужным применять специальные уравновешивающие детали, которые требуются в 2-ух секционных конструкциях, которые довольно сильно на сегодняшний день распространены на планете.

Справочно заметим, что данный двигатель к сожалениюне получил массового распространения и на сегодняшний день используется только одной единственной японской компанией “Mazda” в своих новых моторах с технологией SkyActiv” и “Renesis“.

Роторно — поршневой двигатель (двигатель Ванкеля)

Роторно-поршневой двигатель или двигатель Ванкеля представляет собой мотор, где главным рабочим элементом осуществляются планетарные круговые движения. Это принципиально другой вид двигателя, отличный от поршневых собратьев в семействе ДВС.

В конструкции такого агрегата используется ротор (поршень) с тремя гранями, внешне образующим треугольник Рело, осуществляющий круговые движения в цилиндре особого профиля.

Чаще всего поверхность цилиндра исполнена по эпитрохоиде (плоской кривой, полученной точкой, которая жестко связана с окружностью, осуществляющей движение по внешней стороне другой окружности).

На практике можно встретить цилиндр и ротор иных форм.

Составные элементы и принцип работы

Устройство двигателя типа РПД предельно проста и компактна. На ось агрегата устанавливается ротор, который крепко соединяется с шестерней. Последняя сцепляется со статором. Ротор, имеющий три грани, двигается по эпитрохоидальной цилиндрической плоскости. В результате чего сменяющиеся объемы рабочих камер цилиндра отсекаются с помощью трех клапанов.

Уплотнительные пластины (торцевого и радиального типа) прижимаются к цилиндру под действием газа и за счет действия центростремительных сил и ленточных пружин. Получаются 3 изолированные камеры разные по объемным размерам.

Здесь осуществляются процессы сжимания поступившей смеси горючего и воздуха, расширения газов, оказывающих давление на рабочую поверхность ротора и очищающих камеру сгорания от газов. На эксцентриковую ось передается круговое движение ротора. Сама ось находится на подшипниках и передает момент вращения на механизмы трансмиссии.

В этих моторах осуществляется одновременная работа двух механических пар. Одна, которая состоит из шестерен, регулирует движение самого ротора. Другая — преобразует вращающиеся движение поршня во вращающиеся движения эксцентриковой оси.

  • Детали Роторно-поршневого двигателя
  •    Принцип работы двигателя Ванкеля
  • На примере двигателей, установленных на автомобилях ВАЗ, можно назвать следующие технические характеристики:
    — 1,308 см3 – рабочий объем камеры РПД;
    — 103 кВт/6000 мин-1 – номинальная мощность;
    — 130 кг масса двигателя;
  • — 125000 км – ресурс двигателя до первого полного его ремонта.

Смесеобразование

В теории в РПД применяют несколько разновидностей смесеобразования: внешнее и внутреннее, на основе жидких, твердых, газообразных видов топлива.

Касательно твердых видов топлива стоит отметить, что их первоначально газифицируют в газогенераторах, так как они приводят к повышенному золообразованию в цилиндрах. Поэтому большее распространение на практике получили газообразные и жидкие топлива.

Сам механизм образования смеси в двигателях Ванкеля будет зависеть от вида применяемого топлива.

При использовании газообразного топлива его смешение с воздухом происходит в специальном отсеке на входе в двигатель. Горючая смесь в цилиндры поступает в готовом виде.

Из жидкого топлива смесь приготавливается следующим образом:

  1. Воздух смешивается с жидким топливом перед поступлением в цилиндры, куда поступает горючая смесь.
  2. В цилиндры двигателя жидкое топливо и воздух поступают по отдельности, и уже внутри цилиндра происходит их смешивание. Рабочая смесь получается при соприкосновении их с остаточными газами.

Соответственно, топливно-воздушная смесь может готовиться вне цилиндров или внутри их. От этого идет разделение двигателей с внутренним или внешним образованием смеси.

Особенности РПД

Преимущества

Преимущества двигателей роторно-поршневого типа по сравнению со стандартными бензиновыми двигателями:

— Низкие показатели уровня вибрации.
В моторах типа РПД отсутствует преобразование возвратно-поступательного движения во вращательное, что позволяет агрегату выдержать высокие обороты с меньшими вибрациями.

— Хорошие динамические характеристики.
Благодаря своему устройству такой мотор, установленный в машине, позволяет ее разогнать выше 100 км/ч на высоких оборотах без избыточной нагрузки.

— Хорошие показатели удельной мощности при малой массе.
Из-за отсутствия в конструкции двигателя коленчатого вала и шатунов достигается небольшая масса движущихся частей в РПД.

— В двигателях такого типа практически отсутствует система смазки.
Непосредственно в топливо добавляется масло. Топливно-воздушная смесь сама осуществляет смазывание пар трения.

— Мотор роторно-поршневого типа имеет небольшие габаритные размеры.

Установленный роторно-поршневой мотор позволяет максимально использовать полезное пространство моторного отсека автомобиля, равномерно распределить нагрузку на оси автомашины и лучше рассчитать расположение элементов коробки передач и узлов. Например, четырехтактный двигатель такой же мощности будет в два раза больше роторного двигателя.

Недостатки двигателя Ванкеля

— Качество моторного масла.
При эксплуатации такого типа двигателей необходимо уделять должное внимание к качественному составу масла, применяемого в двигателях Ванкеля.

Ротор и находящаяся внутри камера двигателя имеют большую площадь соприкосновения, соответственно, износ двигателя происходит быстрее, а также такой двигатель постоянно перегревается. Нерегулярная смена масла наносит огромный урон двигателю.

Износ мотора возрастает в разы из-за наличия абразивных частиц в отработанном масле.

— Качество свечей зажигания.
Эксплуатантам таких двигателей приходится быть особо требовательным к качественному составу свечей. В камере сгорания из-за ее небольшого объема, протяженной формы и высокой температуры затруднен процесс зажигания смеси. Следствием является повышенная рабочая температура и периодическая детонация камеры сгорания.

— Материалы уплотнительных элементов.
Существенной недоработкой мотора типа РПД можно назвать ненадежную организацию уплотнений промежутков между камерой, где сгорает топливо, и ротором. Устройство ротора такого мотора достаточно сложное, поэтому уплотнения требуются и по граням ротора, и по боковой поверхности, имеющей соприкосновение с крышками двигателя.

Поверхности, которые подвергаются трению, необходимо постоянно смазывать, что выливается в повышенный расход масла. Практика показывает, что мотор типа РПД может потребить от 400 гр до 1 кг масла на каждые 1000 км.

Снижаются экологичные показатели работы двигателя, так как горючее сгорает вместе с маслом, в результате в окружающую среду выбрасывается большое количество вредных веществ.

Из-за своих недоработок такие моторы не получили широкого распространения в автомобилестроении и в изготовлении мотоциклов. Но на базе РПД изготавливаются компрессоры и насосы.

Авиамоделисты часто используют такие двигатели для конструирования своих моделей. Из-за невысоких требований к экономичности и надежности конструкторы не применяют сложную систему уплотнений в таких моторах, что значительно снижает его себестоимость.

Простота его конструкции позволяет без проблем встроить в авиамодель.

Кпд роторно-поршневой конструкции

Не смотря на ряд недоработок, проведенные исследования показали, что общий КПД двигателя Ванкеля довольно-таки высокий по современным меркам. Его значение составляет 40 – 45%.

Для сравнения, у поршневых двигателей внутреннего сгорания КПД составляет 25%, у современных турбодизелей – около 40%. Самый высокий КПД у поршневых дизельных двигателей составляет 50%.

До настоящего времени ученые продолжают работу по изысканию резервов для повышения КПД двигателей.

Итоговый КПД работы мотора состоит из трех основных частей:

  1. Топливная эффективность (показатель, характеризующий рациональное использование горючего в моторе).

Исследования в этой области показывают, что только 75% горючего сгорает в полном объеме. Есть мнение, что данная проблема решается путем разделения процессов сгорания и расширения газов.

Необходимо предусмотреть обустройство специальных камер при оптимальных условиях.

Горение должно происходить в замкнутом объеме, при условии нарастания температурных показателей и давления, расширительный процесс должен происходить при невысоких показателях температур.

  1. КПД механический (характеризует работу, результатом которой стало образование переданного потребителю крутящего момента главной оси).

Порядка 10% работы мотора расходуется на приведение в движение вспомогательных узлов и механизмов. Исправить данную недоработку можно путем внесения изменений в устройство двигателя: когда главный движущийся рабочий элемент не прикасается к неподвижному корпусу. Постоянное плечо крутящего момента должно присутствовать на всем пути следования основного рабочего элемента.

  1. Термическая эффективность (показатель, отражающий количество тепловой энергии, образованной от сжигания горючего, преобразующейся в полезную работу).

На практике 65% полученной тепловой энергии улетучивается с отработанными газами во внешнюю среду.

Ряд исследований показал, что можно добиться повышения показателей термической эффективности в том случае, когда конструкция мотора позволяла бы осуществлять сгорание горючего в теплоизолированной камере, чтобы с самого начала достигались максимальные показатели температуры, а в конце эта температура понижалась до минимальных значений путем включения паровой фазы.

Современное состояние роторно-поршневого двигателя

На пути массового применения двигателя встали значительные технические трудности:
— отработка качественного рабочего процесса в камере неблагоприятной формы;
— обеспечение герметичности уплотнения рабочих объемов;
— проектировка и создания конструкции корпусных деталей, которые надежно прослужат весь жизненный цикл работы двигателя без коробления при неравномерном нагрева этих деталей.

В результате огромной проделанной научно-исследовательской и опытно-конструкторской работы этим фирмам удалось решить почти все наиболее сложные технические задачи на пути создания РПД и выйти на этап их промышленного производства.

Первый массовый автомобиль NSU Spider с РПД начала выпускать фирма NSU Motorenwerke.

Вследствие частых переборок двигателей из-за выше сказанных технических проблем на раннем этапе развития конструкции двигателя Ванкеля, взятые NSU гарантийные обязательства привели ее к финансовому краху и банкротству и последовавшему слиянию с Audi в 1969 году.

Между 1964 и 1967 годом произведено 2375 автомобилей. В 1967 году Spider был снят с производства и заменён на NSU Ro80 с роторным двигателем второго поколения; за десять лет производства Ro80 выпущено 37398 машин.

Наиболее успешно с данными проблемами справились инженеры фирмы Mazda. Она и остается единственным массовым производителем машин с роторно-поршневыми двигателями. Доработанный мотор серийно начался ставить на автомобиль Mazda RX-7 с 1978 года. С 2003 преемственность приняла модель Mazda RX-8, она и является на данный момент массовой и единственной версией автомобиля с двигателем Ванкеля.

Российские РПД

Первое упоминание о роторном двигателе в Советском Союзе относится к 60-м годам. Исследовательские работы по роторно-поршневым двигателям начались в 1961 году, соответствующим постановлением Минавтопрома и Минсельхозмаша СССР. Промышленное же изучение с дальнейшем выводом на производство данной конструкции началось в 1974 году на ВАЗе.

специально для этого было создано Специальное конструкторское бюро роторно-поршневых двигателей (СКБ РПД). Поскольку лицензию купить не было возможности, был разобран и скопирован серийный «ванкель» от NSU Ro80. На этой основе разработали и собрали двигатель Ваз-311, а произошло это знаменательное событие в 1976 году.

На ВАЗе разрабатывали целую линейку РПД от 40 до 200 сильных двигателей. Доработка конструкции тянулась почти шесть лет. Удалось решить целый ряд технических проблем связанные с работоспособностью газовых и маслосъемных уплотнений, подшипников, отладить эффективный рабочий процесс в камере неблагоприятной формы.

Свой первый серийный автомобиль ВАЗ с роторным двигателем под капотом представил публике в 1982 году, это был Ваз-21018. Машина внешне и конструктивно была как и все модели данной линейки, за одним исключением, а именно, под капотом стоял односекционный роторный двигатель мощностью 70 л.с.

Длительность разработки не помешала случиться конфузу: на всех 50 опытных машинах при эксплуатации возникли поломки мотора, заставившие завод установить на его место обычный поршневой.

Ваз 21018 с Роторно-поршневым двигателем

Установив, что причиной неполадок являлись вибрации механизмов и ненадёжность уплотнений, конструкторы предприняли спасти проект. Уже в 83-ем появились двухсекционные Ваз-411 и Ваз-413 (мощностью, соответственно, 120 и 140 л.с.).

Несмотря на низкую экономичность и малый ресурс, сфера применения роторного двигателя всё-таки нашлась – ГАИ, КГБ и МВД требовались мощные и незаметные машины. Оснащённые роторными двигателями «Жигули» и «Волги» легко догоняли иномарки.

С 80-ых годов 20 века СКБ был увлечён новой темой – применение роторных двигателей в смежной отрасли — авиационной. Отход от основной отрасли применения РПД привело к тому, что для переднеприводных машин роторный двигатель Ваз-414 создаётся лишь к 1992 году, да ещё три года доводится.

В 1995 году Ваз-415 был представлен к сертификации. В отличие от предшественников он универсален, и может устанавливаться под капотом как заднеприводных («классика» и ГАЗ), так и переднеприводных машин (ВАЗ, Москвич). Двухсекционный «Ванкель» имеет рабочий объём 1308 см3 и развивает мощность 135 л.с. при 6000об/мин.

«Девяносто девятую» он ускоряет до сотни за 9 секунд.

Роторно-поршневой двигатель ВАЗ-414

  1. На данный момент проект по разработке и внедрения отечественного РПД заморожен.
  2. Ниже представлено видео устройства и работы двигателя Ванкеля.

Роторно-поршневой двигатель описание фото видео история

Преобразуемое движение возвратно-поступательного характера полностью отсутствует в роторном двигателе. Образование давления происходит в тех камерах, которые создаются с помощью выпуклых поверхностей ротора треугольной формы и различными частями корпуса.

Вращательные движения ротор осуществляет помощью сгорания. Это способно привести к снижению вибрации и увеличить скорость вращения.

Благодаря повышению эффективности, которое обусловлено таким образом, роторный двигатель имеет размеры намного меньше, чем обычный поршневой двигатель эквивалентной мощности.

Роторный двигатель имеет один главный из всех своих компонентов. Эта важная составляющая называется треугольным ротором, который совершает вращательные движения внутри статора. Все три вершины ротора, благодаря этому вращению, имеют постоянную связь с внутренней стеной корпуса.

С помощью этого контакта образуются камеры сгорания, или три объема замкнутого типа с газом. Когда происходят вращательные движения ротора внутри корпуса, то объем всех трех образованных камер сгорания все время меняется, напоминая действия обычного насоса.

Все три боковых поверхности ротора работают, как поршень.

