Синхронный электродвигатель – электрическая установка, действующая от сети переменного и постоянного тока. Синхронная машина улучшает коэффициент мощности. Данные моторы используются довольно часто в электрической системе, потому что они подходят для любой сети напряжения и обладают высокими экономическими данными.
ОГЛАВЛЕНИЕ
Синхронный электродвигатель имеет сложнее структуру, чем асинхронный, но обладает некоторыми достоинствами.
Главным положительным качеством данных агрегатов является способность поддерживать оптимальный режим реактивной энергии. Из-за автоматического регулирования силы тока двигателя, он работает, не употребляя, не давая реактивную энергию, значение коэффициента мощности равняется 1. Если нужна реактивная энергия, она будет производиться синхронным мотором.
Данным двигателям не страшны перебои в сети, которой равен их максимальный момент. А значение критического момента равно квадрату напряжения.
Агрегат выдерживает большую перегрузку, которую можно еще увеличить автоматически повышением тока при необходимости непродолжительной нагрузки на вал. Он имеет постоянную скорость вращения независимо от нагрузки.
Трехфазный синхронный двигатель дороже обычного асинхронного из-за сложного механизма и особого устройства.
Еще недостатком оказывается надобность в постоянном источнике энергии, функции которого выполняет выпрямитель или специализированный возбудитель.
Синхронный мотор имеет две основные части — статор и ротор. Неподвижная часть называется статором, а подвижный элемент ротором.
Однофазный двигатель с короткозамкнутым ротором, расположенным в статоре или снаружи в двигателях обращенного вида. В основе ротора — постоянные магниты. Материал магнитов имеет высокую коэрцитивную силу. Полюсы ротора могут быть явно и неявно выраженными. Синхронный двигатель с короткозамкнутым ротором бывает с магнитами на поверхности или с уже встроенными.
Статор представлен корпусом и сердечником, состоящим из двухфазных и трехфазных обмоток. Обмотка бывает распределенная и сосредоточенная. У распределенной насчитываются пазы полюса и фазы Q= 2,3.
У сосредоточенной обмотки пазы полюса и фазы Q=1. Пазы размещены на одинаковом расстоянии на окружности неподвижной части двигателя. Катушки статора соединяются последовательно или параллельно. Такие обмотки не могут влиять на форму кривой ЭДС. Электродвижущая сила имеет трапецеидальную и синусоидальную форму. У явно выраженного полюса форма ротора и наводимая электродвижущая сила проводника является трапециевидной формы (а). При необходимости создания синусоидальной ЭДС, полюсные наконечники приобретают другую форму, где величина кривой распределения индукции близкая синусоидальной. Осуществление возможно благодаря наличию скосов на наконечнике полюса ротора.
Ротор синхронного двигателя переменного тока: а — явно выраженный полюс; 6 — неявно выраженный полюс.
Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют "Экономитель энергии Electricity Saving Box". Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.загрузка...
Неявно выраженные полюса обладают равной индуктивностью продольных и поперечных осей, а явно выраженные полюса имеют одинаковую величину поперечной и продольной индуктивности (б).
Принцип действия электрической машины переменного тока: 1 — статор; 2 — ротор.
У однофазного двигателя отсутствует пусковой момент. При подключении обмотки якоря к сети переменного тока, ротор неподвижен, в обмотку возбуждения поступает постоянный ток, за время одного изменения напряжения, два раза происходит смена направления электромагнитного момента. Значение среднего момента равняется нулю. Ротор разгоняется посредством внешнего момента до вращающейся частоты, которая приближается к синхронности.
Из-за высокого значения коэффициента мощности обеспечивается снижение потребления электричества, уменьшаются потери. В сравнении с асинхронным механизмом с такой же мощностью, синхронный двигатель имеет КПД выше. Так как крутящийся момент аналогичен напряжению сети. Даже снижение напряжения не влияет на нагрузочную способность. Что свидетельствует о надежности механизма.
Тип подключения делится на однофазный и трехфазный. Синхронные агрегаты чаще бывают трехфазными. При положении проводников трехфазного двигателя в определенной геометрической позиции появляется электромагнитное поле, которое вращается с одновременной скоростью. При имении магнита во вращающемся поле, они замыкают, крутятся параллельно. Двигатель можно назвать нерегулируемым, так как его скорость постоянная.
