ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

2. Судовые газотурбинные установки. Двигатель газотурбинный судовой


2. Судовые газотурбинные установки

2.1. Принцип действия

Газотурбинным называется такой тепловой двигатель, в котором потенциальная энергия рабочего тела превращается в механическую энергию в газовой турбине. Рабочим телом в газовой турбине служит любой газ (воздух, продукты сгорания, гелий, азот и др.) или их смеси.

Газотурбинный двигатель с зубчатой передачей и навешенными или расположенными на общей с ним раме вспомогательными механизмами и устройствами называется газотурбинным агрегатом.

Газотурбинный агрегат с обслуживающими его системами образует газотурбинную установку (ГТУ).

Схема простейшего судового газотурбинного двигателя (ГТД) (открытого цикла) с горением топлива при постоянном давлении представлена на Рис. 25, а соответствующие процессы термодинамического цикла в диаграмме T-S изображены на Рис. 26.

Рис. 25. Схема ГТУ открытого цикла

В состав ГТД входят три основных элемента: газовая турбина 5, компрессор 3 и камера сгорания 4. Помимо этого на схеме изображено: гребной винт 7, редуктор 6, муфта 2 и пусковой электродвигатель 1.

Компрессор засасывает атмосферный воздух, сжимает его до определенного давления р и подает в камеру сгорания. Сюда же топливным насосом непрерывно подается топливо, которое сгорает в среде сжатого воздуха.

Образующиеся при этом продукты сгорания (газы) при высокой температуре и давлении поступают в газовую турбину, где, расширяясь вращают ротор точно так же, как пар вращает ротор паровой турбины. Отработавшие газы выбрасываются в атмосферу, в силу этого цикл называем открытым.

Газовая турбина большую часть своей мощности затрачивает на привод компрессора, а оставшуюся часть (полезная мощность) отдает гребному винту 7.

Вращение от газовой турбины к гребному винту передается через зубчатую передачу (редуктор) 6.

Запуск установки производится от пускового электродвигателя 1, который может быть соединен с общим для турбины и компрессора валом при помощи специальной муфты 2. Электродвигатель сообщает компрессору требуемую частоту вращения, после чего в камеру сгорания подается через форсунку топливо, и установка начинает работать.

ГТУ работает по циклу, изображенному на Рис. 26.

Рис. 26. Цикл ГТУ

Здесь:

1-2’- адиабатный процесс сжатия в компрессоре;

1-2 - действительный процесс сжатия в компрессоре с учетом внутренних потерь;

2-3 - подвод теплоты в камере сгорания;

3-4’- адиабатный процесс расширения в турбине;

3-4 - действительный процесс расширения в турбине;

4-1 - условный замыкающий процесс, соответствующий охлаждению газов, покидающих турбину.

2.2. Сложные циклы

На Рис. 27 представлена схема ГТУ с промежуточным охлаждением воздуха и регенерацией теплоты и изображен её цикл в диаграмме T-S.

Рис. 27. Схема и цикл ГТУ с промежуточным охлаждением

и регенерацией теплоты

Линии 1 - 2’ и 1’ - 2 соответствуют процессам сжатия в ком­прессоре низкого давления 1 и в компрессоре высокого давления (КВД) 3 с учетом внутренних потерь в компрессоре. Линия 2' - 1' - процессу отвода теплоты при постоянном давлении в промежуточном воздухо­охладителе 2. Промежуточный воздухоохладитель повышает экономичность двигателя, так как сжатие воздуха в КВД происходит при более низкой температуре. Линия 2 - 5 подогрев воздуха в регенераторе 5. Регенератор - теплообменный аппарат, в котором отработавшие в турбине газы нагревают воздух, поступающий в камеру сгорания. При наличии регенератора для достижения той же температуры газа перед турбиной требуется сжигать меньшее количество топлива в камере сгорания, чем в ГТД без регенератора. Линия 5 - 3 - подвод теплоты в камере сгорания 4. Линия 3-4 расширения газов в турбине 6. 4 - 6 - отвод теплоты от газов в регенераторе и 6-1 охлажде­ние продуктов сгорания в атмосфере, условное замы­кание цикла.

За счёт использования части теплоты с уходящими газами для подогрева сжатого воздуха, перед его поступлением в камеру сгорания, повышается эффективность действия ГТУ.

Возможно также осуществить промежуточный подогрев. Схема ГТУ с промежуточным подогревом и регенерацией теплоты представлена на Рис. 28.

Рис. 28. Схема и цикл ГТУ с промежуточным подогревом и регенерацией теплоты

Линия 1 - 2 соответствует процессу сжатия в компрессоре 1. Линия 2 - 5 - подогрев воздуха в регенераторе 5. Линия 5 - 3 - подвод теплоты в первой камере сгорания 2. Линия 3 - 4’ расширения газов в турбине высокого давления 3. Линия 4’ - 3’ - подвод теплоты во второй камере сгорания 4. Линия 3’ - 4 - расширение газов в турбине низкого давления 6. 4 - 6 - отвод теплоты от газов в регенераторе и 6 - 1 охлаждение продуктов сгорания в атмосфере, условное замыкание цикла.

Рассмотрим цикл с промежуточным охлаждением, промежуточным подогревом и регенерацией теплоты, представленный на рис. 29.

Линии 1 - 2’ и 1’ - 2 соответствуют процессам сжатия в ком­прессоре низкого давления 1 и в компрессоре высокого давления 7. Линия 2' - 1' - процессу отвода теплоты при постоянном давлении в промежуточном воздухоохладителе 8. Линия 2 - 5 подогрев воздуха в регенераторе 5. Линия 5 - 3 - подвод теплоты в первой камере сгорания 2. 3 - 4’ расширения газов в турбине высокого давления 3. Линия 4’ - 3’ - подвод теплоты во второй камере сгорания 4. Линия 3’ - 4 - расширение газов в турбине низкого давления 6. 4 - 6 - отвод теплоты от газов в регенераторе и 6 - 1 охлаждение продуктов сгорания в атмосфере, условное замыкание цикла.

Рис. 29. Схема и цикл с промежуточным охлаждением, промежуточным подогревом и регенерацией теплоты

studfiles.net

Современная судовая газотурбинная установка

Современная судовая газотурбинная установка

СОДЕРЖАНИЕ :

ВВЕДЕНИЕ---------------------------------------------------------------------------2

КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ ГТУ И ЕЕ ЭЛЕМЕНТОВ------2

1.1 Состав ГТУ

1.1.1.ГТУ в составе судовой энергетической установки.-----------------3

1.1.2 Газотурбинный двигатель------------------------------------------------4

1.1.3 Передача---------------------------------------------------------------------7

1.1.4 Общая компоновка ГТУ--------------------------------------------------8

1.1.4.1Судовые ГТУ промышленного типа---------------------------12

1.1.4.2 Судовые ГТУ легкого типа--------------------------------------13

1.2 Редукторы -----------------------------------------------------------------------16

1.3 Средства реверса----------------------------------------------------------------17

1.3.1 Газовый реверс -------------------------------------------------------------17

1.3.2Реверсивные передачи-----------------------------------------------------19

1.3.3 Винт регулируемого шага-------------------------------------------------21

1.4. Средства и посты управления------------------------------------------------21

1.5. Преимущества комбинированной установки-----------------------------23

Заключение----------------------------------------------------------------------------24

ВВЕДЕНИЕ.

