ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Выбор автомата автомата по мощности нагрузки и сечению провода. Выбор автомата для асинхронного двигателя


Какой выбрать автомат для асинхронного двигателя - Расчёты - Справочник

    Расчет и выбор автоматического выключателя. 

 

 Автоматический выключатель (АВ) выбирают по номинальному току Iн.вык выключателя и номинальному току Iн.расц расцепителя.Iрасц=Iдл/Кт, гдеIдл=Iн.дв – длительный ток в линии,Iн.дв – номинальный ток двигателя,Кт – тепловой коэффициент, учитывающий условия установки АВ.Кт=1  - для установки в открытом исполнении;Кт=0,85 – для установки в закрытых шкафах.

                             Iдл=Iн= Рн/(Uн·√3·ηн·cosφ),                                                                               (1)

гдеРн - мощность двигателя, кВт;Uн – номинальное напряжение электродвигателя, кВ;ηн – КПД двигателя (без процентов),cosφ – коэффициент мощности двигателя.Номинальный ток асинхронного двигателя с к. з. ротором будет примерно равен его удвоенной мощности, взятой в киловаттах:Iн≈ 2Рн(кВт)Выбираем АВ:Тип –Iн.вык –Iрасц –

 

Проверка правильности выбора АВ по току мгновенного срабатывания.

 

 

Необходимо, чтобы выполнялось условие:Iмгн.ср  ≥ KIкр, гдеIмгн.ср  - ток мгновенного срабатывания,Iкр – максимальный  кратковременный ток,К – коэффициент, учитывающий неточность определения Iкр в линии.К = 1,25 – для АВ с Iн > 100А;К = 1,4 – для АВ с Iн ≤ 100А.Iкр = Iпуск = Кi Iн, гдеКi – кратность пускового момента Кi = Iпуск/Iн.Значения Кi берутся из таблиц.Если условие выполняется, значит АВ выбран верно, если не выполняется, то выбирается АВ с большим значением тока расцепителя.

 

 

Приведем пример .

Дано:

Тип двигателя:

4А112М4У3

Условие установки АВ:

В шкафу.

Найти:

Тип АВ;

Iмгн.ср;

Iрасц.

Решение.

По типу двигателя выписываем из таблицы его номинальные данные:

Рн = 5,5 кВт; η = 85,5%=0,855; cosφ = 0,85; Iп/Iн = Кi = 7.

 

Iдл = Iн =Рн/√3Uнηcosφ  = 5,5/√3∙0,38∙0,855∙0,85  = 11,5 A

 

Так как автомат устанавливается в шкафу, то Кт = 0,85, поэтому:

Iрасц = Iн/Кт = 11,5/0,85 = 13,5 А.

По току расцепителя выбираем автомат: ВА 51-25; Iн =25 А  Iрасц = 16 А;

Проверка

Iмгн.ср≥ КIкр

Iмгн.ср = 10∙Iрасц = 10∙16 = 160 А

 

Iкр = Iпуск = Кi ∙Iн = 7∙11,5 = 80,5 А

К = 1,4

160 ≥ 1,4∙80,5 = 112,7 А

Неравенство выполняется, значит автомат выбран верно.

 

www.elektrikii.ru

Как подобрать автоматический выключатель для двигателя

Правильный подбор автоматического выключателя для защити электродвигателя имеет огромное значение для оборудования. Надежность работы, защита двигателя от аварийных режимов работы и проводки  напрямую зависит от подбора автоматического выключателя.

el-dvigatelВ этой статье наведем условия выбора автоматического выключателя для защиты электродвигателя. Для того чтобы выбрать автоматический выключатель необходимо знать:

— номинальный ток двигателя;

— кратность пускового тока к номинальному;

— максимально допустимый ток электропроводки.

Номинальный ток двигателя – это ток который имеет электродвигатель во время работы при номинальной мощности. Он указывается  на паспорте электродвигателе или берется с таблиц паспортных данных электродвигателей.

pacportКратность пускового тока к номинальному – это соотношение пускового ток который возникает в электродвигателе во время пуска к номинальному. Он тоже указывается на паспорте электродвигателя или в таблицах электродвигателей.

Максимально допустимый ток электропроводки – это допустимый ток, который может проходить по проводу, кабеля, что подключен к электродвигателю.

Условия для правильного выбора автоматического выключателя для защиты электродвигателя:

— номинальный ток автоматического выключателя должен бить больше или равен номинальному току электродвигателя.  Например: ток электродвигателя АИР112М4У2 Ін. дв. =11,4А выбираем автоматический выключатель ВА51Г2534 на номинальный ток Ін. = 25А и ток расцепителя Ін..рас. = 12.5А.

После этого проверим автоматический выключатель на не срабатывания при пуске электродвигателя используя  условие :

Iу.е.>kзап. · kр.у ·kр.п. ·Iн.дв ·kі

где Kзап . — коэффициент запаса, который учитывает колебания напряжения, Kзап . = 1,1 ;

kр.у — коэффициент, который  учитывает неточность вставки по току срабатывания электромагнитного расцепителя автоматического выключателя , Kр.у = 1,2 ;

kр.п. — коэффициент, который учитывает возможное отклонение пускового тока от его номинального, kр.п. = 1,2 ;

K і — каталожная кратность пускового тока электродвигателя;

Iн.дв — номинальный ток двигателя , А.

Iу.е = 14 · Iн.рос = 14 · 12,5 = 175А

З таблицы электродвигателей находим K і  = 7,0 для электродвигателя АИР112М4У2.

