Содержание

Давление газа на стенки сосуда — формулы, определение, примеры

Покажем, как применять знание физики в жизни

Начать учиться

Без газа наш мир выглядел бы иначе: никто бы не мог дышать, атмосферы бы не существовало, смешных голосов из-за гелия бы не получалось. Самая важная характеристика этого агрегатного состояния — давление. О нем — в этой статье.

Газ: агрегатное состояние

В мире есть три агрегатных состояния — твердое, жидкое и газообразное.
Их характеристики — в таблице

 

Агрегатные состояния

Свойства

Расположение молекул

Расстояние между молекулами

Движение молекулы

Твердое

сохраняет форму и объем

в кристаллической решетке

соотносится с размером молекул

колеблется около своего положения в кристаллической решетке

Жидкое

сохраняет объем

хаотично

близко друг к другу

малоподвижны, при нагревании скорость движения молекул увеличивается

Газы

занимают предоставленный объем

хаотично

больше размеров молекул

хаотичное и непрерывное

В жизни мы встречаем газообразное состояние вещества, когда чувствуем запахи. Запах очень легко распространяется, потому что газ не имеет ни формы, ни объема (он занимает весь предоставленный ему объем), состоит из хаотично движущихся молекул, расстояние между которыми больше, чем размеры молекул.

Агрегатных состояния точно три?

На самом деле, есть еще четвертое — плазма. Звучит, как что-то из научной фантастики, но это просто ионизированный газ — газ, в котором помимо нейтральных частиц, есть еще и заряженные. Ионизаторы воздуха как раз строятся на принципе перехода из газообразного вещества в плазму.

Узнай, какие профессии будущего тебе подойдут

Пройди тест — и мы покажем, кем ты можешь стать, а ещё пришлём подробный гайд, как реализовать себя уже сейчас

Давление газа

Мы только что выяснили, что молекулы газа беспорядочно движутся. Во время движения они сталкиваются друг с другом, а также со стенками сосуда, в котором этот газ находится. Поскольку молекул много, ударов тоже много.

Например, в комнате, в которой вы сейчас находитесь, на каждый квадратный сантиметр за 1 с молекулами воздуха наносится столько ударов, что их количество выражается двадцати трехзначным числом.

Хотя сила удара отдельной молекулы мала, действие всех молекул о стенки сосуда приводит к значительному давлению. Это как если бы один комар толкал машину, то она бы и не сдвинулась с места, а вот пару сотен миллионов комаров вполне себе способны эту машину сдвинуть.

Курсы подготовки к ОГЭ по физике помогут снять стресс перед экзаменом и получить высокий балл.

Зависимость давления от других величин

Зависимость давления от объема

В механике есть формула давления, которая показывает: давление прямо пропорционально силе и обратно пропорционально площади, на которую эта сила оказывается.

Давление
p = F/S

p — давление [Па]
F — сила [Н]
S — площадь [м^2]

То есть, если наши двести миллионов комаров будут толкать легковую машину, они распределятся по меньшей площади, чем если бы они толкали грузовой автомобиль (просто потому что легковая меньше грузовика).

Из формулы давления следует, что давление на легковой автомобиль будет больше из-за меньшей площади.

Давайте рассмотрим аналогичный пример с двумя сосудами разной площади.

Давление в левом сосуде будет больше, чем во втором, по аналогичной схеме — потому что площадь меньше. Но если площадь основания меньше, то и объем меньше. Это значит, что давление будет зависеть от объема следующим образом: чем больше объем, тем меньше давление — и наоборот.

При этом зависимость будет не линейная, а примет вот такой вид (при условии, что температура постоянна):

Такая зависимость называется законом Бойля-Мариотта.

Она экспериментально проверяется с помощью такой установки.

Объем шприца увеличивают с помощью насоса, а манометр измеряет давление. Эксперимент показывает, что при увеличении объема давление действительно уменьшается.

Зависимость давления от температуры

Рассмотрим зависимость давления газа от температуры при условии неизменного объема определенной массы газа. Эти исследования были впервые произведены в Жаком Шарлем.

Газ нагревался в большой колбе, соединенной с ртутным манометром в виде узкой изогнутой трубки. Пренебрегая ничтожным увеличением объема колбы при нагревании и незначительным изменением объема при смещении ртути в узкой манометрической трубке.