Современная судовая газотурбинная установка (ГТУ) успешно конкурирует с аналогичными по назначению паротурбин­ными и дизельными. От последних она выгодно отличается ком­пактностью и малой удельной массой, маневренностью и высокой ремонтопригодностью, лучшей приспособленностью к автоматиза­ции и дистанционному управлению.

Газотурбинная установка может использоваться как всережимная и в сочетании с дизельными и паротурбинными.

При эксплуатации ГТУ чувствительна к качеству подготовки топлива и масла, к изменению внешних условий (температура, чи­стота и давление атмосферного воздуха), ее надежность, как ни у какой другой установки зависит от точности выполнения всех эксплуатационных инструкций, а также от своевременности и правильности решений, принимаемых обслуживающим персо­налом в непредусмотренных инструкциями ситуациях.

Опыт эксплуатации судовых ГТУ показал, что от инженера-ме­ханика требуется не только знание и пунктуальное выполнение требований эксплуатационной документации, но и понимание фи­зических, химических и других процессов, протекающих в рабо­тающих двигателях. Кроме того, при длительных плаваниях ин­женеру-механику часто необходим справочный материал, связан­ный с эксплуатацией ГТУ и отсутствующий в имеющейся на судне документации.

КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ ГТУ И ЕЕ ЭЛЕМЕНТОВ.

Судовая энергетическая установка (СЭУ) служит для сообще­ния хода судну, а также для обеспечения всех судовых потребите­лей необходимыми видами энергии (тепловой, электрической и пр.).

Судовые энергетические установки классифицируются как по роду используемого топлива (с органическим и ядерным топли­вом), так и по типу двигателя—двигатели внутреннего сгорания (ДВС), паротурбинные установки (ПТУ) и газотурбинные (ГТУ), а также комбинированные, состоящие из двигателей различных типов.

Судовые ГТУ от других типов выгодно отличаются целым ря­дом показателей: малыми габаритами и удельной массой, более высокой маневренностью, высокой ремонтопригодностью, лучшей приспособленностью к автоматизации и дистанционному управле­нию. Одновременно ГТУ несколько уступают ДВС по экономич­ности и требуют более тщательного ухода, как во время работы, так и при бездействии.

1.1. Состав ГТУ

1.1.1. ГТУ в составе судовой энергетической установки.

В соответствии с назначением СЭУ весь комплекс ее механиз­мов и систем условно делят на четыре группы:

— главную установку, предназначенную для обеспечения дви­жения судна:

— вспомогательную, обеспечивающую потребности судна в различных видах энергии на стоянке, при подготовке главной установки к действию и бытовые потребности судна;

— электроэнергетическую, обеспечивающую судно различными видами электроэнергии;

— механизмы и системы общесудового назначения. Газотурбинная установка может быть главной или се состав­ной частью, может быть приводом электрических генераторов, различных механизмов общесудового назначения. В последних двух случаях ГТУ называют вспомога­тельной.

Судовая энергетическая установка состоит из одного или нескольких комплексов двигатель-движитель, каждый из которых включает движитель, валопровод и одну главную установку. Главная установка в свою очередь состоит из одного или нескольких однотипных (в КУ, возможно, и разнотипных) двигателей и общей для них передачи, подводящей энергию к движителю через линию вала. Если двигатели главной установки газотурбинные, и она обеспечивает ход и маневрирование судна, ее называют газотурбинной всережимной. В комбинированной установке газотурбинная, как правило, является ускорительной (форсажной), обеспечивающей судну приращение скорости переднего хода.

1.1.2. Газотурбинный двигатель.

Газотурбинный двигатель—тепловая машина, предназначенная, для преобразования энергии сгорания топлива в механическую работу на валу двигателя. Основными элементами ГТД являются компрессор, камера сгорания и газовая турбина.

Т 3

Р2

2

Р1 4 0 1 S

Рис.1.1. Теоретический простой цикл ГТД.

Наибольшее распространение получили ГТД с непрерывным сгоранием топлива при постоянном давлении. На рис. 1.1 изображен теоретический простой цикл такого ГТД на диаграмме Т-S. Здесь 1—2— изоэнтропийный (адиабатический) процесс повышения давления воздуха в компрессоре; 2—3— изобарный подвод теплоты в КС; 3—4 — изоэнтропийный (адиабатический) процесс расширения газа в турбине; 4—1— изобарный отвод теплоты в атмосферу. Большая часть работы расширения газа в турбине расходуется на сжатие воздуха в компрессоре, остальная часть производимой турбиной ГТД работы обычно после преобразова­ния передается к потребителю мощности и называется полезной работой.

В так называемых сложных циклах ГТД, где можно получить более высокий КПД, или большую полезную работу, предусматри­вается либо промежуточное охлаждение воздуха (например, между компрессорами или их ступенями), либо вторичный подо­грев газов (в дополнительных КС между турбинами), либо реге­нерация, т.е. использование теплоты выходящих из турбин газов для предварительного подогрева сжатого воздуха, либо любое возможное сочетание названных средств. Двигатели, выполненные по сложному циклу, имеют большие массы и габариты по сравнению с ГТД простого цикла, менее маневренны, менее надежны, весьма сложны.

Существенный недостаток ГТД простого цикла-относительно низкая экономичность-может быть устранен согласованным уве­личением степени повышения давления воздуха Лк в компрессоре ГТД и температуры газа Тоз на входе в первую турбину ГТД (на выходе газа из КС), что наглядно подтверждается зависимостью КПД ГТУ от Лк при различных отношениях Тоз/То: здесь Тоз-абсолютная температура газа на выходе из КС в полных па­раметрах; То-абсолютная температура воздуха на входе в ГТУ.

Максимальное значение КПД при реально достижимой в настоя­щее время температуре Тоз=1000°С имеет место при Лк=16-21. Данную Лк можно осуществить в многоступенчатом осевом ком­прессоре; при этом в составе ГТД могут быть два последовательно установленных компрессора, каждый из которых приводится от отдельной турбины, или один компрессор, устойчивость режимов работы которого повышается вследствие применения поворотных лопаток спрямляющих аппаратов на ряде первых ступеней. При этом возможно применение дополнительных устройств, обеспечивающих устойчивость работы компрессоров, особенно на переходных режимах: лент перепуска воздуха, антипомпажных клапанов и т.д.

