Для чего необходима компенсация реактивной мощности? Устройство компенсации реактивной мощности

Основной нагрузкой в промышленных электросетях являются асинхронные электродвигатели и распределительные трансформаторы. Эта индуктивная нагрузка в процессе работы является источником реактивной электроэнергии (реактивной мощности), которая совершает колебательные движения между нагрузкой и источником (генератором), не связана с выполнением полезной работы, а расходуется на создание электромагнитных полей и создает дополнительную нагрузку на силовые линии питания. Поэтому очень важен компенсатор реактивной мощности.

Реактивная мощность характеризуется задержкой (в индуктивных элементах ток по фазе отстает от напряжения) между синусоидами фаз напряжения и тока сети. Показателем потребления реактивной мощности является коэффициент мощности (КМ), численно равный косинусу угла (ф) между током и напряжением. КМ потребителя определяется как отношение потребляемой активной мощности к полной, действительно взятой из сети, т. е.: cos(ф) = P/S. Этим коэффициентом принято характеризовать уровень реактивной мощности двигателей, генераторов и сети предприятия в целом. Чем ближе значение cos(ф) к единице, тем меньше доля взятой из сети реактивной мощности.

Пример: при cos(ф) = 1 для передачи 500 KW в сети переменного тока 400 V необходим ток значением 722 А. Для передачи той же активной мощности при коэффициенте cos(ф) = 0,6 значение тока повышается до 1203 А.

Соответственно все оборудование питания сети, передачи и распределения энергии должны быть рассчитаны на большие нагрузки. Кроме того, в результате больших нагрузок срок эксплуатации этого оборудования может соответственно снизиться. Дальнейшим фактором повышения затрат является возникающая из-за повышенного значения общего тока теплоотдача в кабелях и других распределительных устройствах, в трансформаторах и генераторах. Возьмем, к примеру, в нашем выше приведенном случае при cos(ф) = 1 мощность потерь равную 10 KW. При cos(ф) = 0,6 она повышается на 180% и составляет уже 28 KW. Таким образом, наличие реактивной мощности является паразитным фактором, неблагоприятным для сети в целом.

В результате этого:

  • возникают дополнительные потери в проводниках вследствие увеличения тока;
  • снижается пропускная способность распределительной сети;
  • отклоняется напряжение сети от номинала (падение напряжения из-за увеличения реактивной составляющей тока питающей сети).

 

Все сказанное выше является основной причиной того, что предприятия электроснабжения требуют от потребителей снижения доли реактивной мощности в сети. Решением данной проблемы является компенсация реактивной мощности – важное и необходимое условие экономичного и надежного функционирования системы электроснабжения предприятия. Эту функцию выполняют устройства компенсации реактивной мощности КРМ-0,4 (УКМ-58) — конденсаторные установки, основными элементами которых являются конденсаторы.

Правильная компенсация позволяет:

  • снизить общие расходы на электроэнергию;
  • уменьшить нагрузку элементов распределительной сети (подводящих линий, трансформаторов и распределительных устройств), тем самым продлевая их срок службы;
  • снизить тепловые потери тока и расходы на электроэнергию;
  • снизить влияние высших гармоник;
  • подавить сетевые помехи, снизить несимметрию фаз;
  • добиться большей надежности и экономичности распределительных сетей.

Кроме того, в существующих сетях

  • исключить генерацию реактивной энергии в сеть в часы минимальной нагрузки;
  • снизить расходы на ремонт и обновление парка электрооборудования;
  • увеличить пропускную способность системы электроснабжения потребителя, что позволит подключить дополнительные нагрузки без увеличения стоимости сетей;
  • обеспечить получение информации о параметрах и состоянии сети.

А во вновь создаваемых сетях — уменьшить мощность подстанций и сечения кабельных линий, что снизит их стоимость.

 

Реактивная мощность и энергия ухудшают показатели работы энергосистемы, то есть загрузка реактивными токами генераторов электростанций увеличивает расход топлива; увеличиваются потери в подводящих сетях и приемниках; увеличивается падение напряжения в сетях.

Реактивный ток дополнительно нагружает линии электропередачи, что приводит к увеличению сечений проводов и кабелей и соответственно к увеличению капитальных затрат на внешние и внутриплощадочные сети.

Компенсация реактивной мощности, в настоящее время, является немаловажным фактором позволяющим решить вопрос энергосбережения практически на любом предприятии.

