Содержание
Реверс двигателя 380V — чудо вилка с переключателем фаз, схема без пускателей.
Как заставить трехфазный двигатель вращаться в обратную сторону?
Элементарно, скажет любой электрик – достаточно поменять местами любые две фазы.
Если при этом движок установлен стационарно в каком-то определенном месте, то для этого дела, как правило, собирают специальный пост или шкаф управления с двумя пускателями.
Схемы выглядят следующим образом.
Схема электрическая принципиальная
Наглядная схема
А если вам вовсе не требуется такая громоздкая схема, потому что двигатель в принципе должен вращаться только в одну сторону, а перефазировка случилась из-за неправильных действий электриков энергопередающей компании?
Например, ее монтеры при ремонте кабельной линии тупо перепутали жилы в соединительной муфте или в щитовой ТП.
На схемах без закольцовок с тупиковыми КЛ проблемы такого “ремонта” как раз и ложатся на плечи всех потребителей, подключенных к данному фидеру.
Еще хуже дело обстоит с переносным или мобильным оборудованием, которое вы постоянно в течение дня перемещаете от одной щитовой к другой:
- компрессоры
- бетономешалки
- складская передвижная техника
- транспортерные ленты буртоукладчиков
- встроенные насосы на автоцистернах
А еще многим приходится часто запитывать оборудование от передвижного аварийного генератора.
При этом тоже не всегда совпадает фазировка.
Конечно, все это решаемо. Снимаете крышку брно, откручиваете гаечки и перекидываете два проводка.
Но есть выход гораздо проще. Когда не потребуются даже электрики, а всю работу по реверсу смогут проделать те же строители или непосредственно работники складов.
Промышленная вилка с реверсом
Речь идет о специальном промышленном трехфазном разъеме или вилке с переключателем фаз, где ручной реверс происходит буквально одним движением отвертки.
Вот так.
Рассчитана вилка на токи от 16А до 32А.
Подключаете через такой разъем двигатель, и если он крутится в неправильную сторону, выдергиваете вилку из розетки, поворачиваете фазы и запускаете движок заново в обратном направлении.
Быстро, удобно, безопасно и главное никаких пускателей и контакторов.
На больших стройках, где множество щитков с розетками разнообразных форматов, размеров и количеством полюсов, такая переноска-переходник просто незаменимая вещь.
Цена данной вилки конечно же кусается. Однако качественные промышленные разъемы от известных фирм стоят сопоставимых денег.
Для сравнения. Вот стоимость обычной 3-х фазной вилки (3P+N+E 16А):
А вот это специальный реверсный разъем (3P+N+E 32А):
Разница не такая уж и большая. При этом у китайцев на Алибаба эти вилки продаются буквально по 1 доллару (оптовые партии).
Но и качество контактов скорее всего там соответствующее.
Как это устроено?
Что же у нее внутри и как происходит такое переключение фаз?
На самом деле ничего хитрого там не спрятано, никаких подвижных ламелей или разъемных скользящих контактов (по типу пакетных переключателей).
Чтобы заглянуть внутрь, отщелкиваете боковую защелку и откручиваете “голову” разъема.
Как видите, реверс происходит чисто за счет проворачивания на 180 градусов круглой площадки, на которой закреплено два штыревых контакта.
Вот вилка немного другой конструкции от другого производителя, но принцип реверса и здесь аналогичный.
Само собой предусмотрена и защита от дурака. Проворачивать площадку можно только в одну сторону и обратно.
По круговой этого не сделаешь, иначе запросто можно завязать в косичку все провода.
Самое главное при подключении жил к вилке оставить небольшой запас и слабину, чтобы провода в дальнейшем спокойно крутились вокруг своей оси.
Кабель естественно должен быть гибким, провода многожильными.
Практически все электрические переноски из таких кабелей и делают.
С жестким моножильным кабелем типа ВВГ данный разъем долго не прослужит.
