ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Принцип действия асинхронного двигателя. Принцип действия асинхронного двигателя


Принцип действия асинхронного двигателя

 

Электромагнитная схема трёхфазной асинхронной машины представлена на рис. 1.5. Трёхфазная обмотка якоря уложена в пазы сердечника статора равномерно вдоль его окружности и включена на трёхфазную сеть переменного тока, частота которой равна f1 и фазное напряжение U1. В пазах ротора размещена обмотка, которая замкнута накоротко.

Предположим, что ротор асинхронного двигателя неподвижен и к его валу не приложен тормозной момент. Если обмотку статора подключить к трехфазной сети, то токи, протекающие по обмотке, создадут вращающееся магнитное поле. Угловая скорость этого поля, называемая синхронной, равна ω1=2π f1/p.

Магнитное поле при своем вращении пересекает проводники обмотки ротора и индуцирует в них ЭДС. Направление индуцируемой в одном из проводников ротора ЭДС показано на рис. 1.7 (при определении направления ЭДС по правилу правой руки принималось, что поле неподвижно, а движение проводника происходит в сторону, противоположную вращению поля).

 

Рис. 1.5. Электромагнитная схема асинхронной машины (а) и распределение индукции поля в зазоре вдоль зазора машины (б): 1 –статор; 2 – ротор; 3 – обмотка статора; 4 – обмотка ротора

 

Так как обмотка ротора замкнута, то в ней возникает ток I2, активная составляющая которого будет по направлению совпадать с ЭДС. Ток I2, взаимодействуя с магнитным полем, создаст вращающий момент М, под действием которого ротор придет во вращение. Как можно установить по правилу левой руки, направление момента ивращения ротора будут совпадать с направлением вращения поля.

По мере разгона ротора его угловая скорость ω будетувеличиваться, но даже при отсутствии нагрузки на валу (холостой ход) он не сможет достигнуть скорости вращения поля. Объясняется это тем, что ток в роторе, а следовательно, и вращающий момент могут возникать в том случае, если магнитное поле пересекает проводники ротора, т.е. когда ω ≠ ω1. При ω = ω1 ЭДС, ток ротора и вращающий момент равны нулю, поэтому ротор начнёт останавливаться.

Таким образом, для рассматриваемого двигателя характерной особенностью является несинхронное (асинхронное) вращение его ротора с магнитным полем. Отсюда и его название — асинхронный двигатель.

Разницу между скоростями или частотами вращения поля и ротора оценивают величиной, называемой скольжением s:

s= (ω1 – ω)/ ω1 = (n1 – n)/ n1, (1.1)

где ω1 = 2π n1/60, ω = 2π n/60 – угловые скорости поля и ротора.

Иногда скольжение выражают в процентах:

s= (ω1 – ω)/ ω1100% = (n1 – n)/ n1100%.

Частота вращения магнитного поля относительно ротора равна (n1 – n). Поэтому частота индуцируемых в обмотке ротора ЭДС и тока

f2 = p (n1 – n) /60 = p n1/60 (n1 – n)/ n1 = f1 s.

Откуда следует, что частота в роторе не постоянна, а изменяется пропорционально скольжению.

Найдём диапазон изменения скольжения в двигательном режиме. При ω =0 (ротор неподвижен) s =1, или 100%. Если в идеальном случае ω = ω1, то s=0. Следовательно, в двигательном режиме работы машины скольжение изменяется в пределах от 0 до 1. При номинальной нагрузке скольжение обычно находится в пределах 0,015 — 0,05 или 1,5—5 %. При холостом ходе оно равно долям процента.

Скорость ротора ω, выраженная через скольжение s согласно (1.1) ω= ω1(1- s), а частота вращения n= n1(1- s). Отсюда видно, что частота вращения ротора близка к частоте вращения поля и мало изменяется при возрастании нагрузки.

Номинальная частота вращения двигателя зависит от n1 и не может быть выбрана произвольно. При стандартной частоте промышленного тока f1= 50 Гц возможные частоты вращения магнитного поля n1=60 f1/p = 3000/р .

При р=1, 2, 3, 4, 5, 6, 7, 8, 9, 10 соответственно n1=3000, 1500, 1000, 750, 600, 500, 375, 300.

В зависимости от необходимой номинальной частоты вращения обмотки двигателя выполняют на соответствующее число пар полюсов р. Асинхронные двигатели общего мнения выпускаются с синхронными частотами вращения 3000, 1500, 1000, 750, 600, 500 об/мин.

Асинхронная машина может работать также в генераторном режиме и режиме электромагнитного тормоза.

Генераторный режим возникает в том случае, когда ротор с помощью постороннего двигателя будет вращаться в направлении поля со скоростью, большей скорости поля. Скольжение в этом режиме будет отрицательным. Теоретически можно как угодно увеличивать скорость ротора относительно вращающегося поля. Поэтому при работе асинхронной машины в генераторном режиме скольжение находится в пределах от 0 до - ∞. Если ротор под действием посторонних сил начнёт вращаться в сторону, противоположную вращению поля, то возникает режим электромагнитного тормоза. Так как скорость ротора отрицательна ω<0, то скольжение в этом режиме будет s>1. Режим электромагнитного тормоза начинается при ω =0 и может продолжаться теоретически до ω= – ∞, при этом скольжение изменяется от 1 до + ∞.