Существует два способа пуска синхронной машины.
Схема пуска на основе глухо подключенного возбудителя, применима для статистического момента нагрузки менее 0,4, без падений напряжения.
Асинхронный пуск с помощью трансформатора
В обмотке возбуждения замыкается сопротивление разряда, избегая тем самым перебои возбуждения обмотки на впуске, потому как на небольшой скорости вращения ротора возникают перенапряжения. Если скорость приближается к синхронной, реагирует контактор, а обмотка возбуждения переключается из разрядного сопротивления на якорь возбудителя.
Возбуждение, осуществляемое при помощи электромагнитного реле
Пуск с тиристорным возбудителем более надежный, обладает высоким КПД. Легче становится управление возбуждением, напряжение шин, остановка в аварийном режиме. Во многих моделях электродвигателей установлены тиристорные возбудители. Подача возбуждения работает автоматически функцией скорости и тока.
Упрощенная конструкция для холостого хода называется компенсатором.
Потребление электричества, помимо активной мощности, нуждается в реактивной мощности. Генератор вырабатывает реактивную мощность с минимальными затратами. Переход реактивной мощности генератора связан с потерями на линии передач. Поэтому применение компенсаторов является обоснованным экономически. При возбуждении синхронные двигатели не используют напряжение сети, а при перевозбуждении отдают реактивную мощность.
Синхронный электродвигатель применяется в сети переменного и постоянного тока, обеспечивая высокую надежность работы. Этот двигатель улучшит коэффициент мощности предприятия.
electricvdele.ru
Наиболее широкое распространение получили машины переменного тока, синхронные и асинхронные.
Схема статора машины переменного тока.
Любая электрическая машина переменного тока состоит из двух основных частей: неподвижной части, называемой статором, и вращающейся части, называемой ротором. Между статором и ротором имеется воздушный промежуток, или зазор, величина которого оказывает очень существенное влияние на рабочие свойства машины. Так, например, в машинах постоянного тока и синхронных воздушный зазор делают сравнительно большим, так как его увеличение в машинах постоянного тока уменьшает пульсацию напряжения, а в синхронных машинах повышает перегрузочную способность. В асинхронных машинах увеличение воздушного зазора резко уменьшает коэффициент мощности и вращающий момент машины. Поэтому в асинхронных машинах воздушный зазор всегда небольшой, 0,2—3 мм.
Сердечник статора собирают из стальных листов в виде колец, на внутренней окружности которых штампуют впадины или пазы для укладки обмотки статора. Стальные листы изолируют друг от друга лаком или окалиной для уменьшения потерь на вихревые токи. Сердечник статора с обмоткой помещают в станину, посредством которой машина крепится на фундаменте и транспортируется.
Рисунок 1. Формы пазов электрических машин.
Устройство статора и его обмотки у синхронной и асинхронной машин одинаково. Пазы могут быть открытыми (а), полузакрытыми (б) и закрытыми (в) (рис. 1).
Открытые пазы делают в машинах постоянного тока и в синхронных машинах на роторе при неявнополюсной их конструкции. При открытых пазах легко выполять шаблонную обмотку, что уменьшает ее стоимость. Однако при такой форме паза магнитное поле в воздушном зазоре распределяется неравномерно.
Закрытые пазы выполняют для короткозамкнутых обмоток роторов асинхронных двигателей, для пусковых и демпферных (успокоительных) обмоток синхронных машин. При такой форме паза неравномерность распределения магнитного поля исключается, но выполнение обмотки значительно сложнее, методом протяжки, т. е. провод протягивают через изоляционную гильзу в пазу.
С полузакрытыми пазами статор машин переменного тока выполняют наиболее часто. Обмотка здесь может быть полушаблонной, т. е. предварительно заготовленной на шаблоне в виде мягких катушек, витки которых вкладывают или «всыпают» по одному через прорезь паза.