Схема реверса трехфазного двигателя
Трехфазные электродвигатели широко используются на многих объектах. В силу специфических условий эксплуатации, довольно часто возникает необходимость изменения направления вращения вала того или иного агрегата. Для этих целей лучше всего подходит стандартная схема реверса трехфазного двигателя, применяемая для открытия и закрытия гаражных ворот, обеспечения работы лифтов, погрузчиков, кран-балок и другого оборудования.
Содержание
Общая схема реверса электродвигателей
В промышленности и сельском хозяйстве нашли широкое применение различные типы трехфазных асинхронных электродвигателей. Они устанавливаются в электроприводах оборудования, служат составной частью автоматических устройств. Трехфазные агрегаты завоевали популярность, благодаря высокой надежности, простому обслуживанию и ремонту, возможности работы напрямую от сети переменного тока.
Специфика работы устройств, работающих с электродвигателями, предполагает необходимость изменения направления вращения вала, называемого реверсом. Для таких ситуаций разработаны специальные схемы, в состав которых включены дополнительные электрические приборы. Прежде всего, это вводный автомат, имеющий соответствующие параметры, контакторы (2 шт.), тепловое реле и элементы управления в виде трех кнопок, объединенных в общий кнопочный пост.
Для того чтобы вал начал вращаться в противоположную сторону, необходимо изменить расположение фаз подаваемого напряжения. Необходим постоянный контроль над значением напряжения, поступающего на электродвигатель и катушки контакторов. Непосредственное выполнение реверса в трехфазном двигателе осуществляется контакторами (КМ) № 1 и № 2. При срабатывании контактора № 1, фазы поступающего напряжения будут располагаться иначе, нежели при срабатывании контактора № 2.
Для управления катушками обоих контакторов предусмотрены три кнопки – ВПЕРЕД, НАЗАД и СТОП. Они обеспечивают питание катушек в зависимости от расположения фаз. Порядок включения контакторов влияет на замыкание электрической цепи таким образом, что вращение вала двигателя в каждом случае происходит строго в определенную сторону. Кнопку НАЗАД необходимо только нажать, но не удерживать, так как она сама оказывается в нужном положении под действием самоподхвата.
На всех трех кнопках установлена блокировка, предотвращающая их одновременное включение. Несоблюдение этого условия может привести к возникновению в электрической цепи короткого замыкания и выходу из строя оборудования. Для блокировки кнопок используется специальный блок-контакт, расположенный в соответствующем контакторе.
Схема реверса трехфазного двигателя и кнопочного поста
В каждой системе, обеспечивающей реверс трехфазного электродвигателя, имеются специфические кнопочные контакты, объединенные в общий кнопочный пост. Работа этой системы тесно связана с функционированием остальных элементов схемы.
Всем известно, что включение контактора магнитного пускателя осуществляется с помощью управляющего импульса, поступающего после нажатия на пусковую кнопку. Данная кнопка в первую очередь обеспечивает подачу напряжения на катушку управления.
Включенное состояние контактора удерживается и сохраняется, благодаря принципу самоподхвата. Он заключается в параллельном подключении (шунтировании) к пусковой кнопке вспомогательного контакта, обеспечивающего подачу напряжения на катушку. В связи с этим уже нет необходимости удерживать кнопку ПУСК в нажатом состоянии. Таким образом, магнитный пускатель может отключиться только после разрыва цепи катушки управления, поэтому в схеме необходима кнопка с размыкающим контактом. В связи этим, кнопки управления, объединенные в кнопочный пост, оборудуются двумя парами контактов – нормально открытыми (NO) и нормально закрытыми (NC).
Все кнопки выполнены в универсальном варианте для того, чтобы обеспечить моментальный реверс двигателя, если в этом возникнет срочная необходимость. Отключающая кнопка, в соответствии с общепринятыми нормами, имеет название СТОП и маркируется красным цветом. Кнопка включения известна как стартовая или пусковая, поэтому она именуется по-разному с помощью слов ПУСК, ВПЕРЕД или НАЗАД.
В некоторых случаях кнопочный пост может использоваться в нереверсивной схеме работы электродвигателя, когда его вал вращается лишь в одном направлении. Запуск производится кнопкой пуск, а остановка произойдет через определенный промежуток времени после нажатия кнопки СТОП, когда вал преодолеет инерцию. Подключение такой схемы может быть выполнено в двух вариантах, с помощью катушек управления на 220 и 380 вольт.