Подставляем в условие и определяем

175А > 1,1·1,2·1,2·7,0·11,4

175А > 126,4А

Условие выполнилось, следовательно,  автоматический выключатель не сработает при запуске двигателя.

— номинальный ток автоматического выключателя должен быть меньше предельно допустимого тока кабеля которым питается электродвигатель. Например: подключение сделано кабелем АВРГ (3х2,5) который имеет допустимый   ток Iдоп =27А. Для водного автомата для защиты электродвигателя условие выполняется потому, что Iдоп =27А > Ін. = 25А .

В этой статье вы узнали как правильно, используя условия выбора правильно подобрать автоматический выключатель для защиты электродвигателя.

Очень интересные публикации по этой теме:

camcebemacter.ru

Автомат защиты электродвигателя - как правильно подобрать?

Автомат для защиты электродвигателя

При подборе автоматических выключателей, способных защитить электрические моторы от повреждения в результате КЗ или чрезмерно высоких нагрузок, необходимо учитывать большую величину пускового тока, нередко превышающую номинал в 5-7 раз. Наиболее мощным стартовым перегрузкам подвержены асинхронные силовые агрегаты, обладающие короткозамкнутым ротором. Поскольку это оборудование широко применяется для работы в производственных и бытовых условиях, то вопрос защиты как самого устройства, так и питающего кабеля очень актуален. В этой статье речь пойдет о том, как правильно рассчитать и выбрать автомат защиты электродвигателя.

Задачи устройств для защиты электродвигателей

Бытовую электротехнику от пусковых токов большой величины в сетях обычно защищают с помощью трехфазных автоматических выключателей, срабатывающих через некоторое время после того, как величина тока превысит номинальную. Таким образом, вал мотора успевает раскрутиться до нужной скорости вращения, после чего сила потока электронов снижается. Но защитные устройства, используемые в быту, не имеют точной настройки. Поэтому выбор автоматического выключателя, позволяющего защитить асинхронный двигатель от перегрузок и сверхтоков короткого замыкания, более сложен.

Автомат защиты асинхронного двигателя

Современные автоматы для защиты двигателя нередко устанавливаются в общем корпусе с пускателями (так называются коммутационные устройства запуска мотора). Они предназначены для выполнения следующих задач:

Управляющая и защитная автоматика для двигателя на видео:

Необходимо также учитывать, что автомат для защиты электродвигателя должен быть совместим с контрольными и управляющими механизмами.

Все части схемы тщательно подбираются друг к другу

Расчет автомата для электродвигателя

Еще недавно для защиты электрических моторов использовалась следующая схема: внутри пускателя устанавливался тепловой регулятор, подключенный последовательно с контактором. Этот механизм работал таким образом. Когда через реле в течение длительного времени проходил ток большой величины, происходил нагрев установленной в нем биметаллической пластины, которая, изгибаясь, прерывала контакторную цепь. Если превышение установленной нагрузки было кратковременным (как бывает при запуске двигателя), пластинка не успевала нагреться и вызвать срабатывание автомата.

Внутреннее устройство автомата защиты двигателя на видео:

Главным минусом такой схемы было то, что она не спасала агрегат от скачков напряжения, а также дисбаланса фаз. Сейчас защита электрических силовых установок обеспечивается более точными и современными устройствами, о которых мы поговорим чуть позже. А теперь перейдем к вопросу о том, как производится расчет автомата, который нужно установить в цепь электромотора.

Чтобы подобрать защитный автоматический выключатель для электроустановки, необходимо знать его времятоковую характеристику, а также категорию. Времятоковая характеристика от номинального тока, на который рассчитан АВ, не зависит.

Характеристики АВ указываются на корпусе или в паспорте

Чтобы автоматический выключатель не срабатывал каждый раз при запуске мотора, величина пускового тока не должна быть больше той, которая вызывает моментальное срабатывание аппарата (отсечка). Соотношение тока запуска и номинала прописывается в паспорте оборудования, максимально допустимое – 7/1.

Производя расчет автомата практически, следует использовать коэффициент надежности, обозначаемый символом Kн. Если номинальный ток устройства не превышает 100А, то величина Kн составляет 1,4; для больших значений она равна 1,25. Исходя из этого, значение тока отсечки определяется по формуле Iотс ≥ Kн х Iпуск. Автоматический выключатель выбираем в соответствии с рассчитанными параметрами.

Еще одна величина, которую необходимо учитывать при подборе, когда автомат монтируется в электрощитке или специальном шкафу – температурный коэффициент (Кт). Это значение составляет 0,85, и номинальный ток защитного устройства при подборе следует умножать на него (In/Кт).

Современные устройства электрозащиты силовых агрегатов

Большой популярностью пользуются модульные мотор-автоматы, представляющие собой универсальные устройства, которые успешно справляются со всеми функциями, описанными выше.

Модульный автоматический выключатель для двигателя

Кроме этого, с их помощью можно производить регулировку параметров отключения с высокой точностью.

Современные мотор-автоматы представлены множеством разновидностей, отличающихся друг от друга по внешнему виду, характеристикам и способу управления. Как и при подборе обычного аппарата, нужно знать величину пускового, а также номинального тока. Кроме этого, надо определиться, какие функции должно выполнять защитное устройство. Произведя нужные расчеты, можно покупать мотор-автомат. Цена этих устройств напрямую зависит от их возможностей и мощности электрического мотора.

