Содержание

Авиационные ДВС. Эволюция : The Russian Engineering.


Начало пути


Авиационное двигателестроение началось в начале прошлого века. И зачинателями моды стали ротативные двигатели. Это звездообразные двигатели воздушного охлаждения. Охлаждению на малых скоростях полёта, типичных для авиации того времени, способствовало вращение цилиндров с картером относительно неподвижно закреплённого на моторной раме коленчатого вала. Почти всю Первую Мировую Войну такие двигатели превосходили по удельной массе двигатели водяного охлаждения, поэтому на большинстве истребителей и разведчиков стояли эти моторы.


У ротативных двигателей были крупные недостатки, главным из которых была практическая невозможность достижения мощности более 100 – 130 л.с. Препятствием служили трудности с увеличением размера и числа цилиндров, увеличением нагрузки от центробежных сил и гироскопического момента на картер при увеличении частоты или компоновке второго ряда цилиндров, большие потери мощности на вращение оребрённых цилиндров. Ротативные двигатели страдали очень большим расходом масла. Это было связано с тем, что откачать масло из вращающегося картера было невозможно и оно буквально вылетало в трубу.


Проблемы с ротативными двигателями привели к тому, что к концу ПМВ самыми популярными стали двигатели с водяным охлаждением. Которые хоть и не победили ротативных по удельной массе, но по мощности превзошли в несколько раз.


«Жидкий» или «воздушный»?


Как известно, в двигателестроении в период Второй Мировой Войны прижились два типа двигателей. Рядные, чаще всего V-образные, двигатели жидкостного охлаждения и звездообразные двигатели воздушного охлаждения. Каждый из этих типов двигателей имеет свои достоинства и недостатки. Конкуренция между двумя типами двигателей на протяжении всей их истории весьма занимательна.

Так «воздушники» проще конструктивно (нет рубашки охлаждения). Поэтому они дешевле в производстве, проще в обслуживании, надёжнее. Так же из-за воздушного охлаждения живучее. У «жидкостника» температура охлаждающей жидкости ограничена точкой кипения. И потому для отвода еденицы тепла через радиатор требуется больший объём воздуха, чем для отвода еденицы тепла от «воздушника». Ибо температура головок цилиндров «воздушника» раза в два выше, чем температура водорадиатора у «жидкостника».


«Жидкостники» имеют другие достоинства. Малый мидель даёт плюс в аэродинамике; из-за острого носа и потенциальной возможности применения мотор-пушки улучшается компоновка фюзеляжного вооружения. В минус «воздушникам» в 20-е гг. была и неотработка капотировки. Верхом аэродинамики считалось кольцо Таунеда.


При равной литровой мощности, из-за присутствия рубашки охлаждения и охлаждающей жидкости, «жидкостник» будет тяжелее воздушника. И самолёт с «воздушником» будет легче. Для манёвренных самолётов, и в горизонтальной и в вертикальных плоскостях, были оптимальней «воздушники», для скоростных «жидкостники».


Так что каждый из типов двигателей имеет свои достоинства, объясняющие их разнообраное применение. Пока моторы были слабомощные, в истребительной авиации на первое место выходил их вес. Поэтому в 30-е годы моторостроение вступило с большим распространением «воздушников». Тут правда сыграла и простота их производства.


Расцвет «жидкостников»


В начале 30-х годов «жидкостники» сделали резкий скачок. А всему виной было принудительное охлаждение, позволяющее форсировать двигатель. Жидкостное охлаждение позволяло хорошо отводить тепло от двигателя. Двухрядные «воздушники» же столкнулись с проблемами отвода тепла от задней кромки поршней второго ряда. Сначала «жидкостники» обогнали «воздушников» в литровой мощности. А затем в удельной массе!


    Рассмотрим на примерах.

  • Испано-Сюиза 12Ybrs: мощность — 860 л.с., сухой вес — 470кг.
  • Райт «Циклон» R-1820-F3: мощность — 625 л. с., сухой вес — 435 кг.
  • Гном-Рон «Мистраль-Мажор» 14Kdrs: мощность — 850 л.с., сухой вес — 600 кг.

Правда надо учесть, что даётся сухой вес моторов. У жидкостников система охлаждения может прибавлять до 10% веса мотора. И если однорядные звёзды впряглись в гонку с «жидкостниками», то двухрядные звёзды резко просели.


Пока двигатели были слабосильными, а скорости самолётов относительно небольшими, вес мотора играл значительную роль. Так И-16 с «Циклоном» ещё выигрывал в Испании у Bf-109B. Но развязка наступала неизбежно. Во второй половине 30-х моторостроение сделало ещё один шаг и И-16 стало уже проблематично противостоять мессеру с DB-600.


Но не только увеличение мощности сыграло свою роль. Резкий скачок сделала и аэродинамика водорадиаторов. Водорадиаторы мигрировали в туннели. Туннели стали утапливаться в фюзеляж и крылья. Применение этиленгликоля и воды под давлением позволило уменьшить площадь водорадиаторов на 40-50% (и вес охлаждающей жидкости).


Неизбежно в моду вошли истребители с моторами жидкостного охлаждения. Мессершмитт и Спитфайр были первыми. За ними потянулись другие. СССР, Франция, США тут же бросились догонять Германию и Англию. Лишь Италия и Япония остались возиться с «воздушниками». Ибо… так и не сумели создать отечественный мотор жидкостного охлаждения, а с лицензионным производством чужого опоздали.


Но «воздушники» не исчезли. У них оставались определённые преимущества и они нашли свою нишу. Живучесть и надёжность позволила им закрепиться в бомбардировочной и штурмовой авиации. Из-за эксплуатационных преимуществ авианосная авиация США продолжала использовать только «воздушники». До следующего хода надо было подождать несколько лет… К тому же у набравших ход «жидкостников» был скрытый порог – малый литраж. Малый объём цилиндра позволял легче бороться с тепловым режимом и быстрее доводить двигатель. Но за высокие удельные характеристики пришлось заплатить малой мощностью.


Звёзды наносят ответный удар


Но в начале 40-х всё опять переменилось. И имя этим переменам было — мощные двухрядные звёзды.


К этому времени удалось справиться с тепловым режимом двухрядных звёзд. Справлялись с этим по разному. Раздвигали ряды звёзд, что выводило второй ряд из затенения первым, увеличивали мидель двигателя, вводили принудительное охлаждение вентилятором, увеличивали объём маслорадиатора (у «воздушников» бОльшая теплоотдача в масло), увеличивали оребрение цилиндров и оптимальнее подгоняли дефлекторы. Но так или иначе мощные звёзды получились во многих странах на этом рубеже. Решение теплового режима позволило звёздам если не сравняться, так догнать, сократить отставание от «жидкостников» в удельной массе. Хотя «жидкостники» и сохранили преимущество по запасу форсирования.


Но главным преимуществом звёзд была мощность. Что решилось банальным преимуществом в литраже — звёзды были просто объёмнее. Увеличить литраж двигателя без увеличение миделя позволил бывший «порок» — второй ряд поршней. Так М-105П выигрывал по удельной мощности у М-82А. Но Ла-5 c М-82А, выигрывал y ЛаГГ-3 c М-105П, даже несмотря на убогую аэродинамику!


Малолитражные «жидкостники» с этим смириться не могли и уже давно (заранее) бросились догонять. Самым простым решением было спарить два двигателя на один редуктор. Решение оказалось слишком сложным и потому тупиковым. Ни у кого так и не получилось.