Таким образом, можно считать объем газа неизменным. Подогревая воду в сосуде, окружающем колбу, измеряли температуру газа по термометру, а соответствующее давление — по манометру.

Этот эксперимент показал, что давление газа увеличивается с увеличением температуры. Это связано с тем, что при нагревании молекулы газа движутся быстрее, из-за чего чаще ударяются о стенки сосуда.

С температурой все проще. Зависимость давления от температуры при постоянных объеме и массе будет линейно:

Эта зависимость называется законом Шарля.

Хранение и транспортировка газов

Если нужно перевезти значительное количество газа из одного места в другое, или когда газы необходимо длительно хранить — их помещают в специальные прочные металлические сосуды. Из-за того, что при уменьшении объема увеличивается давление, газ можно закачать в небольшой баллон, но он должен быть очень прочным.

Сосуды, предназначенные для транспортировки газов, выдерживают высокие давления. Поэтому с помощью специальных насосов (компрессоров) туда можно закачать значительные массы газа, которые в обычных условиях занимали бы в сотни раз больший объем.

Поскольку давление газов в баллонах даже при комнатной температуре очень велико, их ни в коем случае нельзя нагревать. Например, держать под прямыми лучами солнца или любым способом пытаться сделать в них отверстие, даже после использования.

Карина Хачатурян

К предыдущей статье

Момент силы

К следующей статье

Закон сохранения механической энергии

Получите индивидуальный план обучения физике на бесплатном вводном уроке

На вводном уроке с методистом

  1. Выявим пробелы в знаниях и дадим советы по обучению

  2. Расскажем, как проходят занятия

  3. Подберём курс

Давление газа | Физика

Газы, как и твердые тела, тоже производят давление. Но твердые тела передают давление в том направлении, в котором действует сила давления. Кнопка передает давление перпендикулярно доске, лопата — в направлении силы давления ноги и т. д.

А вот газы передают давление во все стороны. Чем обусловлена такая особенность газов? От чего зависит давление газа?

Газы, как жидкости и твердые тела, состоят из частиц (атомов, молекул). Но расстояния между частицами у газов больше, чем у жидкостей и твердых тел. Поэтому силы взаимодействия между частицами у газов практически отсутствуют (кроме процессов столкновения). Двигаясь хаотически, они сталкиваются между собой и со стенками сосуда. Так как число частиц газа в сосуде чрезвычайно велико (например, в 1 см3 их примерно 2,7 ⋅ 1019), то стенка воспринимает удары частиц как действие вполне ощутимой силы давления.

В газах среднее число ударов хаотически движущихся частиц и средняя сила ударов на единицу площади поверхности стенки по всем направлениям одинаковы. Значит, и среднее давление по всем направлениям одинаково.

Подтвердим это опытом. Под стеклянный колокол поместим завязанную оболочку резинового шара, внутри которой находится газ. Будем откачивать воздух из-под колокола. Объем шара по мере откачки воздуха увеличивается. Это связано с тем, что давление газа под колоколом становится меньше, чем внутри шара.

Форма оболочки в виде шара — доказательство того, что давление газа по всем направлениям одинаково.

Каким образом можно изменить давление газа? Поскольку давление обусловлено числом ударов частиц и силой удара каждой частицы о стенку, то есть два пути его изменения. Первый из них — изменить число частиц в единице объема.

Подтвердим сказанное опытом. В пробковом пистолете между пробкой и поршнем находится воздух, который оказывает давление по всем направлениям. Если будем поршнем сжимать газ, не меняя его температуры, то пробка вылетит из пистолета. Почему?

Уменьшая объем газа, мы увеличиваем число частиц в единице объема. Это приводит к увеличению числа ударов о стенки. Давление газа возрастает. А с увеличением давления растет сила давления газа на пробку, и она вылетает из пистолета. Если увеличивать объем газа при постоянной температуре, то давление будет уменьшаться.

Итак, при уменьшении объема (сжатии) газа при постоянной температуре его давление увеличивается, а при увеличении объема (расширении) газа давление уменьшается.