Особенности защиты электрических двигателей в производственных условиях

Нередко при включении устройств, мощность которых превышает 100 кВт, напряжение в общей сети падает ниже минимального. При этом отключения рабочих силовых агрегатов не происходит, но количество их оборотов снижается. Когда напряжение восстанавливается до нормального уровня, мотор начинает заново набирать обороты. При этом его работа происходит в режиме перегрузки. Это называется самозапуском.

График процесса самозапуска электродвигшателя

Самозапуск иногда становится причиной ложного срабатывания АВ. Это может произойти, когда до временного падения напряжения установка в течение длительного времени работала в обычном режиме, и биметаллическая пластина успела прогреться. В этом случае тепловой расцепитель иногда срабатывает раньше, чем напряжение нормализуется. Пример падения напряжения в электросети автомобиля на следующем видео:

Чтобы предотвратить отключение мощных заводских электромоторов при самозапуске, используется релейная защита, при которой в общую сеть включаются токовые трансформаторы. К их вторичным обмоткам подключаются защитные реле. Эти системы подбираются методом сложных расчетов. Приводить здесь мы их не будем, поскольку на производстве эту задачу выполняют штатные энергетики.

Заключение

В этом материале мы подробно осветили тему защитных устройств для электрических двигателей, и разобрались с тем, как подобрать автомат для электромотора и какие параметры при этом должны быть учтены. Наши читатели могли убедиться, что расчеты, которые производятся при этом, совсем несложны, а значит, подобрать аппарат для сети, в которую включен не слишком мощный силовой агрегат, вполне можно самостоятельно.

yaelectrik.ru

Выбор автоматического выключателя

Поиск Лекций

 

Выбрать автоматический выключатель для электродвигателя, характеристики которого приведены в таблице 1. Режим работы – непрерывный.

Таблица 1 – Характеристики электродвигателя

Вариант Рном, кВт КПД cos φ Uн, В
1,5 0,83 0,85

 

Основным элементом автомата, реализующего функции защиты электродвигателя (в дальнейшем рассматриваем асинхронные двигатели серии 4А или АИ) от токов КЗ являются электромагнитный расцепитель и токовая отсечка. Причем, они должны быть отстроены от пусковых токов Iп (и ударного пускового тока Iудп). Для асинхронных двигателей с фазным или короткозамкнутым ротором пусковой ток находим по формуле (1.1):

 

(1.1)

 

где KI – кратность пускового тока двигателя;

Iн – номинальный (линейный) ток в обмотке статора, находим по формуле (1.2).

 

(1.2)

 

где Pн – полная номинальная мощность электродвигателя, кВт;

Uнл – номинальное линейное напряжение на обмотке статора, В;

η – коэффициент полезного действия;

cosφ – коэффициент мощности.

Если двигатель работает в повторно-кратковременном режиме, номинальный ток двигателя берется при относительной продолжительности включения ПВ = 25 %.

Ударный пусковой ток двигателя по своей величине равен току трехфазного КЗ за сопротивлением, равным сопротивлению неподвижного электродвигателя. Величина ударного пускового тока (его амплитудное значение) определяется по формуле (1.3):

 

(1.3)

 

Для защиты электродвигателей с короткозамкнутым ротором ток срабатывания электромагнитного расцепителя (токовой отсечки) отстраивается от ударного пускового тока двигателя при полном напряжении питания сети и выведенном пусковом резисторе в цепи ротора (для двигателей с фазным ротором), ток срабатывания токовой отсечки находим по формуле (1.4):

 

(1.4)

 

Причиной перегрузки двигателей могут быть затянувшийся пуск, большая нагрузка на валу. А при обрыве одной из фаз, торможение двигателя. Часто перегрузки бывают кратковременными. Наиболее опасными являются устойчивые перегрузки. Основной опасностью сверхтоков для электродвигателя является сопровождающее их повышение температуры обмоток двигателя. Перегрузка по току оценивается с помощью коэффициента кратности пускового тока двигателя и задается в каталоге.

В качестве элементов защиты могут применяться тепловые расцепители автоматов, тепловые реле магнитных пускателей, максимальные токовые реле автоматов с выдержками времени на срабатывания.

Токовые (электромагнитные) защиты имеют преимущества по сравнению с тепловыми ввиду простоты эксплуатации и более легкого подбора и регулировки защитных характеристик.

Однако токовые защиты не позволяют использовать перегрузочные возможности электродвигателей из-за малого времени их действия при небольших кратностях тока. Ток срабатывания максимальной токовой защиты от перегрузки определяется по формуле (1.5):

 

(1.5)

 

На практике широко используются тепловые расцепители.

Номинальный ток теплового или комбинированного расцепителей для двигателей с длительным режимом работы и легкими условиями пуска равен:

 

(1.6)

 

Для двигателей с короткозамкнутым ротором, работающим в повторно-кратковременном режиме, но при тяжелых условиях пуска:

 

(1.7)

 

Номинальная уставка на ток срабатывания теплового расцепителя определяется согласно методике, приведенной выше. Время действия защиты от перегрузки, с одной стороны, должно быть больше времени пуска электродвигателя (либо больше времени его самозапуска), с другой стороны, это время не должно превышать допустимой для двигателя длительности прохождения сверх тока. Время пуска асинхронных двигателей составляет 10-15 секунд.

Выбор защитной аппаратуры для асинхронного двигателя серии АИР со следующими основными техническими данными:

Тип двигателя – АИР 100 L2;

Мощность – 5,5 кВт;

КПД – 0,85;

Коэффициент мощности – 0,89;

Коэффициент кратности пускового тока – 7,5;

Номинальное напряжение – 380 В.

Необходимо выбрать защитный аппарат, позволяющий осуществлять пуск и защиту двигателя в режимах перегрузки.