Более продуктивным было собрать несколько блоков цилиндров на один коленвал (Н- и Х-образные двигатели). Но такой многоцилиндровый двигатель тоже получался слишком сложным и ненадёжным. И получился только у англичан! Тот самый Сейбр. За конструктивную сложность пришлось заплатить малым ресурсом. К тому же при таком решении «жидкостник» терял своё преимущество — малый мидель. Так что как только англичане довели свой мощный «воздушник» — Центариус, о Сейбре благополучно забыли.


Но не только одной мощностью брали «воздушники». Удалось улучшить аэродинамику звёзд за счёт исследований по капотам (капоты NACA) и применением длинного носка картера. На фоне таких успехов происходит реинкарнация истребителей с моторами воздушного охлаждение. Ла-5, ФВ-190, Р-47 и проч.


Возвращение «джыдая».




Отыграться «жидкостникам» удалось в самом конце Второй Мировой Войны. За увеличение литража стали бороться другим путём. Увеличили объём имеющихся 12-ти цилиндров путём увеличение площади поршня. В разным странах примерно синхронно появились «большие горшки»: АМ-42, Гриффон, DB-603, Юмо-213.


Но появились эти двигатели поздновато, когда решающие воздушные сражения уже отыграли и шло уже добивание противника. И применение этих двигателей на имеющимся фоне любым из противников никак не меняло баланс сил. Припозднились.


К концу войны вдруг выяснилось, что увеличение мощности моторов приводит не к уменьшению, как раньше, а к увеличению удельной массы моторов. Форсаж не может продолжаться до бесконечности. В конце концов увеличение нагрузок на детали моторов привело к их усилениям, уже не компенсирующимся возрастанием мощности. Маятник качнулся назад…


Раскрутить и поделить…


Одним из простых способов увеличения мощности двигателя при сохранении его объёма, является повышение числа оборотов коленчатого вала. Например: мотор М-11 изначально при Частоте вращения коленчатого вала, 1650 об/мин достигал мощности 110 л.с.; после модернизации, Частота вращения поднялась до 1950 об/мин, а Мощность, до 180 л.с., т.е. Литровая мощность повысилась в 1,5 раза!


Онако, на пути увеличения мощности двигателя за счёт повышения числа оборотов коленчатого вала, встало снижение КПД Винто-Моторной Группы и пришлось применить понижающий редуктор, позволяющий оптимально подбирать характеристики пропеллеров в зависимости от назначения самолётов. Для ДВС с водянным охлаждением применение редуктора привело к смещению оси пропеллера ближе к центру двигателя, что позволило улучшить аэродинамику и разместить пушку в развале цилиндров для V-образных двигателей — как например ВК-105 на Яке.


Другая серьёзная проблема «раскрутки» двигателя — это повышение динамической нагрузки на кривошипно-шатунную группу и газораспределительный механизм, и как следствие — снижение эксплутационного ресурса мотора, что вынуждает применять более прочные материалы и усиливать его конструкцию.







Понагнетаем…


Высотность моторов во Второй Мировой Войне оставалась краеугольным камнем боевого применения самолётов. Различные задачи перед авиацией требуют различных высот применения. В 20-е гг. проблему пытались решить путём создание т.н. «переразмеренных» моторов. В чём их сущность? Обычный маловысотный двигатель рассчитывается на выдачу максимальной мощности у земли. С ростом высоты, в связи с падением плотности воздуха, его мощность будет понижаться. Получается, что на высоте он излишне прочен. Можно сделать двигатель, рассчитанный на выдачу мощности на высоте. А что бы такой мотор не сломался из-за избыточной мощности у земли, подачу топлива на малой высоте ограничим.


В 30-е гг. на смену пришли нагнетатели. Т.н. ПЦН – приводной центробежный нагнетатель, мощность на работу которого отбиралась от двигателя. Нагнетатели позволяли не только поднять высотность двигателя, но и осуществить его форсирование. Как никак за единицу времени в цилиндр попадал больший заряд смеси. Правда без ложки дёгтя ничего не бывает. Экономичность таких моторов, по сравнению с атмосферными, снизилась. Сказались потеря мощности на привод нагнетателя, потери газа на трение в коллекторе двигателя, увеличение температуры смеси из-за сжатие газа в нагнетателе, а отсюда и работа на более богатой смеси для компенсации возросшей температуры.


Но остался вопрос с расчётной высотой для такого двигателя. Чем больше мощности передать от двигателя к ПЦН, тем большую работу нагнетатель выполнит, и тем выше будет расчётная высота двигателя. Но т.к. двигатель рассчитан на определённую степень форсирования, то до расчётной высоты давление наддува будет избыточным. Решается проблема дросселированием ПЦН. А раз передача мощности от двигателя к нагнетателю постоянна, то на высотах меньше расчётной, эта мощность будет пропадать в туне. Т.е. более высотный двигатель на малых высотах будет проигрывать менее высотному, ибо у последнего на привод нагнетателя тратится меньше мощности.

Проблему узкой заточенности под высоты двигателей с ПЦН конечно начали решать. Самым простым средством стало применение многоскоростных ПЦН. Сначала двухскоростных, а затем трёхскоростных.


Шагом вперед стало применение двухступенчатых нагнетателей. В таком нагнетателе две крыльчатки находятся друг за другом. Это решение позволило поднять высотность моторов, одновременно «срезав» провал мощности между двумя скоростями нагнетателя. Но и это решение оказалось не без отрицательных сторон. КПД двухступенчатого ПЦН стало ниже одноступенчатого (сказались потери мощности на привод второй ступени, нагрев газа из-за большого сжатия в нагнетателе). Что в основном выражалось в повышенном расходе топлива.


Другим направлением разработок являлись турбокомпрессоры. Главным отличием ТК от ПЦН является привод не от двигателя, а использование «дармовой» энергии выхлопных газов. Выхлоп по трубам попадает в турбину, сообщая ей свою энергию, а уже турбина осуществляет привод нагнетателя. Плюсов – куча. Прыгает вверх экономичность такой установки, повышается высотность мотора, исчезают «изломы» мощности по высоте двигателей с ПЦН. Но и минусов оказалось не мало, что обусловило доводку ТК до серии только в одной стране – США.


Необходимым условием удовлетворительного функционирования ТК являлись жаропрочные сплавы и высокооборотные подшипники. Но и это не всё. Серийные образцы имели одну особенность: от двигателя до ТК шла длинная жаропрочная труба, где газы охлаждались, а далее сам ТК оказывался немалых размеров. Данный факт выливался в большую массу и габариты установки. Что бомбардировщикам было сносно, но истребителям резко уже не оптимально. И если истребителя с ТК выигрывали у своих оппонентов с ПЦН на больших высотах, то на средних и малых высотах проигрывали из-за явного перетяжеления конструкции. Практика показала, что для высотного истребителя двухступенчатый ПЦН всё таки лучше. Стоит упомянуть ещё одну особенность ТК. В процессе эксплуатации оказалось, что на малых оборотах давления газов не хватает для штатного функционирования ТК. И двигатели часто глохнут. Выходом стало применение связки ПЦН-ТК, т.н. комбинированный наддув. Низковысотный ПЦН сообщал так нехватаемый наддув на низких оборотах.


Напоследок в этой теме стоит упомянуть о промежуточном охлаждении смеси за ПЦН. У высотных двигателей работа, осуществляемая нагнетателем над газом, настолько велика, что смесь весьма сильно нагревается. И по закону термодинамики расширяется, приводя к уменьшению заряда, попадаемого в цилиндры. Выходом стало применение промежуточного радиатора, охлаждающего смесь перед попаданием в двигатель. Но этот шаг приводит к увеличению аэродинамического сопротивления. Что выгодно только для высотных двигателей.