По оценкам отечественных и ведущих зарубежных специалистов, доля энергоресурсов, и в частности электроэнергии занимает величину порядка 30-40% в стоимости продукции. Это достаточно веский аргумент, чтобы руководителю со всей серьезностью подойти к анализу и аудиту энергопотребления и выработке методики компенсации реактивной мощности. Компенсация реактивной мощности – вот ключ к решению вопроса энергосбережения.

Основные потребители реактивной мощности:

  • асинхронные электродвигатели, которые потребляют 40% всей мощности совместно с бытовыми и собственными нуждами;
  • электрические печи 8%;
  • преобразователи 10%;
  • трансформаторы всех ступеней трансформации 35%;
  • линии электропередач 7%.

 

В электрических машинах переменный магнитный поток связан с обмотками. Вследствие этого в обмотках при протекании переменного тока индуктируются реактивные э.д.с. обуславливающие сдвиг по фазе (fi) между напряжением и током. Этот сдвиг по фазе обычно увеличивается, а косинус фи уменьшается при малой нагрузке. Например, если косинус фи двигателей переменного тока при полной нагрузке составляет 0,75-0,80, то при малой нагрузке он уменьшится до 0,20-0,40.

Мало нагруженные трансформаторы также имеют низкий коэффициент мощности (косинус фи). Поэтому, применять компенсацию реактивной мощности, то результирующий косинус фи энергетической системы будет низок и ток нагрузки электрической, без компенсации реактивной мощности, будет увеличиваться при одной и той же потребляемой из сети активной мощности. Соответственно при компенсации реактивной мощности (применении автоматических конденсаторных установок КРМ) ток потребляемый из сети снижается, в зависимости от косинус фи на 30-50%, соответственно уменьшается нагрев проводящих проводов и старение изоляции.

Кроме этого, реактивная мощность наряду с активной мощностью учитывается поставщиком электроэнергии, а следовательно, подлежит оплате по действующим тарифам, поэтому составляет значительную часть счета за электроэнергию.

Наиболее действенным и эффективным способом снижения потребляемой из сети реактивной мощности является применение установок компенсации реактивной мощности (конденсаторных установок).

Использование конденсаторных установок для компенсации реактивной мощности позволяет:

  • разгрузить питающие линии электропередачи, трансформаторы и распределительные устройства;
  • снизить расходы на оплату электроэнергии
  • при использовании определенного типа установок снизить уровень высших гармоник;
  • подавить сетевые помехи, снизить несимметрию фаз;
  • сделать распределительные сети более надежными и экономичными.

 

продольная и поперечная компенсация реактивной мощности

Регулирование напряжения изменением реактивной мощности

 Сущность регулирования напряжения за счет воздействия на потоки реактивной мощности по элементам электрической сети заключается в том, что при изменении реактивной мощности изменяются потери напряжения в реактивных Сопротивлениях. Так, для схемы сети, приведенной на рис. 1, связь между напряжениями начала U1, и конца U2 можно записать в виде:

(1)

Рис. 1 Схема сети с компенсирующим устройством

В отличие от активной мощности, реактивную мощность в узлах сети можно изменять путем установки в них устройств поперечной компенсации, т. е. компенсирующих устройств (КУ), подключенных параллельно нагрузке. В качестве таких компенсирующих реактивную мощность устройств могут служить батареи конденсаторов, синхронные компенсаторы, шунтирующие и управляемые реакторы, статические тиристорные компенсаторы. К таким устройствам могут быть также отнесены генераторы местных электростанций, подключенных к системе передачи и распределения электроэнергии, синхронные электродвигатели, фильтры высших гармоник. Часть из указанных компенсирующих устройств может только выдавать в сеть реактивную мощность, некоторые — только потреблять из сети реактивную мощность (шунтирующие и управляемые реакторы). Наиболее ценными для регулирования напряжения являются устройства, обладающие способностями в зависимости от режима сети как генерировать, так и поглощать реактивную мощность (синхронные компенсаторы, статические тиристорные компенсаторы).