По формуле (1.2) определим номинальный ток двигателя:

 

 

Тогда по формуле (1.1) пусковой ток двигателя будет равен:

 

 

Согласно формуле (1.3) ударный пусковой ток будет равным:

 

 

В качестве защитного аппарата, выполняющего одновременно функции управления в режиме редких включений, можно применить автоматический выключатель серии ВА51. Автоматические выключатели серии ВА51 предназначены для эксплуатации в электроустановках с напряжением до 660 В переменного тока и до 440 В постоянного тока. Выключатели осуществляют защиту от токов КЗ, перегрузки и недопустимого снижения напряжения, а также от нечастых оперативных включений и отключений электрических цепей. Они имеют электротепловые и электромагнитные расцепители тока, но может быть исполнение только с электромагнитным расцепителем. Отношение тока срабатывания электромагнитных расцепителей к номинальному току тепловых расцепителей (кратность отсечки) находится в пределах 10 - 12. Указанная кратность (кратность отсечки) относится к автоматическим выключателям переменного тока. Автоматические выключатели с тепловыми максимальными расцепителями должны срабатывать при токе, значение которого равно 1,25 номинального тока расцепителя в течение времени менее 2 ч (в нагретом состоянии). Номинальный ток автомата должен быть не меньше номинального тока электродвигателя. Согласно расчетной величины номинального тока двигателя Iн = 11 А находим номинальный ток автомата Iна = 16 А.

Ток срабатывания токовой отсечки (электромагнитного расцепителя) отстраивается от ударного пускового тока. Принимаем согласно формуле (1.4):

 

 

Находим номинальную уставку на ток срабатывания электромагнитного расцепителя и выбираем тип автомата, имеющего данный расцепитель:

 

– тип автомата ВА51-30.

 

Номинальный ток электромагнитного расцепителя – 16 А.

Для защиты двигателя при длительном протекании пускового тока применяется тепловой расцепитель автомата ВА-51-30М1-34. Номинальный ток расцепителя должен быть не выше номинального тока автомата (Iт ≤ Iна).

Номинальная уставка на ток срабатывания теплового элемента есть среднее значение между током несрабатывания расцепителя – 1,1·Iна =1,1·16=17,6 А и нормированным значением тока срабатывания – 1,45·Iна = 1,45·16 = 23,2 А.

 

 

Ближайшее нормированное значение номинальной уставки для данной серии автомата равно Iнт = 20 А.

Определим для автомата ВА-51-35М1-34 с тепловым расцепителем на номинальный ток 20 А время срабатывания при токе перегрузки (пусковом токе двигателя), равном 23,25 А.

Определим кратность тока Iп по отношению к номинальному току расцепителя Iт

 

 

Находим пределы по времени срабатывания для заданного тока (1,8-5) с.

Время пуска двигателя не должно превышать пределов по времени срабатывания защиты.

Вывод. Для защиты асинхронного двигателя в случае возникновения аварийных режимов при пуске можно использовать автоматический выключатель серии ВА51 с электромагнитным расцепителем.

Основные параметры защитного аппарата:

- номинальный ток автомата, его электромагнитного и теплового расцепителей – Iна = 16 А;

- номинальная уставка на ток срабатывания электромагнитного расцепителя – Iно = 250 А;

- номинальная уставка на ток срабатывания теплового элемента – Iнт = 20 А;

- пределы по времени срабатывания тепловой защиты – tс = (1,8-5) с.

 

poisk-ru.ru

Автоматы защиты электродвигателей | Насосы и принадлежности

Доброго дня, уважаемые читатели блога nasos-pump.ru

Автоматы защиты двигателяАвтоматы защиты двигателя

Автоматы защиты двигателя

В рубрике «Общее» рассмотрим автоматы защиты асинхронных электродвигателей переменного тока. Как следует из названия, автоматы защиты электродвигателей предназначены для защиты и запуска электрических двигателей. Отключение этого устройства происходит при превышении номинального тока или короткого замыкания в двигателе. В автомате защиты предусмотрена температурная компенсация, позволяющая исключить влияние внешней температуры на работу изделия. Второе назначение автоматов защиты – это использование их в качестве аварийного или главного выключателя. Номинальный ток двигателя при определенном напряжении указывается на фирменной табличке, прикрепленной к двигателю. Величина номинального тока также зависит от схемы включения двигателя в электрическую цепь, звезда или треугольник. Приводные устройства в автоматах защиты электродвигателей могут быть выполнено в виде кнопок (Пуск – Стоп), или поворотной ручки (Вкл. – Откл.). Автоматы защиты двигателей при комплексной защите оборудования могут монтироваться совместно с контакторами, пускателями, частотными преобразователями, устройствами плавного пуска и т. д. На рынке присутствует огромное количество разнообразных моделей от различных фирм производителей автоматов защиты двигателей.

Отличия автоматов защиты двигателя от обычных автоматов

  1. Токовая характеристика автомата защиты настроена с учетом пусковых токов, возникающих при запуске асинхронных электрических двигателей переменного тока.
  2. Предусмотрена температурная компенсации. Автоматы защиты двигателей комплектуются термомагнитынми расцепителями, которые включают в себя расцепитель тепловой – биметаллическую пластину и расцепитель электромагнитный. При изменении температуры внешней среды уставка теплового расцепителя, может значительно изменятся. Этого нельзя допускать, так как изменение температуры может привести к ложным срабатываниям автомата, или выходу двигателя из строя. Чтобы исключить влияние изменений температуры внешней среды на работу автомата защиты и предусмотрена температурная компенсация.
  3. В конструкцию автоматов защиты заложена увеличенная предельная коммутационная способность, в связи с повышенными токами, возникающими при запуске электрических двигателей.
  4. Автоматы защиты двигателя могут доукомплектовываться элементами, обеспечивающими дополнительную защиту двигателей или увеличивающие возможности построения гибкой автоматизированной системы.