А как же дизели?


Во ВМВ дизели не завоевали особой славы. Но перед войной разработки широко велись во многих странах. Дизели фирм Паккард, Юнкерс, Клерже, Бристоль тому пример. Почему же тратилось столько труда? Перед карбюраторными моторами дизель имеет ряд преимуществ. Благодаря высокому КПД, дизель очень экономичен. Благодаря впрыску, дизель сохраняет номинальную мощность на более бедной смеси. И потому меньше теряет мощность с высотой. А бОльший крутящий момент позволяет лучше переносить изменение нагрузки и дольше сохранять неизменные обороты или угол атаки лопастей пропеллера.


Но имеется у дизелей один недостаток. Большая степень сжатия вынуждает делать более прочный, но потому и более тяжёлый мотор. Проигрыш перед карбюраторными в удельных параметрах становится уж больно большой. Но это ещё пол беды. Избыток в весе авиадизеля перекрывается экономией топлива через 2-3 часа полёта. Главная беда заключалась в увеличенных сроках доводки мотора в связи с большой сложностью конструкции. На момент доводки дизеля, он был уже никому не нужен из-за своих слабых удельных параметров и малой мощности.


Потому и получились серийные дизели, нашедшие применение на самолётах, только в двух странах. В Германии и СССР. Немцы пошли по пути доводки ресурса и получили надёжные, но маломощные авиадизели Юмо. Мы сделали ставку на высокие удельные параметры и мощность. Получив по циферкам неплохие, но ненадёжные дизели Чаромского и Яковлева. После войны наработки по авиадизелям нашли применение в танкостроении и на флоте.


Однако, дизелезация авиации всё-таки значительно повлияла на развитие авиационных ДВС. Это выразилось в применении впрыска топлива и повышении степени сжатия в камере сгорания с 5 до 7-9 единиц.



Впрыскнем разок, впрыскнем другой…


В инжекторной системе впрыск топлива в воздушный поток осуществляется специальными форсунками (инжектор — форсунка), расположенными либо на месте карбюратора (во впускном коллекторе) — «моновпрыск», либо недалеко от впускного клапана каждого цилиндра (как правило, конструктивно во впускном коллекторе) — «распределённый впрыск» (он же многоточечный «коллекторный»), либо в головке цилиндров, и впрыск происходит в камеру сгорания — «прямой впрыск».


К форсункам топливо подаётся под давлением, а количество впрыснутого топлива при этом определяется механическими устройствами управления. В наиболее общем случае идея управления таким впрыском заключается в дозировании количества топлива специальным клапаном. Клапан же, в свою очередь, управляется через систему рычагов воздушным потоком, воздействующим на легкую «тарелочку», стоящую на пути потока. В настоящее время впрыски с механическим управлением практически вытеснены впрысками с управлением электронным.


Основные достоинства инжекторных двигателей по сравнению с карбюраторными: уменьшенный расход топлива, улучшенная динамика разгона, уменьшение выбросов вредных веществ, стабильность работы. Первый мотор со впрыском был изготовлен в России в 1916 году Микулиным и Стечкиным. Это был первый авиационный двигатель, перешагнувший 300-сильный рубеж..


Впервые массово была применена во вторую мировую войну в основном на истребителях воюющих стран, как удобная альтернатива карбюраторной системе, т. к. инжекционной системе впрыска в силу конструкции безразлично рабочее положение( вверх ногами или как обычно). Карбюраторные системы для работы под углом к горизонту необходимо дополнять множеством устройств, либо применять специально спроектированные карбюраторы. Однако судьба систем была разной. Японская система на истребителях «Зеро» требовала промывки после каждого полета, и поэтому не пользовалась популярностью в войсках. Русская же система впервые была применена на двигателе АШ-82 (для истребителей Ла-5). Мотор со впрыском — АШ-82ФН оказался настолько удачным, что выпускалcя еще долгие десятилетия, использовался на вертолете Ми-4 и до сих пор используется на самолетах Ил-14.


Форсаж? Форсаж. Форсаж!


Работа авиационного мотора проходит большую часть жизни далеко не на максимальных режимах. Режимов много и они предназначены для разных задач. Когда нужна максимальная дальность, когда максимальная мощность на взлёте.


Главным режимом является номинальный. Все остальные режимы двигателя отсчитываются от номинального в процентах. Режимы меньше номинального называются крейсерскими, а больше номинального, форсажными. На форсажных режимах ресурс двигателя уменьшается, а на крейсерских увеличивается. На форсажных режимах применяется богатый состав смеси что бы отодвинуть границу детонации при увеличившемся наддуве и облегчить тепловой режим двигателя. На крейсерских режимах применяется бедный состав смеси, что бы увеличить экономичность двигателя.



Рассмотрим режимы работы двигателя.

  • На номинальном режиме двигатель должен работать около 40-50% общего срока службы периодами непрерывной работы не больше часа.
  • Взлётный режим применяется естественно при взлёте. Взлётная мощность достигается увеличением наддува и оборотов. Мощность двигателя на этом режиме составляет 110-120% от номинальной, а иногда и больше. На взлётном режиме двигатель должен работать не более 5% общего срока службы периодами непрерывной работы не более 5 мин. Ограничение вызвано недостаточным охлаждением двигателя на малой скорости.
  • Боевой режим применяется естественно в бою. И, как и взлётный, достигается увеличением наддува и оборотов. Мощность на таком режиме примерно равна взлётной мощности. На этом режиме двигатель должен работать не более 15-25% общего срока службы периодами непрерывной работы не более 10-15 мин.
  • Чрезвычайный режим применяется, естественно, в чрезвычайных ситуациях. Когда требуется от кого-то убежать или кого-то догнать. Мощность на этом режиме достигает 130-160% от номинальной мощности. И в основном достигается увеличением наддува. Тепловые и механические нагрузки на двигатель при таком режиме настолько велики, что его применение ограничивается рядом условий, а само применение ведёт к уменьшению ресурса. На этом режиме двигатель должен работать не более 3% общего срока службы периодами непрерывной работы не более 1-5 мин.

Сами форсажные режимы получили наибольшее распространении в период Второй Мировой Войны и в основном на истребителях. Гонка за мощностью привела к применению высокооктанового топлива (позволяющего отодвинуть границу детонации) и форсажных жидкостей.


Одну группу форсажных жидкостей составляют вода и водоспиртовые смеси. Эти жидкости обеспечивают интенсивное охлаждение горючей смеси. Плюсом является увеличение заряда, попадающего в цилиндры двигателя, сдвигом границы детонации и охлаждение самого двигателя. Эта группа применяется для форсирования на малых высотах.


Вторую группу составляет закись азота. Плюсом закиси азота является принос в цилиндры двигателя «халявного» кислорода, которого так нахватает на больших высотах. Естественно закись азота применяется для форсирования на больших высотах. Минусами всех этих жидкостей является их вес и снижение ресурса двигателя.












После Второй Мировой войны…


Мощнейшую конкуренцию после войны двигателям внутреннего сгорания составили Турбо-Реактивные Двигатели. Проигрыш по удельным параметрам и КПД Винто-Моторной Группы на трансзвуке был непоправим. Двигатели внутреннего сгорания сохранились только для задач, связанных с дальностью. Ибо по КПД, а следовательно экономичности, выигрывали у ТРД почти в два раза.