Таким образом, пределы изменения скольжения в асинхронной машине от s=+ ∞ до s=- ∞.

Похожие статьи:

www.poznayka.org

Принцип действия асинхронного двигателя

 

Электромагнитная схема асинхронной машины (рис, 57, а) отличается от схемы трансформатора тем, что первичная обмотка размешена на неподвижном статоре, а вто­ричная - на вращающемся роторе 3. Между ротором и статором имеется воздушный зазор, величину которого для улучшения магнитной связи между обмотками делают по возможности малым. Обмотка статора 2 представляет собой трехфазную (или в общем случае многофазную) обмотку, катушки которой размещены равномерно по окружности статора.

 

 

Рис. 57. Электромагнитная схема асинхронной машины

 

Фазы обмотки статора , и соединяют в звезду или треугольник и подключают к сети трехфазного тока (рис, 57, б). Обмотку ротора 4 в такой машине трех- или многофазной выполняют или размешают равномерно вдоль окружности ротора. Фазы ее , и в простейшем случае замыкаются накоротко.

При питании трехфазным током обмотки статора создаётся вращающееся магнитное поле, частота вращения которого (синхронная) . Если ротор неподвижен или вращается с частотой, меньшей , то вращающееся поле индук­тирует в проводниках ротора ЭДС и по ним проходит ток, который, взаимодействуя с магнитным потоком, создает электромагнитный момент. На рис 57. а показано направле­ние ЭДС, индуктированной в проводниках ротора при вращении магнитного потока по часовой стрелке (согласно правилу правой руки). Активная составляющая тока ро­тора совпадает по фазе с индуктированной ЭДС; поэтому крестики и точки показы­вают одновременно и направление активной составлявшей тока.

На проводники с током, расположенные в магнитном поле, действуют электромагнитные силы, направление которых определяется правилом правой руки. Суммарное усилие приложенное ко всем проводникам ротора, образует электромагнитный момент

, увлекающий ротор за вращающимся магнитным полем. Если этот момент доста­точно велик, то ротор приходит во вращение и его установившаяся частота вращения соответствует равенству электромагнитного момента тормозному, приложенному к ва­лу от приводимого во вращение механизма, и внутренних сил трения.

Такой режим работы асинхронной машины является двигательным и, очевидно, при нем .

Относительную разность частот вращения маг­нитного поля и ротора называют скольжением:

 

. (1)

 

Скольжение часто выражают в процентах:

 

.

Очевидно, что при двигательном режиме:

 

.

 

Если ротор асинхронной машины разогнать с помощью внешнего момента (например, каким-либо двигателем) до частоты, большей частоты вращения магнитного поля то изменится направление ЭДС в проводниках ротора и ак­тивной составляющей тока ротора, т.е. асинх­ронная машина перейдет в генераторный режим (рис. 58, а). При этом изменит свое направление и магнитный момент , который станет тормозящим. В данном режиме асинхронная машина получает механическую энергию от первичного двигателя, превращает её в электрическую и отдаёт в сеть. В генераторном режиме .

Если изменить направление вращения рото­ра (или магнитного поля) так, чтобы магнитное поле и ротор вращались в противопо­ложных направлениях (рис. 58, б), то ЭДС и активная составляющая тока в провод­никах ротора будут направлены так же, как в двигательном режиме, т.е. машина бу­дет получать из сети активную мощность. Однако в таком режиме электромагнитный момент

направлен против вращения ротора, т.е. является тормозящим. Этот режим ра­боты асинхронной машины называют электромагнитным торможением. В режиме электро­магнитного торможения направление вращения ротора является отрицательным (по отно­шению к направлению магнитного поля, поэтому , а .

Таким образом, характерной особенностью асинхронной машины является наличие скольжения, т.е. неравенство частот вращения и . Только при этом условии в проводниках обмотки ротора индуктируется ЭДС и возникает электромагнитный мо­мент. По этой причине машину называют асинхронной (её ротор вращается не синхрон­но с полем).

На практике чаще всего встречается двигательный режим асинхронной машины, по­этому теория асинхронных машин изложена здесь применительно к этому режиму с последующим обобщением её на другие режимы работы.

 

а) б)

Рис. 58. Направление электромагнитного момента в асинхронной машине при работе её в режимах: генераторном (а), и электромагнитного торможения (б).

Лекция № 11

 

Похожие статьи:

www.poznayka.org

Принцип действия асинхронного двигателя

⇐ ПредыдущаяСтр 7 из 28Следующая ⇒

 

Простейшим по своему устройству и самым распространенным является изобретенный М.О. Доливо-Добровольским асинхронный двигатель. Работа двигателя основана на принципе воздействия вращающегося магнитного поля на приспособленную для вращения короткозамкнутую обмотку.