Технические характеристики и принцип работы

Технические характеристики изделия рассмотрим на примере автоматов защиты электродвигателей серии MS производства концерна ETI Словения. Основные характеристики приведены в таблице.

Характеристики автоматов защиты серии MSХарактеристики автоматов защиты серии MS

Характеристики автоматов защиты серии MS

Для включения автомата защиты двигателя необходимо нажать вручную кнопку «START» или повернуть ручку в положение (Вкл.). Отключение автомата происходит вручную, при нажатия кнопки «STOP» или поворотом ручки в положение (Выкл.), а также автоматически в случае срабатывания термомагнитной или электромагнитной защиты. Электромагнитный расцепитель, имеющий фиксированную уставку 13 In осуществляет защиту от короткого замыкания, а защиту от перегрузки тепловой расцепитель. Электромагнитная защита состоит из катушки в которой находится подвижный сердечник и возвратной пружины. В случае протекания по катушке тока короткого замыкания происходит мгновенное втягивание сердечника, который воздействует на механизм свободного расцепления через отключающую рейку. Тепловая защита состоит из биметаллической пластины которая последовательно соединена с контактом. При протекании по пластине тока перегрузки происходит ее нагрев. Пластина начинает изгибаться воздействуя через отключающую рейку на механизма свободного расцепления. Чтобы компенсировать зависимость от температуры внешней среды, автоматы защиты электродвигателей снабжены биметаллическими температурными компенсаторами с прогибом в обратную сторону по отношению к биметаллическим пластинам. Коммутацию цепей в изделии выполняют не подвижные и подвижные контакты. Подвижные контакты подпирается пружиной, которая увеличивает усилие для скорейшего размыкания контактов. Необходимый ток защиты двигателя задается с помощью регулировочного диска. В пределах диапазона регулировки тока защиты и необходимо подбирать автомат для защиты электрического двигателя от перегрева. На автомате имеется кнопка «ТЕСТ» при помощи которой можно проверить работоспособности изделия. Автоматы защиты электродвигателей серии MS 25 рассчитаны на ток коммутации до 25 ампер, MS 32 до 32 ампер. В автоматах предусмотрена возможность тестирования, они реагируют на обрыв фазы. Автоматы защиты серии MS 25 имеют возможность регулировки тепловой защиты в 13 — диапазонах от 0,1А до 25А;

Монтаж и электрические схемы подключения автоматов

Автоматы защиты электрических асинхронных двигателей монтируются в электрическом шкафу находящимся в помещении защищенными от дождя, снега и других осадков. Монтаж и электрическое подключение автомата должен проводить квалифицированный электрик. Все работы по монтажу оборудования должны проводится согласно Правилам Устройства Электроустановок (ПУЭ) и в соответствии с требованиями местных норм и правил. Автоматические выключатели устанавливаются в электрический шкаф посредством крепления на DIN – рейку. Подсоединение автомата производится с помощью соединительных шин или кабелей. Напряжение питания подводится со стороны верхних контактов. На нижние клеммы подсоединяется нагрузка. Возможные схемы подключения изделия для трех фазной, двух фазной и однофазной нагрузки приведены на (Рис. 1).

Сх. включения авт. защиты двигателяСх. включения авт. защиты двигателя

Схемы включения автомата защиты двигателя

 Эксплуатация обслуживание и ремонт автоматов

Для долгой и надежной эксплуатации автоматов защиты двигателей необходимо регулярно проводить плановые проверки осмотры и техническое обслуживание. Стандартное обслуживание предполагает очистку устройства от грязи и пыли, а также визуальный контроль контактов на отсутствие подгорания и перегрева. Первую подтяжку винтов рекомендуется провести через месяц после ввода автомата в эксплуатацию. Затем периодически следует проверять и при необходимости подтягивать зажимные винты крепящие подводящие кабели. Все работы по техническому обслуживанию изделия необходимо проводить при полностью обесточенном автомате. Если соблюдаются условия эксплуатации автомата, то в ремонте изделие не нуждается.

И в заключении хочется сказать следующее. Эксплуатация электрических двигателей без автоматов защиты очень часто приводит к выходу их из строя. Скачки напряжения, пропадание фазы, перегрузка двигателя, все это, как правило, приводят к перегреву и выгоранию обмотки(ок). Ремонт (перемотка статора) будет стоить дороже, чем один раз приобрести и установить автомат защиты двигателя. Это поможет Вам в дальнейшем сэкономить деньги которые требуются для дорогостоящего ремонта статора двигателя.

 Спасибо за проявленный интерес.

P.S. Понравился пост? Порекомендуйте его в социальных сетях своим друзьям и знакомым.

Еще похожие посты по данной теме:

nasos-pump.ru

Расчет и выбор автомата по мощности и току

При проектировании электросети нового дома, для подключения новых мощных приборов, в процессе модернизации электрощита приходится осуществлять выбор автоматического выключателя для надёжной электрической безопасности.

Некоторые пользователи небрежно относятся к данной задаче, и могут не задумываясь подключить любой имеющийся автомат, лишь бы работало, или при выборе ориентируются по таким критериям: подешевле, чтоб не сильно по карману било, или по мощней, чтобы лишний раз не выбивало.