Второй путь изменить (например, увеличить) давление газа — это изменить силу удара частиц о стенки. Для этого газ нужно нагреть. Тогда скорость хаотического движения частиц увеличится, и, следовательно, увеличится и сила ударов их о стенки.

Зависимость давления от температуры можно подтвердить опытом. Если объем газа в пробковом пистолете сохранять постоянным, но повышать температуру газа, подогревая его на спиртовке, то пробка вылетит вследствие увеличения давления. Значит, чем выше температура газа, тем больше его давление; чем ниже температура, тем меньше давление.

Возрастание давления газа при его нагревании вызвано не только увеличением силы отдельных ударов. В холодном и горячем газе будет неодинаковым и среднее число ударов частиц о стенки сосуда за единицу времени (т. е. частота ударов). Подумайте, как влияет этот фактор на давление газа.

На баллоне с лаком для волос написано: «Предохранять от воздействия прямых солнечных лучей и нагревания выше +50 °С!» Объясните необходимость таких мер предосторожности с точки зрения физики.

Главные выводы:

  1. Давление газа есть результат ударов частиц о стенки сосуда, в котором он находится.
  2. Давление газа можно увеличить, если уменьшать его объем при постоянной температуре или, сохраняя объем газа, увеличивать его температуру.
  3. Давление газа можно уменьшить, если увеличивать (расширять) его объем при постоянной температуре или охлаждать газ, сохраняя его объем.
Читать далее
← Давление. Единицы давленияПередача давления газами и жидкостями. Закон Паскаля →

Давление газа


Важное свойство любого газа
это его давление . У нас есть опыт работы с газом.
давление, которого у нас нет, с такими свойствами, как
вязкость
и сжимаемость. Каждый день мы слышим, как метеоролог по телевизору дает
значение барометрического давления в
атмосфера
(29,8 дюйма
ртуть, например). И большинство из нас надували воздушный шар или использовали
насос для накачивания велосипедной шины или баскетбольного мяча.

Потому что понимание того, что такое давление и как оно работает, так
фундаментальные для понимания аэродинамики, мы включаем
несколько слайдов по давлению газа в Руководстве для начинающих. Ан
интерактивный симулятор атмосферы
позволяет вам учиться
как меняется статическое давление воздуха с высотой.
Программа FoilSim
показывает, как меняется давление вокруг подъемного крыла, а
Программа EngineSim
показывает, как изменяется давление в турбинном двигателе.
Другой симулятор поможет вам изучить, как меняется давление в
ударные волны, возникающие на высоких скоростях.
Есть два способа взглянуть на давление: (1) мелкомасштабное действие
отдельных молекул воздуха или (2) крупномасштабное действие большого
количество молекул.

Молекулярное определение давления

Из
кинетическая теория газов, газ состоит
большое количество молекул, которые очень малы по сравнению с
расстояние между молекулами. Молекулы
газ
находятся в постоянном, случайном
движение и часто сталкиваются друг с другом и со стенками
любой контейнер. Молекулы обладают физическими свойствами массы,
импульс и энергия.
Импульс одной молекулы равен
произведение его массы на скорость, а кинетическая энергия равна единице
половина массы, умноженной на квадрат скорости.
Когда молекулы газа сталкиваются со стенками
контейнер, как показано на рисунке слева, молекулы придают
импульс к стенам, создающий силу перпендикулярно стене.
Сумма сил всех молекул, ударяющихся о стенку, деленная на площадь
стена определяется как давление . Давление газа
тогда мера среднего линейного импульса
движущихся молекул газа.
Давление действует перпендикулярно (нормально) к стене; тангенциальный (сдвиг)
составляющая силы связана с
вязкость
газа.

Скалярное количество

Давайте посмотрим на статический газ; тот, который не кажется движущимся или текущим.
Хотя кажется, что газ в целом не движется, отдельные
молекулы газа, которых мы не видим, находятся в постоянном случайном
движение. Потому что мы имеем дело с почти бесконечным числом молекул
и поскольку движение отдельных молекул
является случайным во всех направлениях, мы не обнаруживаем никакого движения. Если мы
заключаем газ в контейнер, мы обнаруживаем давление в
газа от молекул, сталкивающихся со стенками нашего контейнера. Мы
можно поместить стенки нашего контейнера в любое место внутри газа, а
сила на площадь (давление) то же самое.
Мы можем уменьшить размер нашего «контейнера» до
бесконечно малая точка, а давление имеет единственное значение
в таком случае. Следовательно, давление является
скаляр
количество, а не
векторное количество. У него есть величина, но нет направления, связанного с
это. Давление действует во всех направлениях в точке внутри газа. В
поверхность газа, сила давления действует перпендикулярно
поверхность.