Принципиально асинхронный двигатель состоит из неподвижной части - статора и вращающей части-ротора с соответствующей обмоткой. Сердечник статора имеет форму полого цилиндра. В пазах с внутренней стороны этого сердечника уложены три обмотки (фазы), сдвинутые одна относительно другой на 120°.

Фазы обмотки статора А-х, В-у, С-z размещены равномерно по окружности статора, они соединяются в «звезду» или «треугольник» и подключаются к сети переменного трехфазного тока и возникающие в ней токи возбуждают вращающееся магнитное поле машины.

У подвижной части - ротора сердечник имеет форму цилиндра и закреплен на валу. В пазах на поверхности сердечника размещается обмотка ротора-короткозамкнутая. Обмотка ротора имеет вид цилиндрической клетки из медных или алюминиевых стержней, замкнутых на торцах двумя кольцами из того же материала. Такую обмотку называют «беличьим колесом». Стержни обмотки вставляются в пазы ротора без изоляции. Часто короткозамкнутая обмотка ротора изготавливается путем заливки расплавленным алюминием пазов сердечника с одновременным отливанием и замыкающих колец.

Вращающееся магнитное поле, создаваемое обмотками статора, пересекая проводники обмотки ротора, индуктирует в них ЭДС. Под действием индуктированных ЭДС по проводникам ротора будет проходить электрический ток. В результате взаимодействия тока ротора с вращающимся магнитным полем возникает электромагнитные силы, действующие на обмотку ротора. Суммарные действия этих сил создает вращающий момент, который приводит ротор во вращение в направление магнитного поля.

Величина ЭДС индуктированной в проводниках обмотки ротора, зависит от частот их пересечения вращающимся магнитным полем, т.е от разности частот вращения магнитного поля n1 и ротора n2. Чем больше разность (n1-n2), тем больше величина ЭДС.

Частота вращения ротора n2 будет всегда меньше синхронной частоты n1, т.е ротор всегда отстает от поля статора. Разность между частотами поля статора n1 и поля ротора n2 называется частотой скольжения ∆n.

 

∆n= n1- n2

 

Следовательно, необходимым условием для возникновения в асинхронной машине электромагнитного вращающегося момента является неравенство частот вращения n1 и n2. Только при этом условии в обмотке ротора индуктируется ЭДС и возникает ток ротора. По этой причине машина называется асинхронной (Ротор ее вращается несинхронно с полем).

Скольжение

Чтобы охарактеризовать отставание частоты вращения ротора двигателя от частоты вращения магнитного поля, введено понятие скольжение. Отношение частоты скольжения к частоте поля называется скольжением. Скольжение S выражают в процентах от частоты вращения магнитного поля.

 

Частота вращения ротора, выраженная через скольжение, определяется формулой;

 

 

Направление вращения ротора асинхронного двигателя определяется направлением вращения его магнитного поля, а направление вращения магнитного поля обуславливается последовательностью фаз (А, В, С) трехфазной сети. Для изменения направления вращения двигателя достаточно изменить направление вращения магнитного поля, создаваемого обмотками статора. Это достигается изменением порядка поступления импульсов тока в отдельные обмотки. Например: если импульсы тока будут поступать в обмотки статора в следующем порядке: фаза А, фаза В, фаза С, то ротор двигателя будет вращаться по часовой стрелки. Если изменить порядок поступления импульсов тока и подавать их в последовательности: фаза В, фаза А. фаза С, то ротор двигателя начнет вращаться против часовой стрелки.

При пуске двигателя в Ход вращающееся магнитное поле пересекает обмотку ротора с большой скоростью и индуктирует в ней значительную ЭДС (Е2), которая создает в коротко замкнутом роторе большой пусковой ток. Соответственно и в обмотке статора также возникает значительный пусковой ток.

По мере того, как скорость ротора возрастает, уменьшается Е2, индуктируемая в нем ЭДС, а вместе с ней уменьшаются токи ротора и статора. В конце пуска ненагруженного двигателя сила тока ротора должна быть такой, чтобы вращающий момент, развиваемый двигателем покрывал все его механические потери от трения в подшипниках.

Если нагрузить уже вращающийся асинхронный двигатель, то механический тормозящий момент на валу двигателя сначала окажется больше вращающего момента и ротор уменьшит скорость вращения n2. Соответственно возрастает разность скоростей (n1-n2), т.е увеличится скольжение.

Вращающиеся поле будет пересекать ротор с относительно большой скоростью и индуктировать в роторе большую ЭДС (Е2). Возрастание ЭДС (Е2) вызовет увеличение тока в роторе. Пропорционально силе тока в роторе возрастет вращающий момент и уравновесит тормозящий момент нагрузки на валу двигателя. Одновременно увеличение силы тока ротора вызовет соответствующее повышение силы тока статора, в результате возрастет и потребление мощности двигателя из сети. Таким образом с увеличением нагрузки на валу двигателя возрастает скольжение, сила тока статора и потребление мощности двигателя из сети.

Скорость вращения ротора асинхронного двигателя определяется:

 

, об/мин.

 

При пуске асинхронной тяговой машины необходимо регулировать уровень и частоту трехфазного напряжения, питающего его обмотки, которое осуществляется трехфазным автономным инвертором напряжения.

