Для чего нужен частотный преобразователь

Электродвигатель — одно из старейших и наиболее широко используемых устройств, работающих от электричества. Помощник двигателя – частотный преобразователь — хотя и был создан намного позже, сегодня он зачастую является незаменимым дополнением электродвигателя. 

В настоящее время электродвигатель — это наиболее широко используемое электрическое устройство в промышленности. Его конструкция не сильно изменилась за последнее столетие, и он до сих пор остается единственным устройством, преобразующим электрическую энергию в механическую. В свою очередь, механическая энергия преобразуется в электричество генераторами, конструкция которых почти идентична конструкции двигателей — одна и та же электрическая машина может работать и как двигатель и как генератор. Значение двигателей для современной промышленности невозможно переоценить, и лучшим доказательством этого является тот факт, что треть всей производимой в мире электроэнергии потребляется электрическими двигателями.

При всей своей простоте и множестве преимуществ электромотор также имеет определенные ограничения — у этого агрегата всего два рабочих состояния — когда он обесточен, он не работает, а при включении он всегда работает с одной и той же номинальной скоростью, без возможности регулирования (еще выпускаются «под заказ» электродвигатели с несколькими скоростями, но сроки изготовления могут достигать полугода и плавного регулирования от них увы не добиться). В этом случае на помощь приходят устройства, называемые частотными преобразователями.

Частотник — давайте контролировать обороты двигателя!

Первые решения такого типа появились только в 1960-х годах, однако, поворотным моментом стали 80-е годы. С наступлением цифровой эпохи стало возможным отказаться от аналогового управления, которое в случае таких сложных устройств, как преобразователи частоты, требовало передовых технических знаний. 

Приводные системы — это не только подъемные машины или ленточные конвейеры в шахтах, но и . .. пылесосы с регулируемой мощностью всасывания или ремень на кассе в магазине, где мы делаем покупки. 

Энергосбережение

Вторая основная причина использования частотников — это энергосбережение. Это особенно важно для насосов и вентиляторов из-за механики и законов физики. В таких системах мы говорим о так называемой квадратичной характеристике крутящего момента, из-за которой даже небольшое снижение скорости дает значительную экономию электроэнергии.

Это хорошо видно на примере старых промышленных установок, которым уже несколько десятилетий. В то время было обычной практикой увеличивать размеры систем. Все было больше, чем должно быть. Мотор немного больше, чем нужно, и насос немного больше, чем нужно. Система все время работала на максимальных мощностях, а ограничения потока воды и мощность нагнетателя регулировались с использованием традиционных механических методов дросселирования потока. И только использование частотного управления позволяет адаптировать скорость двигателя к реальным потребностям и плавно регулировать обороты. По словам сервисных инженеров, которые очень часто участвуют в энергоаудитах и анализируют экономическую рентабельность оборудования, приобретение даже дорогостоящих преобразователей частоты может окупаться даже в течение нескольких недель.

Стоит отметить, что при использовании частотника, электродвигатель может перегреваться, поэтому стоит позаботиться о его качественном охлаждении.

 

Что такое поршень двигателя автомобиля

Расскажем про автомобильные поршни двигателя внутреннего сгорания — что это такое и основное назначение. Как работают и какие требования к ним. Сколько колец нужно.

Что это такое

Поршень — деталь цилиндрической формы, совершающая возвратно-поступательное движение внутри цилиндра двигателя авто. Нужен для изменения давления газа в механическую работу, или наоборот — возвратно-поступательного движения в изменение давления. Т.е. он передаёт на шатун усилие, возникающее от давления газов и обеспечивает протекание всех тактов рабочего цикла.

Он имеет вид перевёрнутого стакана и состоит из днища, головки, направляющей части (юбки).

В бензиновых моторах применяются поршни с плоским днищем из-за простоты изготовления и меньшего нагрева при работе. Хотя на современных авто делают специальные выемки под клапаны. Чтобы при обрыве ремня ГРМ поршни и клапана не встретились и не повлекли серьёзный ремонт.

Днище поршня дизеля делают с выемкой, которая зависит от степени смесеобразования и расположения клапанов, форсунок. При такой форме днища лучше перемешивается воздух с поступающим в цилиндр топливом.