Топливо Газ

mirznanii.com

Газотурбинный двигатель - WikiVisually

Газотурбинный двигатель (ГТД) — тепловой двигатель, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины.

В отличие от поршневого двигателя, в ГТД процессы происходят в потоке движущегося газа.

Сжатый атмосферный воздух из компрессора поступает в камеру сгорания, куда также подаётся топливо, которое, сгорая, образует большое количество газообразных продуктов сгорания под высоким давлением. Затем в газовой турбине энергия давления продуктов сгорания преобразуется в механическую работу за счёт вращения лопаток, часть которой расходуется на сжатие воздуха в компрессоре. Остальная часть работы передаётся на приводимый агрегат. Работа, потребляемая этим агрегатом, и считается полезной работой двигателя. Газотурбинные двигатели имеют самую большую удельную мощность среди ДВС, до 6 кВт/кг.

В качестве топлива может использоваться любое горючее, которое можно диспергировать: бензин, керосин, дизельное топливо, мазут, природный газ, судовое топливо, водяной газ, спирт и измельчённый уголь.

Одну из простейших конструкций газотурбинного двигателя, для понятия его работы, можно представить как вал, на котором находится два диска с лопатками, первый диск — компрессора, второй — турбины, в промежутке между ними установлена камера сгорания.

Простейшая схема газотурбинного двигателя Схема турбореактивного двигателя

Принцип работы газотурбинного двигателя:

Увеличение количества подаваемого топлива (добавление «газа») вызывает генерирование большего количества газов высокого давления, что, в свою очередь, ведёт к увеличению числа оборотов турбины и диска(ов) компрессора и, вследствие этого, увеличению количества нагнетаемого воздуха и его давления, что позволяет подать в камеру сгорания и сжечь больше топлива. Количество топливо-воздушной смеси зависит напрямую от количества воздуха, поданного в камеру сгорания. Увеличение количества ТВС (топливо-воздушной смеси) приведёт к увеличению давления в камере сгорания и температуры газов на выходе из камеры сгорания и, вследствие этого, позволяет создать бо́льшую энергию выбрасываемых газов, направленную для вращения турбины и повышения реактивной силы.

Как и во всех циклических тепловых двигателях, чем выше температура сгорания, тем выше топливный коэффициент полезного действия (если точнее, чем выше разница между «нагревателем» и «охладителем»). Сдерживающим фактором является способность стали, никеля, керамики или других материалов, из которых состоит двигатель, выдерживать температуру и давление. Значительная часть инженерных разработок направлена на то, чтобы отводить тепло от частей турбины. Большинство турбин также пытается рекуперировать тепло выхлопных газов, которое, в противном случае, теряется впустую. Рекуператоры — это теплообменники, которые передают тепло выхлопных газов сжатому воздуху перед сгоранием. При комбинированном цикле тепло передается системам паровых турбин. И при комбинированном производстве тепла и электроэнергии (когенерация) отработанное тепло используется для производства горячей воды.

Чем меньше двигатель, тем выше должна быть частота вращения вала(ов), необходимая для поддержания максимальной линейной скорости лопаток, так как длина окружности (путь, проходимый лопатками за один оборот), прямо зависит от радиуса ротора. Максимальная скорость турбинных лопаток определяет максимальное давление, которое может быть достигнуто, что приводит к получению максимальной мощности, независимо от размера двигателя. Реактивный двигатель вращается с частотой около 10000 об/мин и микротурбина — с частотой около 100000 об/мин.[2][3]

Для дальнейшего развития авиационных и газотурбинных двигателей рационально применять новые разработки в области высокопрочных и жаропрочных материалов для возможности повышения температуры и давления. Применения новых типов камер сгорания, систем охлаждения, уменьшения числа и массы деталей и двигателя в целом возможно в прогрессе применение альтернативных видов топлива, изменение самого представления конструкции двигателя.

Газотурбинная установка (ГТУ) с замкнутым циклом[править | править код]

В ГТУ с замкнутым циклом рабочий газ циркулирует без контакта с окружающей средой. Нагрев (перед турбиной) и охлаждение (перед компрессором) газа производится в теплообменниках. Такая система позволяет использовать любой источник тепла (например, газоохлаждаемый ядерный реактор). Если в качестве источника тепла используется сгорание топлива, то такое устройство называют двигателем внешнего сгорания. На практике ГТУ с замкнутым циклом используются редко.

Газотурбинная установка (ГТУ) с внешним сгоранием[править | править код]

Большинство ГТУ представляют собой двигатели внутреннего сгорания, но также возможно построить ГТУ внешнего сгорания, которая, фактически, является газотурбинной версией теплового двигателя.[источник не указан 2435 дней]

При внешнем сгорании в качестве топлива используется пылевидный уголь или мелкоистолчённая биомасса (например, опилки). Внешнее сжигание газа используется как непосредственно, так и косвенно. В прямой системе сквозь турбину проходят продукты сгорания. В косвенной системе используется теплообменник, и через турбину проходит чистый воздух. Тепловой КПД ниже в системе внешнего сгорания косвенного типа, однако лопасти не подвергаются воздействию продуктов сгорания.

Одновальные и многовальные газотурбинные двигатели[править | править код]

Простейший газотурбинный двигатель имеет только один вал, куда устанавливается турбина, которая приводит во вращение компрессор и одновременно является источником полезной мощности. Это накладывает ограничение на режимы работы двигателя.

Иногда двигатель выполняется многовальным. В этом случае имеется несколько последовательно стоящих турбин, каждая из которых приводит свой вал. Турбина высокого давления (первая после камеры сгорания) всегда приводит в движение компрессор двигателя, а последующие могут приводить как внешнюю нагрузку (винты вертолёта[4] или корабля, мощные электрогенераторы и так далее), так и дополнительные каскады компрессора самого двигателя, расположенные перед основным. Разбиение компрессора на каскады (каскад низкого давления, каскад высокого давления — КНД и КВД соответственно[5], иногда между ними помещается каскад среднего давления, КСД, как, например, в двигателе НК-32 самолёта Ту-160) позволяет избежать помпажа на частичных режимах.

Также преимущество многовального двигателя в том, что каждая турбина работает при оптимальной скорости вращения и нагрузке. При нагрузке, приводимой от вала одновального двигателя, была бы очень плохая приёмистость двигателя, то есть способность к быстрой раскрутке, так как турбине требуется поставлять мощность и для обеспечения двигателя большим количеством воздуха (мощность ограничивается количеством воздуха), и для разгона нагрузки. При двухвальной схеме лёгкий ротор высокого давления быстро выходит на режим, обеспечивая двигатель воздухом, а турбину низкого давления - большим количеством газов для разгона. Также есть возможность использовать менее мощный стартёр для разгона при пуске только ротора высокого давления.