Внутри у ротора является шестерня небольшого размера с внешними зубьями, которая прикреплена к корпусу. Шестерня, которая больше по диаметру, соединена с данной неподвижной шестерней, что задает саму траекторию вращательных движений ротора внутри корпуса. Зубы в большей шестерни внутренние.

По той причине, что вместе с выходным валом ротор связан эксцентрично, вращение вала происходит наподобие того, как ручка будет вращать коленвал. Выходной вал станет делать оборот три раза за каждый из оборотов ротора.

Роторный двигатель имеет такое преимущество, как небольшая масса. Самый основной из блоков роторного двигателя обладает небольшими размерами и массой. При этом управляемость и характеристики такого двигателя будут лучше. Меньше масса у него получается за счет того, что необходимость в коленвале, шатунах и поршнях просто отсутствует.

Роторный двигатель обладает такими размерами, которые гораздо меньше обычного двигателя соответствующей мощности. Благодаря меньшим размерам двигателя, управляемость будет гораздо лучше, а также сама машина станет просторнее, как для пассажиров, так и для водителя.

Все из частей роторного двигателя осуществляют непрерывные вращательные движения в одном и том же направлении. Изменение их движения происходит так же, как в поршней традиционного двигателя. Роторные двигатели внутренне сбалансированы. Это ведет к снижению самого уровня вибрации. Мощность роторного двигателя кажется намного более гладким и равномерным образом.

Двигатель Ванкеля имеет выпуклый специальный ротор с тремя гранями, который можно назвать его сердцем. Этот ротор совершает вращательные движения внутри цилиндрической поверхности статора. Роторный двигатель «Мазда» является первым в мире роторным двигателем, который был разработан специально для производства серийного характера. Данной разработке было положено начало еще в 1963 году.

Что это такое РПД?

В классическом четырехтактным двигателем одно и то же цилиндр используется для различных операций — впрыск, сжатие, сжигание и выпуска. В роторном же двигателе каждый процесс выполняется в отдельном отсеке камеры.

Эффект мало чем отличается от разделения цилиндра на четыре отсека для каждой из операций.
В поршневом двигателе давление возникает при сгорании смеси заставляет поршни двигаться вперед и назад в своих цилиндрах.

Шатуны и коленчатый вал преобразуют этот толкательной движение во вращательное, необходимое для движения автомобиля.

В роторном двигателя нет прямолинейного движения которое надо было бы переводить во вращательное. Давление образуется в одном из отсеков камеры заставляя ротор вращаться, это снижает вибрацию и повышает потенциальную величину оборотов двигателя. В результате всего большая эффективность, и меньшие размеры при той же мощности, что и обычного поршневого двигателя.

Как работает РПД?

Функцию поршня в РПД выполняет трьохвершинний ротор , преобразующий силу давления газов во вращательное движение эксцентрикового вала. Движение ротора относительно статора (наружного корпуса) обеспечивается парой шестерен, одна из которых жестко закреплена на роторе, а вторая на боковой крышке статора. Сама шестерня неподвижно закреплена на корпусе двигателя.

С ней в зацеплении находится шестерня ротора из зубчатым колесом как бы обкатывается вокруг нее.
Вал вращается в подшипниках, размещенных на корпусе, и имеет цилиндрический эксцентрик, на котором вращается ротор. Взаимодействие этих шестерен обеспечивает целесообразное движение ротора относительно корпуса, в результате которого образуются три разобщенных камеры переменного объема.

Передаточное отношение шестерен 2: 3, поэтому за один оборот эксцентрикового вала ротор возвращается на 120 градусов, а за полный оборот ротора в каждой из камер происходит полный четырехтактный цикл.
Газообмен регулируется вершиной ротора при прохождении ее через впускной и выпускной окно.

Такая конструкция позволяет осуществлять 4-тактный цикла без применения специального механизма газораспределения.

Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаются к цилиндру центробежными силами, давлением газа и ленточными пружинами.

Крутящий момент получается в результате действия газовых сил через ротор на эксцентрик вала Смесеобразование, воспаление , смазка, охлаждение, запуск — принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания

Смесеобразование

В теории в РПД применяют несколько разновидностей смесеобразования: внешнее и внутреннее, на основе жидких, твердых, газообразных видов топлива.

Касательно твердых видов топлива стоит отметить, что их первоначально газифицируют в газогенераторах, так как они приводят к повышенному золообразованию в цилиндрах. Поэтому большее распространение на практике получили газообразные и жидкие топлива.

Сам механизм образования смеси в двигателях Ванкеля будет зависеть от вида применяемого топлива.

При использовании газообразного топлива его смешение с воздухом происходит в специальном отсеке на входе в двигатель. Горючая смесь в цилиндры поступает в готовом виде.

Из жидкого топлива смесь приготавливается следующим образом:

  1. Воздух смешивается с жидким топливом перед поступлением в цилиндры, куда поступает горючая смесь.
  2. В цилиндры двигателя жидкое топливо и воздух поступают по отдельности, и уже внутри цилиндра происходит их смешивание. Рабочая смесь получается при соприкосновении их с остаточными газами.

Соответственно, топливно-воздушная смесь может готовиться вне цилиндров или внутри их. От этого идет разделение двигателей с внутренним или внешним образованием смеси.

Технические характеристики роторно-поршневого двигателя

параметрыВАЗ-4132ВАЗ-415
число секций22
Рабочий объем камеры двигателя, куб.см1,3081,308
степень сжатия9,49,4
Номинальная мощность, кВт (л. с.) / мин-1103 (140) / 6000103 (140) / 6000
Максимальный крутящий момент, Н * м (кгс * м) / мин-1186 (19) / 4500186 (19) / 4500
Минимальная частота вращения эксцентрикового вала на холостом ходу, мин-11000900
Минимальный удельный расход топлива (по ВСХ), г / кВт * ч (г / л.с. * Час)
Расход масла в% от расхода топлива
Ресурс двигателя до первого капитального ремонта, тыс. Км
ВАЗ-2108/2109/21099/2115/2110

выпускаются модели

Максимальная скорость, км ч

Не смотря на ряд недоработок, проведенные исследования показали, что общий КПД двигателя Ванкеля довольно-таки высокий по современным меркам. Его значение составляет 40 – 45%.

Для сравнения, у поршневых двигателей внутреннего сгорания КПД составляет 25%, у современных турбодизелей – около 40%. Самый высокий КПД у поршневых дизельных двигателей составляет 50%.

До настоящего времени ученые продолжают работу по изысканию резервов для повышения КПД двигателей.

Итоговый КПД работы мотора состоит из трех основных частей:

  1. Топливная эффективность (показатель, характеризующий рациональное использование горючего в моторе).

Исследования в этой области показывают, что только 75% горючего сгорает в полном объеме. Есть мнение, что данная проблема решается путем разделения процессов сгорания и расширения газов.

Необходимо предусмотреть обустройство специальных камер при оптимальных условиях.

Горение должно происходить в замкнутом объеме, при условии нарастания температурных показателей и давления, расширительный процесс должен происходить при невысоких показателях температур.

  1. КПД механический (характеризует работу, результатом которой стало образование переданного потребителю крутящего момента главной оси).

Порядка 10% работы мотора расходуется на приведение в движение вспомогательных узлов и механизмов. Исправить данную недоработку можно путем внесения изменений в устройство двигателя: когда главный движущийся рабочий элемент не прикасается к неподвижному корпусу. Постоянное плечо крутящего момента должно присутствовать на всем пути следования основного рабочего элемента.

  1. Термическая эффективность (показатель, отражающий количество тепловой энергии, образованной от сжигания горючего, преобразующейся в полезную работу).

На практике 65% полученной тепловой энергии улетучивается с отработанными газами во внешнюю среду.

Ряд исследований показал, что можно добиться повышения показателей термической эффективности в том случае, когда конструкция мотора позволяла бы осуществлять сгорание горючего в теплоизолированной камере, чтобы с самого начала достигались максимальные показатели температуры, а в конце эта температура понижалась до минимальных значений путем включения паровой фазы.

Роторно-поршневой двигатель Ванкеля

Что такое роторный двигатель Ванкеля? Схема, детали, работа [PDF]

В этой статье вы узнаете  , как работает роторный двигатель Ванкеля?  И его  детали, функции, преимущества и приложения поясняются  диаграммами.  

Кроме того, вы также можете загрузить PDF-файл  этой статьи в конце.

Что такое роторный двигатель Ванкеля?

Он определяется как роторный двигатель внутреннего сгорания, в котором изогнутый, треугольный или эксцентрически поворачиваемый поршень вращается в эллиптической камере, создавая три камеры сгорания, различающиеся по объему. Или, проще говоря, это тип двигателя внутреннего сгорания, в котором используется эксцентриковая вращающаяся конструкция для преобразования давления во вращательное движение.

Роторный двигатель Ванкеля Mazda RX-8 [Flickr]

Немецкий инженер Феликс Ванкель изобрел роторный двигатель, известный как роторный двигатель Ванкеля, который в основном использовался в гоночных автомобилях. Двигатель Ванкеля работает по обычному циклу Отто, но отличается от поршневого двигателя внутреннего сгорания. двигатели.

Это чисто роторный двигатель, не имеющий возвратно-поступательного движения или поршня. По сравнению с поршневыми двигателями двигатели Ванкеля обеспечивают больший крутящий момент, меньшую вибрацию и при заданной мощности более компактны и меньше весят.

В нем используется ротор вместо поршня, который вращается внутри камеры. Эта конструкция бросает новый вызов существующим поршневым двигателям.

Читайте также: Какие детали внутри автомобиля? [Объяснено с диаграммами]

Части роторного двигателя Wankel

. Следующие чашки роторного двигателя Wankel:

  1. Впуск
  2. Выхлоп
  3. Crown Gear
  4. Сгоревшая палата
  5. Сгоревшая палата
  6. Сгоревшая палата
  7. .0031 Эксцентриковый вал
  8. Верхнее уплотнение
  9. Свеча зажигания

#1 Впуск

Впуск начинается, когда кончик ротора проходит через впускное отверстие. В этот момент камера находится в наименьшем положении и расширяется при вращении.

#2 Выпускное отверстие

Когда наконечник проходит через это выпускное отверстие, выхлопные газы под высоким давлением могут проходить через это отверстие.

#3 Коронная шестерня

В двигателе Ванкеля коронная шестерня имеет зубья, выступающие под прямым углом к ​​поверхности колеса.

Ротор №4

В роторном двигателе Ванкеля обычно используется ротор треугольной формы. Этот ротор состоит из трех выпуклых граней, каждая из которых действует как поршень. Ротор работает как первичный двигатель в роторном двигателе Ванкеля.

Сгорание происходит за счет сжигания топлива и воздействует непосредственно на ротор, поэтому он вращается эксцентрично. На одной стороне ротора имеется внутренняя синхронизирующая шестерня, которая входит в зацепление с фиксированной синхронизирующей шестерней, расположенной на боковом корпусе, для обеспечения правильного соединения между ротором и эксцентриковым валом.

#5 Камера сгорания

Ротор в двигателе Ванкеля вращается с орбитальным движением в корпусе специальной формы и образует серповидные камеры сгорания между его сторонами и криволинейной стенкой корпуса.

#6 Корпус

Представляет собой овальный эпитрохоидальный корпус, в котором заключен треугольный ротор с дугообразными гранями, напоминающими треугольник Рело. Корпус состоит из впускного и выпускного отверстий, свечи зажигания, водяной рубашки и т. д.

Этот двигатель имеет несколько корпусов, два из которых важны, это:

  • Основной корпус: Закрывается с помощью боковых корпусов.
  • Боковой кожух: Состоит из неподвижного зубчатого колеса, которое входит в зацепление с внутренним зубчатым колесом. Он сохраняет правильное соединение между ротором и эксцентриковым валом.

Вал эксцентрика #7

Это полезная деталь, которая используется для преобразования эксцентричного движения ротора в концентрическое и вывода его из двигателя.

Роторы вращаются на эксцентрике (соответствующем шатунной шейке), встроенном в эксцентриковый вал (соответствующий коленчатому валу). Ротор вращается вокруг эксцентриков и совершает орбитальное вращение вокруг эксцентрикового вала.

Верхнее уплотнение #8

Стороны треугольного ротора действуют как поршни, поэтому необходимо герметизировать всю эту камеру. Для герметизации камеры используются верхушечные уплотнения. Они сделаны из изогнутого металла, который соприкасается с корпусом двигателя при движении ротора.

#9 Свеча зажигания

В двигателе Ванкеля используются две свечи зажигания, т. е. ведущая и ведомая свечи зажигания. Ведущая свеча (расположенная в нижней части корпуса ротора) сжигает до 95% топливно-воздушной смеси, обеспечивая большую мощность.

Конструкция двигателя Ванкеля

На рисунках показана упрощенная схема роторного двигателя Ванкеля. Он состоит из трехлопастного ротора (ротор треугольной формы с загнутыми сторонами), эксцентрично вращающегося в овальной камере. Ротор крепится к коленчатому валу посредством внешней и внутренней шестерни.

Лопасти ротора плотно прилегают к стенкам овальной камеры. Сгорание форм ротора и камеры гарантирует, что они остаются в контакте друг с другом на протяжении всего вращения. Ротор имеет с трех сторон между кулачками углубление овальной формы.

Читайте также: Как работает турбокомпрессор? Преимущества и недостатки PDF

Как работает двигатель Ванкеля?

Обычно двигатель с ротором Ванкеля имеет трехлопастной ротор, который образует вокруг себя три пространства в овальной камере. Четыре основных цикла впуска, сжатия, мощности и выпуска выполняются одновременно в трех местах вокруг ротора во время работы двигателя.

Цифры (i) представляют впуск топлива, при котором сторона ротора AB создает всасывание. Топливно-воздушная смесь из карбюратора поступает во всасывающую камеру. Когда ротор вращается по часовой стрелке, смесь сжимается между ротором и камерой, как в (ii).

Далее воспламеняется, газы сгорания расширяются, вращая ротор, как в (iii), и, наконец, выхлопные газы выталкиваются из камеры, как в (iv). Сторона АВ ротора снова находится в исходном положении для приема нового заряда. Таким образом, цикл завершен.

Один и тот же цикл операций происходит одновременно на всех трех сторонах ротора. Очевидно, что на каждый оборот ротора приходится три импульса мощности, что в три раза больше, чем у двухтактного двигателя, и в шесть раз больше, чем у четырехтактного двигателя.

Двигатель почти непрерывно развивает мощность. Эксцентричное движение ротора вызывает вибрации, которые уменьшаются за счет использования симметрично установленного маховика.