Если газ в целом движется,
измеренное давление отличается
направление движения. Упорядоченное движение газа
создает упорядоченную составляющую импульса в
направление движения.
Мы связываем дополнительное давление
компонент, называемый
динамическое давление с этим импульсом жидкости.
Давление, измеряемое в направлении движения, называется
полное давление и равно сумме статического и динамического давления, описываемого уравнением Бернулли.

Макро шкала Определение давления

Если перейти к более крупному масштабу, то давление равно
переменная состояния
газа, как
температура и
плотность.
Изменение давления в любом процессе
регулируется законами г.
термодинамика.
Вы можете изучить влияние давления на другие параметры газа.
в анимированной газовой лаборатории.
Хотя давление само по себе является скаляром, мы можем определить
сила давления
быть равным давлению (силе/площади), умноженному на поверхность
область
в направлении, перпендикулярном поверхности.
Сила давления равна 9.0008 вектор количество.

Силы давления обладают некоторыми уникальными свойствами по сравнению с гравитационными.
или механические силы.
На рисунке выше справа у нас красный газ
который заключен в коробку. К верхней части прикладывается механическое усилие.
коробка. Сила давления внутри коробки противодействует приложенной силе
согласно Ньютону
третий закон движения.
Скалярное давление равно внешней силе, деленной на площадь вершины.
коробки. Внутри газа давление действует во всех направлениях. Так
давление давит на дно коробки и на
стороны. Это отличается от простой механики твердых тел. Если
красный газ был бы твердым телом, к сторонам не прилагались бы силы
из коробки; приложенная сила будет просто передана
нижний. Но в газе, поскольку молекулы могут свободно перемещаться
и сталкиваются друг с другом, сила, приложенная по вертикали
направление вызывает силы в горизонтальном направлении.


Виды деятельности:


Экскурсии с гидом

  • Стандартная модель атмосферы:

  • Газовая статика:

  • Статическая трубка Пито:


Навигация . .

Домашняя страница руководства для начинающих

Давление газа | Химия по специальностям

Результаты обучения

  • Дайте определение свойству давления
  • Определение и преобразование единиц измерения давления
  • Описать работу обычных инструментов для измерения давления газа
  • Расчет давления по данным манометра

Атмосфера Земли оказывает давление, как и любой другой газ. Хотя обычно мы не замечаем атмосферного давления, мы чувствительны к изменениям давления — например, когда ваши уши «хлопают» во время взлета и посадки во время полета или когда вы ныряете под воду. Давление газа обусловлено силой, действующей на молекулы газа, сталкивающиеся с поверхностями предметов (рис. 1). Хотя сила каждого столкновения очень мала, любая поверхность значительной площади испытывает большое количество столкновений за короткое время, что может привести к высокому давлению. Фактически, нормальное давление воздуха достаточно велико, чтобы раздавить металлический контейнер, если его не уравновешивает равное давление внутри контейнера.

Рисунок 1. Атмосфера над нами оказывает большое давление на объекты на поверхности земли, примерно равное весу шара для боулинга, дающего площадь размером с ноготь большого пальца человека.

Яркая иллюстрация атмосферного давления представлена ​​в этом коротком видеоролике, на котором показано, как железнодорожная цистерна взрывается при снижении внутреннего давления. (Обратите внимание, что в видео нет повествования. Вы можете получить доступ к аудиоописанию с помощью виджета под видео.)

Вы можете просмотреть расшифровку аудиоописания «Вакуумный взрыв цистерны» здесь (откроется в новом окне).

Демонстрация этого явления в меньшем масштабе кратко объясняется в следующем видео:

Вы можете просмотреть стенограмму «Раздавить 55-галлонную бочку давлением воздуха» здесь (откроется в новом окне).