Компенсирующие устройства могут быть нерегулируемыми и регулируемыми. При включении нерегулируемого компенсирующего устройства в сети создается постоянная добавка потери напряжения (отрицательная или положительная). Если же компенсирующее устройство позволяет изменить свою мощность в зависимости от режима сети, то добавка потери напряжения, как это следует из формулы (1), оказывается переменной, в результате чего появляется возможность регулировать напряжение. Так, в схеме сети, приведенной на рис. 1, при изменении компенсирующим устройством мощности QK от выдачи (знак «минус» в формуле (1) перед QK) до потребления (знак «плюс» перед QK) будет изменяться потеря напряжения, что при неизменном напряжении U1 = const приведет также к изменению напряжения U2 в конце сети, т. е. будет обеспечено регулирование напряжения.

Как следует из формулы (1), эффективность регулирования напряжения с помощью поперечных компенсирующих устройств повышается в сетях с относительно большими» реактивными сопротивлениями по сравнению с активными, например, в воздушных сетях по сравнению с кабельными. При этом наибольший эффект достигается при установке компенсирующих устройств в наиболее удаленных от центров литания узлах нагрузки.

С помощью поперечного компенсирующего устройства можно создать режим, в котором напряжение в конце сети окажется больше напряжения в начале (U2 > U1). Это произойдет тогда, когда потеря напряжения в формуле (1) станет отрицательной:

Отсюда мощность компенсирующего устройства для такого режима

(2)

Физическую сущность регулирования напряжения с помощью поперечных компенсирующих устройств дополнительно поясним на векторных диаграммах. Для этого связь между напряжением U1 и U2 запишем через падение напряжения:

(3)

При установке компенсирующего устройства, выдающего реактивную мощность,

(4)

Для случая, когда генерируемая мощность компенсирующего устройства полностью компенсирует реактивную нагрузку потребителей (QK = Q2)

(5)

На рис. 2, а показана векторная диаграмма напряжений без компенсирующего устройства и с компенсирующим устройством при QK < Q2, построенная по формулам (3) и (4). Здесь ∆Ua-падения напряжения от передачи активной мощности, a ∆Up— реактивной мощности без компенсирующего устройства. Из диаграммы видно, что при установке компенсирующего устройства значение ∆Ua не изменяется, а вектор ∆Up занимает положение ∆Up.k. В результате исходный вектор напряжения ∆U1 в начале линии уменьшается по модулю и становится равным ∆U1k. Таким образом, для получения заданного напряжения U2 за счет установки компенсирующего устройства потребуется меньшее напряжение ∆U1 в результате снижения падения напряжения.

На рис. 2, б показан случай, когда полностью скомпенсирована реактивная мощность потребителей (QK = Q2), в результате чего падение напряжения ∆Up.k от передачи реактивной мощности полностью отсутствует (формула (5). И, наконец, на рис. 2, в показан исходный режим без компенсирующего устройства и режим, когда мощность компенсирующего устройства QK > Q2 и удовлетворяет условию (2). В этом случае падение напряжения в активном и реактивном сопротивлениях изменяет знак, а напряжение U2 становится больше U1k.

Компенсирующие устройства поперечной компенсации оказывают комплексное положительное влияние на режим электрических сетей. Кроме возможности регулирования напряжения, они позволяют снизить потери активной мощности и электроэнергии за счет разгрузки элементов сети от реактивной мощности и соответственно снижения рабочих токов. В ряде случаев, когда передаваемая активная мощность ограничивается допустимым током по нагреванию или допустимой потерей напряжения, за счет разгрузки сети от реактивной мощности можно увеличить пропускную активную мощность. Поэтому в общем случае вопросы выбора мощности и мест установки компенсирующих устройств должны решаться комплексно. Здесь же, однако, рассмотрим подход к выбору мощности компенсирующего устройства по условию регулирования напряжения [3,16, 24].

Пусть при U1=const напряжение U2 по каким то причинам не удовлетворяет потребителей (рис. 1), и его надо повысить до U с помощью выбора соответствующей мощности компенсирующего устройства, устанавливаемого в конце сети При расчете в общем случае следует учесть, что при повышении напряжения U2 до U произойдет изменение потребляемых нагрузок P2 и Q2 до P и U в соответствии с их статическими характеристиками P2=f(U2) и Q2=f(U2). Этот фактор может не учитываться в том случае, если нагрузка подключена на вторичной стороне трансформатора, имеющего устройство РПН, которое позволяет сохранить напряжение на шинах низшего напряжения неизменным.