В это время происходит развитие мощных многорядных воздушного и многоблочных жидкостного охлаждение моторов. Эволюция термодинамических процессов и нагрузки у этого типа моторов привела к тому, что «жидкостники» и «воздушники» сравнялись практически по своим параметрам. Так же эти моторы отличала т.н. «комбинированная схема», когда энергия выхлопных газов тратится ещё и на вращение турбины, мощность которой передаётся на вал мотора.


Но в 50-е с развитием Турбо-Винтовых Двигателей и Турбо-Реактивных Двигателей нового поколения и барьер экономичности тоже рухнул. Двигатели внутреннего сгорания ждала только лёгкая (и сверхлёгкая) авиация, где большим тепловым режимом в связи с малыми мощностями и не пахло. И «жидкостники» окончательно вымерли. Звёзды же остались в основном в спортивной авиации, в основной массе потеснённые рядными и оппозитными двигателями воздушного охлаждения. Правда в последнее время в сверхлёгкую авиацию стали возвращаться дизеля, но уже «автомобильного» происхождения.


Современные четырёхтактники достигли своего «физического» эволюционного предела и давно уже конструктивно не развиваются. Эволюция «чистых» ДВС завершилась. Наступает Эра комбинированных силовых установок, совмещающих преимущества ДВС и других двигателей, что обещает значительное повышение КПД.


Послесловие


Трагическое противостояние развитых технических цивилизаций во Второй Мировой войне послужило «катализатором» бурного развития военной техники и прежде всего авиации, которая в свою очередь крайне нуждалась в мощных, компактных и надёжных двигателях, создаваемых «на грани» существующих в то время технологий. Ресурс высокофорсированных двигателей был зачастую весьма ограничен и рассчитан всего на несколько вылетов, что впрочем в условиях «мировой бойни» вполне устраивало военных.


Другим путём пошло развитие автомобильного двигателестроения, где важнее всего были низкая стоимость массового производства и эксплуатации, ресурс и ремонтопригодность, дешёвые и доступные сорта топлива и масел. Тем не менее, хоть и с отставанием в 50 лет, но автомобильное двигателестроение, с точностью повторило путь развития авиационных ДВС и в конце концов упёрлость в тот-же эволюционный тупик….


Не верите?! Давайте тогда перечислим последние «достижения» автомобильного двигателестроения:


  • Многоступенчатые турбонагнетатели с промежуточным охлаждением воздуха.
  • т.н. «комбинированная схема», когда энергия выхлопных газов тратится ещё и на вращение турбины, мощность которой передаётся на вал мотора (турбокомпауд).
  • Степень сжатия доведённая до 9 единиц и применение 100 октановых бензинов
  • Повышение числа оборотов коленчатого вала — «раскрутка» двигателя — с 2-х до 5-7 тыс. об/мин
  • Инжекторная система подачи топлива, устанавливаемая на современных бензиновых двигателях взамен устаревшей карбюраторной системы. Также современные системы электронного впрыска способны адаптировать программу работы под конкретный экземпляр мотора, под стиль вождения водителя, и т.п.
  • Многоблочные двигатели — несколько блоков цилиндров на один коленвал (Н- и W-образные двигатели).
  • Применение форсажных жидкостей — в частности Мочевины, впрыскиваемой в камеру сгорания дизеля грузовиков с целью снижения токсичности выхлопных газов.

Шумные пиар-акции автопроизводителей, по поводу очередного «шедевра» высоких технологий, вызывают саркастическую усмешку — вот уж во-истину: «Всё новое, это хорошо забытое старое!» Приходиться лишь сожалеть, что весьма ограниченные ресурсы планеты и труд сотен тысяч инженеров тратяться на то, что-бы заново «открыть» то, что давно уже всем известно и массово применяется в других отраслях машиностроения!











Внимание!!! —
Предлагаем вам обсудить и дополнить данную статью. — Внимание!!!



Ссылки:

  • Об аторе статьи
  • Air Pages

    Эволюция четырёхтактных ДВС. Александр Ильин

Глава 6 Первые авиационные моторы. Неизвестный Юнкерс

Глава 6 Первые авиационные моторы. Неизвестный Юнкерс

ВикиЧтение

Неизвестный Юнкерс
Анцелиович Леонид Липманович

Содержание

Глава 6

Первые авиационные моторы

Моторы в крыле

Судьбе так уж суждено было распорядиться, чтобы Хуго Юнкерс начал свою трудовую карьеру после окончания университета как двигателист. И одно из первых изобретений в его жизни, которое он сделал в соавторстве со своим партнером Оксельхозером много лет тому назад, касалось конструкции двигателя внутреннего сгорания с двумя встречными поршнями. Идея была богатая. Если соединить два поршневых двигателя их головками и организовать общую камеру сгорания, то можно получить высокую степень сжатия, когда оба поршня движутся друг к другу. Такой оппозитный двигатель можно было сделать плоским, и когда Юнкерс «заболел» авиацией, он ухватился за него потому, что такой мотор размещался внутри толстого крыла.

А толстое крыло было другой идеей фикс Юнкерса. Еще в 1910 году ему выдали патент на самолет в виде летающего крыла, внутри которого размещалось все необходимое – моторы, топливные баки, экипаж и пассажиры. На протяжении всей своей жизни Хуго будет доказывать реализуемость и эффективность толстого крыла, проектируя и строя свои металлические самолеты.


Рядный горизонтальный поршневой двигатель в авиации уже применялся на самолете братьев Райт. Юнкерса привлекает двигатель типа «дизель» – у него и расход меньше, и солярка менее склонна к воспламенению, чем бензин. Первый авиационный четырехцилиндровый двухтактный дизель Юнкерса, разработанный в Ахене и построенный в Магдебурге, так и остался экспериментальным. Тяжелый редуктор с цилиндрическими прямозубыми шестернями обеспечивал передачу крутящего момента от двух коленвалов на вал пропеллера.

Первый авиационный экспериментальный мотор Юнкерса Мо3

Наземные испытания этого мотора в начале Первой мировой войны хоть и подтвердили его работоспособность, но выявили множество конструкторских проблем. Мешкать в военное время нельзя, и Хуго запускает в разработку новый горизонтальный оппозитный мотор Fo 2 для самолетов, но уже с шестью цилиндрами. Однако авиационное командование к установке дизеля на самолеты не проявило никакого интереса. А моряки обнадежили – такие моторы им очень нужны для быстроходных торпедных катеров. И все-таки Юнкерс дает команду Мадеру переделать этот мотор под бензин. В январе 1917 года в Дессау начались стендовые испытания двух опытных моторов – дизельного и бензинового. Они выявили недостаточную их надежность. Двигатели были очень тяжелые. При весе 750 кг развивали мощность 475 л.с.

После войны Юнкерс думал довести эти моторы и установить их на свой большой пассажирский самолет Ju-G1, но запрет Контрольной комиссии на разработку двигателей такой мощности и их уничтожение вместе с самолетом помешали этим планам.

Авиационный мотор Юнкерса L1

Хуго убежден, что в мирное время для легких одномоторных самолетов потребуется двигатель небольшой мощности. В 1920 году он приступает к проектированию обыкновенного рядного мотора воздушного охлаждения с шестью цилиндрами L1.

Это был безредукторный четырехтактный бензиновый мотор мощностью в 75 л.с. и весом 130 кг. В головке каждого цилиндра было по два больших впускных и выпускных клапана. Главные подшипники были шариковыми. Система зажигания с двумя магнето была полностью дублированная. Доводка затянулась на несколько лет, а потом он устанавливался на спортивные самолеты Юнкерса Т-26 и Т-29, а также на двухмоторные «фокке-вульф». Хуго уже осознал, что многомоторные самолеты он пока строить не может, и его горизонтальные оппозитные двухтактные дизели еще не скоро будут востребованы. Для одномоторных самолетов нужны вертикальные двигатели классической схемы, и он начинает их тщательное исследование.