Атмосферное давление обусловлено весом столба молекул воздуха в атмосфере над объектом, например, автоцистерной. На уровне моря это давление примерно такое же, как у взрослого африканского слона, стоящего на коврике у двери, или у типичного шара для боулинга на ногте большого пальца. Это может показаться огромным количеством, и это так, но жизнь на Земле развивалась под таким атмосферным давлением. Если вы на самом деле держите шар для боулинга на ногте большого пальца, испытанное давление равно 9.0116 два раза давление обычное, а ощущение неприятное.

В общем, давление определяется как сила, действующая на заданную площадь: [latex]P=\dfrac{F}{A}.[/latex] Обратите внимание, что давление прямо пропорционально силе и обратно пропорционально площади . Таким образом, давление можно увеличить либо за счет увеличения силы, либо за счет уменьшения площади, на которую она воздействует; давление можно уменьшить, уменьшив силу или увеличив площадь.

Давайте применим эту концепцию, чтобы определить, кто с большей вероятностью провалится под тонкий лед на рис. {2} [/латекс]

Рисунок 2. Хотя (а) вес слона велик, создавая очень большую силу на землю, (б) фигуристка оказывает гораздо большее давление на лед из-за малой площади поверхности ее коньков. (кредит a: модификация работы Гвидо да Роззе; кредит b: модификация работы Рёске Яги)

Единицей давления в системе СИ является паскаль (Па) , где 1 Па = 1 Н/м 2 , где N — ньютон, единица силы, определяемая как 1 кг м/с 2 . Один паскаль — это небольшое давление; во многих случаях удобнее использовать единицы измерения килопаскаль (1 кПа = 1000 Па) или бар (1 бар = 100 000 Па). В Соединенных Штатах давление часто измеряется в фунтах силы на площади в один квадратный дюйм — фунтов на квадратный дюйм (psi) — например, в автомобильных шинах. Давление также можно измерить с помощью единицы атмосферы (атм) , которая первоначально представляла собой среднее атмосферное давление на уровне моря приблизительно на широте Парижа (45°). В Таблице 1 приведена некоторая информация об этих и некоторых других распространенных единицах измерения давления

The definition or relation to other unit is 1 bar equals 100,000 P a exactly and commonly used in meteorology. The next unit name is millibar, and it is abbreviated as m b a r or m b. The definition or relation to other unit is 1000 m b a r equals one bar. The next unit name is inches of mercury, and it is abbreviated as i n period, H g. The definition or relation to other unit is one i n period H g equals 3386 P a and is used by the aviation industry and also some weather reports. The next unit is torr. The definition or relation to other unit is 1 torr equals 1 over 760 a t m and named after Evangelista Torricelli, inventor of the barometer. The last unit name is millimeters of mercury, and it is abbreviated as m m H g. The definition or relation to other unit is 1 m m H g is approximately 1 torr.»>

.

Таблица 1. Единицы давления
Наименование и сокращение блока Определение или связь с другим блоком
паскаль (Па) 1 Па = 1 Н/м 2
рекомендуемая единица IUPAC
килопаскаль (кПа) 1 кПа = 1000 Па
фунта на квадратный дюйм (psi) давление воздуха на уровне моря составляет ~14,7 фунтов на квадратный дюйм
атмосфера (атм) 1 атм = 101 325 Па
давление воздуха на уровне моря ~1 атм
бар (бар или б) 1 бар = 100 000 Па (точно)
обычно используется в метеорологии
миллибар (мбар или мб) 1000 мбар = 1 бар
дюйма ртутного столба (дюйм рт. ст.) 1 дюйм ртутного столба = 3386 Па
используется в авиационной промышленности, а также в некоторых прогнозах погоды
торр [латекс]\текст{1 торр}=\dfrac{\текст{1}}{\текст{760}}\текст{атм}[/латекс]
назван в честь Евангелиста Торричелли, изобретателя барометра
миллиметра ртутного столба (мм рт. ст.) [латекс]1[/латекс] мм рт.ст. [латекс]\текст{~}1[/латекс] торр

Пример 1: Преобразование единиц давления

Национальная метеорологическая служба США сообщает о давлении как в дюймах ртутного столба, так и в миллибарах. Преобразуйте давление 29,2 дюйма ртутного столба в:

  1. торр
  2. атм
  3. кПа
  4. мбар

Показать решение

Проверьте свои знания

Типичное атмосферное давление в Канзас-Сити составляет 740 торр. Чему равно это давление в атмосферах, миллиметрах ртутного столба, килопаскалях и барах?