На вагонах 81-740.1, 81-741.1 установлены тяговые двигатели типа ДАТЭ-170-4. Двигатель самовентилируемый, четырехполюсный, трехфазный асинхронный с короткозамкнутым ротором.

 

 

Технические данные:

 

1. Номинальная мощность – 170 кВт;

2. Номинальная частота – 43 Гц;

3. Частота вращения (синхронная) – 1290 об/мин;

4. Максимальная частота вращения – 3600 об/мин;

5. Номинальное напряжение – 530 В;

6. Номинальное скольжение – 1,6 %;

7. Коэффициент мощности, cosφ – 0,85;

8. Масса двигателя – 805 кг.

 

Двигатель состоит из статора, ротора, вентилятора, подшипниковых щитов. Общий вид двигателя представлен на рис.18.

 

Рис.18

 

(а) (б)

Рис.19

 

Статор (рис.19,а) двигателя состоит из литой станины зашихтованного листами из электротехнической стали, сердечника и обмотки. В пазы статора уложены двухслойная обмотка, выполненная жесткими секциями и закрепленная в пазах изоляционными клиньями.

Схема соединений обмотки статора выполнена со стороны, противоположной выступающему концу вала ротора. К боковой поверхности станины приварена коробка выводов для крепления трех выводных концов обмотки, соединенной в «звезду».

Ротор (рис.19,б) состоит из вала, сердечника и короткозамкнутой обмотки ротора. Шихтованный сердечник из электротехнической стали насаживается на вал, в неизолированные пазы сердечника вставляются медные стержни. Концы медных стержней, выступающие из сердечника ротора, замкнуты на коротко приваренными к ним медными кольцами.

Щиты подшипниковые стальные, вставляются в расточку станины и крепятся к ней болтами. В щиты устанавливаются подшипники: роликовый со стороны приводного конца вала типа 32313 и шариковый с противоположной стороны типа 180313С17. С наружной стороны подшипники закрыты крышками.

Для охлаждения двигателя со стороны привода на вал насажен вентилятор. В корпусе статора предусмотрены два отверстия для слива конденсата образующегося при работе двигателя. Для прохождения охлаждающего воздуха через двигатель в станине со стороны привода и в подшипниковом щите со стороны противоположной приводу предусмотрены отверстия, которые закрыты крышками с металлическими сетками.

Двигатель поставляется с зубчатым колесом. Датчик частоты вращения должен устанавливаться в специально предусмотренном алюминиевом корпусе, прикрепленном к подшипниковому щиту.

Тяговые двигатели установлены на первой и третьей тележках по два на каждую.

Обмотки четырех тяговых двигателей соединены параллельно и питаются от одного автономного инвертора. Напряжение на инвертор подается от сети постоянного тока 750В через быстродействующий выключатель и входной LC- фильтр. Напряжение с выхода инвертора поступает непосредственно на трехфазную систему сборных шин, к которой подключены четыре тяговых двигателя.

На каждом двигателе установлено устройство (датчик частоты вращения) для измерения числа оборотов. Информация о числе оборотов вводится в схему управления автономным инвертором, которая обеспечивает регулирование напряжения и частоты тока обмоток асинхронных машин по определенному закону. Этот закон формируется при выборе машинистом рукояткой контроллера машиниста того или иного пускового положения. В начале пуска асинхронных машин транзисторные ключи переключаются с частотой 1-2 Гц. При этом к обмотке статора асинхронных машин подводится напряжение, составляющее 2-5 % напряжения контактной сети. Регулирование подводимого напряжения обеспечивается путем изменения ширины импульса при постоянном значении периода (широтноимпульсная модуляция ШИМ).

По мере разгона вагона, постепенно повышается напряжение на обмотках статора асинхронных машин и увеличивается частота тока в них (повышается частота работы транзисторных ключей, импульсы управления, на которые начинают поступать чаще).

Для подавления высших гармоник в кривых фазового тока, содержание которых зависит от частоты импульсной модуляции, разности между напряжением на нагрузки и напряжением контактной сети, режимы работы привода, на входе автономного инвертора установлен LC-фильтр. Поэтому из цепи источника питания потребляется почти постоянный ток.

Переход из режима тяги в режим торможения осуществляется путем отключения линейного контактора (ЛК) и изменения частоты работы инвертора в сторону уменьшения. При этом тяговые двигатели переходят в генераторный режим, а импульсный инвертор выполняет функции управляемого выпрямителя. Для согласования мощности асинхронных машин в режиме торможения с установленной мощностью автономного инвертора в цепь обмоток асинхронных машин включен тормозной резистор. На этом резисторе рассеивается часть тормозной энергии в диапазоне высоких скоростей торможения.

При отсутствии в сети потребителей, рекуперируемая электрическая энергия через тормозной преобразователь поступает в дополнительные тормозные резисторы и рассеивается в них.