Поршень подвержен действию высоких температур и давлений. Он движется с высокой скоростью внутри цилиндра. Изначально для автомобильных двигателей их отливали из чугуна. С развитием технологий стали использовать алюминий, т.к. давал преимущества: рост оборотов и мощности, меньшие нагрузки на детали, лучшую теплоотдачу.

Мощность современных моторов выросла. Температура и давление в цилиндрах двигателей (особенно дизельных) стали такими, что алюминий подошёл к пределу прочности. Поэтому современные моторы оснащаются стальными поршнями, которые уверенно выдерживают возросшие нагрузки. Они легче алюминиевых за счет более тонких стенок и меньшей компрессионной высоты, т.е. расстояния от днища до оси алюминиевого пальца. А еще стальные поршни не литые, а сборные.

Уменьшение вертикальных габаритов поршня при неизменном блоке цилиндров дает возможность удлинить шатуны. Это позволит снизить боковые нагрузки в паре «поршень-цилиндр», что положительно скажется на расходе топлива и ресурсе двигателя. Или, не меняя шатунов и коленвала, можно укоротить блок цилиндров. Тогда облегчим мотор.

Требования к поршням мотора

  • Поршень, перемещаясь в цилиндре, позволяет расширяться сжатым газам, продукту горения топлива, и совершать механическую работу. Он должен быть устойчивым к высокой температуре, давлению газов и надежно уплотнять канал цилиндра.
  • Отвечать требованиям пары трения с целью минимизировать механические потери и износ.
  • Испытывая нагрузки со стороны камеры сгорания и реакцию от шатуна, должен выдерживать механическое воздействие.
  • Совершая возвратно-поступательное движение с высокой скоростью, должен как можно меньше нагружать кривошипно-шатунный механизм инерционными силами.

Как работают

Топливо, сгорая в надпоршневом пространстве, выделяет огромное количество тепла в каждом цикле работы двигателя. Температура сгоревших газов достигает 2000 градусов. Только часть энергии они передадут движущимся деталям мотора, все остальное в виде тепла нагреет двигатель. То, что останется, вместе с отработанными газами улетит в трубу. Следовательно, если не будем охлаждать поршень, он через некоторое время расплавится. Это важный момент для понимания условий работы поршневой группы.

Повторим известный факт — тепловой поток направлен от более нагретых тел к менее нагретым.

Наиболее нагретым является рабочее тело, или, другими словами, газы в камере сгорания. Тепло будет передано окружающему воздуху – самому холодному. Воздух, омывая радиатор и корпус двигателя, остудит охлаждающую жидкость, блок цилиндров и корпус головки. Остается найти мостик, по которому поршень отдает свое тепло в блок и антифриз. Есть четыре пути.

Первый путь, обеспечивающий наибольший поток, – поршневые кольца. Причем первое кольцо играет главную роль, как расположенное ближе к днищу. Это наиболее короткий путь к охлаждающей жидкости через стенку цилиндра. Кольца одновременно прижаты к поршневым канавкам и стенке цилиндра. Они обеспечивают более 50% теплового потока.

Вторая охлаждающая жидкость в двигателе – масло. Имея доступ к наиболее нагретым местам мотора, масляный туман уносит и отдает в поддон картера значительную часть тепла от самых горячих точек. В случае применения масляных форсунок, направляющих струю на внутреннюю поверхность днища поршня, доля масла в теплообмене может достигать 30 – 40%.

Но нагружая масло функцией теплоносителя, должны позаботиться, чтобы его остудить. Иначе перегретое масло может потерять свойства. Также, чем выше температура масла, тем меньше тепла способно перенести.

Третий путь. Часть тепла отбирает на нагрев свежая топливовоздушная смесь, поступившая в цилиндр. Количество свежей смеси и количество тепла, которое отберет, зависит от режима работы и степени открытия дросселя. Но тепло, полученное при сгорании, также пропорционально заряду. Этот путь охлаждения носит импульсный характер. Отличается скоротечностью и высокоэффективен, т.к. тепло отбирается с той стороны, с которой поршень нагревается.