Профессор Юнкерс ради успеха своих самолетов переступает через собственное «я». Он уже имеет патент на оппозитный двигатель и может развивать эту схему применительно к самолетам. Но неожиданно для всех в 1923 году Хуго покупает лицензию у BMW на выпуск в Дессау небольшой партии ее моторов IIIа. Тем самым он признает, что конструкторы моторов этой компании победили его двигателистов в негласном соревновании. Освоение секретов конструкции и технологии производства лучшего мотора в Европе профессор Юнкерс не считает для себя зазорным. Он ставит перед своими мотористами задачу на основе этой модели BMW создать свой такой же мотор, но с лучшими характеристиками.

Этот щуплый и седой профессор не жалеет денег на организацию в Дессау современного серийного производства авиационного двигателя своего конкурента, отправив свои оппозитные дизели на целый год до лучших времен на хранение в Ахен. А двигателисты Исследовательского института профессора Юнкерса в Дессау принялись за разработку модифицированного варианта баварского мотора под своим индексом L2, который через два года займет законное и достойное место на рынке авиационных двигателей.

Рев мощных шестицилиндровых бензиновых машин на стендах испытательной моторной станции в Дессау возвестил о новом этапе в создании бензиновых авиационных двигателей Юнкерса.

Данный текст является ознакомительным фрагментом.

«Запустить моторы!»

«Запустить моторы!»
Переданная через громкоговорители команда разбудила спавших летчиков и подняла на ноги Гэнду в предрассветной мгле 4 июня. Все еще слабый после перенесенного воспаления легких Гэнда оделся и поднялся на мостик. Адмирал Нагумо отечески обнял его за

Моторы для Геринга

Моторы для Геринга
Мало того, западные фирмы оказывали Третьему рейху активную помощь в налаживании военного производства. Так, концерн «Виккерс» был непосредственно причастен к строительству германского подводного флота. Поскольку эта фирма обладала патентными

Моторы на севере. Авария

Моторы на севере. Авария
На следующий день я хотел вылететь в лагерь опять, но погода снова испортилась. Шел снег, была пурга. 10, 11, 12 и 13 марта погода стояла переменная. Я каждый день вылетал, но возвращался обратно из-за погоды и из-за неисправности мотора. Кстати о моторах в

1. Кони и моторы

1. Кони и моторы
Давным-давно «всем известно», что Тухачевский и его сподвижники были певцами технического прогресса, зато Ворошилов и группировавшиеся вокруг него столь же тупые и невежественные лошадники технический прогресс отрицали вообще, с идиотским упорством

Глава 6 Особые авиационные операции.

Общий обзор

Глава 6
Особые авиационные операции. Общий обзор
Немецкие командиры имели очень мало информации относительно эксплуатации советских самолетов в качестве воздушного транспорта, а также использования авиации для выполнения задач курьерской службы, связи, управления и

Моторы в крыле

Моторы в крыле
Судьбе так уж суждено было распорядиться, чтобы Хуго Юнкерс начал свою трудовую карьеру после окончания университета как двигателист. И одно из первых изобретений в его жизни, которое он сделал в соавторстве со своим партнером Оксельхозером много лет тому

Глава 11 Моторы без Юнкерса

Глава 11
Моторы без Юнкерса
Перевернутый двигатель
Выдающимся достижением Хуго Юнкерса явилась разработка небольшого 12-цилиндрового бензинового двигателя L10, которую он начал в 1931 году. Хуго Юнкерс задумал его как высокооборотный и экономичный с высокими удельными

Моторы войны

Моторы войны
Наращивание скоростей и боевой эффективности самолетов Германии требовало более мощных двигателей. Разработка опытной модификации двигателя Jumo 210H легла в основу создания более мощного мотора.Доктор Франц Ногебауэр, которому не было и сорока, уже

Последние поршневые моторы

Последние поршневые моторы
Доктор Август Лихт в возрасте тридцати двух лет пришел на работу в Моторную компанию концерна «Юнкерс», когда Юнкерса там уже не было. Он прославился удачной разработкой системы непосредственного впрыска для 210-го двигателя и потом возглавил

«Джентльмены, запускайте моторы!»

«Джентльмены, запускайте моторы!»
Когда от двух полков АДД, базировавшихся на одном аэродроме, осталось семь экипажей и шесть машин, Летчиков отправили в Сибирь для пополнения личного состава и получения новых самолетов. В Красноярске экипажам объявили, что летать они

Револьверы и моторы

Револьверы и моторы
На некоторое время все более-менее успокоилось. Но в 1911 году появилась новая «суперзвезда» – Жюль Бонно.«Жюль Бонно родился в 1876 году в горной провинции Ду, прозванной за холодный климат северным полюсом Франции. Его отец был потомственным рабочим, и

Глава 25. Управляемые авиационные боеприпасы класса «воздух-поверхность»

Глава 25. Управляемые авиационные боеприпасы класса «воздух-поверхность»
Во множестве работ, описывающих вооружение «Третьего рейха», упоминание о «секретном» ракетном оружия сужается до проектов V 1 и V 2. На самом деле в 1940—45 годах работы проводились над

Глава 28. Неуправляемые авиационные ракеты

Глава 28. Неуправляемые авиационные ракеты
Темой для отдельного разговора является разработка в Германии неуправляемых авиационных ракет (НАР) классов «воздух — поверхность» и «воздух — воздух». Идея вооружения боевых самолетов ракетным оружием появилась еще в 1937 году,

Глава 29. Авиационные бомбы

Глава 29. Авиационные бомбы
Среди авиационных боеприпасов несколько выделяются образцы, созданные путем установки ракетных ускорителей на бронебойных авиабомбах. Бронебойные бомбы калибром 500—1800 кг, предназначенные для поражения боевых кораблей, были приняты на

Двигатели

пропустить навигацию

Что такое аэронавтика? | Динамика
полета | Самолеты | Двигатели
| История полета | Что
это УЭТ?
Словарь | Веселье
и игры | Образовательные ссылки | Урок
Ланс | Индекс сайта | Дом

Как работает реактивный двигатель?


Скачать Real Media
56k 256k

Скачать Windows
Медиаплеер
56k 256k

НОВИНКА!
Видео «Как работает реактивный двигатель».

Мы считаем само собой разумеющимся, как легко самолет весом более половины
миллион фунтов отрывается от земли с такой легкостью. Как это происходит?
Ответ прост. Это двигатели.

Позвольте Терезе Беньо из Исследовательского центра Гленна НАСА объяснить
подробнее…

Как указано в НАСА
Пункт назначения Завтра.


Реактивные двигатели двигают самолет вперед с большой силой, создаваемой
огромная тяга и заставляет самолет лететь очень быстро.

Все реактивные двигатели, которые также называются

газовые турбины,
работают по тому же принципу. Двигатель всасывает воздух спереди с помощью вентилятора.
Компрессор повышает давление воздуха. Компрессор изготовлен
с множеством лопастей, прикрепленных к валу.
Лопасти вращаются с большой скоростью и сжимают или сжимают воздух.
Сжатый
затем воздух распыляется топливом, и электрическая искра зажигает смесь.
горящие газы расширяются и выбрасываются через сопло в задней части двигателя.
Когда струи газа выбрасываются назад, двигатель и самолет устремляются вперед.
Когда горячий воздух направляется к соплу, он проходит через другую группу лопастей.
называется турбиной. Турбина крепится к тому же валу, что и компрессор.
Вращение турбины приводит к вращению компрессора.