Система запуска[править | править код]

Для запуска ГТД нужно раскрутить его ротор до определённых оборотов, чтобы компрессор начал подавать достаточное количество воздуха (в отличие от объёмных компрессоров, подача инерционных (динамических) компрессоров квадратично зависит от частоты вращения и поэтому на малых оборотах практически отсутствует), и поджечь подаваемое в камеру сгорания топливо. Со второй задачей справляются свечи зажигания, зачастую установленные на специальных пусковых форсунках, а раскрутка выполняется стартером той или иной конструкции:

Турбореактивный двигатель[править | править код]

Схема турбореактивного двигателя: 1 — входное устройство; 2 — осевой компрессор; 3 — камера сгорания; 4 — рабочие лопатки турбины; 5 — сопло

В полёте поток воздуха тормозится во входном устройстве перед компрессором, в результате чего его температура и давление повышается. На земле во входном устройстве воздух ускоряется, его температура и давление снижаются.

Проходя через компрессор, воздух сжимается, его давление повышается в 10—45 раз, возрастает его температура. Компрессоры газотурбинных двигателей делятся на осевые и центробежные. В наши дни в двигателях наиболее распространены многоступенчатые осевые компрессоры. Центробежные компрессоры, как правило, применяются в малогабаритных силовых установках.

Далее сжатый воздух попадает в камеру сгорания, в так называемые жаровые трубы, либо в кольцевую камеру сгорания, которая не состоит из отдельных труб, а является цельным кольцевым элементом. В наши дни кольцевые камеры сгорания являются наиболее распространёнными. Трубчатые камеры сгорания используются гораздо реже, в основном на военных самолётах. Воздух на входе в камеру сгорания разделяется на первичный, вторичный и третичный. Первичный воздух поступает в камеру сгорания через специальное окно в передней части, по центру которого расположен фланец крепления форсунки, и участвует непосредственно в окислении (сгорании) топлива (формировании топливо-воздушной смеси). Вторичный воздух поступает в камеру сгорания сквозь отверстия в стенках жаровой трубы, охлаждая, придавая форму факелу и не участвуя в горении. Третичный воздух подаётся в камеру сгорания уже на выходе из неё, для выравнивания поля температур. При работе двигателя в передней части жаровой трубы всегда вращается вихрь раскалённого газа (что обусловлено специальной формой передней части жаровой трубы), постоянно поджигающего формируемую топливовоздушную смесь, происходит сгорание топлива (керосина, газа), поступающего через форсунки в парообразном состоянии.

Газовоздушная смесь расширяется и часть её энергии преобразуется в турбине через рабочие лопатки в механическую энергию вращения основного вала. Эта энергия расходуется, в первую очередь, на работу компрессора, а также используется для привода агрегатов двигателя (топливных подкачивающих насосов, масляных насосов и т. п.) и привода электрогенераторов, обеспечивающих энергией различные бортовые системы.

Основная часть энергии расширяющейся газовоздушной смеси идёт на ускорение газового потока в сопле и создание реактивной тяги.

Чем выше температура сгорания, тем выше КПД двигателя. Для предупреждения разрушения деталей двигателя для их изготовления используют жаропрочные сплавы и термобарьерные покрытия. А также применяется система охлаждения воздухом, отбираемым от средних ступеней компрессора.

Турбореактивный двигатель с форсажной камерой[править | править код]

Турбореактивный двигатель с форсажной камерой (ТРДФ) — модификация ТРД, применяемая в основном на сверхзвуковых самолётах. Между турбиной и соплом устанавливается дополнительная форсажная камера, в которой сжигается дополнительное горючее. В результате происходит увеличение тяги (форсаж) до 50 %, но расход топлива резко возрастает. Двигатели с форсажной камерой, как правило, не используются в коммерческой авиации по причине их низкой экономичности.

Основные параметры турбореактивных двигателей различных поколений Поколение/ период Температура газа перед турбиной, °C Степень сжатия газа, πк* Характерные представители Где установлены
1 поколение1943-1949 гг. 730-780 3-6 BMW 003, Jumo 004 Me 262, Ar 234, He-162
2 поколение1950-1960 гг. 880-980 7-13 J 79, Р11-300 F-104, F4, МиГ-21
3 поколение1960-1970 гг. 1030-1180 16-20 TF 30, J 58, АЛ-21Ф-3 F-111, SR 71,МиГ-23Б, Су-24
4 поколение1970-1980 гг. 1200-1400 21-25 F 100, F 110, F404,РД-33, АЛ-31Ф F-15, F-16, МиГ-29, Су-27
5 поколение2000-2020 гг. 1500-1650 25-30 F119-PW-100, EJ200, F414, АЛ-41Ф1 F-22, F-35, ПАК ФА,Су-35С

Начиная с 4-го поколения рабочие лопатки турбины выполняются из монокристаллических сплавов, охлаждаемые.

Двухконтурный турбореактивный двигатель[править | править код]

Схема турбореактивного двухконтурного двигателя (ТРДД) со смешением потоков: 1 — компрессор низкого давления; 2 — внутренний контур; 3 — выходной поток внутреннего контура; 4 — выходной поток внешнего контура.

В турбореактивном двухконтурном двигателе (ТРДД) воздушный поток попадает в компрессор низкого давления, после чего часть потока проходит по обычной схеме через турбокомпрессор, а остальная часть (холодная) проходит через внешний контур и выбрасывается без сгорания, создавая дополнительную тягу. В результате снижается температура выходного газа, снижается расход топлива и уменьшается шум двигателя. Отношение количества воздуха, прошедшего через внешний контур, к количеству прошедшего через внутренний контур воздуха называется степенью двухконтурности (m). При степени двухконтурности <4 потоки контуров на выходе, как правило, смешиваются и выбрасываются через общее сопло, если m>4 — потоки выбрасываются раздельно, так как из-за значительной разности давлений и скоростей смешение затруднительно. Применение второго контура в двигателях для военной авиации позволяет охлаждать горячие части двигателя, это позволяет увеличивать температуру газов перед турбиной, что способствует дополнительному повышению тяги.

Двигатели с малой степенью двухконтурности (m<2) применяются для сверхзвуковых самолётов, двигатели с m>2 для дозвуковых пассажирских и транспортных самолётов.

Турбовентиляторный двигатель[править | править код]

Схема турбореактивного двухконтурного двигателя без смешения потоков (Турбовентиляторного двигателя): 1 — вентилятор; 2 — защитный обтекатель; 3 — турбокомпрессор; 4 — выходной поток внутреннего контура; 5 — выходной поток внешнего контура.