Во всех случаях перед подключением кнопочного поста составляется схема его монтажа. В первую очередь выполняется подключение контактора, при отсутствии напряжения на входном кабеле. Для непосредственного управления напряжение может сниматься с любой фазы, какая будет наиболее удобна для использования. Проводник, соединяемый с кнопкой СТОП, подключается совместно с проводом фазы к соответствующей клемме контактора. Во избежание путаницы, нормально разомкнутые контакты маркируются цифрами 1 и 2, а нормально замкнутые – цифрами 3 и 4.
По завершении монтажа в кнопочном посте устанавливается перемычка, затем подключается провод, соединяющий клемму 1 кнопки ПУСК и вывод катушки управления контактора.
Схема реверса трехфазного двигателя в однофазной сети
Довольно часто трехфазные электродвигатели используются в бытовых условиях и включаются в однофазную сеть. Для таких случаев предусмотрена реверсивная схема подключения электродвигателя в однофазной сети. Принцип действия такой схемы очень простой: для выполнения реверса используются конденсаторы, питание которых переключается между полюсами питающего напряжения. Управление схемой осуществляется кнопкой.
Поскольку питающее напряжение составляет 220 В, соединение обмоток двигателя будет выполнено звездой, а на клеммник подведено три вывода. На кнопке управления между клеммами устанавливается перемычка, после чего к одной из них подключается вывод конденсатора. Второй вывод конденсатора подключается к обмотке электродвигателя, не соединенной с сетью.
Реверсивная схема подключения электродвигателя
Система запуска асинхронного двигателя: устройство и принцип работы, схема,
Реверсивный пускатель: подключение и запуск, настройка реверса
Монтажная схема реверса асинхронного двигателя 380 вольт с отдельным блоком кнопок
Магнитный пускатель: назначение, устройство, схемы подключения
Как сделать схему для управления двигателем
Соединения выводов двигателя — базовое управление двигателем
Схемы
В трехфазных двигателях используются витки проволоки для создания магнитных полей и вращения.
Стандартные трехфазные двигатели используют шесть отдельных катушек, по две на каждую фазу. Внутренняя конструкция и соединение этих катушек внутри двигателя определяется при его изготовлении. Существует два класса трехфазных двигателей: звезда и треугольник.
Конфигурация «звезда» и «треугольник»
Трехфазные двигатели также рассчитаны на работу при двух разных напряжениях, поэтому катушки могут быть подключены как в высоковольтной, так и в низковольтной конфигурации.
В высоковольтной конфигурации две катушки каждой фазы соединены друг с другом таким образом, что более высокое значение напряжения питания распределяется поровну между ними, и через каждую обмотку проходит номинальный ток.
В низковольтной конфигурации две катушки каждой фазы соединены друг с другом таким образом, что более низкое значение напряжения питания распределяется поровну между катушками, и через каждую обмотку проходит номинальный ток.
Обратите внимание, что низковольтное соединение обязательно должно потреблять от источника в два раза больше тока, чем высоковольтное соединение. На паспортных табличках большинства двигателей указаны два значения напряжения и тока. Важно определить размеры и их размеры на основе ожидаемого значения тока, который должен потреблять двигатель при напряжении, при котором он используется.
Каждая из шести отдельных катушек имеет два питающих провода, всего двенадцать проводов. В конфигурациях «звезда» и «треугольник» три из этих проводов подключены внутри, поэтому из двигателя для подключения выводятся только девять проводов. Эти отведения пронумерованы от 1 до 9, и как в звезде, так и в треугольнике следуют стандартному соглашению о нумерации: начиная с верхней части схемы с провода номер 1, рисуйте нисходящую внутрь спираль от каждой точки соединения, восходя к следующему номеру на каждом шаге. .