На изображении ниже показано, как воздух проходит через двигатель. Воздух проходит через
ядра двигателя, а также вокруг ядра. Это приводит к тому, что часть воздуха
быть очень жарко, а некоторые быть прохладнее. Затем холодный воздух смешивается с горячим
воздуха в районе выходного отверстия двигателя.

 

Это изображение того, как воздух проходит через двигатель

Что такое тяга?

Тяга
поступательная сила, которая
толкает двигатель и, следовательно, самолет вперед. Сэр
Исаак Ньютон
обнаружил, что «для каждого действия существует равное
и противоположная реакция». Этот принцип используется в двигателе.
в большом объеме воздуха. Воздух нагревается, сжимается и замедляется.
Воздух прогоняется через множество вращающихся лопастей. Смешивая этот воздух со струей
топлива, температура воздуха может достигать трех тысяч градусов.
энергия воздуха используется для вращения турбины. Наконец, когда воздух уходит,
он выталкивается из двигателя назад. Это заставляет самолет двигаться вперед.

Детали реактивного двигателя

Вентилятор —
Вентилятор является первым компонентом в
турбовентиляторный. Большой вращающийся вентилятор всасывает большое количество воздуха. Большинство лезвий
вентилятора изготовлены из титана. Затем он ускоряет этот воздух и разделяет его на
две части. Одна часть продолжается через «сердцевину» или центр двигателя, где
на него воздействуют другие компоненты двигателя.

Вторая часть «обходит» ядро ​​двигателя. Он проходит через канал
который окружает ядро ​​​​к задней части двигателя, где он производит большую часть
сила, толкающая самолет вперед. Этот более прохладный воздух помогает успокоиться
двигатель, а также добавление тяги к двигателю.

Компрессор —
Компрессор первый.
компонент ядра двигателя. Компрессор состоит из вентиляторов с множеством лопастей.
и крепится к валу. Компрессор сжимает поступающий в него воздух.
площади постепенно уменьшаются, что приводит к увеличению атмосферного давления. Этот
приводит к увеличению энергетического потенциала воздуха. Сжатый воздух
нагнетается в камеру сгорания.

Камера сгорания —
В камере сгорания воздух смешивается
топливом, а затем загорелся. Есть целых 20 форсунок для распыления топлива в
воздушный поток. Смесь воздуха и топлива воспламеняется. Это обеспечивает высокий
температура, мощный воздушный поток. Топливо сгорает с кислородом в сжатом
воздуха, образуя горячие расширяющиеся газы. Внутренняя часть камеры сгорания часто изготавливается
керамических материалов для обеспечения термостойкой камеры. Тепло может достигать
2700°.

Турбина —
Поток воздуха с высокой энергией приближается
из камеры сгорания поступает в турбину, заставляя лопатки турбины вращаться.
Турбины соединены валом для вращения лопаток компрессора и
для вращения впускного вентилятора спереди. Это вращение забирает энергию у
поток высокой энергии, который используется для привода вентилятора и компрессора. Газы
вырабатываемые в камере сгорания, движутся через турбину и раскручивают ее лопасти.
Турбины реактивного самолета вращаются тысячи раз. Они закреплены на валах
которые имеют несколько комплектов шарикоподшипников между ними.

Сопло —
Форсунка – это выпускной канал
двигатель. Это часть двигателя, которая фактически создает тягу для
самолет. Энергетически обедненный воздушный поток, прошедший через турбину, в дополнение к
более холодный воздух, миновавший сердцевину двигателя, создает силу при выходе из
сопло, которое толкает двигатель и, следовательно, самолет вперед.
Сочетание горячего воздуха и холодного воздуха выбрасывается и производит выхлоп,
что вызывает тягу вперед.
Перед соплом может стоять смеситель ,
который сочетает в себе высокотемпературный воздух, поступающий из ядра двигателя, с
более низкая температура воздуха, пропущенного через вентилятор. Миксер помогает сделать
двигатель тише.

Первый реактивный двигатель — А

Краткая история ранних двигателей

Сэр Исаак Ньютон в 18 веке был
первым предположил, что взрыв, направленный назад, может привести в движение машину
вперед с огромной скоростью. Эта теория была основана на его третьем законе
движение. Когда горячий воздух устремляется назад через сопло, самолет движется вперед.

Анри Жиффар построил дирижабль с приводом
первым авиационным двигателем, паровой машиной мощностью в три лошадиные силы. Это было очень
тяжелый, слишком тяжелый, чтобы летать.

В 1874 году Феликс де Темпл построил моноплан.
который пролетел всего лишь короткий прыжок вниз с холма с помощью паровой машины, работающей на угле.

Отто Даймлер , изобретен в конце 1800-х годов
первый бензиновый двигатель.

В 1894 году американец Хирам Максим
пытался оснастить свой тройной биплан двумя паровыми двигателями, работающими на угле. Это только
пролетел несколько секунд.

Ранние паровые машины приводились в движение нагретым углем и, как правило,
слишком тяжел для полета.

Американский Сэмюэл Лэнгли сделал модель самолета
которые приводились в движение паровыми двигателями. В 1896 году он успешно летал на
беспилотный самолет с паровым двигателем, получивший название Аэродром .
Он пролетел около 1 мили, прежде чем выдохся. Затем он попытался построить полный
размерный самолет Aerodrome A, с газовым двигателем. В 1903 году он
разбился сразу после спуска с плавучего дома.

В 1903 году братьев Райт
летал, Летчик , с бензиновым двигателем мощностью 12 лошадиных сил
двигатель.

С 1903 года, года первого полета братьев Райт, до конца 19 века.30-е годы
газовый поршневой двигатель внутреннего сгорания с воздушным винтом.
единственное средство, используемое для приведения в движение самолетов.

Это был Фрэнк Уиттл , британский пилот,
который разработал и запатентовал первый турбореактивный двигатель в 1930 году.
Первый успешный полет двигателя Уиттла
в мае 1941 года. Этот двигатель отличался многоступенчатым компрессором и
камеру, одноступенчатую турбину и сопло.

В то же время, когда Уиттл работал в Англии,
Ханс фон Охайн
работал над подобным проектом в Германии. Первый самолет, успешно
использование газотурбинного двигателя было немецким
Heinkel He 178, август 1939 года. Это был первый в мире турбореактивный двигатель.
полет.

General Electric построила первый американский реактивный двигатель для ВВС США.
Реактивный самолет . Именно экспериментальный самолет ХР-59А совершил первый полет в октябре 19 г. 42.

Типы реактивных двигателей

Турбореактивные двигатели

Основная идея

турбореактивный двигатель
просто. Воздух, поступающий из отверстия
в передней части двигателя сжимается в 3-12 раз по сравнению с исходным давлением
в компрессоре. Топливо добавляется в воздух и сжигается в камере сгорания.
повысить температуру жидкой смеси примерно до 1100–1300 °F
F. Полученный горячий воздух проходит через турбину, которая приводит в действие компрессор.
Если турбина и компрессор исправны, давление на выходе из турбины
будет почти в два раза выше атмосферного давления, и это избыточное давление направляется
к соплу для создания высокоскоростного потока газа, создающего тягу.
Значительное увеличение тяги может быть получено за счет использования

форсаж.

Это вторая камера сгорания, расположенная после турбины и перед
сопло. Форсажная камера повышает температуру газа перед соплом.
Результатом этого повышения температуры является увеличение примерно на 40 процентов
по тяге на взлете и гораздо больший процент на высоких скоростях, как только самолет
находится в воздухе.