До и после установки компенсирующего устройства мощностью QK связь между напряжениями начала и конца сети можно соответственно представить в виде:

Приравнивая правые части данных уравнений вследствие условия U1=const, найдем мощность компенсирующего устройства

(6)

Здесь мощности P2, Q2, P, Q  находятся по соответствующим статическим характеристикам

Если в качестве компенсирующего устройства выступает батарея конденсаторов, то ее мощность зависит от подводимого напряжения:

где Qб. н номинальная мощность батареи конденсаторов при номинальном напряжении Uб.н

С учетом этой зависимости номинальная мощность батареи конденсаторов для изменения напряжения U2 до U должна быть равна

(7)

 

Рис. 2. Векторные диаграммы напряжений при выдаче реактивной мощности компенсирующим устройством: а — при QK < Q2; 6 — при QK = Q2; в — при QK > Q2 и U2 > U, С

В случае неучета статических характеристик нагрузки P=P2 и Q=Q2. Тогда необходимая мощность компенсирующего устройства из формулы (6) получается в виде:

(8)

Для компенсирующего устройства в виде батареи конденсаторов из формулы (7) соответственно получим:

(9)

без названия

%PDF-1. 7
%
1 0 объект
>
эндообъект
6 0 объект
>
эндообъект
2 0 объект
>
эндообъект
3 0 объект
>
эндообъект
4 0 объект
>
транслировать
2011-11-18T13:00:18-08:002011-11-18T22:03:32+01:00’Сертифицировано IEEE PDFeXpress 18.11.2011 13:00:26’2011-11-18T13:00 :26-08:00Acrobat Distiller 8.1.0 (Windows)application/pdf

  • без названия
  • uuid:4f5e4988-d5ec-4b87-ae6f-9a7d5f7150fauuid:b363bb4d-3581-4c34-91d6-a5ad3dffcd96’Сертифицировано IEEE PDFeXpress 18.11.2011 13:00:26′

    конечный поток
    эндообъект
    5 0 объект
    >
    эндообъект
    7 0 объект
    >
    эндообъект
    8 0 объект
    >
    /XОбъект >
    >>
    /Анноты [24 0 R 25 0 R 26 0 R]
    /Родитель 3 0 Р
    /MediaBox [0 0 59C

    Почему реактивная мощность влияет на напряжение?

    Почему реактивная мощность влияет на напряжение? Предположим, у вас есть (слабая) энергосистема с большой реактивной нагрузкой. Если вы внезапно отключите нагрузку, вы испытаете пик напряжения.

    Во-первых, нам нужно определить, что именно запрашивается. Теперь, когда вы заявили, что речь идет об энергосистеме коммунального масштаба, а не о выходе операционного усилителя или чего-то еще, мы знаем, что означает «реактивная мощность». Это сокращение используется в электроэнергетике. В идеале нагрузка на систему должна быть резистивной, но на самом деле она частично индуктивная. Они разделяют эту нагрузку на чисто резистивную и чисто индуктивную составляющие и называют то, что подается на сопротивление, «активной мощностью», а то, что подается на индуктивность, — «реактивной мощностью».

    Это приводит к некоторым интересным вещам, например, к тому, что конденсатор на линии передачи является генератором реактивной мощности. Да, это звучит забавно, но если вы будете следовать приведенному выше определению реактивной мощности, все будет последовательно и никакие законы физики не будут нарушены. На самом деле конденсаторы иногда используются для «генерации» реактивной мощности.

    Фактический ток, выходящий из генератора, отстает от напряжения на небольшой фазовый угол. Вместо того, чтобы думать об этом как о величине и фазовом угле, он рассматривается как два отдельных компонента с отдельными величинами, один с фазой 0, а другой с отставанием на 9фаза 0°. Первый — это ток, вызывающий активную мощность, а второй — реактивную мощность. Два способа описания общего тока по отношению к напряжению математически эквивалентны (каждый из них может быть однозначно преобразован в другой).

    Итак, вопрос сводится к тому, почему ток генератора, который отстает от напряжения на 90°, вызывает падение напряжения? Я думаю, что есть два ответа на этот вопрос.

    Во-первых, любой ток, независимо от фазы, вызывает падение напряжения на неизбежном сопротивлении в системе. Этот ток пересекает 0 на пике напряжения, поэтому можно сказать, что он не должен влиять на пик напряжения. Однако прямо перед пиком напряжения ток отрицателен. На самом деле это может вызвать немного более высокий кажущийся (после падения напряжения на последовательном сопротивлении) пик напряжения непосредственно перед пиком напряжения холостого хода.