Показать раствор

Мы можем измерить атмосферное давление, силу, оказываемую атмосферой на земную поверхность, с помощью барометра (рис. 3). Барометр представляет собой стеклянную трубку, которая закрыта с одного конца и заполнена нелетучей жидкостью, такой как ртуть, а затем перевернута и погружена в сосуд с этой жидкостью. Атмосфера давит на жидкость снаружи трубки, столб жидкости давит внутри трубки, а давление на поверхности жидкости внутри и снаружи трубки одинаково. Таким образом, высота жидкости в трубке пропорциональна давлению атмосферы.

Рис. 3. В барометре высота столба жидкости ч используется для измерения атмосферного давления. Использование очень плотной жидкой ртути (слева) позволяет создавать барометры разумного размера, тогда как использование воды (справа) потребует барометра высотой более 30 футов.

Если жидкостью является вода, нормальное атмосферное давление будет поддерживать столб воды высотой более 10 метров, что довольно неудобно для изготовления (и считывания) барометра. Поскольку ртуть (Hg) примерно в 13,6 раза плотнее воды, ртутный барометр должен быть только [латекс]\dfrac{1}{13,6}[/латекс] такой же высоты, как водяной барометр — более подходящего размера. Стандартное атмосферное давление 1 атм на уровне моря (101 325 Па) соответствует ртутному столбу высотой около 760 мм (290,92 дюйма) в высоту. Первоначально предполагалось, что торр будет единицей, равной одному миллиметру ртутного столба, но это больше не соответствует точно. Давление, создаваемое жидкостью под действием силы тяжести, известно как гидростатическое давление , [латекс]p[/латекс]:

[латекс]p=h\rho g[/латекс]

, где [латекс]h[/ латекс] – высота жидкости, [латекс]\rho[/латекс] – плотность жидкости, а [латекс]г[/латекс] – ускорение под действием силы тяжести.

Пример 2: расчет барометрического давления

Приведите расчет, подтверждающий утверждение о том, что атмосферное давление на уровне моря соответствует давлению столба ртути высотой около 760 мм. Плотность ртути = 13,6 г/см 3 .

Показать раствор

Проверьте свои знания

Рассчитайте высоту столба воды при температуре 25 °C, что соответствует нормальному атмосферному давлению. Плотность воды при этой температуре составляет 1,0 г/см 3 .

Показать раствор

Манометр — это устройство, похожее на барометр, которое можно использовать для измерения давления газа, находящегося в контейнере. Манометр с закрытым концом представляет собой U-образную трубку с одним закрытым плечом, другое плечо, которое соединяется с измеряемым газом, и нелетучей жидкостью (обычно ртутью) между ними. Как и в барометре, расстояние между уровнями жидкости в двух ответвлениях трубки ( ч на диаграмме) пропорционально давлению газа в сосуде. Манометр с открытым концом (рис. 4) аналогичен манометру с закрытым концом, но одно его плечо открыто в атмосферу. В этом случае расстояние между уровнями жидкости соответствует разнице давлений между газом в сосуде и атмосферой.

Рис. 4. Манометр можно использовать для измерения давления газа. (Разница) высоты между уровнями жидкости (h) является мерой давления. Ртуть обычно используется из-за ее большой плотности.

Пример 3: Расчет давления с помощью манометра с закрытым концом

Давление пробы газа измеряется с помощью манометра с закрытым концом, как показано ниже.

Жидкость в манометре — ртуть. Определить давление газа в:

  1. торр
  2. Па
  3. бар

Показать раствор

Проверьте свои знания

Давление образца газа измеряется манометром с закрытым концом. Жидкость в манометре – ртуть.

Определить давление газа в:

  1. торр
  2. Па
  3. бар

Показать раствор

Пример 4. Расчет давления с помощью манометра с открытым концом

Давление пробы газа измеряется на уровне моря ртутным манометром с открытым концом, как показано ниже.

Определить давление газа в:

  1. мм рт.ст.
  2. атм
  3. кПа

Показать раствор

Проверьте свои знания

Давление образца газа измеряется на уровне моря ртутным манометром с открытым концом, как показано ниже.