В зависимости от внутренней конструкции двигателя эти провода могут быть подключены одним из четырех способов: Высоко- или низковольтная звезда, или высоко- или низковольтная треугольник
Иногда возникает необходимость протестировать или подтвердить конфигурацию двигателя перед окончательным подключением. Если двигатель с обмоткой звездой подключен как двигатель с обмоткой треугольником или наоборот, двигатель не будет работать должным образом.
Рассмотрим следующую ситуацию: у вас есть девять выводов, идущих от двигателя, но нет указаний на то, что он смотан звездой или треугольником. Используя для простой проверки непрерывности, вы можете определить тип конструкции двигателя.
При соединении по схеме «звезда» каждый из проводов 1, 2 и 3 должен иметь непрерывность только с одним другим проводом (4, 5 и 6 соответственно). Три провода без непрерывности к проводам 1, 2 и 3 должны иметь непрерывность друг с другом.
Соединения двигателя звездой
Если это треугольник, каждый из проводов 1, 2 и 3 должен иметь непрерывность с двумя другими проводами:
- T1 имеет непрерывность с T4 и T9
- T2 имеет преемственность с T5 и T7
- T3 имеет непрерывность с T6 и T8
Соединения двигателя треугольником
Важно отметить, что эти точки представляют собой внутреннее соединение катушек двигателя, а не то, как они должны быть подключены к напряжению.
Низковольтная звезда
В этой конфигурации каждая фаза подведена к двум катушкам, соединенным параллельно друг с другом. Клеммы 4, 5 и 6 соединены вместе для получения второго нейтрального соединения.
Низковольтное соединение звездой
L1 | Л2 | Л3 | Свяжите вместе |
1,7 | 2,8 | 3,9 | 4,5,6 |
Высоковольтная звезда
В этой конфигурации каждая фаза подведена к двум катушкам, соединенным последовательно друг с другом.
Высоковольтное соединение двигателя звездой.
L1 | Л2 | Л3 | Свяжите вместе |
1 | 2 | 3 | 4,7 – 5,8 – 6,9 |
Низковольтный треугольник
В этой конфигурации каждая фаза подводится к центральному соединению двух катушек и к концевым соединениям каждой из двух других групп катушек.
Низковольтное соединение двигателя Delta
L1 | Л2 | Л3 | Свяжите вместе |
1,6,7 | 2,4,8 | 3,5,9 | нет |
Треугольник высокого напряжения
В этой конфигурации каждая фаза подведена к двум катушкам, которые соединены последовательно с катушками других фаз.
Высоковольтное соединение двигателя Delta
L1 | Л2 | Л3 | Свяжите вместе |
1 | 2, | 3 | 4,7 – 5,8 – 6,9 |
Подключение трехфазного двигателя к однофазной и трехфазной сети
Из всех видов электроприводов наибольшее распространение получили асинхронные двигатели. Они неприхотливы в обслуживании, отсутствует щеточно-коллекторный узел. Если их не перегружать, не мочить и периодически обслуживать или менять подшипники, то он прослужит практически вечно. Но есть одна проблема — большинство асинхронных двигателей, которые можно купить на ближайшей барахолке, трехфазные, так как предназначены для использования на производстве. Несмотря на тенденцию перехода на трехфазное электроснабжение в нашей стране, подавляющее большинство домов по-прежнему с однофазным вводом. Поэтому давайте разберемся, как подключить трехфазный двигатель к однофазной и трехфазной сети.
- Что такое звезда и треугольник в электродвигателе
- Подключение к трехфазной сети
- Подключение к однофазной сети
Что такое звезда и треугольник в электродвигателе
Для начала разберемся, какие бывают схемы соединения обмоток. Известно, что односкоростной трехфазный асинхронный электродвигатель имеет три обмотки. Подключаются двумя способами, по схемам:
- звезда;
- треугольник.
Такие способы подключения характерны для любого типа трехфазной нагрузки, а не только для электродвигателей. Вот как они выглядят на схеме:
Питающие провода подключаются к клеммной колодке, которая находится в специальной коробке. Его называют брно или борно. Он выводит провода от обмоток и крепится к клеммникам. Сама коробка снимается с корпуса двигателя, как и расположенные в ней клеммники.