Турбовентиляторный реактивный двигатель (ТВРД) — это ТРДД со степенью двухконтурности m=2—10. Здесь компрессор низкого давления преобразуется в вентилятор, отличающийся от компрессора меньшим числом ступеней и большим диаметром, и горячая струя практически не смешивается с холодной. Применяется в гражданской авиации, двигатель имеет большой назначенный ресурс и малый удельный расход топлива на дозвуковых скоростях.

Турбовинтовентиляторный двигатель[править | править код]

Дальнейшим развитием ТВРД с увеличением степени двухконтурности m=20—90 является турбовинтовентиляторный двигатель (ТВВД). В отличие от турбовинтового двигателя, лопасти двигателя ТВВД имеют саблевидную форму, что позволяет перенаправить часть воздушного потока в компрессор и повысить давление на входе компрессора. Такой двигатель получил название винтовентилятор и может быть как открытым, так и закапотированным кольцевым обтекателем. Второе отличие — винтовентилятор приводится от турбины не напрямую, а, как винт, через редуктор. Двигатель наиболее экономичен, но при этом крейсерская скорость полёта ЛА, с такими типами двигателей, обычно не превышает 550 км/ч, имеются более сильные вибрации и "шумовое загрязнение".

Пример ТВВД — Д-27 грузового самолёта Ан-70.

Турбовинтовой двигатель[править | править код]

Схема турбовинтового двигателя: 1 — воздушный винт; 2 — редуктор; 3 — турбокомпрессор

В турбовинтовом двигателе (ТВД) основное тяговое усилие обеспечивает воздушный винт, соединённый через редуктор с валом турбокомпрессора.[7] Для этого используется турбина с увеличенным числом ступеней, так что расширение газа в турбине происходит почти полностью и только 10—15 % тяги обеспечивается за счёт газовой струи.

Турбовинтовые двигатели гораздо более экономичны на малых скоростях полёта и широко используются для самолётов, имеющих большую грузоподъёмность и дальность полёта — например, Ан-12, Ан-22, C-130. Крейсерская скорость самолётов, оснащённых ТВД, 500—700 км/ч.

Вспомогательная силовая установка (ВСУ)[править | править код]

ВСУ — небольшой газотурбинный двигатель, являющийся автономным источником энергии на борту. Простейшие ВСУ могут выдавать только сжатый воздух, отбираемый от компрессора турбины, который используется для запуска маршевых (основных) двигателей, либо для работы системы кондиционирования на земле (пример, ВСУ типа АИ-9, применяемая на вертолётах и самолёте Як-40). Более сложные ВСУ, помимо источника сжатого воздуха, выдают электрический ток в бортовую сеть, то есть являются полноценным автономным энергоузлом, обеспечивающем нормальное функционирование всех бортовых систем самолёта без запуска основных двигателей, а также при отсутствии наземных аэродромных источников энергии. Такова, например, ВСУ ТА-12 самолётов Ан-124[8], Ту-95МС, Ту-204, Ан-74 и других.

Турбовальный двигатель[править | править код]

Такой двигатель чаще всего имеет свободную турбину. Вся турбина поделена на две части, между собой механически несвязанные. Связь между ними только газодинамическая. Газовый поток, вращая первую турбину, отдает часть своей мощности для вращения компрессора и далее, вращая вторую, тем самым через вал этой (второй) турбины приводит в действие полезные агрегаты. Реактивное сопло на турбовальном двигателе отсутствует. Выходное устройство для отработанных газов соплом не является и тяги не создаёт.

Выходной вал ТВаД, с которого снимается вся полезная мощность, может быть направлен как назад, через канал выходного устройства, так и вперед, либо через полый вал турбокомпрессора, либо через редуктор вне корпуса двигателя.

Редуктор — непременная принадлежность турбовального двигателя. Скорость вращения как ротора турбокомпрессора, так и ротора свободной турбины велика настолько, что это вращение не может быть напрямую передано на приводимые агрегаты. Они просто не смогут выполнять свои функции и даже могут разрушиться. Поэтому между свободной турбиной и полезным агрегатом обязательно ставится редуктор для снижения частоты вращения приводного вала.

Компрессор у ТВаД может быть осевым (если двигатель мощный) либо центробежным. Часто компрессор бывает и смешанным по конструкции, в нём есть как осевые, так и центробежные ступени. В остальном принцип работы этого двигателя такой же, как и у ТРД.

Основное применение турбовальный двигатель находит в авиации, по большей части, на вертолётах. Полезная нагрузка в этом случае — несущий винт вертолёта. Известным примером могут служить широко распространённые вертолёты Ми-8 и Ми-24 с двигателями ТВ2-117 и ТВ3-117.

Турбостартёр[править | править код]

ТС — агрегат, устанавливаемый на газотурбинном двигателе и предназначенный для его раскрутки при запуске.

Такие устройства представляют собой миниатюрный, простой по конструкции турбовальный двигатель, свободная турбина которого раскручивает ротор основного двигателя при его запуске. В качестве примера: турбостартёр ТС-21, используемый на двигателе АЛ-21Ф-3, который устанавливается на самолёты типа Су-24[9], или ТС-12, устанавливаемый на авиационные двигатели НК-12 самолётов Ту-95 и Ту-142. ТС-12 имеет одноступенчатый центробежный компрессор, двухступенчатую осевую турбину привода компрессора и двухступенчатую свободную турбину. Номинальные обороты ротора компрессора в начале запуска двигателя — 27 тысяч мин–1, по мере раскрутки ротора НК-12 за счёт роста оборотов свободной турбины ТС-12 противодавление за турбиной компрессора падает и обороты возрастают до 30 тысяч мин–1.

Турбостартёр ГТДЭ-117 двигателя АЛ-31Ф также выполнен со свободной турбиной, а стартёр С-300М двигателя АМ-3, стоявшего на самолётах Ту-16, Ту-104 и М-4 — одновальный и раскручивает ротор двигателя через гидромуфту.[10]

Судовые установки[править | править код]

Используются в судовой промышленности для снижения веса. General Electric LM2500 и LM6000 — характерные модели этого типа машин.

Суда, использующие турбовальные газотурбинные двигатели называют газотурбоходами. Они являются разновидностью теплохода. Это чаще всего суда на подводных крыльях, у которых гребной винт приводит в движение турбовальный двигатель механически через редуктор или электрически через генератор, который он вращает. Либо это суда на воздушной подушке, которая создаётся при помощи ГТД.

Например, газотурбоход «Циклон-М» с 2 газотурбинными двигателями ДО37. Пассажирских газотурбоходов за российскую историю было всего два. Последнее очень перспективное судно «Циклон-М» появилось в 1986 году. Более таких судов не строили. В военной сфере в этом плане дела обстоят несколько лучше. Примером является десантный корабль «Зубр», самое большое в мире судно на воздушной подушке.