Очень часто такая халатность и незнание элементарных правил выбора номинала предохранительного устройства приводит к фатальным последствиям. Данная статья ознакомит с основными критериями защиты электропроводки от перегрузки и короткого замыкания, для возможности правильного выбора защитного автомата соответственно мощности потребления электроэнергии.

Коротко принцип работы и предназначение защитных автоматов

Автоматический выключатель при коротком замыкании срабатывает практически моментально благодаря электромагнитному расцепителю. При определённом превышении номинального значения тока нагревающаяся биметаллическая пластина отключит напряжение спустя некоторое время, которое можно узнать из графика время токовой характеристики.

Данное предохранительное устройство защищает проводку от КЗ и сверх токов, превышающих расчётное значение для данного сечения провода, которые могут разогреть токопроводящие жилы до температуры плавления и возгорания изоляции. Чтобы этого не произошло, нужно не только правильно подобрать защитный выключатель, соответствующий мощности подключаемых устройств, но и проверить, выдержит ли имеющаяся сеть такие нагрузки.

Внешний вид трех полюсного автоматического выключателя

Провода должны соответствовать нагрузке

Очень часто бывает, что в старом доме устанавливается новый электросчётчик, автоматы, УЗО, но проводка остаётся старой. Покупается много бытовой техники, суммируется мощность и под неё подбирается автомат, который исправно держит нагрузку всех включённых электроприборов.

Вроде всё правильно, но вдруг изоляция проводов начинает выделять характерный запах и дым, появляется пламя, а защита не срабатывает. Это может случиться, если параметры электропроводки не рассчитаны на такой ток.

Допустим, поперечное сечение жилы старого кабеля — 1,5мм², с максимально допустимым пределом по току в 19А. Принимаем, что одновременно к нему подключили несколько электроприборов, составляющих суммарную нагрузку 5кВт, что в токовом эквиваленте составляет приблизительно 22,7А, ему соответствует автомат 25А.

Провод будет разогреваться, но данный автомат будет оставаться включённым все время, пока не произойдёт расплавление изоляции, что повлечёт короткое замыкание, а пожар уже может разгораться полным ходом.

кабель силовой NYM

кабель силовой NYM

Защитить самое слабое звено электропроводки

Поэтому, прежде чем сделать выбор автомата соответственно защищаемой нагрузке, нужно удостовериться, что проводка данную нагрузку выдержит.

Согласно ПУЭ 3.1.4 автомат должен защищать от перегрузок самый слабый участок электрической цепи, или выбираться с номинальным током, соответствующим токам подключаемых электроустановок, что опять же подразумевает их подключение проводниками с требуемым поперечным сечением.

При игнорировании этого правила не стоит нарекать на неправильно рассчитанный автомат и проклинать его производителя, если слабое звено электропроводки вызовет пожар.

Расплавленная изоляция проводов

Расчет номинала автомата

Допускаем, что проводка новая, надёжная, правильно рассчитанная, и соответствует всем требованиям. В этом случае выбор автоматического выключателя сводится к определению подходящего номинала из типичного ряда значений, исходя из расчетного тока нагрузки, который вычисляется по формуле:

I=P/U,

где Р – суммарная мощность электроприборов.

Подразумевается активная нагрузка (освещение, электронагревательные элементы, бытовая техника). Такой расчет полностью подходит для домашней электросети в квартире.

Допустим расчет мощности произведён: Р=7,2 кВт. I=P/U=7200/220=32,72 А. Выбираем подходящий автомат на 32А из ряда значений: 1, 2, 3, 6, 10, 16, 20, 25, 32, 40, 63, 80, 100.

Данный номинал немного меньше расчётного, но ведь практически не бывает одновременного включения всех электроприборов в квартире. Также стоит учитывать, что на практике срабатывание автомата начинается со значения в 1,13 раза больше от номинального, из-за его времятоковой характеристики, то есть 32*1,13=36,16А.

Для упрощения выбора защитного автомата существует таблица, где номиналы автоматов соответствуют мощности однофазной и трёхфазной нагрузки:

Таблица выбора автомата по току

Найденный по формуле в вышеприведённом примере номинал наиболее близок по значению мощности, которое указано в выделенной красном ячейке. Также, если вы хотите рассчитать ток для трехфазной сети, при выборе автомата, ознакомьтесь со статьей про расчет и выбор сечения провода 

Подбор защитных автоматов для электрических установок (электродвигателей, трансформаторов) с реактивной нагрузкой, как правило, не производится по мощности. Номинал и тип время токовой характеристики автоматического выключателя подбирается соответственно рабочему и пусковому току, указанному в паспорте данного устройства.

Похожие статьи

infoelectrik.ru

Выбор автомата по мощности нагрузки и сечению провода

  1. Выбор автомата по мощности нагрузки
  2. Выбор автомата по сечению кабеля
  3. Выбор автомата по току короткого замыкания КЗ
  4. Выбор автомата по длительно допустимому току проводника
  5. Пример выбора автомата
  6. Сводная таблица для выбора автоматического выключателя, для двух фазной сети 220 В
  7. Сводная таблица для выбора автоматического выключателя, для трехфазной сети 380 В.
  8. Итоги

Выбор автомата по мощности нагрузки

Для выбора автомата по мощности нагрузки необходимо рассчитать ток нагрузки, и подобрать номинал автоматического выключателя больше или равному полученному значению. Значение тока, выраженное в амперах в однофазной сети 220 В., обычно превышает значение мощности нагрузки, выраженное в киловаттах в 5 раз, т.е. если мощность электроприемника (стиральной машины, лампочки, холодильника) равна 1,2 кВт., то ток, который будет протекать в проводе или кабеле равен 2,4 А(1,2 кВт*5=6,0 А). В расчете на 380 В., в трехфазных сетях, все аналогично, только величина тока превышает мощность нагрузки в 2 раза.