Читайте также:

lektsia.com

Принцип - действие - асинхронный двигатель

Принцип - действие - асинхронный двигатель

Cтраница 1

Принцип действия асинхронных двигателей основан на взаимодействии вращающегося магнитного поля статора с током в роторе. Вращающееся магнитное поле статора пересекает стержни обмотки ротора и индуцирует в них токи, в результате чего создается вращающий электромагнитный момент, увлекающий ротор по направлению вращения магнитного поля статора.  [1]

Принцип действия асинхронного двигателя основан на образовании переменным трехфазным током вращающегося и постоянного по величине магнитного поля.  [3]

Принцип действия асинхронных двигателей с фазным ротором не отличается от короткозамкнутых.  [4]

Принцип действия асинхронного двигателя основан на использовании вращающегося магнитного поля и основных законов электротехники.  [5]

Принцип действия асинхронного двигателя основан на использовании явлений, связанных с вращающимся магнитным полем.  [6]

Принцип действия асинхронного двигателя, как указывалось, основан на взаимодействии вращающегося поля и тока, индуктированного этим полем в обмотке ротора.  [7]

Принцип действия асинхронного двигателя состоит в следующем.  [9]

Принцип действия асинхронных двигателей основан па взаимодействии вращающегося магнитного поля, образуемого переменным током в трехфазной обмотке статора и токов, индуктированных в роторе.  [11]

Принцип действия асинхронного двигателя легко уясняется из рис. Ш-3. Если вращать постоянный магнит NS с определенной скоростью пг вблизи медного диска, то в диске будут индуцироваться вихревые токи, стремящиеся, по правилу Ленца, противодействовать перемещению магнита относительно диска.  [13]

Рассмотрим принцип действия асинхронного двигателя.  [14]

Рассмотрим принцип действия асинхронного двигателя. Если во вращающееся магнитное поле поместить замкнутую металлическую рамку на оси, совпадающей с осью вращения поля, то вследствие вращения магнитного поля магнитный поток, пронизывающий металлическую рамку, изменяется.  [15]

Страницы:      1    2    3

www.ngpedia.ru

Принцип действия асинхронного двигателя - fiziku5.ru

8.  При какой нагрузке трансформатор имеет наибольший к. п. д.?

9.  Каковы достоинства и недостатки автотрансформаторов по сравнению с трансформаторами?

10.  Поясните назначение и схемы включения измерительных трансформаторов.

http://counter.yadro.ru/hit?t12.11;rhttp%3A//www.motor-remont.ru/books/1/07_86.html;s1229*691*24;uhttp%3A//www.motor-remont.ru/books/1/07_87.html;0.30930885010847564

ГЛАВА  VIII АСИНХРОННЫЕ ДВИГАТЕЛИ

§ 88. ОБЩИЕ ПОЛОЖЕНИЯ

Электрические машины широко применяют на электрических станциях, в промышленности, на транспорте, в авиации, в системах автоматического регулирования и управления, в быту.

Электрические машины преобразуют механическую энергию в электрическую и, наоборот, электрическую энергию в механиче­скую. Машина, преобразующая механическую энергию в электри­ческую, называется генератором. Преобразование электрической энергии в механическую осуществляется двигателями.

Любая электрическая машина может быть использована как в качестве генератора, так и в качестве двигателя. Это свойство электрической  машины  изменять направление  преобразуемой  ею

http://www.motor-remont.ru/books/1/index.files/image1281.jpg

ею энергии называется обратимостью маши­ны. Электрическая машина может быть также использована для преобразования электрической энергии одного рода тока (частоты, числа фаз переменного тока, напряжения постоянного тока) в энергию другого рода тока. Такие электрические машины называются преобразователями. В зависимости от рода тока электро­установки, в которой должна работать электрическая машина, они делятся на машины постоянного и машины переменного тока. Машины переменного тока могут быть как однофазными, так и многофазными. Наиболее широкое применение нашли трех­фазные синхронные и асинхронные машины.

Находят также применение коллекторные машины переменного тока, которые допускают экономичное регулирование скорости вращения в широких пределах.

Принцип действия электрических машин основан на использо­вании законов электромагнитной индукции и электромагнитных сил. Если в магнитном поле полюсов постоянных магнитов или электромагнитов (рис. 107) поместить проводник и под действием какой-либо силы F1 перемещать его,  то в  нем  возникает  з. д. с.; равная:

http://www.motor-remont.ru/books/1/index.files/image1283.jpg [10]

где В — магнитная индукция в месте, где  находится  проводник,

l — активная длина проводника  (та его часть, которая нахо­дится в магнитном поле),

v— скорость перемещения проводника в магнитном поле.

Направление э. д. с. (на рисунке от зрителя за плоскость чер­тежа), индуктируемой в проводнике, определяется согласно пра­вилу правой руки.