Железнодорожные установки[править | править код]

Локомотивы, на которых стоят турбовальные газотурбинные двигатели, называются газотурбовозами (разновидность тепловоза). На них используется электрическая передача. ГТД вращает электрогенератор, а вырабатываемый им ток, в свою очередь, питает электродвигатели, приводящие локомотив в движение. В 1960-е годы в СССР проходили довольно успешную опытную эксплуатацию три газотурбовоза. Два пассажирских и один грузовой. Однако они не выдержали соревнования с электровозами и в начале 1970-х годов проект был свёрнут. Но в 2007 году по инициативе ОАО «РЖД» был изготовлен опытный образец грузового газотурбовоза, работающий на сжиженном природном газе. ГТ1 успешно прошёл испытания, позднее был построен второй газотурбовоз, с той же силовой установкой, но на другой ходовой части, машины эксплуатируются.

Перекачка природного газа[править | править код]

Принцип работы газоперекачивающей установки практически не отличается от турбовинтовых двигателей, ТВаД используются здесь в качестве привода мощных насосов, а в качестве топлива используется тот же самый газ, который они перекачивают. В отечественной промышленности для этих целей широко применяются двигатели, созданные на базе авиационных — НК-12 (НК-12СТ)[11], НК-32 (НК-36СТ), так как на них можно использовать детали авиадвигателей, выработавшие свой лётный ресурс.

Электростанции[править | править код]

Основу газотурбинной электростанции составляют один или несколько газотурбинных двигателей. Газотурбинная электростанция может иметь электрическую мощность от двадцати киловатт до сотен мегаватт. Она способна также отдавать потребителю значительное количество (вдвое больше электрической мощности) тепловой энергии, если установить на выхлопе турбины котёл-утилизатор; в этом случае установка называется ГТУ-ТЭЦ.

Танкостроение[править | править код]

Первые исследования в области применения газовой турбины в танковых двигателях проводились в Германии Управлением вооружённых сухопутных сил начиная с середины 1944 года. Первым массовым танком с газотурбинным двигателем стал С-танк.

Установка блочного силового агрегата (двигатель - трансмиссия) в танк M1A1

Турбовальные двигатели (ТВаД) установлены на советском танке Т-80 (двигатель ГТД-1000Т) и американском М1 Абрамс. Газотурбинные двигатели, устанавливаемые на танках, имеют при схожих с дизельными размерах гораздо бо́льшую мощность, меньший вес и меньшую шумность, меньшую дымность выхлопа. Также ТВаД лучше удовлетворяет требованиям многотопливности, гораздо легче запускается, — оперативная готовность танка с ГТД, то есть запуск двигателя и последующий вход в рабочий режим всех его систем, занимает несколько минут, что для танка с дизельным двигателем в принципе невозможно, а в зимних условиях при низких температурах дизелю требуется достаточно длительный предпусковой прогрев, который не требуется ТВаД. Из-за отсутствия жёсткой механической связи турбины и трансмиссии на застрявшем или просто упёршемся в препятствие танке двигатель не глохнет. В случае попадания воды в двигатель (утоплении танка) достаточно выполнить так называемую холодную прокрутку ГТД для удаления воды из газовоздушного тракта и после этого двигатель можно запускать — на танке с дизельным двигателем в аналогичной ситуации происходит гидроудар, ломающий детали цилиндро-поршневой группы и непременно требующий замены двигателя.

Однако из-за низкого КПД газотурбинных двигателей, установленных на тихоходных (в отличие от самолётов) транспортных средствах, требуется гораздо большее количество возимого топлива для сравнимого с дизельным двигателем километрового запаса хода. Именно из-за расхода топлива, невзирая на все достоинства, танки типа Т-80 поэтапно выводятся из эксплуатации. Неоднозначным оказался опыт эксплуатации танковых ТВаД М1 Абрамс в условиях высокой запылённости (например в песчаных пустынях). В отличие от него, Т-80 благополучно может эксплуатироваться в условиях высокой запылённости, — конструктивно хорошо продуманная система очистки поступающего в двигатель воздуха на Т-80 надёжно защищает ГТД от песка и пыли. «Абрамсы», напротив, «задохнулись» — во время двух кампаний против Ирака при прохождении пустынь довольно много «Абрамсов» встали, так как их двигатели забились песком[источник не указан 138 дней].

Автостроение[править | править код]
STP Oil Treatment Special на выставке в зале славы музея трассы Indianapolis Motor Speedway показана вместе с газотурбинным двигателем Pratt & Whitney. A 1968 Howmet TX — единственный в истории газотурбинный двигатель, принёсший победу в автомобильной гонке.

Множество экспериментов проводилось с автомобилями, оснащёнными газовыми турбинами.

В 1950 году дизайнер Ф. Р. Белл и главный инженер Морис Вилкс в британской компании Rover Company анонсировали первый автомобиль с приводом от газотурбинного двигателя. Двухместный JET1 имел двигатель, расположенный позади сидений, решётки воздухозаборника по обеим сторонам машины, и выхлопные отверстия на верхней части хвоста. В ходе испытаний автомобиль достиг максимальной скорости 140 км/ч, на скорости турбины 50000 об/мин. Автомобиль работал на бензине, парафиновом или дизельном маслах, но проблемы с потреблением топлива оказались непреодолимыми для производства автомобилей. В настоящее время он выставлен в лондонском Музее науки.

Команды Rover и British Racing Motors (Формула-1) объединили усилия для создания Rover-BRM, автомобиля с приводом от газовых турбин, который принял участие в гонке 24 часа Ле-Мана 1963 года, управляемого Грэмом Хиллом и Гитнером Ричи. Этот автомобиль показал среднюю скорость 173 км/ч, максимальную — 229 км/ч.

Американские компании Ray Heppenstall, Howmet Corporation и McKee Engineering объединились для совместной разработки собственных газотурбинных спортивных автомобилей в 1968 году, Howmet TX приняла участие в нескольких американских и европейских гонках, в том числе завоевав две победы, а также принимала участие в гонке 24 часа Ле-Мана 1968 года. Автомобили использовали газовые турбины Continental Motors Company, благодаря которым, в конечном итоге, ФИА было установлено шесть посадочных скоростей для машин с приводом от турбин.

На гонках автомобилей с открытыми колёсами, революционное полноприводное авто 1967 года STP Oil Treatment Special с приводом от турбины, специально подобранной легендой гонок Эндрю Гранателли и управляемое Парнелли Джонсом, почти выиграло в гонке «Инди-500»; авто с турбиной STP компании Pratt & Whitney обгоняло почти на круг авто, шедшее вторым, когда у него неожиданно отказала коробка передач за три круга до финишной черты. В 1971 году глава компании Lotus Колин Чепмен представил авто Lotus 56B F1, с приводом от газовой турбины Pratt & Whitney. У Чепмена была репутация создателя машин-победителей, но он вынужден был отказаться от этого проекта из-за многочисленных проблем с инерционностью турбин (турболагом).