Преимущества роторного двигателя Ванкеля перед поршневым двигателем

  1. Роторный двигатель Ванкеля меньше по размеру, легче по весу и компактнее по сравнению с поршневыми двигателями.
  2. Дешевле и проще по конструкции для серийного производства из-за отсутствия многих рабочих частей, таких как шатун, коленчатый вал, клапанный механизм и т.д.
  3. Его легче балансировать, так как он не содержит возвратно-поступательных частей. Дорожные испытания показали, что этот двигатель практически не вибрирует.
  4. Объемный КПД двигателя Ванкеля очень высок, часто превышает 100%.
  5. Его мощность на кг двигателя значительно выше.
  6. Двигатель Ванкеля требует меньших эксплуатационных расходов, чем поршневой двигатель.
  7. Он не требует овердрайва, потому что его скорость очень высока.

Недостатки двигателя Ванкеля

  1. Более высокий расход топлива на малых скоростях и более высокий расход масла на л.с.
  2. Скорости с более низким крутящим моментом.
  3. Тормозной эффект двигателя намного меньше.
  4. Уменьшение скорости в трансмиссии необходимо из-за очень высоких оборотов двигателя.
  5. Из-за проблем с зажиганием при использовании обычной системы зажигания. Свечи зажигания необходимо периодически менять. Однако это было устранено с помощью транзисторного зажигания.
  6. Основным препятствием в разработке роторного двигателя Ванкеля была проблема уплотнения, которая к настоящему времени в значительной степени преодолена.
  7. Возможно искривление цилиндра из-за близкого расположения впускного и выпускного отверстий.
  8. Очень высокая температура выхлопных газов, около 1600°F, создает проблемы в конструкции выпускного коллектора и глушителя.

Применение роторного двигателя Ванкеля

Ниже приведены области применения роторного двигателя Ванкеля:

  1. Двигатель Mazda 12A был первым двигателем, построенным с двигателем Ванкеля.
  2. Он специально разработан для производства легкого, надежного и относительно мощного двигателя для использования в самолетах.
  3. Производители мотоциклов также отдают предпочтение двигателям Ванкеля из-за их небольшого размера и привлекательного отношения мощности к весу.
  4. Из-за компактных размеров и высокой удельной мощности двигателя Ванкеля было предложено, чтобы электромобили обеспечивали дополнительную мощность при низком уровне заряда аккумуляторной батареи.
  5. Двигатели Ванкеля меньшего размера все чаще используются в других областях, таких как вспомогательные силовые установки для картингов и гидроциклов.
  6. Простота двигателя Ванкеля делает его подходящим для двигателей мини, микро и микромини.

Разница между роторным двигателем и поршневым двигателем

Роторный двигатель Поршневой двигатель
Роторный двигатель состоит из четырех отдельных секций 903

  • 04, и каждый из них выполняет определенную работу: впуск, сжатие, сгорание (или воспламенение) или выпуск.
  • Поршневой двигатель — это один из двух типов двигателей внутреннего сгорания, которые работают за счет сжигания топлива для выработки энергии.
    Роторный роторный двигатель имеет три движущиеся части, то есть два ротора и выходной вал. Простые поршневые двигатели имеют не менее 40 движущихся частей.
    В роторных двигателях ротор непрерывно вращается в одном направлении. По сравнению с поршневым двигателем поршни резко меняют направление.
    Основные движущиеся части роторного двигателя движутся с меньшей скоростью, что повышает надежность. В поршневых двигателях основные движущиеся части движутся с высокой скоростью, что снижает надежность.

    Закрытие

    Насколько мы уже говорили, у двигателя Ванкеля есть много преимуществ, но есть также много недостатков. Эти двигатели определенно имеют свое место в этом мире. Однако из-за увеличения объема технического обслуживания, чтобы поддерживать их в рабочем состоянии, и затрат, связанных с их вождением.


    Теперь я надеюсь, что вы узнали о «роторном двигателе Ванкеля » и нашли то, чего раньше не слышали. Тем не менее, если у вас есть какие-либо вопросы или сомнения относительно этой статьи, не стесняйтесь спрашивать в комментариях, я вам отвечу. Итак, если вам понравилась эта статья, то, пожалуйста, поделитесь ею с друзьями.

    Хотите получать бесплатные PDF-файлы на свой почтовый ящик? Тогда просто подпишитесь на нашу рассылку.

    Адрес электронной почты

    Скачать PDF файл этой статьи:

    Скачать PDF

    Вы можете прочитать больше статей в нашем блоге:

    1. Какова основная функция системы подвески в автомобиле?
    2. Чем дисковые тормоза отличаются от барабанных? PDF
    3. 10 простых советов по экономии топлива во время вождения.

    Внешние ссылки:

    • wikipedia.org/wiki/
    • autoevolution.com/
    • energyeducation.ca/encyclopedia/

    Что такое двигатель Ванкеля? | Как работает роторный двигатель?

    Содержание

    • 1 Что такое двигатель Ванкеля?
    • 2 История двигателя Ванкеля
    • 3 Конструкция роторного двигателя
    • 4 Работа двигателя Ванкеля
    • 5 Детали роторного двигателя Ванкеля
    • 6 Экономия топлива и уровень выбросов роторного двигателя Ванкеля
    • 7 Почему двигатель Ванкеля такой редкий?
    • 8 Преимущества и недостатки роторного двигателя
      • 8. 1 Преимущества двигателей Ванкеля
      • 8.2 Недостатки двигателей Ванкеля
    • 9 Применение двигателя Ванкеля
    • 10 В чем разница между поршневым двигателем и двигателем Ванкеля?
    • 11 Часто задаваемые вопросы Раздел
      • 11.1 Кто изобрел двигатель Ванкеля?
      • 11.2 Почему роторный двигатель известен как двигатель Ванкеля?
      • 11.3 Почему роторные двигатели такие мощные?
      • 11.4 Какие автомобили имеют двигатель Ванкеля?
      • 11.5 Почему вышел из строя двигатель Ванкеля?
      • 11.6 Из каких частей состоит двигатель Ванкеля?

    Двигатели чаще всего используются во всем мире. Они стали важной частью всех транспортных средств. Существуют различные типы двигателей в соответствии с потребностями различных приложений. Двигатель Wankel   — один из самых известных типов двигателей внутреннего сгорания. В предыдущей статье мы обсуждали различные типы двигателей внутреннего сгорания (ДВС). В этой статье речь пойдет в основном о двигателе Ванкеля.

    Что такое двигатель Ванкеля?

    Двигатель Ванкеля представляет собой тип роторного двигателя внутреннего сгорания, который использует вращательное движение треугольного ротора , установленного в эллиптической камере, для преобразования тепловой энергии во вращательное движение без использования традиционного возвратно-поступательного движения. поршень. Двигатель Ванкеля также известен как роторный двигатель , потому что он имеет все вращающиеся части.

    По сравнению с поршневыми двигателями , роторные двигатели Ванкеля имеют малый вес, небольшие размеры и компактную конструкцию. Напротив, поршневой двигатель имеет возвратно-поступательный поршень, который движется вверх и вниз внутри цилиндра.

    Роторный двигатель Ванкеля имеет меньшую вибрацию и более равномерный крутящий момент, чем поршневой двигатель.

    История двигателя Ванкеля.

  • В 1951 , NSU Motorenwerke AG начала разработку двигателя Ванкеля.
  • В 1957 инженер Феликс Генрих Ванкель сконструировал первый роторный двигатель Ванкеля вместо обычного поршневого двигателя.
  • Инженер Ханс Дитер Пашке разработал второй двигатель KKM , следуя некоторым технологическим изменениям и усовершенствовав технологию двигателя Ванкеля.
  • Роторный двигатель Ванкеля впервые был представлен специалистам и прессе на конференции Немецкого инженерного союза 1960 г. в Мюнхене.
  • В 1960-х годах , благодаря простоте, отличному соотношению прочности и веса, плавной работе и очень высокой эффективности работы роторных двигателей, они были у всех на слуху в автомобильной и мотоциклетной промышленности.
  • В августе 1967 NSU Motorenwerke AG получила широкую известность благодаря совершенно новому NSU Ro 80, который имел 115-часовой двигатель Ванкеля с двумя роторами. Это был первый немецкий автомобиль, который в 1968 году был выбран «Автомобилем года».
  • Благодаря превосходным характеристикам двигателя Ванкеля многие крупные производители автомобилей (Ford, Toyota, Mercedes-Benz, Porsche, Rolls-Royce и Mazda) подписали между собой лицензионные соглашения на производство роторных двигателей Ванкеля в течение следующего десятилетия.
  • Конструкция роторного двигателя

    Роторный двигатель работает по принципу отто-цикла . В отличие от возвратно-поступательного действия поршневого двигателя, 4-тактный стандартного Отто-цикла организованы последовательно вокруг эллиптического ротора в двигателе Ванкеля.

    Вращающийся двигатель имеет один ротор и одну эллиптическую коробчатую окружность к треугольному ротору (трехгранник Рело), ​​который вращается и перемещается в коробке. Боковое уплотнение ротора соединено с тремя камерами сгорания со стороны корпуса и углами уплотнения ротора по периметру основной коробки.

    По мере вращения ротора вращение и форма корпуса подталкивают ротор ближе к стенке корпуса, а камеру сгорания двигателя все ближе и дальше вниз по «ходам» возвратно-поступательного поршня. Но эти 4-тактные двигатели производят такт сгорания после двух оборотов поршня внутри цилиндра.

    Камеры сгорания двигателя Ванкеля производят один « тактов сгорания » за каждый оборот. Поскольку приводной вал Ванкеля вращается со скоростью, в три раза превышающей скорость вращения ротора, он становится одним «тактом» сгорания на один оборот выходного вала ротора, что в два раза больше, чем у четырехтактного поршневого двигателя, и эквивалентно такту двухтактного двигателя. .

    Эти двигатели имеют большую выходную мощность по сравнению с четырехтактными бензиновыми двигателями с сопоставимым ходом двигателя.

    Работа двигателя Ванкеля

    A Роторный двигатель Ванкеля — известный тип двигателя внутреннего сгорания, который работает по основному принципу отто-цикла .

    Двигатель Wankel имеет четырехтактный и работает в соответствии со следующим способом:

    1. Всасывание
    2. Сжатие
    3. СЖАТ
    4. Выпуск

    9 Wankel Engine.0002 1) Такт впуска или всасывания: –

    • Когда кончик ротора проходит через впускное отверстие, свежий воздух начинает поступать в первый цилиндр, как показано на схеме выше.
    • Цилиндр 1 st продолжает подавать свежий воздух до тех пор, пока кончик ротора 2 nd не достигнет впускного отверстия и не закроет его.
    • После этого впускной канал закрывается, а свежая топливно-воздушная смесь попадает в первый цилиндр для сжатия и сгорания.

    2) Сжатие: –

    • После завершения такта впуска начинается такт сжатия захваченной топливовоздушной смеси.
    • По мере того, как ротор начинает вращаться, зазор между углом 1 и углом 2 первого цилиндра (как показано на схеме выше) уменьшается за счет того, что объем смеси уменьшается, и происходит сжатие смеси.
    • По мере того, как топливовоздушная смесь сжимается в соответствии с требованиями, она направляется на процесс сжигания.

    3) Сгорание: –

    • Поскольку смесь первого цилиндра (между 1 и 2 углами) сжимается в соответствии с требованием, свеча зажигания создает искру внутри цилиндра, которая воспламеняет воздушно-топливную смесь. смесь.
    • В результате воспламенения смесь превращается в газы с высокой температурой и давлением. Энергия сгоревшей смеси заставляет ротор двигаться вперед. Этот процесс продолжается до тех пор, пока угол 1 st не пройдет мимо выпускного отверстия.

    4) Выхлоп: –

    • Когда угол 1 касается выпускного или выпускного отверстия, из двигателя выбрасываются горючие газы под высоким давлением.
    • После сброса выхлопных газов выпускное окно закрывается, и снова весь цикл повторяется.

    Для лучшего понимания посмотрите следующее видео:

    Читайте также: Работа двигателя Стирлинга

    Детали роторного двигателя Ванкеля

    Роторный двигатель может иметь сложную конструкцию, но у него не так много движущихся частей или компонентов, как у поршневого двигателя. Ниже мы рассмотрим основные компоненты роторного двигателя Ванкеля, чтобы дать вам лучшее представление о том, как все работает.

    Роторный двигатель имеет следующие основные детали:

    1. Ротор
    2. Зажигание зажигания
    3. Выходной вал
    4. Корпус
    5. Впускной и выпускной порты

    1) Ротор

    1).0002 Ротор представляет собой треугольную вогнутую деталь, обеспечивающую плотное прилегание при прижатии к корпусу двигателя. На каждой стороне ротора имеется воздушный карман или впускное отверстие для воздуха, чтобы в корпус поступало больше газа. Эти впускные отверстия или карманы эффективно увеличивают рабочий объем двигателя Ванкеля.

    Ротор вращается на нескольких шестернях, соединенных с валом. Этот вал устанавливается в центре кожуха. Шестерни позволяют краям ротора вращаться таким образом, что они всегда соприкасаются с корпусом, поддерживая три отдельных камеры сгорания.

    2) Корпус или кожух

    Корпус является наиболее важной частью двигателя. Он также известен как корпус двигателя. Эллиптическая форма корпуса помогает увеличить рабочий объем двигателя при вращении ротора. При вращении ротора края ротора находятся в постоянном контакте с внутренней стенкой корпуса.

    При вращении ротора в корпусе каждый воздушный карман проходит четыре этапа цикла сгорания:

    1. От всасывания к сжатию
    2. От сгорания к выхлопу.

    Топливная форсунка и свеча зажигания вставляются непосредственно в камеру сгорания через стенку корпуса. Внешние каналы позволяют охлаждающей жидкости и маслам проходить через систему для поддержания температуры и целостности системы.

    Корпус также защищает внутренние части двигателя. Он предохраняет внутренние детали от любого вида повреждений из-за падения любой внешней нагрузки на двигатель.

    Читайте также: Типы поршневых двигателей

    3) Выходной вал

    Выходной вал передает энергию, полученную в результате сжатия и сгорания, в систему трансмиссии для привода колеса транспортного средства. Он оснащен круглым выступом, который касается ротора и вращает вал.

    4) Впускные и выпускные отверстия

    Впускное отверстие позволяет свежей смеси поступать в камеру сгорания, а выхлопным газам выбрасывать газы через выпускное или выпускное отверстие.

    5) Свеча зажигания

    Свеча зажигания — это часть двигателя, используемая для передачи электрического тока от системы зажигания в камеру сгорания двигателя SI для сжигания сжатой воздушно-топливной смеси с помощью электрической искры. Он имеет металлический корпус с резьбой, электрически изолированный от центрального электрода керамическим изолятором.