В зависимости от конструкции двигателя брно может иметь 3 провода, а может и 6 проводов. Если проводов 3, то обмотки уже соединены по схеме звезда или треугольник и при необходимости их нельзя быстро переключать, для этого нужно вскрывать корпус, искать соединение, разъединять его и делать изгибы.
Если в Брно 6 проводов, что встречается чаще, то в зависимости от характеристик двигателя и напряжения сети (см. ниже) можно соединить обмотки так, как считаете нужным. Ниже вы видите брно и клеммники, которые в нем установлены. Для 3-х проводного варианта в клеммной колодке будет 3 контакта, а для 6-ти проводного — 6 контактов.
Начало и концы обмоток соединяются со шпильками не просто «абы как» или «как удобно», а в строго определенном порядке, чтобы можно было соединить треугольник и звезду одним комплектом перемычек. То есть начало первой обмотки над концом третьей, начало второй обмотки над концом первой и начало третьей над концом второй.
Таким образом, если установить перемычки на нижние выводы клеммной колодки в линию, получится соединение обмотки звездой, а установив три перемычки вертикально параллельно друг другу — соединение треугольником. На «заводских» двигателях в качестве перемычек используются медные шины, что удобно использовать для подключения – не нужно гнуть провода.
Кстати, на крышках ответвлений электродвигателя часто нанесено расположение перемычек этих цепей.
Подключение к трехфазной сети
Теперь, когда мы разобрались, как связаны обмотки, давайте разберемся, как они подключаются к сети.
6-проводные двигатели позволяют переключать обмотки для различных напряжений питания. Так получили распространение электродвигатели с питающими напряжениями:
- 380/220;
- 660/380;
- 220/127.
Причем больше напряжение для схемы соединения звезда, а меньше для треугольника.
Дело в том, что не всегда трехфазная сеть имеет привычное напряжение 380В. Например, на кораблях есть сеть с изолированной нейтралью (без нуля) 220В, а в старых советских постройках первой половины прошлого века и сейчас иногда есть сеть 127/220В. Пока сеть с линейным напряжением 660В встречается редко, чаще в производстве.
О различиях фазного и линейного напряжения вы можете прочитать в соответствующей статье на нашем сайте: https://my.electricianexp.com/ru/linejnoe-i-faznoe-napryzhenie.html.
Итак, если вам необходимо подключить трехфазный электродвигатель к сети 380/220В, осмотрите его шильдик и найдите напряжение питания.
Электродвигатели на шильдике которых указано 380/220 к нашим сетям можно подключать только звездой. Если вместо 380/220 написано 660/380 — соедините обмотки треугольником. Если вам не повезло и у вас старенький двигатель 220/127, то либо понижающий трансформатор, либо однофазный тут нужен преобразователь частоты с трехфазным выходом (3х220). В противном случае подключить его к трем фазам 380/220 не получится.
Наихудший сценарий, когда номинальное напряжение трехпроводного двигателя с неизвестной цепью обмотки. В этом случае нужно вскрывать корпус и искать точку их соединения и, если возможно, и они соединены по схеме треугольника — переделывать в схему звезда.
С подключением обмоток разобрались, теперь поговорим о том, какие бывают схемы подключения трехфазного электродвигателя к сети 380В. Схемы показаны для контакторов с катушками на номинальное напряжение 380В, если у вас катушки на 220В — подключайте их между фазой и нулем, то есть второй провод на ноль, а не на фазу «В».
Электродвигатели почти всегда подключаются через магнитный выключатель (или контактор) Схему подключения без реверса и самоподхвата вы видите ниже. Он работает таким образом, что двигатель будет вращаться только при нажатии кнопки на панели управления. При этом кнопка выбирается без фиксации, т.е. замыкает или размыкает контакты при удержании нажатыми, как те, что используются в клавиатурах, мышах и дверных звонках.
Принцип работы данной схемы: при нажатии кнопки «ПУСК» через катушку контактора КМ-1 начинает протекать ток, в результате якорь контактора притягивается и силовые контакты контактора КМ-1 закрываются, двигатель начинает работать. Когда вы отпустите кнопку СТАРТ, двигатель остановится. QF-1 представляет собой автоматический выключатель, обесточивающий как силовую цепь, так и цепь управления.