Можно посчитать точнее и посчитать ток по закону ома I=P/U -  I=1200 Вт/220В =5,45А. Для трех фаз напряжение будет 380В.Можно посчитать еще точнее и учесть cos φ - I=P/U*cos φ.

Коэффициент мощности — безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.

Численно коэффициент мощности равен косинусу этого фазового сдвига или cos φ

Автоматы ABB

Косинус фи возьмем из таблицы 6.12 нормативного документа СП 31-110-2003 "Проектирование и монтаж электроустановок жилых и общественных зданий"

Таблица 1. Значение Cos φ в зависимости от типа электроприемника

Тип электроприемника cos φ
Холодильное  оборудование  предприятий торговли и общественного питания, насосов, вентиляторов и кондиционеров воздуха при мощности электродвигателей, кВт:  
до 1 0,65
от 1 до 4 0,75
свыше 4 0,85
Лифты и другое подъемное оборудование 0,65
Вычислительные машины (без технологического кондиционирования воздуха) 0,65
Коэффициенты мощности для расчета сетей освещения следует принимать с лампами:  
люминесцентными 0,92
накаливания 1,0
ДРЛ и ДРИ с компенсированными ПРА 0,85
то же, с некомпенсированными ПРА 0,3-0,5
газосветных рекламных установок 0,35-0,4 

Примем наш электроприемник мощностью 1,2 кВт. как бытовой однофазный холодильник на 220В, cos φ примем из таблицы 0,75 как двигатель от 1 до 4 кВт.Рассчитаем ток I=1200 Вт / 220В * 0,75 = 4,09 А.

Теперь самый правильный способ определения тока электроприемника - взять величину тока с шильдика, паспорта или инструкции по эксплуатации. Шильдик с характеристиками есть почти на всех электроприборах.

Автоматы EKF

Общий ток в линии(к примеру розеточной сети) определяется суммированием тока всех электроприемников. По рассчитанному току выбираем ближайший  номинал автоматического автомата в большую сторону. В нашем примере для тока 4,09А это будет автомат на 6А.

Очень важно отметить, что выбирать автоматический выключатель только по мощности нагрузки является грубым нарушением требований пожарной безопасности и может привести к возгоранию изоляции кабеля или провода и как следствие к возникновению пожара. Необходимо при выборе учитывать еще и сечение провода или кабеля.

По мощности нагрузки более правильно выбирать сечение проводника. Требования по выбору изложены в основном нормативном документе для электриков под названием ПУЭ (Правила Устройства Электроустановок), а точнее в главе 1.3.В нашем случае, для домашней электросети, достаточно рассчитать ток нагрузки, как указано выше, и в таблице ниже выбрать сечение проводника, при условии что полученное значение ниже длительно допустимого тока соответствующего его сечению.

Выбор автомата по сечению кабеля

Рассмотрим проблему выбора автоматических выключателей для домашней электропроводки более подробно с учетом требований пожарной безопасности.Необходимые требования изложены главе 3.1 «Защита электрических сетей до 1 кВ.», так как напряжение сети в частных домах, квартирах, дачах равно 220 или 380В.

Напряжение 220В. – однофазная сеть используется в основном для розеток и освещения.380В. – это в основном сети распределительные – линии электропередач проходящие по улицам, от которых ответвлением подключаются дома.

сечение жил кабеля или провода

Согласно требованиям вышеуказанной главы, внутренние сети жилых и общественных зданий должны быть защищены от токов КЗ и перегрузки. Для выполнения этих требований и были изобретены аппараты защиты под названием автоматические выключатели(автоматы).

Автоматический выключатель «автомат» — это механический коммутационный аппарат, способный включать, проводить токи при нормальном состоянии цепи, а также включать, проводить в течение заданного времени и автоматически отключать токи в указанном аномальном состоянии цепи, таких, как токи короткого замыкания и перегрузки.

Короткое замыкание (КЗ) — электрическое соединение двух точек электрической цепи с различными значениями потенциала, не предусмотренное конструкцией устройства и нарушающее его нормальную работу. Короткое замыкание может возникать в результате нарушения изоляции токоведущих элементов или механического соприкосновения неизолированных элементов. Также, коротким замыканием называют состояние, когда сопротивление нагрузки меньше внутреннего сопротивления источника питания.

Ток перегрузки – превышающий нормированное значение длительно допустимого тока и вызывающий перегрев проводника.Защита от токов КЗ и перегрева необходима для пожарной безопасности, для предотвращения возгорания проводов и кабелей, и как следствие пожара в доме.

Длительно допустимый ток – величина тока, постоянно протекающего по проводнику, и не вызывающего чрезмерного нагрева провода или кабеля.

Кабели ВВГнг с медными жилами

Величина длительно допустимого тока для проводников разного сечения и материала представлена ниже.Таблица представляет собой совмещенный и упрощенный вариант применимый для бытовых сетей электроснабжения, таблиц № 1.3.6 и 1.3.7 ПУЭ.