    Этот штекер соединяется с катушкой зажигания , которая генерирует высокое напряжение. Когда ток проходит через катушку, между боковым электродом и центральным электродом возникает напряжение.

    Когда напряжение превышает диэлектрическую прочность газа, газ ионизируется. Ионизированный газ работает как проводник, который позволяет току течь по комнате.

    Экономия топлива и уровень выбросов роторного двигателя Ванкеля

    Когда роторный двигатель работает на бензине, возникает много проблем с выбросами и эффективностью. По сравнению с водородом 0,6 мм бензин воспламеняется медленнее и имеет меньшую скорость распространения пламени, а также большую дистанцию ​​гашения с 2 мм цикл сжатия. Из-за этих факторов двигатель расходует больше топлива, а КПД двигателя снижается.

    Когда роторный двигатель Ванкеля работает на бензине, зазор (в такте сжатия) между корпусом и ротором становится очень узким, в то время как этот зазор достаточно велик для водорода. Двигателю требуется этот узкий зазор для сжатия.

    Когда двигатели используют бензин вместо дизельного топлива, оставшийся бензин выбрасывается в атмосферу через выпускной клапан. Но эта проблема не возникает, когда двигатель использует водород в качестве топлива. Это связано с тем, что вся топливная смесь сгорает внутри камеры сгорания, которая имеет очень низкий уровень выбросов, а эффективность использования топлива также повышается до 9. 0003 23% .

    Конструкция камеры сгорания двигателя Ванкеля более устойчива к преждевременному воспламенению на бензине с более низким октановым числом, чем у аналогичного поршневого двигателя.

    Конструкция камеры сгорания может привести к недостаточному сгоранию топливовоздушной смеси при использовании бензина. Из-за неполного сгорания в выхлопных газах выделяется большое количество несгоревших углеводородов.

    Хотя температура сгорания роторного двигателя Ванкеля меньше, чем у других двигателей, ранние двигатели также имеют рециркуляцию отработавших газов (EGR). Поэтому выброс выхлопных газов двигателей Ванкеля относительно низок.

    Роторный двигатель автомобиля может работать на высокой скорости. Это связано с большим эксцентриситетом ротора, более длинными всасывающими каналами и ранним открытием всасывающего клапана, увеличивающим крутящий момент на малых оборотах — положение и конструкция выемки ротора влияют на расход топлива и выбросы.

    Расход топлива и показатели выбросов зависят от конструкции камеры сгорания, которая через свечу зажигания определяет положение внутри камеры двигателя.

    Читайте также: Различные типы двигателей EC

    Почему двигатель Ванкеля так редок?

    В настоящее время двигатели Ванкеля не очень распространены по следующим основным причинам:

    1) Низкий тепловой КПД

    Камера сгорания роторного двигателя Ванкеля имеет длинную и уникальную форму. Поэтому он имеет более низкий тепловой КПД, чем поршневые двигатели. Это часто приводит к выходу несгоревшего топлива из выхлопной трубы.

    2) Burn Baby Burn

    Благодаря своей конструкции эти двигатели потребляют масло. Впускной коллектор этого двигателя имеет распылители, а также форсунку, которая впрыскивает масло непосредственно в горелку. Поэтому водитель должен регулярно проверять уровень масла для надлежащей смазки ротора. Из-за этого из выхлопа выходит больше вредных веществ. Окружающая среда не любит плохих вещей.

    3) Уплотнение ротора

    Уплотнение ротора роторного двигателя является сложной задачей, когда температура вокруг ротора сильно колеблется. Эта проблема также увеличивает уровень выбросов двигателя.

    Имейте в виду, что процессы всасывания и горения происходят одновременно, но в разных местах внутри корпуса двигателя. Это показывает, что верхняя часть кожуха двигателя имеет относительно более низкую температуру, чем нижняя часть кожуха.

    4) Высокий уровень выбросов

    Роторные двигатели Ванкеля не известны из-за их высокого уровня выбросов. Сочетание проблем с уплотнением, естественного сгорания масла и неэффективного сгорания приводит к тому, что двигатели неконкурентоспособны по текущим стандартам экономии топлива или выбросов.

    5) Экономия топлива

    Двигатели Ванкеля потребляют больше топлива, чем поршневые двигатели. Из-за высокого расхода топлива увеличивается стоимость топлива.

    Преимущества и недостатки роторного двигателя

    Роторный двигатель Ванкеля имеет следующие основные преимущества и недостатки:

    Преимущества двигателей Ванкеля

    • Эти типы двигателей имеют простую конструкцию.
    • Роторный двигатель не имеет клапана для работы.
    • Для этих двигателей не требуются коленчатые валы, шатуны и т. д. Удаление этих компонентов делает двигатель Ванкеля легче.
    • Имеют широкий диапазон скоростей.
    • Они также могут сжигать высокооктановое топливо без детонации.
    • Эти двигатели обладают многочисленными преимуществами в плане безопасности, что делает их полезными в самолетах.
    • На некоторых двигателях Ванкеля не появляется загрязнение картера топливом, что означает отсутствие необходимости замены топлива.
    • Двигатель Ванкеля не имеет проблем с детонацией. Проблемы со стуком возникают из-за неполного сгорания топливовоздушной смеси.
    • Эти двигатели имеют значительно более высокое отношение мощности к весу, чем двигатель колонны.
    • Упаковывать в ограниченном пространстве двигателя проще, чем поршневой двигатель.
    • Для этих двигателей не требуются возвратно-поступательные части.
    • Роторный двигатель Ванкеля имеет более высокое передаточное число оборотов по сравнению с поршневым двигателем.
    • Эти двигатели не производят большого шума при работе.
    • Поскольку в двигателе Ванкеля очень низко движущиеся компоненты, цена его изготовления низкая.
    • Эти двигатели не просто поршневые.
    • Высокая скорость этих двигателей обеспечивает превосходную адаптивность.
    • Они лучше всего подходят для использования водородного топлива.

    Недостатки двигателей Ванкеля

    • Высокая потеря герметичности: Это также незначительная проблема, поскольку корпус двигателя Ванкеля имеет немного разные температуры в каждом отдельном сегменте камеры. Различные коэффициенты расширения вещества способствуют несовершенству экранирования. Следовательно, эти двигатели имеют высокие потери уплотнения.
    • Подъем уплотнения Apex: Центробежная сила прижимает уплотнение Apex к поверхности корпуса двигателя, создавая прочное уплотнение. При малой нагрузке зазоры между верхним уплотнением и корпусом могут образовываться в случае дисбаланса центробежной силы и давления газа.
    • Высокий уровень выбросов: Поскольку несгоревшее топливо попадает в поток выхлопных газов по мере использования топлива, стандарты выбросов трудновыполнимы. Непосредственный впрыск топлива в камеру сгорания двигателя решит эту проблему.
    • Низкая топливная экономичность бензинового топлива: Образуется из-за подвижной камеры сгорания, что способствует плохому сгоранию и хорошему давлению при частичной нагрузке и низких оборотах. Это приводит к присоединению несгоревшего топлива к потоку выхлопных газов; топливо, не используемое для производства электроэнергии, теряется.
    • Иногда у роторного двигателя Ванкеля возникают проблемы с расходом бензина и сжиганием масла.
    • Топливно-воздушная смесь не может быть предварительно сохранена, так как этот двигатель не имеет впускного отверстия.
    • Для этих двигателей требуется сложная технология впрыска топлива.
    • Эти двигатели имеют низкую степень сжатия. По этой причине они имеют низкую топливную экономичность и тепловую эффективность.
    • В потоке выхлопных газов двигателя Ванкеля могут быть высокие выбросы несгоревших углеводородов и угарного газа.
    • Роторный двигатель очень подвержен пропускам зажигания, так как потеря хода приводит к тому, что двигатель теряет импульс, а затем снова начинает двигаться при следующем воспламенении камеры сгорания. Техническое обслуживание системы зажигания необходимо, чтобы избежать этой проблемы.

    Применение двигателей Ванкеля

    • Миниатюрные двигатели Ванкеля используются в таких устройствах, как картинги, водные суда и вспомогательные силовые установки самолетов.
    • Некоторые люди использовали двигатели Ванкеля в моделях транспортных средств, которые в основном использовались с 1970 . Даже с большим глушителем весь комплект весит всего 13,4 унции (380 грамм).
    • Универсальность двигателей Ванкеля делает их подходящими для небольших, микро- и микромини-приложений.
    • Эти двигатели используются в самолетах.
    • Эти двигатели используются в автомобилях Mazda.
    • Небольшие двигатели Ванкеля также используются в мотоциклах.
    • Эти типы двигателей также используются в лодках.

    В чем разница между поршневым двигателем и двигателем Ванкеля?

    Двигатель Ванкеля Поршневой двигатель
    Он имеет вращательный ротор, который используется для преобразования тепловой энергии во вращательное движение. Он имеет возвратно-поступательный поршень, который перемещается вверх и вниз для преобразования тепловой энергии в механическую.
    Роторный двигатель Ванкеля легче поршневого двигателя. Поршневой двигатель тяжелее двигателя Ванкеля.
    Эти двигатели имеют меньшие размеры. Они большого размера.
    Они сжигают больше топлива. Они потребляют меньше топлива, чем двигатели Ванкеля.
    Они производят меньше энергии, чем поршневые двигатели на том же количестве топлива. Они производят высокую мощность.
    Двигатели Ванкеля производят больше выбросов. Эти двигатели производят меньше выбросов.
    В них меньше движущихся частей, чем в поршневых насосах. У них много движущихся частей.
    Работает плавно. У него нет такой плавной работы, как у двигателя Ванкеля.

    FAQ Раздел

    Кто изобрел двигатель Ванкеля?

    В 1957 году инженер Феликс Генрих Ванкель сконструировал первый двигатель Ванкеля.

    Почему роторный двигатель известен как двигатель Ванкеля?

    Ванкель был изобретен Феликсом Генрихом Ванкелем. Поэтому он известен как двигатель Ванкеля по имени его создателя.

    Почему роторные двигатели такие мощные?

    Благодаря революционному механизму роторные двигатели имеют меньшую рабочую вибрацию, чем поршневые двигатели. Это позволяет настроить двигатель Ванкеля так, чтобы он работал быстрее и мог генерировать большую мощность.

    Какие автомобили имеют двигатель Ванкеля?

    Двигатели Wankel можно найти в следующем режиме автомобилей:

    • 1969 Citroen M3
    • 1970 Mazda RX-500 Concept
    • 1973 Citroen GS Birotor
    • 1970 Mercedes-Benz-Benz-C111-IIIII
    • 9. AP
    • 1973 Chevrolet Corvette XP897 GT concept
    • 1974 Mazda Parkway RE13 Rotary 26 Superdeluxe
    • 2003 Mazda RX-8 Hydrogen RE

    Почему двигатель Ванкеля вышел из строя?

    Двигатель Ванкеля выходит из строя по следующим причинам:

    • У двигателей Ванкеля проблемы с расходом бензина и расходом масла.
    • Им нужна сложная технология впрыска топлива.
    • Расход топлива: Двигатель Ванкеля имеет тонкую и длинную камеру сгорания, приводимую в движение ротором. Это замедляет сгорание топлива. В двигателе пытались решить эту проблему двойными свечами зажигания (начало и конец).
    • Эмиссия: В случае роторного двигателя как несгоревшее топливо, так и сгоревшее масло вызывают ужасные выбросы.

    Из каких частей состоит двигатель Ванкеля?

    Двигатель Wankel имеет следующие детали:

    1. Rotor
    2. Впускные и выхлопные порты
    3. Зажигание зажигания
    4. Выходная вала
    5. . очень чисто и, как следствие, имеют высокий уровень выбросов. Роторные двигатели также имеют высокий износ по сравнению с поршневыми двигателями и не могут служить так же долго, как поршневые двигатели.

      Кроме того, они являются ужасными двигателями для людей, которые ездят на короткие расстояния.

      Двигатели Ванкеля также используются для транспортных средств/машин, которые вращаются с высокой скоростью в течение длительного времени, например, в самолетах. Это связано с тем, что пиковая мощность достигается при этих высоких оборотах, и всем им не хватает крутящего момента, что делает переход к этому высокому диапазону мощности очень затратным по топливу.

      Подробнее

      1. Различные типы двигателей
      2. Различные типы двигателей внутреннего сгорания (ДВС)
      3. Типы двигателей внешнего сгорания
      4. Типы тепловых двигателей
      5. Работа цикла Ренкина
      6. Работа цикла Отто

      Двигатель Ванкеля (роторный двигатель Ванкеля) Двигатель Ванкеля)

      Что такое двигатель Ванкеля?

      Двигатель Ванкеля Принцип работы и применение:- Двигатель Ванкеля относится к типу двигателя внутреннего сгорания, который работает только за счет использования эксцентриковой вращательной конструкции для преобразования давления во вращательное движение. При сравнении его с возвратно-поступательным поршневым двигателем обнаружено, что двигатель Ванкеля имеет более равномерный крутящий момент и меньшую вибрацию по сравнению с другим двигателем. Кроме того, он более компактен и весит меньше .

      Ротор отвечает за создание вращательного движения, которое по форме очень похоже на треугольник Рело. Двигатели Ванкеля — это двигатели, которые производят три импульса мощности за один оборот ротора, завершая цикл Отто. В то время как на выходном валу используются зубчатые колеса, которые помогают вращать его почти в три раза быстрее и дают ему один импульс мощности на оборот. Один оборот состоит из ротора, который одновременно испытывает импульсы мощности и выпускает газ, при этом четыре стадии цикла Отто происходят через разные промежутки времени.

      Например, в двухтактном поршневом двигателе имеется только один импульс мощности на каждый оборот коленчатого вала, тогда как в четырехтактном поршневом двигателе на каждые два оборота приходится один импульс мощности. Многочисленные уровни цикла Отто включают в себя впуск, сжатие, воспламенение и выпуск, которые происходят при каждом обороте ротора на каждой из трех сторон ротора, проходящих внутри овального эпитрохоидного корпуса, чтобы обеспечить три импульса мощности на оборот ротора. .

      Принцип смещения применяется только к одной стороне ротора, так как только одна сторона работает на выходе каждого оборота вала. Двигатель известен как роторный двигатель, потому что название дано совершенно разным конструкциям, к которым относятся роторные двигатели с поршнями и без поршней.