Если вам нужно, чтобы вы нажали на кнопку и вал начал вращаться — вместо кнопки поставьте тумблер или кнопку с защёлкой, то есть контакты которой после нажатия остаются замкнутыми или разомкнутыми до следующего нажатия.
Но делают это нечасто. Чаще электродвигатели запускаются с пультов с кнопками без фиксации. Поэтому к предыдущей схеме добавляется еще один элемент — контактная колодка пускателя (или контактора), включенная параллельно кнопке «ПУСК». Такую схему можно использовать для подключения электровентиляторов, вытяжек, станков и любого другого оборудования, механизмы которого вращаются только в одну сторону.
Принцип работы схемы:
При включении автоматического выключателя QF-1 на силовых контактах контактора и цепи управления появляется напряжение. Кнопка СТОП нормально замкнута, т.е. ее контакты размыкаются при нажатии на нее. Через «СТОП» подается напряжение на нормально разомкнутую кнопку «СТАРТ», контакт блока, и в конечном счете катушку, поэтому при ее нажатии происходит цепь управления катушкой будет обесточена и контактор выключится.
На практике в кнопочном посте каждая кнопка имеет нормально разомкнутую и нормально замкнутую пару контактов, выводы которых расположены с разных сторон кнопки (см. фото ниже).
При нажатии кнопки «СТАРТ» через катушку контактора или пускателя КМ-1 (на современных контакторах обозначается как А1 и А2) начинает протекать ток, в результате чего его якорь притягивается и мощность контакты КМ-1 замкнуты. КМ-1.1 — нормально разомкнутый (НО) блок-контакт контактора, при подаче напряжения на катушку замыкается одновременно с силовыми контактами и шунтирует кнопку «СТАРТ».
После отпускания кнопки «ПУСК» двигатель продолжит работу, так как ток на катушку контактора теперь подается через контакт блока КМ-1.1.
Это называется «самоблокирующийся».
Основная трудность, которая возникает у новичков в понимании этой базовой схемы, заключается в том, что не сразу становится понятно, что пост кнопки находится в одном месте, а контакторы в другом. При этом КМ-1.1, подключаемый параллельно кнопке «СТАРТ», реально может находиться в пределах десятка метров.
Если вам необходимо, чтобы вал двигателя вращался в обе стороны, например, на лебедке или другом грузоподъемном механизме, а также на различных станках (токарных и др.) — используйте схему подключения трехфазного двигателя с реверсом .
Кстати, эту схему часто называют «схемой обратного стартера».
Реверсивные схемы подключения представляют собой две нереверсивные схемы подключения с некоторыми изменениями. КМ-1.2 и КМ-2.2 — нормально замкнутые (НЗ) блок-контакты контакторов. Они включены в цепь управления катушкой встречного контактора, это так называемая «защита от дурака», она нужна для того, чтобы не произошло межфазного замыкания в силовой цепи.
Между кнопкой «ВПЕРЕД» или «НАЗАД» (назначение их то же, что и в предыдущей схеме для «СТАРТ») и катушкой первого контактора (КМ-1) нормально-замкнутый (НЗ) блок-контакт подключен второй контактор (КМ-2). Таким образом, при включении КМ-2 нормально-замкнутый контакт соответственно размыкается и КМ-1 не включится, даже если нажать «ВПЕРЕД».
Наоборот, НК от КМ-2 устанавливается в цепи управления КМ-1, для предотвращения их одновременного включения.
Для запуска двигателя в обратном направлении, то есть для включения второго контактора, необходимо отключить существующий контактор. Для этого необходимо нажать кнопку СТОП, при этом цепь управления двумя контакторами обесточивается, а после этого нажать кнопку пуска в обратном направлении вращения.
Это необходимо для предотвращения короткого замыкания в цепи питания. Обратите внимание на левую часть схемы, отличия в подключении силовых контактов КМ-1 и КМ-2 заключаются в порядке подключения фаз. Как известно, для изменения направления вращения асинхронного двигателя (реверс) нужно поменять местами 2 из 3-х фаз (любых), здесь фазы 1 и 3 перепутаны местами.