Следует уделить внимание передаче тепла через поршневые кольца. Если этот путь перекроем, то маловероятно, что двигатель выдержит длительные форсированные режимы. Температура вырастет, материал поршня «поплывет», и двигатель разрушится.

Вспомним про компрессию. Представим, что кольцо не прилегает по всей длине к стенке цилиндра. Тогда сгоревшие газы, прорываясь в щель, создадут барьер, препятствующий передаче тепла от поршня через кольцо в стенку цилиндра. Это, как если бы закрыли часть радиатора и лишили его возможности охлаждаться воздухом.

Более страшна картина, если кольцо не имеет тесного контакта с канавкой. В местах, где газы имеют возможность протекать мимо кольца через канавку, участок поршня лишается возможности охлаждаться. Как результат – прогар и выкрашивание части, прилегающей к месту утечки.

Сколько колец нужно для поршня

С точки зрения механики, чем меньше колец, тем лучше. Чем они уже, тем меньше потери в поршневой группе. При уменьшении их количества и высоты ухудшаются условия охлаждения поршня, увеличивая тепловое сопротивление днище – кольцо – стенка цилиндра. Поэтому выбор конструкции – всегда компромисс.

Двигатель: функция, тип, обзор | SchoolWorkHelper

Двигатель является основным источником энергии автомобиля. Двигатель использует топливо и сжигает его для производства механической энергии.

Химическая энергия преобразована в Механическая энергия

Тепло, выделяемое при сгорании, используется для создания давления, которое затем используется для привода механического устройства.

Внутреннее и внешнее

До 20 го века сжигание или сгорание топлива происходило вне самого двигателя. Топливо, часто уголь, сжигали для получения тепла. Затем это тепло использовалось для кипячения воды для производства пара. Пар удерживался под давлением, а затем вводился в двигатель, где поршень опускался в цилиндр. Это называется двигателем внешнего сгорания или традиционно называется паровым двигателем.

В современных автомобилях используется двигатель, в котором топливо сжигается непосредственно внутри, называемый двигателем внутреннего сгорания. При сгорании воздушно-топливной смеси она быстро расширяется, вызывая увеличение давления внутри цилиндра. Это увеличение давления толкает поршни вниз по цилиндру, тем самым заставляя шатун вращать коленчатый вал, обеспечивая нам непрерывное вращательное движение, с помощью которого можно управлять транспортным средством и другими компонентами.

Поршневые и роторные

Как в двигателях внешнего, так и внутреннего сгорания используется поршень, размещенный в цилиндре, который прикреплен к шатуну, а затем к коленчатому валу. Поршень толкает цилиндр, который давит на шатун, тем самым вращая коленчатый вал. Этот тип двигателя также называют поршневым двигателем из-за движения поршня вверх и вниз.

В отличие от этого двигателя роторный двигатель использует ротор треугольной формы. Ротор размещен в камере эллиптической формы и соединен с центральным главным валом (коленчатым валом). Когда ротор движется по камере, он всасывает воздушно-топливную смесь, сжимает ее, сжигает, а затем выбрасывает. Движение ротора заставляет вращаться главный вал.

4-тактный и 2-тактный

Двигатель сжигает топливо для производства механической энергии. Для этого они должны:

  • Втянуть необходимую топливно-воздушную смесь для сжигания.
  • Сожмите его, чтобы увеличить его потенциал, а также обеспечить правильное положение поршня.
  • Подожгите и сожгите его, чтобы высвободить энергию.
  • Удалите сгоревшие/отходы, чтобы обеспечить поступление большего количества воздуха/топлива.

Эти четыре (4) шага или цикла чаще всего называются:

  • Впуск
  • Сжатие
  • Мощность
  • Выпуск

В 4-тактном двигателе каждый цикл выполняется за отдельный ход поршня, когда он движется вверх и вниз в цилиндре. Однако в двухтактном двигателе эти 4 цикла комбинируются и иногда перекрываются, чтобы обеспечить большее количество рабочих тактов за то же время.