      Конструкция двигателя Ванкеля

      Двигатель Ванкеля сконструирован достаточно компактно и весит меньше по сравнению с любым другим двигателем, в котором используются возвратно-поступательные поршни. Он дает различные применения в транспортных средствах и устройствах, автомобилях, мотоциклах, гоночных автомобилях, самолетах, картингах, гидроциклах, снегоходах, бензопилах и вспомогательных силовых установках. Обнаружено множество двигателей с удельной мощностью около одной лошадиной силы на фунт. В основном все двигатели разработаны с искровым зажиганием, с двигателями с воспламенением от сжатия, которые были построены только в исследовательских проектах.

      Обычно в двигателе Ванкеля четыре такта цикла Отто происходят в пространстве внутри каждой грани трехстороннего симметричного ротора, а также внутри дома. Треугольный ротор в форме дуги покрыт эпитрохоидой овальной формы, внешне похожей на треугольник Рело.

      Теоретическая форма ротора среди фиксированных вершин приводит к минимизации объема геометрической камеры сгорания и максимизации степени сжатия соответственно. Симметричная кривая используется для соединения двух произвольных роторов максимально развернутой в направлении внутренней формы корпуса с условием, что он не касается корпуса ни при каком угле поворота .

      Приводной вал в центре называется эксцентриковым или E-образным валом, который проходит через центр ротора и поддерживается неподвижными подшипниками. Эти роторы вращаются на эксцентриках, которые составляют часть эксцентрикового вала. Оба ротора вращаются вокруг эксцентриков, чтобы совершить орбитальный оборот вокруг эксцентрикового вала. На частях ротора имеются уплотнения, которые герметизируют его по периферии корпуса и делят его на три подвижные камеры сгорания.

      Работа ротора

      Вращение каждого ротора вокруг своей оси вызывается и контролируется парой шестерен. Установлено, что шестерни установлены на одной стороне ротора, который входит в зацепление с зубчатым венцом, прикрепленным к ротору, и обеспечивает перемещение ротора на одну треть оборота для каждого эксцентрикового вала. Выходная мощность двигателя не передается синхронизирующими шестернями.

      Движение ротора заключается в его вращательном движении, которое направляется шестернями и эксцентриковым валом, а не внешней камерой. Ротор не должен тереться о корпус двигателя. Сила давления газа на ротор оказывает давление на центр эксцентриковой части выходного вала.

      Самый точный способ визуализировать действие двигателя в анимации — вообще не смотреть на ротор, где между ним и корпусом образовалась полость. Двигатель Ванкеля также называют системой с изменяемым объемом полостей, в которой три полости на корпус последовательно повторяют один и тот же цикл. На роторе есть две точки, точки А и В и вал Е, который вращается с разной скоростью, а точка В поворачивается в три раза по сравнению с точкой А.

      Это сделано для того, чтобы один полный оборот ротора был равен три оборота вала Е. Когда ротор совершает орбитальное вращение, каждая сторона ротора приближается к нему, а затем удаляется от стенки корпуса, что сжимает и расширяет камеру сгорания, например, ходы поршня в поршневом двигателе с возвратно-поступательным движением. Вектор мощности любой ступени сгорания проходит через центр смещенного лепестка.

      Почему следует предпочесть четырехтактный двигатель?

      Четырехтактный поршневой двигатель — это двигатель, который совершает только один такт сгорания на цилиндр за каждые два оборота коленчатого вала, что называется половинным рабочим ходом на один оборот коленчатого вала на цилиндр в двигателе Ванкеля, который производит один такт сгорания за вращения карданного вала, что означает один рабочий ход за оборот ротора по орбите и три рабочих такта за оборот ротора.

      Таким образом, выходная мощность двигателя Ванкеля обычно выше, чем у четырехтактного поршневого двигателя, который в аналогичном состоянии вытесняется более чем четырехтактным поршневым двигателем с аналогичными физическими размерами и масса.

      Обычно это двигатели, которые достигают значительно более высоких оборотов двигателя по сравнению с поршневыми двигателями аналогичной мощности. Это сделано для частичного сглаживания присущего круговому движению и того факта, что обороты двигателя идут от выходного вала, что в три раза превышает скорость качающихся частей. Эксцентриковый вал не имеет нагруженных контуров коленчатых валов. Максимальное число оборотов роторного двигателя в некоторой степени ограничено нагрузкой зубьев на шестерни.

      Стальные шестерни, которые используются для длительной работы со скоростью выше 7000 или 8000 об/мин, в основном довольно твердые. Применение двигателя Ванкеля в основном в автогонках, которые работают со скоростью выше 10 000 об / мин. В частности, в случае самолетов, это консервативно до 6500 или 7500 об / мин, но как только давление газа влияет на эффективность уплотнения, двигатель Ванкеля на высоких оборотах работает на холостом ходу, что может привести к выходу двигателя из строя.

      Как национальные агентства рассматривают двигатели Ванкеля?

      Все национальные агентства, которые облагают налогом автомобили в соответствии с рабочим объемом, и регулирующие органы считают двигатель Ванкеля эквивалентным четырехтактному поршневому двигателю с двукратным рабочим объемом одной камеры на ротор, хотя на ротор приходится три лепестка. он совершает только одну треть оборота за один оборот выходного вала, поэтому за один рабочий оборот на выходном валу происходит только один рабочий ход, а два других лепестка выбрасывают израсходованный заряд, принимая новый, вместо того, чтобы способствовать выходной мощности та революция.

      Существуют гоночные серии, которые были запрещены двигателем Ванкеля в сочетании со всеми другими его альтернативами традиционной поршневой четырехтактной конструкции.

      Последние изменения в двигателе

      Увеличенный рабочий объем и мощность роторного двигателя добавили больше роторов к его базовой конструкции, но по-прежнему существует ограничение на количество роторов, поскольку выходная мощность направляется через последний вал ротора. со всеми напряжениями, присутствующими во всем двигателе, присутствующими в этой конкретной точке. У двигателей были роторы, сопровождаемые двумя наборами двойных роторов, и зубчатая муфта между двумя наборами роторов была успешно испытана.

      Недавнее исследование, проведенное в Соединенном Королевстве в рамках проекта «Система охлаждения ротора с самонагнетанием воздуха» (SPARCS), показало, что стабильность холостого хода и экономия достигается за счет подачи воспламеняющейся смеси только на один ротор в многороторном двигателе, который ротор с принудительным воздушным охлаждением, очень похожий на конструкцию Norton с воздушным охлаждением.

      Основными недостатками двигателя Ванкеля являются:

      • Неадекватная смазка
      • Охлаждение при температуре окружающей среды
      • Короткий срок службы двигателя
      • Высокий уровень выбросов
      • Низкий КПД топлива

      Материал, используемый в двигателе Ванкеля

      В отличие от поршневого двигателя, в котором цилиндр нагревается в процессе сгорания, а затем охлаждается поступающим зарядом. Корпус ротора Ванкеля постоянно нагревается с одной стороны и охлаждается с другой, что приводит к высоким локальным температурам и неравномерному тепловому расширению. Это место пользуется большим спросом из-за типа используемого материала, тогда как простота двигателя Ванкеля упрощает его использование в качестве альтернативного материала, такого как сплавы и керамика.

      При водяном охлаждении в радиальном или осевом направлении потока и горячей воде из горячей дуги, нагревающей холодную дугу, тепловое расширение остается неизменным. Учитывая, что температура топового двигателя может быть снижена до 129°С при максимальной разнице температур 18°С между частями двигателя за счет использования тепловых труб по периметру корпуса и в боковых пластинах в качестве средства охлаждения.

      Для корпусов Ванкеля рекомендуются сплавы A-132, Inconel 625 и 356, обработанные до твердости T6. Для покрытия рабочей поверхности корпуса использовались различные материалы, одним из которых является никасил. Например, Mercedes-Benz, Ford и т. д. подают заявки на патенты в этой области.

      Идеальное сочетание обшивки корпуса, вершины и материалов боковых уплотнений определяется с помощью экспериментов, чтобы получить наилучшую долговечность как уплотнений, так и крышки корпуса. В частности, для валов предпочтительным материалом являются стальные сплавы с небольшой деформацией под нагрузкой. Также для этой цели предлагается использовать мартенситностареющую сталь.

      Смазки двигателя Ванкеля

      Главным топливом был бензин, доступный в первые годы разработки двигателя Ванкеля. Свинец относится к твердой смазке, которая известна как ведущий бензин и предназначена для уменьшения износа уплотнений и корпусов. Двигатели древней эпохи имели расчетную подачу масла с учетом смазывающих качеств бензина.

      После удаления бензина двигателю требуется повышенное количество масла в бензине, чтобы обеспечить смазку критических частей двигателя. Опытные люди советуют, чтобы двигатели с электронным впрыском топлива добавляли не менее 1% масла непосредственно в бензин в качестве меры безопасности на случай, если насос, отвечающий за подачу масла в камеру сгорания, или связанные с ним детали вышли из строя или всосали воздух.

      Были различные подходы, которые включали твердые смазочные материалы и даже добавляли MoS2 из расчета 1 см3 на литр топлива. Многие инженеры согласились с тем, что добавление масла в бензин в старых двухтактных двигателях было более безопасным подходом к надежности двигателя по сравнению с впрыскиванием масляного насоса во впускную систему или непосредственно в часть, требующую смазки.

      Проблемы с уплотнением в двигателе Ванкеля

      Двигатели древней эпохи были сконструированы таким образом, что они имели высокую степень потери уплотнения между ротором и корпусом, а иногда также между различными частями, составляющими корпус. Это были двигатели Mazda, которые требовали ремонта через каждые 50 000 миль или 80 000 км пробега. Помимо этого, проблемы с уплотнением сохранялись из-за неравномерного распределения тепла внутри корпуса, что вызывало деформацию и потерю уплотнения и сжатия.

      Проблема сохранялась, когда двигатель подвергался нагрузке до достижения рабочей температуры. Принимая во внимание, что роторные двигатели Mazda успешно решили эти первоначальные проблемы. Эта проблема зазора для горячих вершин ротора проходила между аксиально более близкими боковыми корпусами в зонах более холодных впускных кулачков, которые решались с помощью осевого пилота ротора радиально внутри сальников, включая улучшенное инерционное масло, которое охлаждало внутреннюю часть ротора.

      Экономия топлива и его выбросы

      Двигатель Ванкеля имеет определенные проблемы с топливной экономичностью и выбросами при сжигании бензина. Бензиновые смеси довольно медленно воспламеняются, а также имеют медленную скорость распространения пламени с более высоким расстоянием гашения на такте сжатия 2 мм по сравнению с водородом, составляющим 0,6 мм. В сочетании с этими факторами отработанное топливо создало энергию, которая снизила его эффективность.

      Зазор между ротором и корпусом двигателя слишком узок для бензина в цикле сжатия, но достаточно широк для водорода. Узкий зазор сохраняется для создания сжатия. Как только двигатель использует бензин, оставшийся бензин выбрасывается в атмосферу через выхлоп. Это не является ограничением при использовании водородного топлива, так как вся топливная смесь в камере сгорания сгорает, что практически не дает выбросов и увеличивает эффективность топлива на 23%.

      Форма камеры сгорания Ванкеля

      Форма камеры сгорания Ванкеля разработана таким образом, чтобы сделать ее более устойчивой к предварительному зажиганию на более низком октановом числе бензина по сравнению с поршнем. двигатель. Форма камеры сгорания также может привести к неполному сгоранию топливовоздушной смеси при использовании бензинового топлива. Это может привести к выбросу большего количества несгоревших углеводородов из выхлопных газов.

      Принимая во внимание, что выхлопные газы имеют относительно низкий уровень выбросов, поскольку температуры сгорания в основном ниже по сравнению с другими двигателями, а также из-за рециркуляции отработавших газов (EGR) в ранних двигателях. В начале 1920-х годов было известно, что доля выхлопных газов во впускной смеси увеличилась на 1%, что привело к снижению температуры пламени на 7 °C. Это помогает Mazda соответствовать законам США о чистом воздухе 1970 года в 19 году.73, простым и недорогим способом, который представлял собой увеличенную камеру в выпускном коллекторе.

      За счет снижения отношения воздуха к топливу несгоревшие углеводороды в выхлопных газах поддерживали процесс горения в тепловом реакторе. Автомобили с поршневым двигателем требуют дорогостоящего каталитического нейтрализатора, чтобы справиться как с несгоревшими углеводородами, так и с их выбросами.

      Решение по увеличению расхода топлива оказалось неэкономичным. В то время как продажи автомобилей с роторным двигателем пострадали из-за нефтяного кризиса 1973, что подняло цену на бензин, что снизило продажи. Впрыск воздуха в зону выхлопного отверстия, который улучшил экономию топлива и уменьшил выбросы, был обнаружен Toyota.

      SPARCS и Compact-SPARCS

      SPARCS, Compact-SPARCS, CREEV (составной роторный двигатель для электромобилей) обеспечивают отвод тепла и эффективны в тепловой балансировке, что оптимизирует смазку. Ограничение, которое существовало с роторными двигателями, заключалось в том, что корпус двигателя во время работы имеет постоянно холодную и горячую поверхность.

      Это приводит к чрезмерному нагреву внутри двигателя, что приводит к быстрому разрушению смазочного масла. Система SPARCS уменьшает большой перепад температур нагрева корпуса двигателя, что также обеспечивает охлаждение ротора изнутри корпуса двигателя.

      В результате снижается износ двигателя, что продлевает срок его службы. Самодавление захватывается за счет продувки бокового ротора газом, уплотняющим рабочие камеры. CREEV относится к выхлопному реактору, который содержит вал и ротор внутри, имеющие форму, отличную от ротора двигателя Ванкеля.

      Реактор, расположенный внутри выхлопного потока, потребляет несгоревшие выхлопные продукты без использования второй системы зажигания перед отправкой сгоревших газов в выхлопную трубу. Мощность в лошадиных силах передается на вал реактора, что помогает снизить выбросы и повысить эффективность использования топлива. Принимая во внимание, что все три патента в настоящее время лицензированы для инженеров Великобритании.

      Системы каталитического конвертирования в двигателе Ванкеля

      Mazda отвечает за изменение системы каталитического конвертера в соответствии с исследовательским фактором, который контролирует количество несгоревшего углеводорода, который находится в выхлопных газах, создавая температуру поверхности ротора, при более высокой температуре меньше углеводородов.

      Ротор также можно расширить, что остальная часть двигателя останется неизменной, что уменьшит трение и увеличит рабочий объем и выходную мощность. Фактор, ограничивающий расширение, был механическим, особенно когда отклонение вала наблюдалось при более высоких скоростях вращения . Тушение является наиболее доминирующим источником углеводородов при сравнительно высокой скорости и утечке при низкой скорости.