Устройство ротора и его обмотки у синхронной и асинхронной машин различное. Рабочий процесс в машинах протекает под действием вращающегося магнитного поля, создаваемого намагничивающей силой (н. с.) симметричной трехфазной обмотки статора. При этом в синхронных машинах процесс преобразования энергии происходит при синхронной частоте, т. е. при частоте вращения ротора, равной частоте вращающегося поля статора, тогда как в асинхронных машинах обратное, т.е. при работе частота ротора не может быть равной частоте вращающегося поля (асинхронная скорость).
Как и любая электрическая машина, синхронные и асинхронные машины обладают свойством обратимости, т. е. могут работать как в режиме генератора, так и в режиме двигателя.
Схема синхронного генератора.
Синхронные генераторы являются основным источником электрической энергии, вырабатываемой на электростанциях. Вся электрическая энергия, необходимая для нужд народного хозяйства, производится трехфазными синхронными генераторами. Синхронные двигатели находят менее широкое применение. Их достоинство - высокий коэффициент мощности (cos ф), возможность потреблять опережающий ток из сети, компенсируя реактивную мощность, потребляемую другими приемниками энергии, включенными в эту сеть.
Поэтому применение синхронных двигателей целесообразно при сравнительно больших мощностях, с тем чтобы они работали с потреблением опережающего тока из сети и компенсировали реактивную мощность других потребителей, повышая cos ф всего предприятия. Кроме того, постоянство частоты вращения делает целесообразным применение синхронных двигателей в случаях, когда необходима жесткая скоростная характеристика (звуковое кино, проигрыватели и др.).
Схема пуска асинхронного двигателя.
Асинхронный двигатель, изобретателями которого были Тесла и Доливо-Добровольский, - наиболее распространенный тип электрических машин. Простота конструкции, экономичность и высокая надежность в работе асинхронных двигателей обусловили их широкое применение в различных отраслях промышленности. Эти двигатели изготавливают на различные мощности в пределах от нескольких ватт до нескольких тысяч киловатт.
Особенно велика потребность в трехфазных асинхронных двигателях мощностью 0,4- 100 кВт. Асинхронные генераторы почти не находят практического применения, так как обладают рядом существенных недостатков: не вырабатывают реактивной мощности, не обеспечивают постоянства частоты индуктируемой э. д. с.
Помимо двух основных режимов работы, генератора и двигателя, синхронные и асинхронные машины используют в специальных режимах работы. Синхронные машины работают компенсатором, вырабатывая только реактивную мощность, асинхронные машины - в режиме электромагнитного тормоза, преобразователя частоты и др.
Синхронные и асинхронные машины делают в основном трехфазными, но применяют и однофазные. Помимо синхронных и асинхронных машин, применяются коллекторные машины переменного тока, рабочие свойства которых подобны рабочим свойствам машин постоянного тока.
Поделитесь полезной статьей:
Topfazaa.ru
Синхронный двигатель – машина трехфазного тока, к ротору кото-рой подводится постоянный тока. Частота вращения ротора равна час-тоте вращения магнитного поля статора. Эта зависимость определяется частотой тока в сети и числом пар полюсов
Рис. Схема запуска синхронного двигателя.
1 – обмотка возбуждения; 2 – переключатель; 3 – пусковое сопротивление; 4 – короткозамкнутая обмотка ротора; 5 – обмотка статора; 6 – рубильник; 7 – якорь возбудителя; 9 обмотка возбудителя
Статор синхрон-ного двигателя не отличается от статора асинхронного. Ротор выполнен с явно вы-раженными полюсами у тихоходных двига-телей и неявно вы-раженными полюсами быстроходных.
Принцип действия синхронного двигателя основан на электромагнитном взаимодействии между полюсами вращающегося магнитного поля статора и полюсами ротора, образованными в результате подачи в обмотку ротора постоянного тока. Однако при включении двигателя ротор вибрирует, но не вращается, поскольку переменный ток меняет свое направление с частотой 50 Гц создавая непрерывные толчки в обе стороны.