Оригинальная серия концептуальных авто General Motors Firebird была разработана для автовыставки Моторама 1953, 1956, 1959 годов, с приводом от газовых турбин.

Единственная серийная модель «семейного» газотурбинного автомобиля для использования на дорогах общего пользования была выпущена Chrysler в 1963-1964 года. Компания передала пятьдесят собранных вручную машин в кузовах итальянского ателье Ghia добровольцам, которые испытывали новинку в обычных дорожных условиях до января 1966 года. Эксперимент прошёл удачно, но компания, не располагавшая средствами для постройки нового моторного производства, отказалась от массового выпуска автомобиля с ГТД. После ужесточения экологических стандартов и взрывного роста цен на нефть компания, с трудом пережившая финансовый кризис, отказалась от продолжения разработок[12].

Как и у любого теплового двигателя, у ГТД есть множество параметров, которые необходимо контролировать для эксплуатации двигателя в безопасных, а по возможности и экономичных режимах. Измеряются с помощью приборов контроля.

Конструкторы газотурбинных двигателей и основанные ими КБ[править | править код]

wikivisually.com

Газотурбинные установки транспортных судов

Газотурбинной установкой ГТУ-20 отечественного производства оборудовано крупнейшее сухогрузное судно «Парижская ком­муна». Установка состоит из двух ГТУ-10 мощностью по 4775 квт каждая. Обе ГТУ-10 через двухступенчатый зубчатый редуктор приводят во вращение ВРШ.

Принципиальна схема ГТУ-20

Принципиальная схема ГТУ-20 представлена на рис. 122. Атмосферный воздух в количестве 34,2 кг/сек поступает в осевой пятиступенчатый компрессор низкого давления 1, где сжимается до давления 0,23 Мн/м2, нагреваясь за счет сжатия до температуры 383° К. Из компрессора низкого давления воздух направ­ляется в поверхностный промежуточный воздухоохладитель 7 с поверхностью охлаждения около 535 м2, где охлаждается за­бортной водой. Охлажденный воздух с температурой около 308° К поступает в осевой двенадцатиступенчатый компрессор высокого давления 6, где сжимается до 0,897 Мн/м2 и нагревается за счет сжатия до 473° К. Из компрессора высокого давления воздух на­правляется в трехходовой регенератор трубчатого типа 3 с поверх­ностью нагрева около 1340 м2, где нагревается до 608° К за счет теплоты отработавших газов ТНД 2. Нагретый воздух поступает в трубчато-кольцевую камеру сгорания 4 с шестью жаровыми трубами диаметра 200 мм. В камеру сгорания подается мазут, при сгорании которого образуются продукты сгорания — газы. Газы давлением 0,854 Мн/м2 и температурой 1023° К попадают в двухступенчатую газовую ТВД 5, приводящую в действие ком­прессор высокого давления и специальную коробку передач, от ко­торой приводятся в действие топливный насос и насос перекладки лопастей ВРШ. В ТВД газы расширяются до 0,413 Мн/м2 и тем­пературы 863° К. ТВД кинематически не связана с ТНД. В двухступенчатой ТНД газы расширяются до давления, близкого к атмосферному, и температуры 648° К. Отработавшие газы ТНД проходят регенеративный воздухоподогреватель и с температурой 518° К направляются в утилизационный котел. ТНД приводит в действие компрессор низкого давления и через двухступенчатый редуктор 8 — ВРШ 9. Запуск установки осуществляется пусковым электродвигателем.

Турбокомпрессорные агренаты ГТУ-10

На рис. 123 показаны турбокомпрессорные агрегаты ГТУ-10. Турбина высокого давления 12 приводит в действие двенадцатиступенчатый осевой компрессор высокого давления 11, а турбина низкого давления 6 — шестиступенчатый осевой компрессор низ­кого давления 2. Обе турбины — двухступенчатые, однодисковые с развитыми диффузорами. Проставка 5 соединяет корпуса ТВД и ТНД и осуществляет подвод газа к ТНД. Компенсатор 7 воспри­нимает тепловое расширение проставки. Внутренний корпус проставки имеет две диафрагмы 4, через которые подводится по трубе 13 воздух для охлаждения дисков ТВД и ТНД. Турбина высокого давления имеет двойной корпус 10 с изоляцией 9 между корпусами. Наружный корпус 8 охлаждается водой (дистиллат). Для восприятия осевых усилий турбокомпрессоры снабжены под­шипниками скольжения. Упорные подшипники 1 одногребенчатые самоустанавливающиеся. Патрубок 3 служит для перепуска газа во время маневрирования, минуя ТНД.

vdvizhke.ru

ГТУ. Определения и термины. Схема газотурбинной электростанции комбинированного цикла



Определения и термины, используемые при описании газотурбинных установок. Схема газотурбинной электростанции комбинированного цикла

Газовая турбина (газотурбинный двигатель ) - Машина, предназначенная для преобразования тепловой энергии в механическую. Машина может состоять из одного или нескольких компрессоров, теплового устройства, в котором повышается температура рабочего тела, одной или нескольких газовых турбин, вала отбора мощности, системы управления и необходимого вспомогательного оборудования. Теплообменники в основном контуре рабочего тела, в которых реализуются процессы, влияющие на термодинамический цикл, являются частью газотурбинного двигателя.

Газотурбинная установка (ГТУ) - Газотурбинный двигатель и все основное оборудование, необходимое для генерирования энергии в полезной форме. Полезной формой энергии может быть - электрическая, механическая и другие.

Газовая турбина открытого цикла - Газотурбинный двигатель, в котором воздух поступает из атмосферы, а выхлопные газы отводятся в атмосферу.

Газовая турбина замкнутого цикла - Газотурбинный двигатель, в котором рабочее тело циркулирует по замкнутому контуру без связи с атмосферой

Газовая турбина полузамкнутого цикла - Газотурбинный двигатель, в котором используется горение в рабочем теле, частично рециркулирующем и частично заменяемым атмосферным воздухом

Газовая турбина простого цикла - Газотурбинный двигатель, термодинамический цикл которого состоит только из следующих друг за другом процессов сжатия, нагрева и расширения рабочего тела.

Газовая турбина регенеративного цикла - Газотурбинный двигатель, термодинамический цикл которого отличается наличием регенеративного охлаждения рабочего тела на выходе из газовой турбины и соответственно регенеративного подогрева воздуха за компрессором. Теплоту расширившегося в турбине газа используют для подогрева сжатого в компрессоре воздуха

Газовая турбина с циклом промежуточного охлаждения - Газотурбинный двигатель, термодинамический цикл которого включает охлаждение рабочего тела в процессе его сжатия.