      Автомобили с роторными двигателями Ванкеля способны работать на высоких скоростях. Принимая во внимание, что было показано, что раннее открытие впускного отверстия, длинные впускные каналы и большой эксцентриситет ротора увеличивают крутящий момент при более низких оборотах. Форма и положение выемки в роторе составляют большую часть камеры сгорания, что влияет на уровень выбросов и экономию топлива.

      Это приводит к экономии топлива и выбросам выхлопных газов, которые варьируются и зависят от формы камеры сгорания и определяются размещением свечей зажигания в каждой камере отдельного двигателя.

      Автомобили с низким уровнем выбросов

      Автомобиль с двигателем Renesis соответствует требованиям штата Калифорния по экономии топлива, в том числе стандартам транспортных средств с низким уровнем выбросов (LEV). Это было достигнуто за счет различных нововведений. При этом роторы Mazda также располагались в корпусах роторов. Это помогло решить проблему ранней золы, образовавшейся в двигателе, и термической деформации боковых впускных и выпускных отверстий. Также было добавлено скребковое уплотнение по бокам ротора, включая некоторые керамические детали, которые использовались в двигателе. Это помогло Mazda устранить перекрытие между отверстием впускного и выпускного отверстий, постоянно увеличивая площадь выпускного отверстия.

      Боковой порт застревает в камере несгоревшего топлива, что снижает расход масла, а также улучшает стабильность горения в диапазоне низких оборотов и малых нагрузок. Выбросы УВ из бокового выхлопного окна двигателя Ванкеля снижены на 35–50% по сравнению с выбросами из периферийного выхлопного отверстия двигателя Ванкеля благодаря нулевому открытию впускного и выпускного отверстий. Роторные двигатели с периферическим расположением каналов имели сравнительно лучшее давление, особенно на высоких оборотах, и впускное отверстие прямоугольной формы.

      Двигатели Ванкеля следующего поколения

      Mazda все еще разрабатывает двигатели Ванкеля следующего поколения. Компания намерена производить двигатели с лазерным зажиганием, которые исключат обычные свечи зажигания и будут работать с непосредственным впрыском топлива или безискровым зажиганием HCCI и SPCCI. Это приводит к большему эксцентриситету ротора с улучшенной эластичностью и более низкому крутящему моменту во времени.

      Исследования показали, что установка камеры сгорания улучшила частичную нагрузку и уменьшила число оборотов в минуту с экономией топлива 7%. Мотивом было повышение эффективности использования топлива, для чего Mazda надеется использовать Wankel в качестве расширителя диапазона в своей серии гибридных автомобилей и анонсирует прототип. Эта конфигурация помогает повысить эффективность использования топлива и уровень выбросов. Преимущество заключается в том, что работа двигателя Ванкеля на постоянной скорости продлит срок службы двигателя.

      В 2015 году появилась новая система, которая снизила выбросы и повысила эффективность использования топлива с двигателями Ванкеля, которая была разработана британскими инженерами после лицензионного соглашения для использования патентов роторного двигателя Norton. создатель двигателя.

      Система Compound Rotary Engine for Electric Vehicles (CREEV) использует вторичный ротор для извлечения энергии из выхлопных газов, которые потребляют несгоревшие продукты выхлопа, в то время как расширение происходит на стадии вторичного ротора, чтобы уменьшить общие выбросы и расход топлива. расходы за счет возмещения энергии выхлопных газов, которая в противном случае была бы потеряна. Чтобы расширить выхлопные газы до давления, близкого к атмосферному, Гарсайд позаботился о том, чтобы выхлопные газы двигателя оставались более холодными и производили меньше шума 9.0003 .

      Лазерное зажигание в двигателях

      Раньше свечи зажигания нужно было вдавливать в стенки камеры сгорания, что позволяло вершине ротора активироваться и проходить мимо. Когда вершина ротора проходит уплотнения вокруг отверстия свечи зажигания, очень небольшое количество сжатого заряда теряется из зарядной камеры выхлопной камеры, что влечет за собой топливо в выхлопе и, таким образом, снижает его эффективность, что приводит к более высокому выбросы.

      Это точки, которые были преодолены с помощью лазерного зажигания и, таким образом, устранены более ранние свечи зажигания, а также удалена узкая щель в корпусе двигателя, чтобы можно было полностью выметать верхние уплотнения ротора без потери компрессии из соседних камер. Лазерная свеча может стрелять через узкую щель, которая помогает стрелять глубоко в камеру сгорания с помощью многократного лазера. Поэтому предпочтительнее более высокая степень сжатия. Непосредственный впрыск топлива в двигатель Ванкеля подходит и сочетается с помощью лазерного зажигания в одной или нескольких лазерных свечах, что было показано для улучшения двигателя за счет уменьшения недостатков.

      Воспламенение от сжатия гомогенного заряда (HCCI)

      Воспламенение от сжатия гомогенного заряда (HCCI) включает использование предварительно смешанной воздушно-топливной смеси, которая сжимается до точки самовоспламенения, поэтому электронное искровое зажигание исключается. Бензиновые двигатели сочетают в себе искровое зажигание с однородным зарядом (HC) (SI), которое также известно как HCSI. Дизельные двигатели сочетаются с послойным зарядом (SC) и воспламенением от сжатия (CI), которые вместе известны как SCCI. Двигатели HCCI обеспечивают выбросы, подобные бензиновым двигателям, с помощью эффективности, подобной двигателю с воспламенением от сжатия, и более низкие уровни выбросов оксидов азота без использования какого-либо каталитического нейтрализатора. 0009

      Mazda провела различные исследования зажигания HCCI для последнего проекта роторного двигателя с помощью исследований в рамках своей программы SkyActiv Generation 2. Основное ограничение роторного двигателя заключается в том, что его необходимо сместить за пределы свечи зажигания камеры сгорания, чтобы ротор мог пронестись мимо.

      Зажигание от сжатия с искровым управлением (SPCCI)

      Mazda провела успешное исследование зажигания от сжатия с контролируемым искровым зажиганием (SPCCI) на роторных двигателях, в котором говорится, что недавно представленные роторные двигатели будут включать SPCCI. SPCCI внедряет искровое зажигание и зажигание от сжатия, которые сочетают в себе преимущества бензиновых и дизельных двигателей для достижения целей по экологичности, мощности, ускорению и расходу топлива.

      В процессе горения всегда требуется искра, которая зависит от нагрузки, которая может возникнуть при искровом зажигании. Следовательно, искра необходима для контроля всякий раз, когда происходит сгорание. Аспект воспламенения от сжатия SPCCI помогает ему сделать возможным сверхобедненное горение, которое повышает эффективность двигателя до 20–30%. SPCCI обеспечивает очень высокую эффективность в самом широком диапазоне оборотов и нагрузок двигателя.

      Работа двигателя на обедненной смеси составляет около 80% наработки. Свечи зажигания поджигают небольшой импульс обедненной смеси, которая впрыскивается в камеру сгорания. При выстреле образуется огненный шар, который действует как воздушный поршень, повышающий давление и температуру в камере сгорания. Воспламенение от сжатия обедненной смеси происходит с быстрым и равномерным горением, что приводит к более мощному циклу. Время сгорания контролируется пламенем свечи зажигания, что позволяет SPCCI использовать преимущества как бензиновых, так и дизельных двигателей.

      Взлет, падение и возвращение роторного двигателя (двигатель Ванкеля)

      Роторные двигатели можно назвать побочным продуктом популярного типа двигателей. Они были прочными, но неэффективными, легкими, но сильно загрязняющими окружающую среду и, что более важно, небезопасными. Так почему кто-то в здравом уме хочет, чтобы роторные двигатели вернулись? Потому что теперь у нас есть технология, позволяющая противостоять пагубным последствиям вращения и сделать их лучше. Давайте погрузимся в мир роторных двигателей .

      Роторный двигатель | Рождение

      Ванкель со своим изобретением

      В лаборатории немецкого инженера-механика в 1954 году был изобретен роторный двигатель. За этим стоял Феликс Генрих Ванкель. Он хотел сделать двигатель, у которого не было бы сильных вибраций, как у поршневого двигателя. И он добился успеха, роторный двигатель Ванкеля (DKM54) был запущен и работал, но не нашел применения в автомобилях до 1956 года, когда его модифицировал другой инженер Ганс Дитер Пашке, который удешевил его, сделав возможным массовое производство.

      Так какое же влияние оказали роторные двигатели на старые автомобили и почему о них забыли все компании, кроме одной, которая не откажется от них? Давайте посмотрим, что роторный двигатель сделал правильно, а где он сильно ошибся.

      Роторный двигатель | Power Incarnate

      В то время как двигатель внутреннего сгорания может обеспечить большую мощность, роторный двигатель может делать то же самое, но лучше. Что-то вроде 1,3-литрового роторного двигателя может производить 228 л.с., в то время как двигатель внутреннего сгорания может производить максимальную выходную мощность 170 л.с. Не забывайте тот факт, что роторные двигатели очень малы по сравнению с двигателем внутреннего сгорания.

      Мощные роторные двигатели стоят своих денег. Они не используют топливо для себя. Пьют . Была причина смерти роторных двигателей. Давайте посмотрим, как они работали.

      Роторный двигатель | Основной принцип работы

      Роторные двигатели преобразуют давление во вращательное движение, как и любой другой двигатель, работающий на топливе. Так что же сделало их лучше? Это было количество деталей, необходимых для совершения этого вращательного движения. Им не нужны были никакие «аксессуары» вроде поршневого двигателя

      Поршневой двигатель, который преобразует давление в линейное движение, которое затем преобразуется во вращение с помощью кривошипов. Роторный двигатель непосредственно генерирует вращение. Это означало меньшие потери мощности, и эмпирическое правило гласит, что чем больше деталей, тем больше потерь.

      Роторный двигатель | Детали  

      Поворотный механизм состоит только из трех основных частей, которые используются. Есть и другие детали, но мы сравниваем его с поршневым двигателем, поэтому мы будем говорить только о деталях, которые используются для выработки энергии и немного отличаются от поршня.

      Ротор | Kinda Obvious

      Роторы

      Выпуклая треугольная часть посередине называется ротором. Это эквивалент поршня. Он вращается, и вот как это работает, спасибо за чтение блога. А если серьезно, то он вращается вокруг камеры, в которой находится, запуская четыре цикла двигателя: циклы впуска, сжатия, сгорания и выпуска. Все эти этапы происходят в другой части камеры, которая им посвящена.

      Палата | Заставить все работать

      Комната

      Комната — это место, где происходит волшебство. Как мы уже говорили выше, в нем находится ротор, но также есть множество других вещей, которые помогают запускать двигатель.

      Во-первых, это топливная форсунка. Довольно простой материал, если вы изучали двигатели внутреннего сгорания. Инжектор в роторе работает так же. Место подачи топливовоздушной смеси в камеру, это также место, где происходит такт сжатия после впуска топливовоздушной смеси

      Предлагаем прочитать: Форд против Феррари | Эпическое соперничество | Правдивая история

      Во-вторых, это две свечи зажигания. Да, ротор должен иметь две свечи зажигания. Из-за формы камеры двигателю требуется более одной свечи зажигания. Эти две свечи зажигания обеспечивают равномерное распространение пламени вокруг такта зажигания.

      Третий выпускной клапан выбрасывает несгоревшее топливо и газы из двигателя.

      После этого ротор возвращается в исходное положение, и цикл продолжается.

      Использование роторной пилы

      От двигателей спортивных автомобилей до истребителей времен Второй мировой войны, роторная пила используется во всем. Все, что требовало скорости и производительности, использовало роторные двигатели. Наиболее распространенными автомобилями с роторными двигателями были Mazda серии RX.

      Но если они такие разносторонние и хорошие, почему они начали их уменьшать и в конечном итоге убивать?

      Роторные двигатели | Что их убило

      Смерть роторных двигателей

      Как и сказано на изображении выше, роторные двигатели уничтожили сами себя. Как в прямом, так и в переносном смысле. Поскольку они могли просто взорваться в любое время, когда захотят, и образно говоря, потому что они были грубыми. Как бы я ни любил роторные двигатели, они были плохим железом.

      EXPLOOOOSIOOOOONNNNNNN

      Роторный двигатель взрывается

      Самой большой проблемой роторного двигателя была БЕЗУМНАЯ ГЛУБАЯ МОЩНОСТЬ, которую они генерировали. Подождите, это должно быть положительным моментом, верно? Ну да, но на самом деле нет. высокая мощность достигается за счет высоких оборотов, что означает проблемы. Если вы хотите иметь небольшое представление о том, насколько сложно было управлять автомобилем с роторным двигателем, мы приводим некоторые пункты ниже.

      • Заведите автомобиль и установите скорость вращения на медленную скорость, не достигая высоких уровней, в течение максимум 20 минут в зависимости от температуры наружного воздуха.
      • Затем нужно прогреть масло в двигателе и убедиться, что указатель уровня воды на приборной панели не зашкаливает, так как он будет быстро нагреваться.
      • Когда вышеуказанные условия соблюдены, тогда вы начинаете гонку, потому что единственная причина получить роторный двигатель — это участвовать в гонках с ним.
      • Кроме того, вам нужно максимально увеличить обороты, чтобы убедиться, что двигатель смазан.

      Если вы выполнили все эти шаги и вам повезло, вы можете покататься на своей машине еще один день. Хотя это не было обычным явлением, мы не будем рисковать даже малейшим шансом взрыва двигателя из-за отсутствия шанса взорваться.

      Популярное чтение: основные моменты индийской автомобильной промышленности за 2019 год

      Rotary Не используйте топливо, которое они пьют

      Rotary имеет очень плохую экономию топлива

      Должно быть достаточно очевидно из названия, роторный двигатель был неэффективным. У него был расход топлива 190,7 км/л. Это была лучшая экономичность, которую мы когда-либо получали от роторного двигателя. Так что это только идет вниз от этого. Это было серьезной проблемой для людей, которые хотели машину просто по личным причинам, а не использовали ее для гонок или дрифта.

      Дышать весело | Rotary Says No

      Эмиссия Rotary была зашкаливающей. Когда уровень Nox достиг высокого уровня, Ротари стал загрязнять окружающую среду. Это привело к гибели роторных двигателей в Европейском Союзе, когда они ввели новую норму выбросов, за которой ротационные двигатели не могли угнаться.

      Возвращение?

      Так что, если у них есть такие большие красные флаги вокруг них, почему даже Mazda беспокоит их возвращение. Речь идет не о наличии альтернативного варианта трансмиссии, а о сохранении наследия. Со всеми этими проблемами ротация вообще не должна быть вещью, так почему мы думаем, что ротация вернется.