Если этот проводник замкнуть на какой-либо приемник энер­гии, то в замкнутой цепи под действием э. д. с. будет протекать ток, совпадающий по направлению с э. д. с. в проводнике. В результате взаимодействия тока I в проводнике с магнитным полем полюсов создается электромагнитная сила FЭэ, направление которой опре­деляется по правилу левой руки; эта сила будет направлена на­встречу силе, перемещающей проводник в магнитном поле. При равенстве сил F1=Fэ проводник будет перемещаться с постоян­ной скоростью. Следовательно, в такой простейшей электрической машине механическая энергия, затрачиваемая на перемещение проводника, преобразуется в энергию электрическую, отдаваемую сопротивлению внешнего приемника энергии, т. е. машина рабо­тает генератором. Та же простейшая электрическая машина может работать двигателем. Если от постороннего источника электриче­ской энергии через проводник пропустить ток, то в результате взаимодействия тока в проводнике с магнитным полем полюсов создается электромагнитная сила Рэ, под действием которой про­водник начнет перемещаться в магнитном поле, преодолевая силу торможения какого-либо механического приемника энергии. Таким образом, рассмотренная машина так же, как и любая электриче­ская машина, обратима, т. е. может работать как генератором, так  и двигателем.

Для увеличения э. д. с. и электромеханических сил электриче­ские машины снабжаются обмотками, состоящими из большого числа проводов, которые соединяются между собой так, чтобы з. д. с. в них имели одинаковое направление и складывались.

Э. д. с. в проводнике будет индуктирована также и в том слу­чае, когда проводник неподвижен, а перемещается магнитное поле полюсов.

[10] Это соотношение предполагает, что проводник перемещается перпендику­лярно направлению магнитных линий поля.

http://counter.yadro.ru/hit?t12.11;rhttp%3A//www.motor-remont.ru/books/1/07_87.html;s1229*691*24;uhttp%3A//www.motor-remont.ru/books/1/08_88.html;0.017643999201880867

§ 89. ПРИНЦИП ДЕЙСТВИЯ АСИНХРОННОГО ДВИГАТЕЛЯ

Наибольшее распространение среди электрических двигателей Получил трехфазный асинхронный двигатель, впервые сконструи­рованный известным  русским  электриком  М. О.  Доливо-Добровольским.

Асинхронный двигатель отличается простотой конструкции Щ несложностью обслуживания. Как и любая машина переменного тока асинхронный двигатель состоит из двух основных частей; статора и ротора. Статором называется неподвижная часть маши­ны, ротором — ее вращающаяся часть. Асинхронная машина обла­дает свойством обратимости, т. е. может быть использована как в режиме генератора, так и в режиме двигателя. Из-за ряда су­щественных недостатков асинхронные генераторы практически почти не применяются, тогда как асинхронные двигатели, как это было  отмечено  выше,  получили очень  широкое  распространение.

Поэтому мы будем рассматривать работу асинхронной машины в режиме двигателя, т. е. процесс преобразования электрической энергии в энергию механическую.

Многофазная обмотка переменного тока создает вращающееся магнитное поле, скорость вращения которого в минуту

http://www.motor-remont.ru/books/1/index.files/image1291.jpg

Если ротор вращается со скоростью п2, равной скорости враще­ния магнитного поля (n2=n1), то такая скорость называется син­хронной.

Если ротор вращается со скоростью, не равной скорости вращения магнитного поля { n2 http://www.motor-remont.ru/books/1/index.files/image983.gifn1), то такая скорость называется асинхронной.

В асинхронном двигателе рабочий процесс может протекать только при асинхронной скорости, т. е. при скорости вращения ротора, не равной скорости вращения магнитного поля.

Скорость ротора может очень мало отличаться от скорости юля, но при работе двигателя она будет всегда меньше (n2<n1).

Работа асинхронного двигателя основана на явлении, назван­ии диск Араго-Ленца (рис. 108). Это явление заключается в следующем: если перед полюсами постоянного магнита поместить медный диск 1, свободно сидящий на оси 2, и начать вращать магнит круг его оси при помощи рукоятки, то медный диск будет вращать­ся в том же направлении. Это объясняется тем, что при вращении магнита магнитные линии его поля, замыкаясь от северного полюса с южному, пронизывают диск и индуктируют в нем вихревые токи, 3 результате взаимодействия вихревых токов с магнитным полем магнита возникает сила, приводящая диск во вращение. На основании закона Ленца направление всякого индуктированного тока таково, что он противодействует причине, его вызвавшей. Поэтому вихревые токи в теле диска стремятся задержать вращение магнита, но, не имея возможности сделать это, приводят диск во вращение так, что он следует за магнитом. При этом скорость вращения диска всегда меньше, чем скорость вращения магнита. Если бы эти скорости почему-либо стали одинаковыми, то магнитные ли­ши не пересекали бы диска и, следовательно, в нем не возникали 5ы вихревые токи, т. е. не было бы силы, под действием которой диск вращается.

В асинхронных двигателях постоянный магнит заменен вращаюйся магнитным полем, создаваемым трехфазной обмоткой статора при включении ее в сеть переменного тока.

Вращающееся магнитное поле статора пересекает проводники обмотки ротора и индуктирует в них э. д. с. Если обмотка ротора замкнута на какое-либо сопротивление или накоротко, то по ней

под действием индуктируемой э. д. с. протекает ток. В результате полем обмотки статора создается вра­щающий момент, под действием кото­рого ротор начинает вращаться.