Газовая турбина с циклом промежуточного подогрева - Газотурбинный двигатель, термодинамический цикл которого включает подогрев рабочего тела в процессе его расширения

Газотурбинная установка комбинированного цикла - Установка, термодинамический цикл которой включает комбинацию двух циклов, при которой теплота отработавших в газотурбинном двигателе газов в первом цикле используется для нагрева другого рабочего тела во втором цикле

Схема газотурбинной электростанции комбинированного цикла

Рис. Схема газотурбинной электростанции комбинированного цикла

Одновальный газотурбинный двигатель - Газотурбинный двигатель, в котором роторы компрессора и газовой турбины соединены и мощность отбирается непосредственно с выходного вала или через редуктор.

Многовальный газотурбинный двигатель - Газотурбинный двигатель, имеющий, по крайней мере, две газовые турбины, вращающиеся на независимых валах

Газовая турбина с отбором воздуха (газа) - Газотурбинный двигатель, в котором для внешнего использования предусмотрен отбор сжатого воздуха между ступенями компрессора и/или на выходе из компрессора (горячего газа на входе в турбину и/или между ступенями турбины)

Газогенератор - Комплекс компонентов газотурбинного двигателя, которые производят горячий газ под давлением для совершения какого-либо процесса или для привода силовой турбины. Генератор газа состоит из одного или более компрессоров, устройств(а) для повышения температуры рабочего тела, одной или более турбин, приводящих компрессор(ы), системы управления и необходимого вспомогательного оборудования

Компрессор - Компонент газотурбинного двигателя, повышающий давление рабочего тела

Турбина - Компонент газотурбинного двигателя, преобразующий потенциальную энергию нагретого рабочего тела под давлением в механическую работу

Силовая турбина - Турбина на отдельном валу, с которого отбирается выходная мощность

Камера сгорания основного (промежуточного) подогрева - Устройство газотурбинного двигателя для основного (промежуточного) подогрева рабочего тела

Подогреватель рабочего тела - Устройство для подогрева поступающего в него рабочего тела без смешивания его с продуктами сгорания топлива

Регенератор/рекуператор - Теплообменный аппарат, предназначенный для передачи теплоты отработавших в турбине газов рабочему телу. Передача теплоты рабочему телу или воздуху перед его поступлением в камеру сгорания ГТД

Предварительный охладитель - Теплообменный аппарат, предназначенный для охлаждения рабочего тела ГТД перед его первоначальным сжатием

Промежуточный охладитель - Теплообменный аппарат, предназначенный для охлаждения рабочего тела ГТД в процессе его сжатия

Устройство защиты от превышения частоты вращения ротора - Регулирующий или отключающий элемент, который при повышении частоты вращения ротора ГТД сверхустановленного предельно допустимого значения, приводит в действие систему защиты

Система управления газовой турбиной - Система, используемая для управления, защиты, контроля и отображения информации о состоянии промышленной газотурбинной установки (газотурбинного двигателя) на всех режимах работы. Она включает систему управления пуском, системы управления и регулирования подачи топлива и частоты вращения ротора, датчики, устройства контроля подачи электропитания и другие средства управления, необходимые для правильного пуска, устойчивой работы, останова, ограничения режима работы и/или выключения установки при условиях, отличных от заданных

Система регулирования - Элементы и устройства для автоматического регулирования параметров газотурбинной установки. К параметрам относятся частота вращения ротора, температура газов, давление, выходная мощность и другие параметры

Топливный регулирующий клапан - Регулирующий орган для изменения подачи топлива в газотурбинный двигатель. Возможны также устройства другого типа для регулирования подачи топлива в газотурбинный двигатель

Топливный стопорный клапан - Регулирующий орган для изменения подачи топлива в газотурбинный двигатель. Вместо топливного стопорного клапана может использоваться топливный отсечной клапан, перекрывающий магистраль подачи топлива в ГТД при срабатывании

Зона нечувствительности системы управления - Диапазон изменения входного сигнала, не связанный с корректирующим воздействием регулятора расхода топлива. Зона нечувствительности (применительно к частоте вращения) - это отношение частоты вращения к номинальной частоте вращения в процентах

Статизм регулирования системы управления - Изменение частоты вращения ротора силового вала на установившемся режиме работы газотурбинной установки, вызванное внешним воздействием, от нуля до номинальной, выраженное в процентах от номинальной частоты вращения

Датчик предельной температуры рабочего тела - Первичный чувствительный элемент системы управления ГТД, который непосредственно реагирует на изменение температуры и выходной сигнал которого воздействует через соответствующие усилители или преобразователи на систему защиты от предельного превышения температуры

Теплота сгорания топлива - Общее количество тепла, выделившегося при сгорании единицы массы топлива, кДж/кг

Удельный расход теплоты - Отношение теплоты сожженного в ГТД топлива за единицу времени к произведенной им мощности, кДж/кВт ч. Удельный расход теплоты рассчитывают по низшей теплоте сгорания топлива при нормальных условиях

Удельный расход топлива - Отношение массового расхода топлива к выходной мощности ГТУ (ГТД), кг/кВт ч

КПД Газовой турбины - Отношение выходной мощности к расходу теплоты топлива, подсчитанное по его низшей теплоте сгорания при нормальных условиях

Условная температура на входе в турбину - Условная средняя температура рабочего тела непосредственно перед сопловыми лопатками первой ступени.

Режим (частота вращения) "самоходности" - Режим (минимальная частота вращения выходного вала), при котором газотурбинный двигатель работает без использования мощности пускового устройства при наиболее неблагоприятных внешних условиях

Режим (частота вращения) холостого хода - Установленный изготовителем режим (частота вращения выходного вала), при котором газотурбинный двигатель может работать устойчиво и можно осуществлять нагружение или останов

Максимальная продолжительная частота вращения - Максимально допустимое при длительной эксплуатации значение частоты вращения выходного вала газотурбинного двигателя, с которого отбирается мощность

Номинальная частота вращения вала - Частота вращения выходного вала газотурбинного двигателя, при которой определены его расчетные показатели

Предельно допустимая частота вращения ротора - Частота вращения ротора ГТД, при которой срабатывает аварийное устройство защиты для отсечки подачи топлива в газотурбинный двигатель и останова двигателя

Система впрыска пара (воды) - Система, обеспечивающая впрыск пара (воды) в рабочее тело для увеличения мощности ГТД и/или уменьшения содержания оксидов азота (NOx) в отработавших газах

Удельная масса - Отношение полной сухой массы газотурбинного двигателя к его мощности, кг/кВт

Помпаж компрессора - Неустойчивый режим работы компрессора ГТД, характеризующийся сильными низкочастотными колебаниями массового расхода рабочего тела в компрессоре и соединительных каналах



www.gigavat.com