Определить давление газа в:

  1. мм рт.ст.
  2. атм
  3. кПа

Показать раствор

Попробуйте

  1. Давление образца газа измеряется на уровне моря манометром с закрытым концом. Жидкость в манометре – ртуть.

    Определить давление газа в:

    1. торр
    2. Па
    3. бар
  2. Давление пробы газа измеряется открытым манометром, частично показанным справа. Жидкость в манометре – ртуть.

    Предполагая, что атмосферное давление равно 29,92 дюйма ртутного столба, определите давление газа в:

    1. торр
    2. Па
    3. бар
  3. Давление образца газа измеряется на уровне моря ртутным манометром с открытым концом.

    Приняв атмосферное давление равным 760,0 мм рт. ст., определить давление газа в:

    1. мм рт.ст.
    2. атм
    3. кПа
  4. Давление образца газа измеряется на уровне моря ртутным манометром с открытым концом.

    Принимая атмосферное давление равным 760 мм ртутного столба, определить давление газа в:

    1. мм рт.ст.
    2. атм
    3. кПа

Показать выбранные решения

Измерение артериального давления

Артериальное давление измеряется с помощью устройства, называемого сфигмоманометром (греч. sphygmos = «пульс»). Он состоит из надувной манжеты для ограничения кровотока, манометра для измерения давления и метода определения момента начала кровотока и момента, когда он становится затрудненным (рис. 5). С момента своего изобретения в 1881 году он был незаменимым медицинским устройством. Существует много типов сфигмоманометров: ручные, для которых требуется стетоскоп и которые используются медицинскими работниками; ртутные, используемые, когда требуется наибольшая точность; менее точные механические; и цифровые, которые можно использовать с небольшой подготовкой, но которые имеют ограничения. При использовании сфигмоманометра манжету надевают на плечо и надувают до полной блокировки кровотока, затем медленно отпускают. Когда сердце бьется, кровь, проталкиваемая по артериям, вызывает повышение давления. Это повышение давления, при котором начинается кровоток, является систолическое давление— пиковое давление в сердечном цикле. Когда давление в манжете равно артериальному систолическому давлению, кровь течет мимо манжеты, создавая слышимые звуки, которые можно услышать с помощью стетоскопа. За этим следует снижение давления, поскольку желудочки сердца готовятся к следующему сокращению. По мере того как давление в манжете продолжает снижаться, в конце концов звук перестает быть слышимым; это диастолическое давление — самое низкое давление (фаза покоя) в сердечном цикле. Единицы артериального давления сфигмоманометра измеряются в миллиметрах ртутного столба (мм рт. ст.).

Рис. 5. (a) Медицинский техник готовится измерить артериальное давление пациента с помощью сфигмоманометра. (b) В типичном сфигмоманометре используется резиновая груша с клапаном для надувания манжеты и манометр с диафрагмой для измерения давления. (кредит: модификация работы старшего сержанта Джеффри Аллена)

Метеорология, климатология и наука об атмосфере

На протяжении веков люди наблюдали за облаками, ветрами и осадками, пытаясь распознать закономерности и сделать прогнозы: когда они лучше всего сажать и собирать урожай; безопасно ли отправляться в морское путешествие; и многое другое. Сейчас мы сталкиваемся со сложными проблемами, связанными с погодой и атмосферой, которые окажут серьезное влияние на нашу цивилизацию и экосистему. Несколько различных научных дисциплин используют химические принципы, чтобы помочь нам лучше понять погоду, атмосферу и климат. Это метеорология, климатология и наука об атмосфере. Метеорология изучает атмосферу, атмосферные явления и влияние атмосферы на погоду на Земле. Метеорологи стремятся понять и предсказать погоду в краткосрочной перспективе, что может спасти жизни и принести пользу экономике. Прогнозы погоды (рис. 6) являются результатом тысяч измерений атмосферного давления, температуры и т. д., которые компилируются, моделируются и анализируются в метеорологических центрах по всему миру.