Двухтактный двигатель использует изменение давления под поршнем для всасывания воздушно-топливной смеси. Затем он перемещается через передаточный порт в верхнюю часть поршня, где сжимается и сжигается. Когда поршень движется вниз, поступающая топливно-воздушная смесь вытесняет сгоревшие выхлопные газы. Поскольку двигатель всасывает воздушно-топливную смесь через нижнюю часть двигателя, масло необходимо предварительно смешать с топливом, чтобы обеспечить надлежащую смазку.

Бензин по сравнению с дизельным топливом

Бензин на сегодняшний день является наиболее популярным топливом. Тем не менее, дизельное топливо уже много лет используется в промышленных транспортных средствах и машинах, и его популярность в легковых автомобилях начинает расти. Дизельное топливо содержит больше тепловой энергии, чем бензин, что делает его гораздо более экономичным, но дизельное топливо гуще, тяжелее и не испаряется так легко, как бензин, и должно использоваться в двигателях высокого давления.

Из-за этого топливо должно распыляться непосредственно в цилиндр. Топливо подается в цилиндр в конце такта сжатия и воспламеняется под действием тепла сжатия, что устраняет необходимость в системе зажигания. Выхлоп также очень тяжелый и грязный, как сажа.

Классификация двигателей

Двигатель обычно классифицируют по трем (3) основным признакам.

  • Рабочий объем
  • Количество цилиндров
  • Расположение цилиндров

Рабочий объем относится к объему пространства, которое поршень проходит за один ход. Он рассчитывается путем умножения площади поршня на длину его хода. Ход поршня относится к расстоянию, которое поршень перемещает вверх или вниз в цилиндре от верхней точки (ВМТ) до нижней точки (НМТ). Расположение цилиндров двигателя делится на три (3) основных формата.

Линейный, V-образный или горизонтально-оппозитный. У рядного все цилиндры стоят в один ряд, один за другим. У V-типа половина цилиндров смещена от центра с одной стороны (левый ряд), а другая половина — с другой стороны (правый ряд). Расстояние между двумя (2) берегами может составлять от >0 градусов до <180 градусов. Когда расстояние равно 180 градусам, расположение называется горизонтально противоположным.

Также существует два (2) способа установки двигателя внутри автомобиля. Обычный метод заключается в том, что коленчатый вал и цилиндры расположены на одной линии с автомобилем спереди назад. Поперечный — это когда двигатель повернут боком, поэтому коленчатый вал и цилиндры расположены на одной линии слева направо.

Система смазки

Двигатель также включает в себя систему смазки и систему охлаждения. Система смазки гарантирует, что все движущиеся части двигателя будут хорошо смазаны, что обеспечит долгий срок службы. Система смазки выполняет пять важных функций:

  • Смазывает – уменьшает трение между движущимися частями за счет образования тонкой масляной пленки.
  • Охлаждение – тепло передается маслу от двигателя.
  • Очищает — когда масло омывает внутреннюю часть двигателя, оно удаляет грязь и другие частицы.
  • Уплотнения – заполняют любые небольшие зазоры внутри двигателя.
  • Поглощает удары – действует как подушка между различными частями внутри двигателя.

В двигателях меньшего размера используется упрощенная система, в которой масло разбрызгивается по картеру, называемое методом ковша и разбрызгивания. Более крупные и мощные двигатели используют систему под давлением, которая включает в себя насос, регулятор и фильтр.

Система охлаждения

Функция системы охлаждения заключается в поддержании идеальной рабочей температуры двигателя. Существует два метода выполнения этой функции.

  • С воздушным охлаждением – ребра крепятся к внешней части двигателя, что увеличивает площадь поверхности, на которой тепло передается окружающему воздуху.
  • С жидкостным охлаждением – цилиндры окружены камерой, заполненной жидкостью, называемой водяной рубашкой. Тепло передается жидкости в водяной рубашке, а затем циркулирует во внешнем блоке, называемом радиатором. Как и система с воздушным охлаждением, радиатор имеет ребра, выполняющие ту же функцию.

Системы жидкостного охлаждения гораздо более эффективны, чем системы воздушного охлаждения, но требуют гораздо большего количества деталей и постоянного обслуживания.