Турбореактивный двигатель является реактивным двигателем. В реактивной машине расширяющиеся газы
сильно надавите на переднюю часть двигателя. Турбореактивный двигатель всасывает воздух и сжимает
или сжимает его. Газы проходят через турбину и заставляют ее вращаться. Эти газы
отскакивать назад и стрелять из задней части выхлопа, толкая самолет вперед.

Изображение ТРД

Турбовинтовой

А

турбовинтовой двигатель
представляет собой реактивный двигатель, прикрепленный к воздушному винту. Турбина на
задняя часть вращается горячими газами, и это приводит в движение вал, приводящий в движение
пропеллер. Некоторые небольшие авиалайнеры и транспортные самолеты оснащены турбовинтовыми двигателями.

Как и турбореактивный, турбовинтовой двигатель состоит из компрессора,
камера и турбина, давление воздуха и газа используется для запуска турбины, которая
затем создает мощность для привода компрессора. По сравнению с турбореактивным двигателем,
турбовинтовой двигатель имеет лучшую двигательную эффективность при скоростях полета ниже примерно
500 миль в час. Современные турбовинтовые двигатели оснащены воздушными винтами,
имеют меньший диаметр, но большее количество лопастей для эффективной работы
при гораздо более высоких скоростях полета. Чтобы приспособиться к более высоким скоростям полета, лопасти
имеют форму ятагана с загнутыми назад передними кромками на концах лопастей. Двигатели
с такими пропеллерами называются винтовентиляторы .

Изображение турбовинтового двигателя

ТРДД

А

турбовентиляторный двигатель
имеет большой вентилятор спереди, который всасывает
воздух. Большая часть воздуха обтекает двигатель снаружи, что делает его работу тише.
и давая больше тяги на малых скоростях. Большинство современных авиалайнеров оснащены
турбовентиляторами. В ТРД весь воздух, поступающий во впуск, проходит через
газогенератор, состоящий из компрессора, камеры сгорания и
турбина. В турбовентиляторном двигателе только часть поступающего воздуха попадает в
камера сгорания. Остаток проходит через вентилятор или компрессор низкого давления.
и выбрасывается непосредственно в виде «холодной» струи или смешивается с выхлопом газогенератора.
для создания «горячей» струи. Целью такой обходной системы является увеличение
тяги без увеличения расхода топлива. Это достигается за счет увеличения
суммарный расход воздушной массы и снижение скорости при том же суммарном запасе энергии.

Изображение турбовентиляторного двигателя

Турбовальные валы

Это еще одна форма газотурбинного двигателя, которая работает так же, как турбовинтовой двигатель.
система. Он не приводит в движение пропеллер. Вместо этого он обеспечивает питание вертолета.
ротор. Турбовальный двигатель устроен так, что скорость вертолета
ротор не зависит от скорости вращения газогенератора. Это позволяет
скорость ротора должна оставаться постоянной, даже если скорость генератора
менялись, чтобы модулировать количество производимой мощности.

 

Изображение турбовального двигателя

ПВРД

ПВРД — это
самый простой реактивный двигатель и не имеет движущихся частей. Скорость реактивного «тарана»
или нагнетает воздух в двигатель. По сути, это турбореактивный двигатель, в котором вращается
техника исключена. Его применение ограничено тем, что его
степень сжатия полностью зависит от скорости движения вперед. ПВРД не развивает статических
тяга и очень небольшая тяга вообще ниже скорости звука. Как следствие,
ПВРД требует некоторой формы вспомогательного взлета, например, другого самолета.
Он использовался в основном в системах управляемых ракет. Космические аппараты используют это
тип струи.

Изображение прямоточного воздушно-реактивного двигателя

 

Вернуться к началу

Что такое аэронавтика?

| Динамика полета | Самолеты

| Двигатели | История

полета | Что такое УЭТ?
Словарь | Веселье

и игры | Образовательные ссылки | Урок

Планы | Индекс сайта | Главная

история авиадвигателей


авиационный двигатель
история

рано
авиадвигатели

В начале двадцатого
века авиадвигатели были простыми, маломощными машинами
которые были разработаны и построены один за другим для конкретных самолетов.
Но очень скоро двигатели стали строиться в больших количествах, зачастую
несколькими производителями в разных странах, которые
лицензированы разработчиком или первоначальным производителем. в
США, особенно во время Первой мировой войны, автомобилестроение
производители доминировали в области авиационных двигателей, пока компании
специализирующихся на авиационных двигателях, были созданы в
1920 с.


Чертеж в разрезе
двигатель Райта Флайера 1903 года.

Первые авиадвигатели были
стационарный, либо радиальный по стилю, либо по линии. Антуанетта
Серия была наиболее часто используемой. На смену им пришли
Популярный роторный двигатель. Самыми известными были Гном и Ле.
Rhne, которые использовались на большинстве самолетов до
запущен рядный двигатель Liberty, предназначенный для серийного производства
доминирует на рынке авиационных двигателей. С этого момента,
все более совершенные и мощные стационарные
рядные двигатели разрабатывались до появления реактивных
двигатель пару десятков лет спустя.

Самый
усовершенствованный авиационный двигатель в начале века был
Двигатель мощностью 50 лошадиных сил (37 кВт), разработанный Чарльзом Мэнли.
для использования на аэродромах Сэмюэля Лэнгли. Но поскольку Лэнгли
самолету так и не удалось взлететь, у этих двигателей не было
возможность проявить свой потенциал. Двигатель
спроектирован и построен Чарли Тейлором и братьями Райт
ибо их Флайер, хотя и был гораздо менее мощным, имел большую
место в истории, потому что она привела к первому успешному
полет с двигателем в 1903. Двигатель Райта имел четыре рядных
цилиндров, имел водяное охлаждение, производил 12 лошадиных сил (9
киловатт) (по сравнению с 50 лошадиными силами Мэнли) и имел
весил около 179 фунтов (81 кг) без топлива. Это
не было бензонасоса, карбюратора и свечей зажигания.

Этот Кертисс
четырехцилиндровый двигатель с водяным охлаждением был первым американским военным
авиадвигатель. Он использовался для питания 1908 Корпус связи
Дирижабль №1.

Самолет и мотор Curtiss
Корпорация выпустила два примечательных двигателя. четырехцилиндровый
двигатель с водяным охлаждением, использовавшийся в дирижабле корпуса связи 1908 г.
№ 1 был первым в Америке двигателем для военных самолетов. Это могло бы
генерировать около 25 лошадиных сил (19 киловатт) и управлять
Трубчатый стальной вал длиной 22 фута (6,7 метра), который вращал
деревянный пропеллер.

Лейтенант
Его спроектировал Томас Селфридж. В тесте на скорость он достиг
19,6 миль в час (31,5 километра в час). Кертисс также
произвел тысячи двигателей с водяным охлаждением ОХ-5 во время
Первая война, в первую очередь за Curtiss «Дженни». Сгенерировано всего 90
лошадиных сил (67 кВт), но по сравнению с другими двигателями
период, был очень надежным.


тысяч двигателей водяного охлаждения Curtiss OX-5 произведено
в США во время Первой мировой войны, прежде всего для
Самолет Кертисс Дженни.