Для обеспечения запуска синхронного двигателя его ротор кроме обмотки возбуждения снабжают дополнительной пусковой обмоткой (короткозамкнутой или фазной). Такая обмотка обеспечивает как обычно асинхронного при полном или пониженном напряжении. При достижении ротором двигателя частоты вращения близкой к синхронной, в обмотку возбуждения подается постоянный ток и двигатель начинает работать в синхронном режиме.
При достижении ротором в двигателя частоты вращения близкой к синхронной в обмотку возбуждения подается постоянный ток, после чего двигатель начинает работать в синхронном режиме.
При этом дополнительная пусковая обмотка не оказывает никакого действия, так как вращаясь синхронно с магнитным полем она не пересекается с магнитными линиями и в ней не индуцируется токи и не создается вращающий момент. Питание обмотки возбуждения осуществляется от специальных генераторов постоянного тока или от полупроводниковых выпрямителей.
После запуска синхронного двигателя, если нагрузка на валу равна нулю, вектор напряжения совпадает с вектором индуцированной ЭДС. Если к валу двигателя приложить момент, то появится угол сдвига θ между указанными векторами и двигатель начинает развивать вращающий момент, величина которого будет функцией угла θ
Где – напряжение статора; Е – ЭДС наводимая в обмотке статора магнитным полем ротора; ω – угловая скорость магнитного поля статора; x 1 – индуктивное сопротивление обмотки статора.
Это уравнение является угловой характеристикой синхронного двигателя. Момент двигателя возрастает при изменении угла θ от 0 до 90°, а затем уменьшается. Максимального значения момент достигает при θ=90°. При большем угле работа двигателя становится неустойчивой и увеличение нагрузки приводит к нарушению синхронности и остановке. Номинальному моменту соответствует угол θ=25÷30° (sinθ=0,43÷0,50) При этом перегрузочная способность
λ
С увеличением тока возбуждения, т.е. подводимого к обмотке ротора перегрузочная способность двигателя увеличивается, а с уменьшением – снижается. Но как видно из уравнения момент двигателя пропорционален первой степени напряжения, что делает его менее чувствительным к колебаниям напряжения в сеть по сравнению с асинхронным двигателем. Частота вращения ротора синхронного двигателя не зависит от нагрузки и при всех режимах остается постоянной. Поэтому механическая характеристика таких двигателей является абсолютно жесткой. Синхронные двигатели применяются для привода машин с неизменной частотой вращения.
Рис. Механическая характеристика синхронного двигателя
Основные преимущества синхронного двигателя:
Частота вращения не зависит от нагрузки;
Возможность работы с опережающим cosφ
Меньшая, чем у асинхронных двигателей, зависимость момента от напряжения сети
Недостатки синхронного двигателя:
Необходимость иметь два рода тока;
Сложность пуска;
Возможность нарушения синхронности при перегрузках;
Сложность регулирования частоты вращения.
В настоящее время синхронный двигатель применяется в установках не требующих регулирования частоты вращения и частого пуска. К ним относятся крупные вентиляторные, насосные и компрессорные установки.
Прежде чем рассматривать принцип действия синхронного двигателя, необходимо помнить, что это электрическая машина, работающая на переменном токе, у которой ротор вращается с частотой, которая равна частоте вращения магнитного поля в воздушной прослойке.
Синхронный двигатель состоит из основных частей - якоря и индуктора. Обычно, его исполнение сделано таким образом, что якорь расположен на статоре, а индуктор - на роторе, отделенном воздушной прослойкой.
В состав якоря входят одна или несколько обмоток переменного тока. При работе двигателя токи, поступающие в якорь, приводят к вращению магнитного поля, пересекающегося с полем индуктора и преобразующего энергию. Поле якоря носит другое название - поле реакции якоря. В генераторе такое поле создается с помощью индуктора.
В состав индуктора входят , называемые полюсами. Во всех синхронных агрегатах индукторы бывают двух конструкций - явнополюсная и не явнополюсная, отличающиеся расположением полюсов.
Чтобы уменьшить магнитное сопротивление и улучшить прохождение магнитного потока, используются ферромагнитные сердечники, расположенные в роторе и статоре, для изготовления которых используется специальная электротехническая сталь. Она обладает интересными свойствами, например, повышенным содержанием к
kgrant.ru