Сечениетоко-проводящейжилы, мм Длительно допустимыйток, А, для проводов и кабелей с медными жилами. Длительно допустимый ток, А, для проводов и кабелей с алюминиевыми жилами.
1,5 19 -
2,5 25 19
4 35 27
6 42 32
10 55 42
16 75 60
25 95 75
35 120 90
50 145 110

Выбор автомата по току короткого замыкания КЗ

Выбор автоматического выключателя для защиты от КЗ (короткого замыкания) осуществляется на основании расчетного значения тока КЗ в конце линии. Расчет относительно сложен, величина зависит от мощности трансформаторной подстанции, сечении проводника и длинны проводника и т.п.

автоматические выключатели с характеристикой «C»

Из опыта проведения расчетов и проектирования электрических сетей, наиболее влияющим параметром является длинна линии, в нашем случае длинна кабеля от щитка до розетки или люстры.

Т.к. в квартирах и частных домах эта длинна минимальна, то такими расчетами обычно пренебрегают и выбирают автоматические выключатели с характеристикой «C», можно конечно использовать «В», но только для освещения внутри квартиры или дома, т.к. такие маломощные светильники не вызывают высокого значения пускового тока, а уже в сети для кухонной техники имеющей электродвигатели, использование автоматов с характеристикой В не рекомендуется, т.к. возможно срабатывание автомата при включении холодильника или блендера из-за скача пускового тока.

Выбор автомата по длительно допустимому току(ДДТ) проводника.

Выбор автоматического выключателя для защиты от перегрузки или от перегрева проводника осуществляется на основании величины ДДТ для защищаемого участка провода или кабеля. Номинал автомата должен быть меньше или равен величине ДДТ проводника, указанного в таблице выше. Этим обеспечивается автоматическое отключение автомата при превышении ДДТ в сети, т.е. часть проводки от автомата до последнего электроприемника защищена от перегрева, и как следствие от возникновения пожара.

Провода ПУГНП и ШВВП

Пример выбора автоматического выключателя

Имеем группу от щитка к которой планируется подключить посудомоечную машину -1,2 кВт, кофеварку – 0,6 кВт и электрочайник – 2,0 кВт.

Считаем общую нагрузку и вычисляем ток.

Нагрузка = 0,6+1,6+2,0=4,2 кВт. Ток = 4,2*5=21А.

Смотрим таблицу выше, под рассчитанный нами ток подходят все сечения проводников кроме 1,5мм2 для меди и 1,5 и 2,5 по алюминию.

Выбираем медный кабель с жилами сечением 2,5мм2, т.к. покупать кабель большего сечения по меди не имеет смысла, а алюминиевые проводники не рекомендуются к применению, а может и уже запрещены.

Смотрим шкалу номиналов выпускаемых автоматов - 0.5; 1.6; 2.5; 1; 2; 3; 4; 5; 6; 8; 10; 13; 16; 20; 25; 32; 40; 50; 63.

Автоматические выключатели Schneider Electric

Автоматический выключатель для нашей сети подойдет на 25А, так как на 16А не подходит потому что рассчитанный ток (21А.) превышает номинал автомата 16А, что вызовет его срабатывание, при включении всех трех электроприемников сразу. Автомат на 32А не подойдет потому что превышает ДДТ выбранного нами кабеля 25А., что может вызвать, перегрев проводника и как следствие пожар.

Сводная таблица для выбора автоматического выключателя для однофазной сети 220 В.

Номинальный ток автоматического выключателя, А. Мощность, кВт. Ток,1 фаза, 220В. Сечение жил кабеля, мм2.
16 0-2,8 0-15,0 1,5
25 2,9-4,5 15,5-24,1 2,5
32 4,6-5,8 24,6-31,0 4
40 5,9-7,3 31,6-39,0 6
50 7,4-9,1 39,6-48,7 10
63 9,2-11,4 49,2-61,0 16
80 11,5-14,6 61,5-78,1 25
100 14,7-18,0 78,6-96,3 35
125 18,1-22,5 96,8-120,3 50
160 22,6-28,5 120,9-152,4 70
200 28,6-35,1 152,9-187,7 95
250 36,1-45,1 193,0-241,2 120
315 46,1-55,1 246,5-294,7 185

Сводная таблица для выбора автоматического выключателя для трехфазной сети 380 В.

Номинальный токавтоматического выключателя, А. Мощность, кВт. Ток, 1 фаза 220В. Сечение жил кабеля, мм2.
16 0-7,9 0-15 1,5
25 8,3-12,7 15,8-24,1 2,5
32 13,1-16,3 24,9-31,0 4
40 16,7-20,3 31,8-38,6 6
50 20,7-25,5 39,4-48,5 10
63 25,9-32,3 49,2-61,4 16
80 32,7-40,3 62,2-76,6 25
100 40,7-50,3 77,4-95,6 35
125 50,7-64,7 96,4-123,0 50
160 65,1-81,1 123,8-124,2 70
200 81,5-102,7 155,0-195,3 95
250 103,1-127,9 196,0-243,2 120
315 128,3-163,1 244,0-310,1 185
400 163,5-207,1 310,9-393,8 2х95*
500 207,5-259,1 394,5-492,7 2х120*
630 260,1-327,1 494,6-622,0 2х185*
800 328,1-416,1 623,9-791,2 3х150*

* - сдвоенный кабель, два кабеля соединенных паралельно, к примеру 2 кабеля ВВГнг 5х120

Провода ПВ-3

Итоги

При выборе автомата необходимо учитывать не только мощность нагрузки, но и сечение и материал проводника.

Для сетей с небольшими защищаемыми участками от токов КЗ, можно применять автоматические выключатели с характеристикой «С»

Номинал автомата должен быть меньше или равен длительно допустимому току проводника.

Смотрите также:

volgaproekt.ru


Смотрите также