      Не называйте это возвращением Роторные двигатели никогда не покидали

      Несмотря на то, что каждая компания, которая пробовала заниматься роторными двигателями, отказалась от них, Mazda не отказалась. Они продолжали внедрять новые опции и технологии, чтобы заставить вращаться работать. Медленно и неуклонно они поняли, что это не имеет значения, поскольку слишком много недостатков, чтобы заставить его работать. Но они по-прежнему сильны, поскольку Mazda сообщает, что патентует новые технологии, касающиеся роторных двигателей. Надежда на Rotary все еще сильна.

      Предел неба, когда тебе наплевать | SkyActiv X Tech

      Mazda создала двигатель под названием SkyActic X. Работа двигателя с этой технологией — действительно умная вещь, поскольку она устраняет проблему двигателя внутреннего сгорания, связанную с его выбросами и эффективностью.

      SkyActiv X в рабочем состоянии

      Skyactiv X в рабочем состоянии Источник: Mazda

      Эти двигатели представляют собой смесь дизельного и бензинового двигателей. Он использует концепцию, которую используют эти двигатели, а именно зажигание от свечи зажигания и воспламенение от сжатия.

      В камерах Skyactiv X используется обедненная топливная смесь 16:1. Это позволяет меньше выделять тепла, так как больше воздуха. Затем эта обедненная смесь сжимается поршнем, и когда она почти достигает точки самовоспламенения из-за давления, свеча зажигания воспламеняет ее. Эта смесь обоих обеспечивает более низкую температуру, что снижает выбросы Nox и меньше тепла, что означает, что больше энергии используется для запуска автомобиля, а не тратится впустую.

      Итак, почему мы обсудили технологию, которая используется в поршневых двигателях? Благодаря сочетанию SkyActiv X и роторных двигателей, роторные двигатели могут завоевать рынок высокопроизводительными автомобилями, которые, к счастью, не взорвутся, пока вы едете.

      Слияние Rotary и SkyActiv X

      Есть некоторые моменты, говорящие о том, как использование SkyActiv X и Rotary может кардинально изменить две основные проблемы: выбросы и эффективность. Взрывы роторных двигателей могли быть проблемой, но они не были обычным явлением.

      Высокая степень сжатия | Элементы управления Emission

      SkyActiv X использует действительно высокую степень сжатия 16:1. И исследования показали, что с помощью этой технологии можно достичь такого же соотношения на роторном двигателе. Это означает, что чем меньше выбросов, тем больше воздуха, что приводит к более низким температурам, что в свою очередь приводит к меньшим выбросам Nox, поскольку выбросы Nox напрямую связаны с температурой

      S.P.C.C.I (зажигание от сжатия, управляемое свечой зажигания) | Эффективность органов управления

      Как мы уже говорили выше, сочетание двигателя сжатия и воспламенения делает SkyActiv X хорошим. Это обеспечивает более низкую температуру и меньше выбросов. Это также повышает эффективность, поскольку более бедные смеси легко сгорают, а при использовании SPCCI они сгорают полностью, не оставляя остатка.

      SUPERCHARGE IT

      Наддув роторного двигателя SkyActiv X — идеальный вариант. Поскольку нам нужно сделать рацион 16:1 возможным, нам нужно больше воздуха, и нагнетатель поможет нам в этом. Здесь нечего добавить, так как это нормальная вещь, используемая многими двигателями.

      Заключение  

      Ротари вернется. Каждый роторный фанатик хочет, чтобы они были. Mazda дала нам некоторую надежду, когда некоторые патенты намекнули на то, что они работают над новым роторным двигателем. Они также были замечены, заявив, что не откажутся от мечты создать суперкар с роторным двигателем, и RX9 будет с ним. Ходят слухи, что RX9 будет иметь двигатель мощностью более 400 л.

      Более информативные материалы: стоит ли покупать электромобиль или автомобиль BS6 в 2020 году?

      [yop_poll id=”72″]

      Нарушенные обещания двигателя Ванкеля

      За всю историю двигателей внутреннего сгорания было много эволюций, но мало революций. Разговоры о кардинально разных конструкциях всегда приводят к одному имени — Ванкель. Роторный двигатель Ванкеля, наиболее часто используемый в автомобилях Mazda, существует с конца 1950-х годов. Ротор Ванкеля является примером конструкции, которая имеет смысл на бумаге. Однако из-за практических проблем он не работает в реальном мире.

      Изобретение и история

      Двигатель Феликса Ванкеля был задуман во сне. На нем 17-летний Феликс ехал на своей машине на концерт. Когда он приехал, он похвастался своим друзьям, что в его машине используется двигатель нового типа — наполовину турбинный, наполовину поршневой. «Это мое изобретение!» он сказал своим друзьям. Проснувшись, Ванкель посвятил себя созданию своего двигателя. Хотя он так и не получил официального образования (или водительских прав), Ванкель был одаренным инженером.

      Пестрая история молодого Ванкеля включает членство в нескольких антисемитских группах в 1920-е годы. Он также участвовал в создании нацистской партии. Его противоречивые взгляды на направление партии привели к его аресту в 1933 году. В конце концов, освобожденный благодаря действиям самого Гитлера, Ванкель вступил в СС в 1940 году. В конце войны Ванкель провел несколько месяцев во французской тюрьме за участие в войне.

      Работа над двигателем возобновилась в 1951 году при финансовой поддержке NSU Motorenwerke AG. Первый рабочий прототип был изготовлен в 1957 году. Этот двигатель, получивший название DKM 54, имел ротор и корпус, которые вращались на отдельных осях. Двигатель был способен развивать большие скорости вращения, до 17 000 об/мин. Хотя техническое обслуживание было проблемой. Для замены свечей зажигания пришлось разобрать весь двигатель.

      Неизвестный Ванкелю Ханс Дитер Пашке был вызван для создания упрощенной версии. Его прототип назывался ККМ 57Р. В этой гораздо более простой конструкции использовался стационарный корпус. Это понравилось всем, кроме Ванкеля, который заметил: «Вы превратили мою скаковую лошадь в пахотную кобылу». Дизайн ККМ был быстро принят и лицензирован. Этот двигатель является основой современного роторного двигателя «Ванкеля».

      Работа двигателя

      Поршневые двигатели, в основном циклы Отто и Дизеля, в настоящее время являются королями горы внутреннего сгорания. Двигатели с поршневым приводом превращают энергию возвратно-поступательного движения (движение поршней вверх и вниз) в энергию вращения. Ванкель бросает вызов всему этому. Упрощенный двигатель Ванкеля имеет только две движущиеся части: ротор и эксцентриковый вал.

      CC-BY-SA-3.0 от Y_tambe через Wikimedia Common

      Ротор имеет треугольную форму, но стороны выгнуты. Во многих роторах также используются чашеобразные поверхности для увеличения объема камеры сгорания. Ротор вращается в корпусе примерно овальной формы эпитрохоида. Ротор не просто вращается, он вращается на эксцентриковом валу, который аналогичен коленчатому валу поршневого двигателя. Неподвижная шестерня, закрепленная на корпусе двигателя, входит в зацепление с зубчатым венцом ротора. Шестерня обеспечивает поворот ротора на ⅓ оборота на каждый 1 оборот эксцентрикового вала.

      Острия (или вершины) ротора образуют внутри корпуса три камеры. Эти камеры перемещаются при вращении ротора. Топливо и воздух всасываются через впускное отверстие, прижимаются к узкой стороне корпуса и воспламеняются свечами зажигания. Расширяющиеся газы проталкивают ротор через рабочий ход до тех пор, пока вершина не пройдет через выпускное отверстие, что позволяет отработавшим газам выйти.

      Анимация показывает процесс для одной грани. Гениальность машины Ванкеля в том, что процесс происходит для всех трех граней параллельно. По сути, двигатель имеет конвейерный процесс сгорания. Было бы справедливо сказать, что однороторный двигатель Ванкеля аналогичен трехцилиндровому поршневому двигателю.

      Коммерческие исследования и разработки

      Было множество лицензиатов двигателя Ванкеля. Почти каждый крупный производитель потратил время на изучение концепции. GM создала прототип с двумя роторами. Компания Rolls Royce создала двухступенчатую модель с роторами низкого и высокого давления. Несколько компаний запустили производство Ванкеля. Кертис Райт строил двигатели для самолетов, Сакс производил небольшие двигатели с воздушным охлаждением для всего, от цепных пил до снегоходов. Нортон создал несколько мотоциклов, используя этот дизайн. Однако единственным крупным производителем, который все еще работает над двигателями Ванкеля для автомобилей, является Mazda. Серия спортивных автомобилей RX на протяжении десятилетий была синонимом роторных двигателей Ванкеля. Последней моделью была RX-8, производство которой было прекращено в 2011 году. Mazda не отказалась от Ванкеля, выпустив концептуальные автомобили, такие как RX-Vision, как доказательство их продолжающихся исследований.

      Реальность устанавливается в

      Так почему же мы все не ездим на машинах с двигателями Ванкеля? Проблема заключается в подводных камнях конструкции.

      Экономия топлива : Камера сгорания Ванкеля длинная, тонкая и движется вместе с ротором. Это приводит к медленному сгоранию топлива. Двигатели пытаются бороться с этим, используя двойные (переднюю и заднюю) свечи зажигания. Даже с двумя свечами сгорание часто бывает неполным, что приводит к выбросу сырого топлива через выхлопное отверстие. Небольшой двухроторный двигатель объемом 1,3 литра мощностью 232 л.с. в Mazda RX-8 2011 года имеет худшую экономию топлива (16 город / 23 шоссе), чем 6,2-литровый двигатель V8 мощностью 455 лошадиных сил, используемый в Corvette Stingray 2015 года (17 город / 29).шоссе).

      Выбросы : Несгоревшее топливо, а также сгоревшее масло (описанное ниже) приводят к ужасным выбросам двигателей Ванкеля. Проблемы с выбросами — одна из нескольких причин, по которым RX-8 был снят с производства.

      Уплотнение : В роторах используются уплотнения на торцах, уплотнения вокруг центрального порта и, что наиболее важно, уплотнения на вершине. Верхнее уплотнение опирается на стенку корпуса, герметизируя каждую из трех камер, образованных ротором. Верхние уплотнения подвергаются экстремальным термическим и сжимающим нагрузкам, когда они перемещаются по корпусу двигателя. Выход из строя верхних уплотнений является основной причиной выхода роторных двигателей из строя на капитальный ремонт. YouTube завален видеороликами, показывающими процесс капитального ремонта ротора.

      Как и поршневые кольца, эти уплотнения необходимо смазывать. Однако из-за конструкции роторного двигателя масло, смазывающее уплотнения, не может попасть в камеру сгорания. В двигателях Mazda есть инжекторный насос, который нагнетает небольшое количество масла прямо в корпус двигателя, а также в воздухозаборник. Это масло в конечном итоге сгорает, что приводит к увеличению выбросов углерода и выбросов в течение срока службы двигателей.

      Интервал капитального ремонта : Роторные двигатели обычно не служат так долго, как поршневые двигатели. Как красноречиво объяснили журнал Regular Car Reviews, основная проблема связана с уплотнениями. Просмотр форумов Mazda и роторных показывает, что люди восстанавливают где-то между 50 000 и 100 000 миль. Однако все это нужно воспринимать с долей скептицизма. В конце концов, RX-7 и 8 — спортивные автомобили. В то время как некоторые люди относятся к ним бережно, многие люди ездят на этих автомобилях жестко. Послепродажные детали, такие как турбокомпрессоры, также негативно влияют на надежность двигателя.

      История вращения Ванкеля не совсем безрадостна. Роторные двигатели имеют некоторые преимущества. Как упоминалось выше, роторные двигатели развивают большую мощность (хотя и при меньшем крутящем моменте), чем эквивалентные поршневые двигатели. Они также более надежны в краткосрочной перспективе. С меньшим количеством движущихся частей просто меньше ломается. Роторные двигатели также склонны изящно выходить из строя. Из-за выхода из строя верхних уплотнений роторные двигатели теряют мощность, но все равно доставят вас домой. Поршневые двигатели, как правило, катастрофически выходят из строя, пробивая отверстия в блоках цилиндров, разбрызгивая масло и детали повсюду. Роторные двигатели хорошо себя чувствуют на гоночной трассе, то есть там, где это разрешено. Многие гоночные классы (особенно F1) запретили роторные двигатели. Из допущенных наиболее примечательной является Mazda 787B, выигравшая 1991 24 часа гонки в Ле-Мане.

      Какое будущее ждет роторный двигатель Ванкеля? Скорее всего больше того же. Mazda будет продолжать поддерживать двигатель, и он будет по-прежнему использоваться в некоторых нишевых областях. Тем не менее, потребуется значительный прогресс в материалах и дизайне, чтобы исправить все проблемы, которые до сих пор отодвигали двигатель Ванкеля на задний план в истории внутреннего сгорания.

      Что такое роторный двигатель Ванкеля? Схема, детали, работа [PDF] (2022)

      В этой статье вы узнаете как работает роторный двигатель Ванкеля? И его части, функции, преимущества и приложения объясняются диаграммами.

      Кроме того, вы также можете загрузить PDF-файл этой статьи в конце.

      Что такое роторный двигатель Ванкеля?

      Он определяется как роторный двигатель внутреннего сгорания, в котором изогнутый, треугольный или эксцентрически поворачиваемый поршень вращается в эллиптической камере, создавая три камеры сгорания, различающиеся по объему. Или, проще говоря, это тип двигателя внутреннего сгорания, в котором используется эксцентриковая вращающаяся конструкция для преобразования давления во вращательное движение.

      Немецкий инженер Феликс Ванкель изобрел роторный двигатель, известный как роторный двигатель Ванкеля, который в основном использовался в гоночных автомобилях. Двигатель Ванкеля работает по обычному циклу Отто, но отличается от поршневого двигателя внутреннего сгорания. двигатели.

      Это чисто роторный двигатель, не имеющий возвратно-поступательного движения или поршня. По сравнению с поршневыми двигателями двигатели Ванкеля обеспечивают больший крутящий момент, меньшую вибрацию и при заданной мощности более компактны и меньше весят.

      В нем используется ротор вместо поршня, который вращается внутри камеры. Эта конструкция бросает новый вызов существующим поршневым двигателям.

      Читайте также: Какие детали внутри автомобиля? [Поясняется схемами]

      (Видео) См. Сквозной роторный двигатель в замедленной съемке — (двигатель Ванкеля) 4K

      Части роторного двигателя Ванкеля

      Ниже приведены детали роторного двигателя Ванкеля:

      1. Впуск
        1. Выхлоп2

        2. Коронная шестерня
        3. Ротор
        4. Камера сгорания
        5. Корпус
        6. Эксцентриковый вал
        7. Верхнее уплотнение
        8. Свеча зажигания

        #1 Впуск

        Впуск начинается, когда конец ротора проходит через впускное отверстие. В этот момент камера находится в наименьшем положении и расширяется при вращении.