Рисунок 6. Метеорологи используют карты погоды для описания и предсказания погоды. Области высокого (H) и низкого (L) давления оказывают большое влияние на погодные условия. Серые линии представляют места постоянного давления, известные как изобары. (кредит: модификация работы Национального управления океанических и атмосферных исследований)

С точки зрения погоды, системы низкого давления возникают, когда атмосферное давление на поверхности земли ниже, чем в окружающей среде: влажный воздух поднимается вверх и конденсируется, образуя облака. Движение влаги и воздуха в пределах различных погодных фронтов провоцирует большинство погодных явлений.

Атмосфера — это газовый слой, окружающий планету. Атмосфера Земли, толщина которой составляет примерно 100–125 км, состоит примерно из 78,1% азота и 21,0% кислорода, и ее можно разделить на области, показанные на рисунке 7: экзосфера (наиболее удаленная от Земли,> 700 км над уровнем моря) , термосфера (80–700 км), мезосфера (50–80 км), стратосфера (второй нижний уровень нашей атмосферы, 12–50 км над уровнем моря) и тропосфера (до 12 км над уровнем моря, примерно 80% земной атмосферы по массе и слой, в котором происходит большинство погодных явлений). По мере того, как вы поднимаетесь выше в тропосфере, плотность воздуха и температура уменьшаются.

Рис. 7. Атмосфера Земли состоит из пяти слоев: тропосферы, стратосферы, мезосферы, термосферы и экзосферы.

Климатология – это изучение климата, усредненных погодных условий за длительные периоды времени с использованием атмосферных данных. Однако климатологи изучают закономерности и эффекты, происходящие в течение десятилетий, столетий и тысячелетий, а не более короткие временные рамки часов, дней и недель, как метеорологи. Наука об атмосфере — еще более широкая область, объединяющая метеорологию, климатологию и другие научные дисциплины, изучающие атмосферу.

Ключевые понятия и резюме

Газы оказывают давление, которое представляет собой силу на единицу площади. Давление газа может быть выражено в единицах СИ паскаль или килопаскаль, а также во многих других единицах, включая торр, атмосферу и бар. Атмосферное давление измеряется с помощью барометра; другие давления газа могут быть измерены с использованием одного из нескольких типов манометров.

Ключевые уравнения
  • [латекс]P=\dfrac{F}{A}[/латекс]
  • [латекс]p = h\rho{g}[/латекс]

Попробуйте

  1. Почему острые ножи более эффективны, чем тупые (Подсказка: подумайте об определении давления)?
  2. Почему для некоторых небольших мостов установлены ограничения по весу, которые зависят от количества колес или осей транспортного средства, пересекающего их?
  3. Почему лучше кататься или ползти на животе, чем идти по тонко замерзшему пруду?
  4. Типичное атмосферное давление в Реддинге, штат Калифорния, составляет около 750 мм рт. Вычислите это давление в атм и кПа.
  5. Типичное атмосферное давление в Денвере, штат Колорадо, составляет 615 мм ртутного столба. Чему равно это давление в атмосферах и килопаскалях?
  6. Типичное атмосферное давление в Канзас-Сити составляет 740 торр. Чему равно это давление в атмосферах, миллиметрах ртутного столба и килопаскалях?
  7. Канадские манометры

  8. имеют маркировку в килопаскалях. Какое показание на таком манометре соответствует 32 фунтам на квадратный дюйм?
  9. Во время высадки «Викинга» на Марс атмосферное давление было определено в среднем около 6,50 миллибар (1 бар = 0,987 атм). Каково это давление в торр и кПа?
  10. Давление атмосферы на поверхность планеты Венера составляет около 88,8 атм. Сравните это давление в фунтах на квадратный дюйм с нормальным давлением на земле на уровне моря в фунтах на квадратный дюйм.
  11. В каталоге медицинской лаборатории давление в баллоне с газом указано как 14,82 МПа. Каково давление этого газа в атмосферах и торр?
  12. Рассмотрите этот сценарий и ответьте на следующие вопросы: В середине августа на северо-востоке США в местной газете появилась следующая информация: атмосферное давление на уровне моря 29,97 дюйма, 1013,9 мбар.
    1. Какое давление было в кПа?
    2. Давление у побережья на северо-востоке США обычно составляет около 30,0 дюймов ртутного столба. Во время урагана давление может упасть почти до 28,0 дюймов ртутного столба.