В остальном работа схемы аналогична предыдущей.
Кстати, на советских пускателях и контакторах были совмещенные блочные контакты, т.е. один из них был замкнутым, а второй разомкнутым, в большинстве современных контакторов необходимо установить сверху приставку блочного контакта, в которой есть 2-4 пары дополнительных контактов как раз для этих целей.
Подключение к однофазной сети
Для подключения трехфазного электродвигателя 380В к однофазной сети 220В чаще всего применяют схему фазосдвигающие конденсаторы (пусковые и рабочие). Без конденсаторов двигатель может запуститься, но только без нагрузки, а его вал при запуске придется раскручивать вручную.
Проблема в том, что для работы АД нужно вращающееся магнитное поле, которое невозможно получить от однофазной сети без дополнительных элементов. Но подключив одну из обмоток через дроссель, можно сдвинуть фазу напряжения на -90˚, а с помощью конденсатора +90˚ относительно фазы в сети. Подробнее вопрос сдвига фаз рассмотрен в статье: https://my.electricianexp.com/ru/chto-takoe-aktivnaya-reaktivnaya-i-polnaya-moshhnost.html.
Чаще всего для сдвига фаз используются именно конденсаторы, а не дроссели. Таким образом, он не вращающийся, а эллиптический. В результате вы теряете примерно половину мощности от номинальной. Однофазные АД лучше работают при таком включении, в связи с тем, что их обмотки изначально рассчитаны и расположены на статоре для такого включения.
Типовые схемы подключения двигателей без реверса для схем звезда или треугольник показаны ниже.
Резистор на схеме ниже нужен для разряда конденсаторов, т.к. после отключения питания на его выводах останется напряжение и вас может ударить током.
Емкость конденсатора для подключения трехфазного двигателя к однофазной сети можно выбрать на основании приведенной ниже таблицы. Если вы наблюдаете сложный и затяжной запуск, вам часто требуется увеличить пусковую (а иногда и рабочую) мощность.
Или посчитайте по формулам:
Если двигатель мощный или запускается под нагрузкой (например, в компрессоре), необходимо подключить пусковой конденсатор.
Для упрощения включения вместо кнопки «РАЗГОН» использовать «ПНВС». Это кнопка запуска двигателей с пусковым конденсатором. У нее три контакта, к двум из них подключаются фаза и ноль, а через третий — пусковой конденсатор. На передней панели две клавиши – «СТАРТ» и «СТОП» (как на станках АП-50).
При включении двигателя и нажатии первой клавиши до упора замыкаются три контакта, после раскрутки двигателя и отпускании «ПУСК» средний контакт размыкается, а два крайних контакта остаются замкнутыми, пусковой конденсатор удаляется из цепи. При нажатии кнопки STOP все контакты размыкаются. Схема подключения практически такая же.
Подробно о том, что такое и как правильно подключить ПНВС, вы можете посмотреть в следующем видео:
youtube.com/embed/K4-n5NS0TYM» allowfullscreen=»allowfullscreen»>
Схема подключения электродвигателя 380В к однофазной сети 220В с реверсом показана ниже. Переключатель SA1 отвечает за реверс.
Обмотки двигателя 380/220 соединены треугольником, а у двигателей 220/127 звездой, так чтобы напряжение питания (220 вольт) соответствовало номинальному напряжению обмоток. Если вывода всего три, а не шесть, то поменять схемы подключения обмоток без вскрытия не получится. Здесь есть два варианта:
- Номинальное напряжение 3×220В — вам повезло, используйте приведенные выше схемы.
- Номинальное напряжение 3х380В — вам повезло меньше, так как двигатель может плохо запуститься или вообще не запуститься, если вы подключите его к сети 220В, но попробовать стоит, наверняка получится!
А вот при подключении электродвигателя 380В к 1 фазе 220В через конденсаторы возникает одна большая проблема — потеря мощности. Они могут достигать 40-50%.