        #2 Выпускное отверстие

        Когда наконечник проходит через это выпускное отверстие, выхлопные газы под высоким давлением могут проходить через это отверстие.

        #3 Коронная шестерня

        В двигателе Ванкеля коронная шестерня имеет зубья, выступающие под прямым углом к ​​поверхности колеса.

        Ротор №4

        В роторном двигателе Ванкеля обычно используется ротор треугольной формы. Этот ротор состоит из трех выпуклых граней, каждая из которых действует как поршень. Ротор работает как первичный двигатель в роторном двигателе Ванкеля.

        См. также

        roxana elizabeth caro elenesJokercars OHG в Филиппсбурге | AutoScout24Python Вопросы и ответы по программированию

        Сгорание происходит за счет сжигания топлива и воздействует непосредственно на ротор, поэтому он вращается эксцентрично. На одной стороне ротора имеется внутренняя синхронизирующая шестерня, которая входит в зацепление с фиксированной синхронизирующей шестерней, расположенной на боковом корпусе, для обеспечения правильного соединения между ротором и эксцентриковым валом.

        #5 Камера сгорания

        Ротор в двигателе Ванкеля вращается с орбитальным движением в корпусе особой формы и образует серповидные камеры сгорания между его сторонами и криволинейной стенкой корпуса.

        #6 Корпус

        Представляет собой овальный эпитрохоидальный корпус, в котором заключен треугольный ротор с дугообразными гранями, напоминающими треугольник Рело. Корпус состоит из впускного и выпускного отверстий, свечи зажигания, водяной рубашки и т. д.

        (Видео) Принцип работы роторного двигателя

        Этот двигатель имеет несколько корпусов, два из которых являются важными:

        • Основной корпус: Он закрыт боковыми корпусами.
        • Боковой кожух: Состоит из неподвижного зубчатого колеса, которое входит в зацепление с внутренним зубчатым колесом. Он сохраняет правильное соединение между ротором и эксцентриковым валом.

        Вал эксцентрика #7

        Это полезная деталь, которая используется для преобразования эксцентричного движения ротора в концентрическое и вывода его из двигателя.

        Роторы вращаются на эксцентрике (соответствующем шатунной шейке), встроенном в эксцентриковый вал (соответствующий коленчатому валу). Ротор вращается вокруг эксцентриков и совершает орбитальное вращение вокруг эксцентрикового вала.

        Верхнее уплотнение #8

        Стороны треугольного ротора действуют как поршни, поэтому необходимо герметизировать всю эту камеру. Для герметизации камеры используются верхушечные уплотнения. Они сделаны из изогнутого металла, который соприкасается с корпусом двигателя при движении ротора.

        #9 Свеча зажигания

        В двигателе Ванкеля используются две свечи зажигания, т. е. ведущая и ведомая свечи зажигания. Ведущая свеча (расположенная в нижней части корпуса ротора) сжигает до 95% топливно-воздушной смеси, обеспечивая большую мощность.

        Конструкция двигателя Ванкеля

        На рисунках показана упрощенная схема роторного двигателя Ванкеля. Он состоит из трехлопастного ротора (ротор треугольной формы с загнутыми сторонами), эксцентрично вращающегося в овальной камере. Ротор крепится к коленчатому валу посредством внешней и внутренней шестерни.

        Лопасти ротора плотно прилегают к стенкам овальной камеры. Сгорание форм ротора и камеры гарантирует, что они остаются в контакте друг с другом на протяжении всего вращения. Ротор имеет с трех сторон между кулачками углубление овальной формы.

        Читайте также:

        (Видео) Двигатель Ванкеля (Роторный двигатель) | Принцип работы | Механизм | МАТЕРИАЛЫ ДЛЯ ТЕХНИЧЕСКИХ ИССЛЕДОВАНИЙ

        Как работает двигатель Ванкеля?

        Обычно двигатель с ротором Ванкеля имеет трехлопастной ротор, который образует вокруг себя три пространства в овальной камере. Четыре основных цикла впуска, сжатия, мощности и выпуска выполняются одновременно в трех местах вокруг ротора во время работы двигателя.

        Цифры (i) представляют впуск топлива, при котором сторона ротора AB создает всасывание. Топливно-воздушная смесь из карбюратора поступает во всасывающую камеру. Когда ротор вращается по часовой стрелке, смесь сжимается между ротором и камерой, как в (ii).

        См. также

        Ограниченные выпуски, pocos ejemplares ymillones de dólares: cuáles son los autos más caros del mundo[Tutorial] Cara Save Halaman Tertentu Di Word Beserta GambarMATLAB Answers By Online tutors 24/7 ??‍??

        Далее воспламеняется, газы сгорания расширяются, вращая ротор, как в (iii), и, наконец, выхлопные газы выталкиваются из камеры, как в (iv). Сторона АВ ротора снова находится в исходном положении для приема нового заряда. Таким образом, цикл завершен.

        Один и тот же цикл операций происходит одновременно на всех трех сторонах ротора. Очевидно, что на каждый оборот ротора приходится три импульса мощности, что в три раза больше, чем у двухтактного двигателя, и в шесть раз больше, чем у четырехтактного двигателя.

        Двигатель выдает мощность почти непрерывно. Эксцентричное движение ротора вызывает вибрации, которые уменьшаются за счет использования симметрично установленного маховика.

        Преимущества роторного двигателя Ванкеля перед поршневым двигателем

        1. Роторный двигатель Ванкеля меньше по размеру, легче по весу и более компактен по сравнению с поршневыми двигателями.
        2. Дешевле и проще по конструкции для серийного производства из-за отсутствия многих рабочих деталей типа шатуна, коленчатого вала, клапанного механизма и т.д.
        3. Его балансировка проще, поскольку он не содержит возвратно-поступательных частей. Дорожные испытания показали, что этот двигатель практически не вибрирует.
        4. Объемный КПД двигателя Ванкеля очень высок, часто превышает 100%.
        5. Его мощность на кг двигателя значительно выше.
        6. Двигатель Ванкеля требует меньших эксплуатационных расходов, чем поршневой двигатель.
        7. Он не требует овердрайва, потому что его скорость очень высока.

        Недостатки двигателя Ванкеля

        1. Более высокий расход топлива в диапазоне низких скоростей и более высокий расход масла на B.H.P.
        2. Скорости с более низким крутящим моментом.
        3. Тормозной эффект двигателя намного меньше.
        4. Уменьшение скорости в трансмиссии необходимо из-за очень высоких оборотов двигателя.
        5. Из-за проблем с зажиганием при использовании обычной системы зажигания. Свечи зажигания необходимо периодически менять. Однако это было устранено с помощью транзисторного зажигания.
        6. Основным препятствием в разработке роторного двигателя Ванкеля была проблема уплотнения, которая к настоящему времени в значительной степени преодолена.
        7. Деформация цилиндра может произойти из-за близкого расположения впускного и выпускного отверстий.
        8. Очень высокая температура выхлопных газов, около 1600°F, создает проблемы в конструкции выпускного коллектора и глушителя.

        Применение роторного двигателя Ванкеля

        Ниже приведены области применения роторного двигателя Ванкеля:

        1. Двигатель Mazda 12A был первым двигателем, построенным с двигателем Ванкеля.
        2. Он специально разработан для производства легкого, надежного и относительно мощного двигателя для использования в самолетах.
        3. Производители мотоциклов также отдают предпочтение двигателям Ванкеля из-за их небольшого размера и привлекательного отношения мощности к весу.
        4. Из-за компактных размеров и высокой удельной мощности двигателя Ванкеля было предложено, чтобы электромобили обеспечивали дополнительную мощность при низком уровне заряда аккумуляторной батареи.
        5. Двигатели Ванкеля меньшего размера все чаще используются в других областях, таких как вспомогательные силовые установки для картингов и гидроциклов.
        6. Простота двигателя Ванкеля делает его подходящим для двигателей мини, микро и микромини.

        Разница между вращающимся двигателем и поршневым двигателем

        Ротационный двигатель Рестациональный двигатель
        AT ROTARY ENGINE SOPERS SPECTS , СПЕЦИАЛЬНЫЙ СПЕЦИОНА , СПЕЦИАЛЬНАЯ СОЗДАНИЕ , СПЕЦИАЛЬНАЯ СЕЛИНА , СПЕЦИАЛЬНАЯ СЕЛИНА , СПЕЦИАЛЬНЫЙ СПЕЦИОНА , СПЕЦИАЛЬНЫЙ СПЕЦИОНСКИЙ СПЕЦИОН . (или зажигание), или выхлоп. Поршневой двигатель — это один из двух типов двигателей внутреннего сгорания, которые работают за счет сжигания топлива для выработки энергии.
        Роторный роторный двигатель имеет три движущиеся части, то есть два ротора и выходной вал. Простые поршневые двигатели имеют не менее 40 движущихся частей.
        В роторных двигателях ротор непрерывно вращается в одном направлении. По сравнению с поршневым двигателем поршни меняют направление резко.
        Основные движущиеся части роторного двигателя движутся с меньшей скоростью, что повышает надежность. В поршневых двигателях основные движущиеся части движутся с высокой скоростью, что снижает надежность.

        Закрытие

        Насколько мы уже говорили, у двигателя Ванкеля есть много преимуществ, но есть также много недостатков. Эти двигатели определенно имеют свое место в этом мире. Однако из-за увеличения объема технического обслуживания, чтобы поддерживать их в рабочем состоянии, и затрат, связанных с их вождением.

        Теперь я надеюсь, что вы узнали о «роторном двигателе Ванкеля » и нашли то, чего раньше не слышали. Тем не менее, если у вас есть какие-либо вопросы или сомнения относительно этой статьи, не стесняйтесь спрашивать в комментариях, я вам отвечу. Итак, если вам понравилась эта статья, то, пожалуйста, поделитесь ею с друзьями.

        (Видео) двигатель Ванкеля | Анимация работы роторного двигателя

        Хотите бесплатные PDF-файлы на свой почтовый ящик? Тогда просто подпишитесь на нашу рассылку.

        Скачать PDF файл этой статьи:

        Скачать PDF

        Вы можете прочитать больше статей в нашем блоге:

        1. Какова основная функция системы подвески в автомобиле?
        2. Чем дисковые тормоза отличаются от барабанных? PDF
        3. 10 простых советов по экономии топлива во время вождения.

        Внешние ссылки:

        • wikipedia.org/wiki/
        • autoevolution.com/
        • energyeducation.ca/encyclopedia/

        Часто задаваемые вопросы

        Как работает роторный двигатель Ванкеля? ›

        Двигатель Ванкеля / Роторный двигатель — Как это работает! (Анимация) — YouTube

        Узнать больше ›

        Каковы основные компоненты роторного двигателя? ›

        Основными компонентами роторного двигателя являются корпус, ротор и выходной вал .

        Подробнее ›

        Как шаг за шагом работает роторный двигатель? ›

        Как работают роторные двигатели — Mazda RX-7 Wankel — Подробное объяснение

        Подробнее ›

        Что такое роторный двигатель и как он работает? ›

        В роторном двигателе все основные внутренние компоненты вращаются преимущественно по кругу, что обеспечивает более простую и эффективную передачу энергии от сжигания бензина к вращению колес. Таким образом, роторный двигатель имеет меньше движущихся частей, он меньше, легче и мощнее для своей мощности.

        Узнать больше ›

        Как работает двигатель? ›

        Двигатель состоит из неподвижного цилиндра и подвижного поршня. Расширяющиеся газы сгорания толкают поршень, который, в свою очередь, вращает коленчатый вал . В конечном счете, через систему шестерен в трансмиссии это движение приводит в движение колеса автомобиля.

        Узнать больше ›

        Сколько тактов у двигателя Ванкеля? ›

        Двигатель Ванкеля представляет собой четырехтактный двигатель внутреннего сгорания роторного типа с рабочим циклом . Более высокая удельная выходная мощность является одним из его сильных преимуществ.

        Подробнее ›

        Для чего используется двигатель Ванкеля? ›

        Применение этих роторных двигателей дает преимущества в различных транспортных средствах и устройствах, включая автомобили, мотоциклы, гоночные автомобили, самолеты, картинги, водные мотоциклы, снегоходы, бензопилы и вспомогательные силовые установки . Некоторые двигатели Ванкеля имеют удельную мощность более одной лошадиной силы на фунт.

        Узнать больше ›

        Что означает 4 ротора? ›

        А 4-х роторный? На эксцентриковом валу роторы 1 и 2 расположены под углом 180 градусов друг к другу, как и роторы 3 и 4, хотя 3 и 4 вращаются 90 градусов от роторов 1 и 2. Порядок запуска 1-3-2-4, а это означает, что каждый ротор вращается под углом 90 градусов к роторам до и после него .

        Узнать больше ›

        Является ли роторный двигатель четырехтактным? ›

        Соответственно, роторный двигатель представляет собой четырехтактный двигатель . Одной из особенностей этого двигателя является то, что за один полный оборот ротора выходной вал совершает три оборота.

        Подробнее ›

        Сколько поршней в роторном двигателе? ›

        Роторный двигатель выполняет тот же процесс, что и двигатель внутреннего сгорания, но с частью компонентов. Здесь нет ни клапанов, ни зубчатых колес, ни шатунов, ни , ни поршней , ни коленчатого вала, и только три основных движущихся части по сравнению с мириадами деталей, участвующих в «нормальной» работе двигателя.

        Прочитать всю историю ›

        Почему вышел из строя двигатель Ванкеля? ›

        Из-за длинной камеры сгорания уникальной формы тепловой КПД двигателя был относительно ниже по сравнению с поршневыми аналогами . Это также часто приводило к выходу несгоревшего топлива из выхлопной трубы (отсюда тенденция роторных двигателей к обратному срабатыванию, что, очевидно, столь же прекрасно, сколь и неэффективно).

        Узнать больше ›

        Почему двигатель Ванкеля не популярен? ›

        Низкий расход топлива и низкий уровень выбросов . Однако компания продолжала работать над этой технологией, поскольку это одна из фирменных особенностей компании. (1) Двигатель Ванкеля имеет проблемы с топливной экономичностью и выбросами при сжигании бензина.

        Узнать больше ›

        Как роторный двигатель получает топливо? ›

        Как работают роторные двигатели Gnome — YouTube

        Подробнее ›

        Является ли двигатель Ванкеля четырехтактным? ›

        Таким образом, двигатель Ванкеля представляет собой 4-тактный двигатель , 4 фазы которого сравнимы с фазами традиционного поршневого двигателя, но с той особенностью, что коленчатый вал (для однороторного двигателя) имеет фазу сгорания при каждом обороте.