Например, выделим часть окруж­ности ротора, на которой находится один проводник его обмотки. Поле ста­тора представим северным полю­сом N, который вращается в простран­стве и вокруг ротора по часовой стрел­ке с числом оборотов N в минуту. Сле­довательно, полюс N перемещается

http://www.motor-remont.ru/books/1/index.files/image1294.jpg

fiziku5.ru

ПРИНЦИП ДЕЙСТВИЯ АСИНХРОННОГО ДВИГАТЕЛЯ

Исходя из конструктивной схемы асинхронного двигателя (АД)  (рис. 1 в статье - Устройство асинхронного двигателя)  и принципа получения кругового вращающегося магнитного поля (рис. 1 в статье - Вращающееся магнитное поле трехфазной обмотки машин переменного тока), принцип действия АД можно проиллюстрировать схемой, показанной на рис. 1 ниже. В электромеханическом преобразовании энергии в АД участвуют трехфазная обмотка 1, расположенная на неподвижном статоре 2 и создающая круговое вращающееся магнитное поле, и обмотка 3 вращающегося ротора 4, вал 5 которого соединен с исполнительным механизмом. Между статором и ротором предусматривается воздушный зазор 6.

Принцип действия асинхронного двигателя

Рис. 1 —  Принцип действия асинхронного двигателя

При вращении магнитного поля со скоростью:

Скорость вращения магнитного поля

линии магнитной индукции:

Вектор магнитной индукции

пересекают проводники обмотки ротора и в них индуктируется ЭДС Е2 и протекает ток . Направление ЭДС определяется по правилу «правой руки», а ее величина равна:

Направление ЭДС определяется по правилу "правой руки", а ее величина равна

где L – активная длина проводника обмотки ротора;

ν1 - линейная скорость движения магнитного поля статора:

линейная скорость движения магнитного поля статора

D – диаметр расточки статора.

Направление тока I2 совпадает с направлением ЭДС Е2пр. В результате взаимодействия проводников с током и магнитного поля на каждый проводник действует электромагнитная сила:

В результате взаимодействия проводников с током и магнитного поля на каждый проводник действует электромагнитная сила

направление, которой определяется по правилу «левой руки».

Совокупность этих сил создает на роторе результирующую силу Fрез и электромагнитный момент Мэм, приводящий ротор во вращение со скоростью n2  в ту же сторону, что и вращение поля статора. Вращение ротора через вал передается исполнительному механизму. Таким образом, электрическая энергия, поступающая в обмотку статора из сети, преобразуется в механическую энергию. С началом движения ротора ЭДС в проводниках ротора определяются разностью скоростей ν1 и ν2

С началом движения ротора ЭДС в проводниках ротора определяются разностью скоростей

где ν2 

линейная скорость движения проводника ротора.

  Это линейная  скорость движения проводника ротора.

Чем выше скорость вращения ротора n2, тем меньшая ЭДС в нем индуктируется, тем меньше ток Ι2, тем меньше сила  fпр и Fрез. При достижении ротором скорости вращения  n2 = n1, E2 = 0, действие электромагнитных сил прекращается и вращение ротора замедляется под действием сил трения (на холостом ходу) или под действием момента сопротивления исполнительного механизма (при работе под нагрузкой). Но когда n2 станет меньше n1, опять начнет действовать электромагнитная сила.

Следовательно, в рассматриваемой системе возможно только асинхронное (несинхронное) вращение ротора относительно вращающегося магнитного поля статора.

Электромагнитный момент Мэм уравновешивается моментом сопротивления Мс исполнительного механизма. Чем больше Мс, тем больше должен быть вращающий момент Мэм, который может возрасти в первую очередь за счет тока в проводниках ротора. Ток при постоянстве сопротивления проводника пропорционален ЭДС, которая зависит от скорости пересечения проводников ротора вращающимся магнитным полем.

Следовательно, чем больше момент сопротивления, тем меньше скорость вращения ротора и наоборот.

Отношение:

Скольжение асинхронной машины

При неподвижном роторе (n2 = 0) скольжение равно 1,0. Это для АД режим короткого замыкания. При холостом ходе, когда скорость ротора максимально приближается к синхронной (n2 = n1) скольжение минимально и очень близко к нулю. Скольжение, соответствующее номинальной нагрузке АД, называется номинальным скольжением Sн и составляет единицы процента, в зависимости от типа и назначения двигателя.

С учетом отношения, скорость вращения ротора может быть выражена через n1  и скольжение s:

скорость вращения ротора может быть выражена

В рабочем режиме АД вращающееся магнитное поле статора пересекает обмотку ротора со скоростью:

В рабочем режиме АД вращающееся магнитное поле статора пересекает обмотку ротора со скоростью

Частота ЭДС и токов, наводимых этим полем в обмотке ротора, равна:

Частота ЭДС и токов, наводимых этим полем в обмотке ротора, равна

Таким образом, частота ЭДС и токов в роторе зависит от сколь- жения. Так, при S=1 (при пуске) f2 = f1, при номинальном режиме нагрузки Sн = (0,02…0,04), f2= 1…2Гц.