Двигатель Антуанетты был
спроектирован и построен во Франции Лоном Левавассером. Названный в честь
дочь дизайнера, это был самый широко используемый в Европе
двигатель до 1909-1910. Первый двигатель Antoinette датируется
около 1901 г. и использовался на быстроходном катере. К 1905 году Левавассер
выпустил восьмицилиндровый двигатель с водяным охлаждением.
расположены в виде 90-градусной буквы «V» и с непосредственным впрыском топлива. Это
был безопасным, сильным и достаточно мощным, производя 50
лошадиных сил (37 киловатт) и весом около 110 фунтов (50
килограммы). Его удельная мощность не была превзойдена в течение 25 лет.
годы.


Французы и
Британский Anzani 10 представлял собой радиальный двигатель с воздушным охлаждением.
был установлен на французских самолетах Caudron.

Паровоз Анзани вез Луи.
Моноплан Блиота через Ла-Манш в 1909 году.
трехцилиндровый полурадиальный двигатель с воздушным охлаждением.
развивал 25 лошадиных сил (19киловатт). Это было относительно
маломощный для такого длительного полета. Двигатель имел автомат
впускные клапаны и выпускные клапаны с механическим приводом, с
дополнительные выпускные отверстия в цилиндрах. Более поздние двигатели Anzani
генерировали 90-100 лошадиных сил (67-75 киловатт) и использовались в
Самолет Caudron французского производства, 1915 г.


Двигатель Гном 9-Н
был первым удачным роторным двигателем с воздушным охлаждением.
экстенсивно в самолетах в течение 1909-1910 период. Многочисленные
типы двигателей Gnome были спроектированы и построены, один из
самый известный из них — 165-сильный 9-N «Monosoupape» (одноклапанный).
который использовался во время Первой мировой войны в основном в Nieuport 28.

Гном 50-сильный
Роторный двигатель мощностью 37 кВт произвел революцию в авиации. Хотя
Ф.О. Компания Farwell разработала первый успешный роторный двигатель с воздушным охлаждением.
двигатель в США 1896, это была французская постройка.
Вращающийся гном, который впервые широко использовался в самолетах.
в первые годы Первой мировой войны. Дизайн Sguin
братьев и впервые поступил в продажу в 1908 году, это был первый из
длинная линейка все более мощных двигателей военного времени. Типичный
роторный двигатель, он имел неподвижный коленчатый вал и вращающийся
цилиндры и картер, несущий на себе гребной винт.

Многочисленные типы
Впоследствии были спроектированы и построены двигатели Gnome. Один из
самым известным был 165-сильный (123-киловаттный) 9-Н «Моносупап».
(один клапан). Двигатель имел по одному клапану на цилиндр. Не имея
впускных клапанов, его топливная смесь поступала в цилиндры через
круглые отверстия или «порты», вырезанные в стенках цилиндра. Это было
использовался во время Первой мировой войны в основном в Nieuport 28, который
Авиакомпания США закупила у Франции, а также
тысячи других самолетов союзников. Этот двигатель, произведенный
под именами Bentley Rotary B.R.1 в Великобритании, Thulin
в Швеции и Oberursel UR.I в Германии доминировали в
промышленность до 1916.

Ротор Clerget
двигатель использовался во многих истребителях союзников во время мировой войны.
I. Один приводил в действие знаменитый Sopwith Camel.

Около 1911 г., другой двигатель
производители начали строить роторные двигатели. ЛеРен и
Двигатели Clerget, оба построенные во Франции, использовались во многих
Истребители союзников.


LeRhone C-9 был французским роторным двигателем с воздушным охлаждением. Это было
использовались в боевых самолетах в начале Первой мировой войны, но как более крупные
и стали доступны более мощные двигатели, он был понижен
для использования в учебных самолетах.

Двигатели LeRhne были вполне
надежны и к концу войны производились
в Великобритании, Италии и США в дополнение к
Франция. Немцы также выпускали 110-сильный
(82-киловаттный) Oberursel, который был практически точной копией
110-сильного LeRhne. Clerget приводил в действие британский
Сопвит Кэмел.


Rolls-Royce Hawk использовался в британских дирижаблях времен Первой мировой войны.
посланы против немецких подводных лодок.

Британский Rolls-Royce Eagle и
его преемник, Falcon, положил начало знаменитому
линейка авиационных двигателей, которая производила Merlins и
Грифоны Второй мировой войны. Этот V-12 с жидкостным охлаждением был
разработан в 1915. Он был построен в нескольких вариантах, которые
кульминацией стал 375-сильный Mark VII 1917 года.
привел в действие самолет Vimy, который Джон Олкок и Артур Уиттен
Браун перелетел через Атлантику в июне 1919 года.

Мерседес
двигатели приводили в действие некоторые из самых известных немецких истребителей
в последние два года войныAlbatros D. V., Fokker D
VII и Пфальц D XII. Почти все двигатели немецкой разработки были
прочный и надежный, с шестью цилиндрами с водяным охлаждением в
линия.

Испано-Сюиза
8ВЕ — V-образный двигатель жидкостного охлаждения. Этот тип двигателя был
особенно компактным для той мощности, которую он производил, и был
используется во многих типах самолетов.

Швейцарский инженер испанского автомобиля
Компания Марка Биркигта разработала несколько автомобилей Hispano-Suiza.
продукты. Среди них большое количество двигателей V-8 с водяным охлаждением.
и двигатели V-12, которые производились во Франции, Великобритании и
США во время войны. Они были особенно компактны для
количество производимой ими энергии.


В 1916 и 1917 гг.
Кертисс выпускал самолеты Р-3 и Р-4 с двигателями
двигатель Curtiss V2-3. Поскольку этот двигатель был тяжелым для
количество лошадиных сил, которое он производил, он был заменен во время
Первая война на двигателе Liberty.

На сегодняшний день самым важным из всех
Двигатели союзников и самый значительный вклад Америки в
военные усилия, была Свобода. В мае 1917, Джесси Г.
Винсент из Packard Motor Car Company и Э.Дж. Зал
Hall-Scott Motor Car Company заняла гостиничный номер в
Вашингтон, округ Колумбия, в течение почти недели и спроектировал восьми-
и двенадцатицилиндровые двигатели Liberty с серийным производством в
разум.


Восьмицилиндровый двигатель Liberty V предшествовал Liberty-12.
Это был первый двигатель Liberty, испытанный на самолете.
29 августа, 1917.

4 июня 1917 г. самолет
Производственный совет утвердил окончательный дизайн и производство.
Сборка первой восьмицилиндровой версии была завершена в
удивительно короткий промежуток менее шести недель.

восьмицилиндровая версия дебютировала 29 августа 1917 года.
первоначально генерировал 270 лошадиных сил (201 киловатт), но его
позже мощность была увеличена до 330 лошадиных сил (246 киловатт).
Первоначальная версия сильно вибрировала, а с другой
двигатель такой мощности уже был доведен до совершенства, его
разработка была остановлена ​​после того, как было построено всего 15 штук.


Величайший технологический вклад Америки во время мировой войны
У меня был 12-цилиндровый двигатель Liberty с водяным охлаждением.

Liberty 400-сильный
(298 кВт) V-12 с воздушным охлаждением, с другой стороны, был
один из самых мощных двигателей войны и один из
рабочие лошадки войны. Предназначен для массового производства с
взаимозаменяемые детали, Liberty стала эталоном военного времени
авиадвигатель производства Packard, Lincoln, Ford, General
Motors (Cadillac и Buick), Nordyke и Marmon. Он был использован
чаще всего на DH-4, единственном самолете американского производства,
боя на Западном фронте. Сошло более 13 000 двигателей
сборочной линии до перемирия, и более 20 000
были построены к тому времени, когда производство военного времени закончилось в начале 1919.

После
войны, авиационный корпус использовал двигатель более десяти лет в
многочисленные типы самолетов.