Ключевые термины и определения

  • Воздушно-топливная смесь: Соотношение воздух/топливо относится к доле воздуха и топлива, присутствующих во время сгорания; приблизительно 14,7 к 1 по массе.
  • Цикл сжатия: движение поршня от НМТ к ВМТ, при котором происходит сжатие воздушно-топливной смеси; следует за тактом впуска.
  • Шатун: Деталь, используемая для крепления поршня к коленчатому валу.
  • Коленчатый вал: Компонент, преобразующий возвратно-поступательное движение поршней во вращательное движение.
  • Рабочий объем: объем, перемещаемый поршнями при перемещении из НМТ в ВМТ.
  • Эллиптическая: Яйцевидная, овальная или округлая, как яйцо.
  • Выпускной цикл: Движение поршня вверх, вытесняющее сгоревшие газы через открытый выпускной клапан.
  • Изгнание: заставить уйти или съехать. Пример выхлопных газов
  • Двигатель внешнего сгорания: Двигатель, в котором топливно-воздушная смесь сжигается в камере вне цилиндра двигателя, например паровой двигатель.
  • Горизонтально-оппозитные: двигатель с двумя (2) рядами цилиндров, расположенными горизонтально или под углом 180 градусов друг к другу.
  • Цикл впуска: Ход поршня вниз, который втягивает воздушно-топливную смесь в цилиндр.
  • Двигатель внутреннего сгорания: Двигатель, который сжигает топливо внутри себя для увеличения мощности.
  • Поршень: Деталь двигателя, совершающая возвратно-поступательное движение в цилиндре и передающая усилие расширяющихся газов через поршневой палец и шатун на коленчатый вал.
  • Рабочий цикл: Ход поршня при закрытых обоих клапанах, при котором происходит сгорание, заставляющее поршень перемещаться из ВМТ в НМТ.
  • Поступательно-поступательное движение: Движение поршня вверх и вниз внутри цилиндра.
  • Испарение Процесс превращения жидкости, такой как бензин, в пар часто происходит после того, как распыленное топливо покидает топливную форсунку.

Безопасность

При работе с системами двигателя или рядом с ними вы должны принять необходимые меры предосторожности для обеспечения собственной безопасности и безопасности окружающих вас людей.

  • Не носите свободную одежду. Эти предметы могут запутаться в шкивах или других движущихся частях, что приведет к серьезной травме.
  • Минимизируйте отвлекающие факторы при работе с двигателем.
  • Никогда не отсоединяйте и не отсоединяйте электрические разъемы при работающем двигателе или при нахождении ключа в положении «включено».
  • Наденьте защитные очки, чтобы грязь и мусор не попали в глаза.
  • Все двигатели и их детали имеют очень острые края. Чтобы избежать возможной травмы, не сжимайте незнакомые компоненты слишком сильно.

Двигатель — определение, значение и синонимы

ПЕРЕЙТИ К СОДЕРЖАНИЮ

двигатели

двигатель — это машина, которая сжигает топливо, чтобы заставить что-то двигаться. Двигатель в автомобиле — это двигатель, который заставляет его двигаться.

Двигатели транспортных средств, включая автомобили, поезда, самолеты и лодки. В то время как эти двигатели, как правило, питаются от сжигаемого топлива, другие двигатели получают энергию от электричества, которое они преобразуют в механическую энергию — вентиляторы, электроинструменты и небольшие бытовые приборы обычно имеют электрические двигатели. Образно можно также использовать слово двигатель означает «что-то, что используется для достижения определенного результата». Например, в вашем штате туризм может быть основным двигателем роста занятости.

Определения двигателя

  1. сущ.

    двигатель, преобразующий тепловую энергию в механическую работу

  2. сущ.

    колесное транспортное средство, состоящее из самоходного двигателя, используемое для вождения поездов по железнодорожным путям

    синонимы:

    локомотив, паровоз, железнодорожный локомотив

  3. сущ.

    что-то используемое для достижения цели

    «ан
    двигатель сменный

  4. сущ.

    инструмент или машина, которые используются в войне, например, таран, катапульта, артиллерийское орудие и т.