Протекающие в обмотке ротора токи создают МДС и магнитное поле ротора, которые вращаются относительно ротора со скоростью:

Протекающие в обмотке ротора токи создают МДС и магнитное поле ротора, которые вращаются относительно ротора со скоростью

С учетом:

скорость вращения ротора может быть выражена

cкорость вращения этого поля относительно неподвижного статора составляет:

скорость вращения этого поля относительно неподвижного статора составляет

т.е. магнитное поле ротора вращается в расточке статора с той же скоростью и в ту же сторону, что и поле статора. Стало быть, они неподвижны друг относительно друга, образуют единое магнитное поле, созданное совместным действием МДС статора и ротора.

Таким образом, вектор:

Вектор магнитной индукции

на рис.1 необходимо рассматривать как вектор результирующего магнитного поля.

Условие неподвижности друг относительно друга магнитных полей статора и ротора означает, что число пар полюсов обмоток статора и ротора должно быть обязательно одинаково, p1 = p2 = p. В короткозамкнутом роторе это действие выполняется автоматически, в двигателе с фазным ротором оно должно быть обеспечено при проектировании. В то же время соотношение между числом фаз обмоток статора и ротора может быть произвольным.

Асинхронная машина обратима, т.е. может работать как в двигательном, так и в генераторном режимах. Если ротор с помощью постороннего двигателя разогнать до скорости вращения n2 >n1, то изменится направление ЭДС и тока в проводниках ротора, изменит свое направление и электромагнитный момент, который станет тормозящим. Асинхронная машина механическую энергию, получаемую от приводного двигателя, преобразует в электрическую и отдает в сеть, т.е. переходит в генераторный режим.

В процессе эксплуатации асинхронного двигателя возможен режим работы при S >1,0, когда ротор вращается в сторону, противоположную направлению вращения поля статора. В этом режиме, называемом режимом электромагнитного торможения (или режимом противовключения ), ЭДС и ток в роторе направлены также как в двигательном режиме, однако электромагнитный момент направлен против движения ротора, т.е. является тормозящим. В машине происходит преобразование как электрической энергии, поступающей из сети, так и механической энергии, передаваемой с вала.

www.radioingener.ru

Принцип действия трехфазного асинхронного двигателя

Неподвижная часть асинхронного двигателя – статор имеет трехфазную обмотку, при включении которой в сеть возникает вращающееся магнитное поле. Скорость вращения этого поля

n1=f1∙60/p.

В расточке статора расположена вращающаяся часть двигателя – ротор, который состоит из вала, сердечника и обмотки. Обмотка ротора состоит из стержней, уложенных в пазы сердечника и замкнутых с двух сторон кольцами.

Вращающееся поле статора пересекает проводники (стержни) обмотки ротора и наводит в них э. д. с. Но так как обмотка ротора замкнута, то в стержнях возникают токи. Взаимодействие этих токов с полем статора создает на проводниках обмотки ротора электромагнитные силы Fпр, направление которых определяется по правилу «левой руки». Силы Fпр стремятся повернуть ротор в направлении вращения магнитного поля статора. Совокупность сил Fпр, приложенных к отдельным проводникам, создает на роторе электромагнитный момент М, приводящий его во вращение со скоростью n2. Вращение ротора через вал передается исполнительному механизму.

Таким образом, электрическая энергия, поступающая в обмотку статора из сети, преобразуется в механическую.

Направление вращения магнитного поля статора, а следовательно, и направление вращения ротора, зависит от порядка следования фаз напряжения, подводимого к обмотке статора. При необходимости изменить направление вращения ротора асинхронного двигателя следует поменять местами любую пару проводов, соединяющих обмотку статора с сетью. Например, порядок следования фаз АВС заменить порядком СВА. Скорость вращения ротора n2 асинхронного двигателя всегда меньше скорости вращения поля n1, так как только в этом случае возможно наведение э.д.с. в обмотке ротора. Разность скоростей ротора и вращающегося поля статора характеризуется величиной, называемой скольжением,

s=(n1 - n2)/n1.

Часто скольжение выражается в процентах:

s=[(n1 - n2)/n1]∙100.

Скольжение асинхронного двигателя может изменяться в пределах от 0 до 1. При этом s≈0 соответствует режиму холостого хода, когда ротор двигателя не испытывает противодействующих моментов, а s≈1 соответствует режиму короткого замыкания, когда противодействующий момент двигателя превышает вращающий момент и поэтому ротор двигателя неподвижен (n2=0).

Скольжение, соответствующее номинальной нагрузке двигателя, называется номинальным скольжением. Так, например, для двигателей нормального исполнения мощностью от 1 до 1000 кВт номинальное скольжение приблизительно составляет соответственно 0,06-0,01, т.е. 6-1%.

Скорость вращения ротора асинхронного двигателя равна

n2=(1-s)∙n1.

На щитке двигателя указывается номинальная скорость вращения nн. Эта величина дает возможность определить синхронную скорость вращения n1, номинальное скольжение sн, а также число полюсов обмотки статора 2р.

Источник: Кацман М. М. Электрические машины и трансформаторы. - М.: 1971, с. 288-290.

www.gerset.ru


Смотрите также